
Hydrol. Earth Syst. Sci., 28, 649–668, 2024
https://doi.org/10.5194/hess-28-649-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Merging with crowdsourced rain gauge data improves
pan-European radar precipitation estimates
Aart Overeem1, Hidde Leijnse1, Gerard van der Schrier1, Else van den Besselaar1, Irene Garcia-Marti1, and
Lotte Wilhelmina de Vos2

1R&D Observations and Data Technology, Royal Netherlands Meteorological Institute, Utrechtseweg 297,
3731 GA De Bilt, the Netherlands
2Observation Operations, Royal Netherlands Meteorological Institute, Utrechtseweg 297, 3731 GA De Bilt, the Netherlands

Correspondence: Aart Overeem (aart.overeem@knmi.nl)

Received: 9 May 2023 – Discussion started: 12 June 2023
Revised: 4 November 2023 – Accepted: 30 December 2023 – Published: 14 February 2024

Abstract. Ground-based radar precipitation products typ-
ically need adjustment with rain gauge accumulations to
achieve a reasonable accuracy. This is certainly the case for
the pan-European radar precipitation products. The density
of (near) real-time rain gauge accumulations from official
networks is often relatively low. Crowdsourced rain gauge
networks have a much higher density than conventional ones
and are a potentially interesting (complementary) source to
merge with radar precipitation accumulations. Here, a 1-
year personal weather station (PWS) rain gauge dataset of
∼ 5 min accumulations is obtained from the private com-
pany Netatmo over the period 1 September 2019–31 August
2020, which is subjected to quality control using neighbour-
ing PWSs and, after aggregating to 1 h accumulations, us-
ing unadjusted radar data. The PWS 1 h gauge accumula-
tions are employed to spatially adjust OPERA radar accu-
mulations, covering 78 % of geographical Europe. The per-
formance of the merged dataset is evaluated against daily and
disaggregated 1 h gauge accumulations from weather stations
in the European Climate Assessment & Dataset (ECA&D).
Results are contrasted to those from an unadjusted OPERA-
based radar dataset and from EURADCLIM. The severe
average underestimation for daily precipitation of ∼ 28 %
from the unadjusted radar dataset diminishes to ∼ 3 % for
the merged radar–PWS dataset. A station-based spatial ver-
ification shows that the relative bias in 1 h precipitation is
still quite variable and suggests stronger underestimations
for colder climates. A dedicated evaluation with scatter den-
sity plots reveals that the performance is indeed less good for
lower temperatures, which points to limitations in observ-

ing solid precipitation by PWS gauges. The outcome of this
study confirms the potential of crowdsourcing to improve
radar precipitation products in (near) real time.

1 Introduction

Accurate precipitation information is required for many ap-
plications and scientific disciplines, such as weather moni-
toring and nowcasting, climate monitoring, water manage-
ment, (flash) flood modelling and forecasting, extreme value
modelling and evaluation of extreme precipitation events, hy-
dropower generation, and agricultural production. Official
rain gauge networks often do not capture the spatial vari-
ability in precipitation because of network densities that are
too low, especially in (near) real time and in urban areas.
Moreover, data from these networks are not always openly
available. Ground-based weather radars provide wide cover-
age and (near) real-time information at the kilometre scale
every 5 or 10 min, but their precipitation estimates can be
influenced by many sources of error (Joss and Waldvogel,
1990; Fabry, 2015; Rauber and Nesbitt, 2018). These can be
much improved by additional processing, especially in the
case of dual-polarisation radars. However, these algorithms
have not always been tested, let alone applied in operational
products. Moreover, (large) deviations in quantitative precip-
itation estimation (QPE) with respect to true precipitation re-
ceived at the Earth’s surface can still occur. Hence, it is com-
mon practice to combine rain gauge and radar data for QPE
(e.g. Goudenhoofdt and Delobbe, 2016; Nelson et al., 2016;
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Winterrath et al., 2018; Yu et al., 2020), also called gauge-
adjusted radar QPE. Often rain gauge and radar data from the
same interval are combined, called merging. In the case that
gauge data are lacking, an adjustment factor field can be com-
puted based on (recent) historical radar and gauge data and
subsequently applied to current radar data (Park et al., 2019).
Increasing the density of rain gauge networks will generally
improve merged radar precipitation products, compensating
for the spatially and temporally varying sources of errors in
radar QPE. This does require rain gauge data of sufficient
quality.

A novel source of in situ surface rainfall measurements
is crowdsourced or third-party personal weather stations
(PWSs) with rain gauges. The high densities of these kind of
internet-of-things (IoT) rain gauge networks and their poten-
tial real-time availability hold promise for improving merged
(real-time) radar–gauge products, especially at the sub-daily
timescale. PWSs are not expected to yield the same obser-
vational quality compared to official automatic weather sta-
tions. This is not only influenced by the quality of PWS sen-
sors, but setup, surrounding environment, metadata, connec-
tivity, data transfer, power supply, calibration and mainte-
nance also play crucial roles in this (De Vos et al., 2017; Bár-
dossy et al., 2021; Hahn et al., 2022). De Vos et al. (2017)
obtain highly accurate rainfall estimates (compared with col-
located official rain gauge data) in an experimental setup with
three properly installed Netatmo PWS rain gauges, suggest-
ing that sensor quality can be good. The hypothesis is that af-
ter thorough quality control (QC), the high density of a PWS
network can compensate for its lower accuracy in the case
that interpolated or merged datasets are derived. PWSs can
capture local precipitation variations, which would otherwise
go unnoticed by official gauge networks. QC algorithms have
been developed for and (successfully) tested on PWS rain
gauge data (De Vos et al., 2019; Båserud et al., 2020; Bár-
dossy et al., 2021). Some of these have not necessarily been
designed for use on crowdsourced data (Båserud et al., 2020;
Bárdossy et al., 2021) or have even been specifically devel-
oped for conventional networks (Ośródka et al., 2022). Of-
ten, these algorithms apply similar processing steps as in De
Vos et al. (2019), i.e. removing faulty zeroes, high influx and
station outliers employing inter-station checks. For instance,
the open-source R package Titan and its C++ version Titan-
lib consist of 12 automatic QC checks, emphasising spatial,
mainly inter-station, checks. It can use auxiliary data from,
for example, radars or numerical weather prediction models,
for a first-guess check (Båserud et al., 2020; Lussana et al.,
2020; Nipen et al., 2022). It has been developed for QC of
temperature and rain, although it has mainly been tested on
temperature. Titan is being employed operationally for QC of
PWS air temperature data, which are used for postprocessing
of short-term weather forecasts (Nipen et al., 2020). Aim-
ing to improve interpolated gauge-based precipitation maps,
Bárdossy et al. (2021) present another inter-station QC algo-
rithm, which discards Netatmo PWS rain gauge data when

their distributions do not comply with those from rain gauge
observations from the German weather service, the primary
network. This approach may not work as well for primary
networks with lower densities, and its (near) real-time appli-
cation would depend on the availability of primary network
data. Ośródka et al. (2022) present the RainGaugeQC algo-
rithm, optimised for 10 min accumulations and containing
five checks, consisting of inter-station and some intra-station
checks and partly involving radar data. The gross error check
and radar conformity check from Ośródka et al. (2022) show
similarities with the QC in this study.

The added value of Netatmo PWS gauges for hourly to
multi-day rainfall mapping compared to official rain gauges
has been demonstrated for Germany, and merging of PWS
gauge with radar precipitation data is considered an oppor-
tunity which could be beneficial for hydrometeorological ap-
plications (Graf et al., 2021). To the best of our knowledge,
the merging of radar and PWS gauge data has not been ad-
dressed yet in the peer-reviewed literature. Here, we investi-
gate the potential of PWS rain gauge data for one of its most
important use cases: improving radar QPE. This is performed
at an unprecedented scale, covering 78 % of geographical Eu-
rope over a full year. A pan-European radar dataset, based on
a product from the Operational Program on the Exchange
of weather RAdar information (OPERA), is employed as a
starting point (Huuskonen et al., 2014; OPERA, 2022). This
unadjusted dataset underestimates precipitation by, on av-
erage, 28 % over the period 1 September 2019–31 August
2020. The focus of this paper is not on the quality of PWS
data in relation to those from the national meteorological and
hydrological services (NMHSs) or on quality control pro-
cedures for PWS data as such but on the performance of a
merged radar–PWS dataset. Part of the QC by De Vos et al.
(2019) and De Vos (2021) is applied, and additional QC,
also involving unadjusted radar data, is developed. A spa-
tial adjustment is applied to merge European-wide OPERA
1 h radar precipitation accumulations at a 2 km grid with
1 h PWS rain gauge accumulations obtained from Netatmo.
The merged dataset is evaluated against rain gauge accumu-
lations from the European Climate Assessment & Dataset
(ECA&D). Results are also contrasted to those from the Eu-
ropean climatological high-resolution gauge-adjusted radar
precipitation dataset EURADCLIM (EUropean RADar CLI-
Matology) (Overeem et al., 2023b). In order to assess the
performance in the case that solid precipitation is likely, the
evaluation is also performed separately for air temperatures
below and above 5 ◦C.

In Sect. 2, the employed radar precipitation datasets, the
ECA&D rain gauge dataset, the PWS rain gauge dataset and
the gridded mean daily temperature dataset are described. In
Sect. 3, the QC algorithm of PWS data and the algorithm to
merge radar and PWS data are described. In Sect. 4, eval-
uations of unadjusted OPERA and gauge-adjusted OPERA
datasets against ECA&D rain gauge accumulations are pro-
vided. The performance is evaluated for lower and higher air
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temperatures. Annual precipitation is compared to EURAD-
CLIM. The potential for the monitoring of heavy (urban) pre-
cipitation employing a merged radar–PWS dataset is illus-
trated. Section 5 discusses limitations and provides recom-
mendations. Finally, Sect. 6 provides the main conclusions.

2 Data

2.1 Pan-European radar datasets

The radar datasets are based on the composite product “in-
stantaneous surface rain rate”, as downloaded from the EU-
METNET OPERA Data Centre (ODC or Odyssey) from the
period 1 September 2019–31 August 2020. They have a grid
cell size of 2 km× 2 km and are available every 15 min. The
median and average number of contributing radars in the pe-
riod 1 September 2019–31 August 2020 is 154. Algorithms
to take out non-meteorological echoes, including Doppler
clutter filtering, and to correct for beam blockage have been
applied by NMHSs and/or OPERA. Different kind of radars
are employed with, for instance, single-polarisation and dual-
polarisation radars, and most radars operate in the C-band
frequency range. Radars provide data every 5 or 10 min,
where the most recent data are employed in the OPERA
15 min composite product. OPERA converts the horizontally
polarised radar reflectivity factors to instantaneous surface
rain rates using the Marshall–Palmer Zh–R relation (Zh =

200R1.6). The OPERA radar data and the applied algorithms
are described in more detail by Saltikoff et al. (2019) and
Overeem et al. (2023b).

Here, two OPERA-based clock-hour radar precipitation
datasets are utilised. The processing of these datasets and
its characteristics are provided by Overeem et al. (2023b).
For each clock hour and grid cell, accumulations are only
computed in the case of full availability of the underlying
15 min data. Both datasets have undergone additional re-
moval of non-meteorological echoes by means of two sta-
tistical methods (Gabella and Notarpietro, 2002; Wradlib,
2021, 2022) and a satellite cloud type mask. The latter sets
rain rates to zero in the case of semitransparent clouds or
cloud-free areas. Not all of these steps can be applied in real
time, but applying them yields a dataset which has under-
gone the same processing as the EURADCLIM dataset (see
below) that is used in comparisons. Moreover, these steps
only consider the removal of non-meteorological echoes and
not the precipitation retrieval itself. The first dataset is an
unadjusted OPERA radar dataset, called “OPERA” in this
paper and corresponding to “Gabella + CTM + static filter”
in Overeem et al. (2023b). The second dataset is obtained
by merging with disaggregated 1 h ECA&D rain gauge ac-
cumulations employing a local mean-field bias adjustment
succeeded by a spatial adjustment. For this, the original daily
gauge accumulations are disaggregated to 1 h accumulations
using the 1 h and 24 h OPERA radar accumulations. An im-

portant reason for the disaggregation is the fact that the mea-
surement interval of daily rain gauge accumulations is not
the same for the European NMHSs, which is reflected in
ECA&D as the NMHSs are the main source of data. A daily
adjustment would therefore be less appropriate (Overeem
et al., 2023b). This publicly accessible climatological gauge-
adjusted product is called “EURADCLIM” (Overeem et al.,
2022a, b). A flowchart of the radar and gauge data process-
ing for OPERA and EURADCLIM can be found in Overeem
et al. (2023b). From these 1 h precipitation accumulations,
24 h (every clock hour) and annual precipitation accumula-
tions are derived in the case that a grid cell has at least 83.3 %
availability. The combined radar–gauge availability of daily
and 1 h precipitation accumulations is usually high (Fig. 1a–
b).

2.2 ECA&D rain gauge data

Daily precipitation time series from 6678 rain gauges were
obtained mid-June 2022 from the ECA&D (https://www.
ecad.eu, last access: 7 February 2024) project (Klein Tank
et al., 2002; Klok and Klein Tank, 2008) for the period
1 September 2019–31 August 2020. For most regions, the
combined availability of radar and gauge data is at least 90 %
(Fig. 1a). Figure 1c displays the distance from a radar grid
cell to the nearest gauge assuming full availability of the
6678 gauges. It reveals a large spatial variability of the gauge
network density. The median and mean distances for a radar
grid cell to the nearest rain gauge are 42 and 92 km, respec-
tively. The relatively large difference between median and
mean distance is primarily caused by areas with low rain
gauge network densities (e.g. above sea). Three radar pre-
cipitation datasets will be evaluated with the ECA&D rain
gauge dataset. It will also be merged with 1 h radar accumu-
lations in case of the EURADCLIM dataset. The ECA&D
team (Project team ECA& D, Royal Netherlands Meteoro-
logical Institute KNMI, 2021) has applied quality control on
the rain gauge data. Quality control has often also been ap-
plied by the NMHS that has provided the data. More details
can be found in Overeem et al. (2023b). The quality of EU-
RADCLIM is lower for areas with low ECA&D gauge net-
work density. Specifically for this 1-year period, some gauge
data are not available for the full period. The most notable
example of this is that the data from most stations in the
United Kingdom end on 31 December 2019 (i.e. only 4 out
of 12 months are available).

2.3 PWS rain gauge data

A Netatmo PWS contains an indoor and an outdoor module
measuring air temperature, relative humidity, air pressure,
and some additional indoor variables. A wind and rain mod-
ule can be added. The rain gauge is of the tipping-bucket
type containing a collection funnel with a ∼ 13 cm cross-
section. A radio connection is used to send the number of
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Figure 1. Map of Europe with combined radar–gauge availability over the period 1 September 2019–31 August 2020 based on daily ECA&D
accumulations (a) and based on 1 h PWS accumulations (b). Map of distance to nearest rain gauge per OPERA radar grid cell assuming full
availability of radar and gauge data for ECA&D gauge (c) and Netatmo gauge (d) locations. This shows the best possible result. Note that
the Netatmo maps are based on quality-controlled (faulty zeroes and high-influx filters) data, and the combined radar–gauge availability map
is based on a static radar coverage map. In reality, the average minimum distance will be longer because sometimes gauge data are missing.
For maps (a) and (b), the average availability of gauges has been computed for non-overlapping square lattices of nine radar grid cells a side
(to allow for appropriate plotting of the high-density PWS dataset). The value for each square lattice is plotted in the case that data from at
least one rain gauge are available. Maps made with Natural Earth. Free vector and raster map data ©https://www.naturalearthdata.com (last
access: 7 February 2024) https://www.netatmo.com/en-eu/smart-weather-station (last access: 7 February 2024).

tips to the indoor module, which transfers the PWS mea-
surements to the Netatmo platform every ∼ 5 min. Data are
visualised at the publicly accessible Netatmo Weathermap
(https://weathermap.netatmo.com/, last access: 7 February
2024) but can also be accessed by weather station owners
via smartphone or tablet. The default tipping-bucket volume,
and hence measurement resolution, is 0.101 mm. This can
be altered by a weather station owner using a calibration fea-
ture. The manufacturer’s specifications report a measurement
range of 0.2–150 mmh−1 and an accuracy of 1 mmh−1 (Ne-
tatmo, 2023). Typical sources of error in (PWS) rain gauge
observations are described in De Vos et al. (2017), De Vos
et al. (2019) and Ośródka et al. (2022) and references therein.

A 1-year PWS rain gauge dataset of ∼ 5 min accumula-
tions was obtained from Netatmo. Their locations are shown
in Fig. 1b (after applying part of the QC; see Sect. 3.1). The
combined radar–gauge availability is generally at least 70 %,
averaged over square lattices of nine radar grid cells a side.

Based on the individual PWS time series, the median and
mean availability is 82.8 % and 69.9 %, respectively. One of
the reasons for this relatively low mean could be a strong
increase in the number of PWSs over the course of the 1-
year period (∼ 23 %). The total number of PWSs is more than
10 times higher than that for the ECA&D rain gauge dataset.
The median and mean distances for a radar grid cell to the
nearest rain gauge are 28 and 61 km, respectively. As a con-
sequence, the distance to the nearest gauge is generally much
shorter compared to the ECA&D dataset but is still quite
variable in space (Fig. 1c and d). It is apparent from this fig-
ure that the network density is much higher in regions where
the ECA&D gauge network density is (relatively) sparse (e.g.
parts of the Iberian Peninsula and eastern Europe), or where
rain gauge data are not shared with ECA&D (e.g. Bulgaria).
For some regions, the Netatmo gauge network density is
lower, though (e.g. in northern Scandinavia). Note that the
PWS network tends to be of high density in the areas where

Hydrol. Earth Syst. Sci., 28, 649–668, 2024 https://doi.org/10.5194/hess-28-649-2024

https://www.naturalearthdata.com
https://www.netatmo.com/en-eu/smart-weather-station
https://weathermap.netatmo.com/


A. Overeem et al.: Merging crowdsourced gauge data with radar precipitation accumulations 653

the population density is high, whereas it is more difficult to
find locations for NMHS gauges in urban areas complying
with World Meteorological Organization regulations.

2.4 Gridded air temperature data (E-OBS)

A pan-European gridded dataset of daily mean air tempera-
ture was obtained (E-OBS version 26.0e) to evaluate the per-
formance of merged radar datasets for lower and higher tem-
peratures at the location of ECA&D rain gauges. This dataset
is derived from ECA&D station observations of 2 m air tem-
perature that are interpolated onto a 0.1◦ grid (Cornes et al.,
2018; Copernicus Climate Change Service, 2022). Because
not all stations with rain gauges have temperature sensors,
the E-OBS dataset was employed to derive temperature for
each rain gauge location.

3 Methodology

The flowchart in Fig. 2 shows the employed input datasets,
the applied QC to Netatmo PWS data, the merging with
1 h radar accumulations and the output dataset “OPERA +
NETATMO”.

3.1 QC of PWS rain gauge data

The PWS measurements are preprocessed to obtain precip-
itation accumulations at regular 5 min intervals. This is fol-
lowed by QC, where for each PWS a neighbour list of PWSs
is constructed according to De Vos et al. (2019). The neigh-
bour selection has been slightly modified: only the nearest
stations (up to a maximum of 20) within a radius of 10 km
are selected instead of all stations within a 10 km radius. The
20 nearest stations are expected to be more representative for
QC of rainfall at the considered gauge location.

Next, the faulty zeroes and high-influx filters are com-
puted and applied to the 5 min data. Faulty zeroes can be
caused by obstruction of the tipping-bucket mechanism or
other malfunctioning of the gauge. Unrealistically large ac-
cumulations (high influx) can be caused by, for instance,
sprinklers, tilting of the gauge or cleaning by pouring liquids
into the gauge. The filters and their parameter values have
been tested on a 1-year Netatmo rain gauge dataset from the
Amsterdam metropolitan area, the Netherlands, from 1 June
2016–31 May 2017 (De Vos et al., 2019). The basic prin-
ciple of the faulty zeroes and high-influx filter is that rain-
fall is correlated in space. If fewer than five neighbouring
stations are available, there is insufficient basis to attribute
a faulty zero or high-influx flag, and the value is kept (so-
called flex filtering). This is done to keep rainfall values in
areas with lower gauge network densities. Subsequently, only
PWS clock-hour values are computed from the 5 min accu-
mulations in the case that at least 10 out of 12 intervals have
valid data. De Vos et al. (2019) provide a more detailed expla-

Figure 2. Flowchart of Netatmo PWS quality control and merging
of PWS rain gauge data with OPERA radar accumulations.

nation of the faulty zeroes and high-influx filters, including
flowcharts.

Radar–gauge pairs are obtained by collocating the PWS
accumulations with the unadjusted OPERA radar accumula-
tions. Only the 1 h PWS accumulations are used for merging
if both the unadjusted radar value and the Netatmo gauge
value are larger than 0.25 mm, which leads to a strong de-
crease in the number of radar–gauge pairs. The reason for
this is twofold: it strongly reduces the computational time
of the merging, and the radar data also act as an additional
QC. When precipitation is weak or non-existent according
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to PWS or radar, the PWS values are considered erroneous.
This makes application of the faulty zeroes filter largely re-
dundant, except that it results in∼ 4 % fewer 1 h PWS values.
Both the faulty zeroes and the high-influx filters are applied
to 5 min data, which may result in a more refined removal
of erroneous values compared to QC on 1 h data. In addi-
tion, the 0.25 mm radar threshold can also remove outliers
(high-influx) in PWS gauge values. Note that employing un-
adjusted radar data is justified for the thresholding because
it is meant to discern between low and high accumulations,
for which high accuracy is not needed. Finally, the effect of
removing low values on the outcome of the merging is likely
small.

Only radar–gauge pairs with 1 h PWS gauge accumula-
tions ≤ 150 mm are kept, which corresponds with the man-
ufacturer’s specifications (Netatmo, 2023). Next, the unad-
justed OPERA radar data are employed for additional QC
(radar QC). Only those 1 h radar–gauge pairs are kept if the
ratio of a PWS gauge and OPERA accumulation is lower
than 12 and the PWS value is at most 80 mm higher than
the OPERA value. Finally, the 1 h PWS gauge accumula-
tions are compared with the gauge-adjusted EURADCLIM
dataset, to obtain a default bias correction factor, method-
ologically similar to De Vos et al. (2019). This introduces
some dependence, but note that only a constant default bias
correction factor is obtained over entire Europe and over a
full year. All 1 h PWS gauge accumulations are multiplied
by this bias factor of 1.063 to compensate for underestima-
tion.

3.2 Radar–PWS merging

The merging method is extensively explained by Overeem
et al. (2023b) for the EURADCLIM dataset. Here, the same
approach is followed, except that the first step of the merging
method, the local mean-field bias adjustment, is discarded.
The necessity of this is much lower because of the much
higher gauge network density. Moreover, it resulted in out-
liers. The basis of the resulting merging algorithm is Barnes’
objective analysis (Barnes, 1964). An adjustment factor is
calculated for each radar grid cell and 1 h interval. For a
given grid cell, only radar–gauge pairs within a given dis-
tance are taken into account for the computation of the ad-
justment factor (only the short range component is employed;
Overeem et al., 2023b). The value for this distance is the
range of an isotropic spherical variogram model based on a
30-year rain gauge dataset from the Netherlands from the pe-
riod 1979–2009 (Van de Beek et al., 2012). This range varies
as a function of day of year. The adjustment factor field is ap-
plied to the OPERA 1 h accumulations to obtain the OPERA-
Netatmo merged radar dataset. The median and mean num-
ber of radar–gauge pairs used in the merging, so after QC and
thresholding, is ∼ 2400 and ∼ 3300, respectively (computed
over the ∼ 99.5 % of 1 h intervals in the 1-year period that
have at least one valid radar–gauge pair). Note that the me-

dian number of radar–gauge pairs is∼ 6 times larger than for
the EURADCLIM dataset, which uses ECA&D rain gauge
data. The maximum number of radar–gauge pairs for a given
hour is 22 866.

3.3 Evaluation metrics

Five statistical metrics are employed to evaluate the perfor-
mance of radar precipitation accumulations. Here, a residual
(Rres) is the radar accumulation minus the ECA&D gauge ac-
cumulation. The relative bias is compared to the correspond-
ing ECA&D gauge precipitation accumulations:

Rel. bias=
Rres

Rgauges
× 100=

n∑
i=1
Rres,i

n∑
i=1
Rgauges,i

× 100, (1)

with n the total number of values and Rres,i the ith resid-
ual, “radars” being one of the radar datasets and “gauges”
being the point rainfall accumulations from the ECA&D
dataset. The residual standard deviation is divided by the
mean ECA&D gauge precipitation accumulation (i.e. the co-
efficient of variation, CV):

CV=

√
1
n−1

n∑
i=1

(
Rres,i −Rres

)2
Rgauges

. (2)

The Pearson correlation coefficient (ρ) or its squared value
(ρ2; the coefficient of determination) is

ρ =
cov(Rgauges,Rradars)

s(Rgauges)× s(Rradars)
, (3)

with s the sample standard deviation. The mean absolute er-
ror (MAE) is

MAE=

n∑
i=1
|Rres,i |

n
. (4)

In some cases, leave-one-out statistics are calculated for
an independent evaluation of the EURADCLIM dataset. For
these leave-one-out values, the adjusted 1 h radar precipita-
tion accumulation is calculated for a given gauge location
without employing it in the adjustment. This is performed
for each gauge location separately.

4 Results

4.1 Evaluation

The daily and 1 h radar precipitation accumulations are ver-
ified against ECA&D rain gauges in Tables 1 and 2, re-
spectively, to assess the effect of the adjustment employing
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Table 1. Performance of radar daily precipitation accumulations over the period 1 September 2019–31 August 2020 for all radar–gauge pairs
and for those above different thresholds. ECA&D rain gauge data at their default measurement interval are used as reference. The threshold
value and the mean daily precipitation are based on the gauge data. Subsequently, the relative bias, Pearson correlation coefficient, mean
absolute error, coefficient of variation and number of radar–gauge pairs are provided, respectively.

Threshold value (mm) Mean daily precipitation Rel. bias (%) ρ MAE (mm) CV No. of pairs

OPERA:

No threshold 2.56 −28.4 0.78 1.43 1.55 2 258 828
1.0 7.52 −34.7 0.69 3.80 0.85 746 753
10.0 19.35 −45.3 0.53 9.85 0.54 166 721
20.0 32.15 −51.7 0.46 17.59 0.45 49 783

OPERA + Netatmo no QC:

No threshold 2.56 −4.8 0.84 1.15 1.32 2 258 825
1.0 7.52 −12.1 0.81 2.82 0.70 746 753
10.0 19.35 −20.3 0.71 6.25 0.46 166 721
20.0 32.15 −24.8 0.66 10.53 0.39 49 783

OPERA + Netatmo QC:

No threshold 2.56 −3.4 0.88 1.13 1.15 2 258 825
1.0 7.52 −10.3 0.83 2.77 0.65 746 753
10.0 19.35 −18.6 0.73 6.08 0.44 166 721
20.0 32.15 −23.5 0.66 10.22 0.39 49 783

Table 2. Performance of radar hourly precipitation accumulations over the period 1 September 2019–31 August 2020 for accumulations above
different thresholds. Disaggregated ECA&D rain gauge data are used as reference. The threshold value and the mean hourly precipitation
are based on the gauge data. Subsequently, the relative bias, Pearson correlation coefficient, mean absolute error, coefficient of variation and
number of radar–gauge pairs are provided, respectively.

Threshold value (mm) Mean hourly precipitation Rel. bias (%) ρ MAE (mm) CV No. of pairs

OPERA:

0.25 1.20 −35.7 0.71 0.61 0.90 4 361 375
5.00 7.99 −44.3 0.56 4.20 0.51 105 484
10.00 15.06 −42.9 0.48 7.84 0.47 17 583

OPERA + Netatmo no QC:

0.25 1.20 −13.7 0.75 0.50 0.89 4 361 375
5.00 7.99 −25.1 0.58 3.15 0.51 105 484
10.00 15.06 −29.0 0.49 6.20 0.47 17 583

OPERA + Netatmo QC:

0.25 1.20 −11.6 0.79 0.49 0.81 4 361 375
5.00 7.99 −22.9 0.59 3.10 0.51 105 484
10.00 15.06 −26.9 0.50 6.08 0.47 17 583

PWS gauge data. No QC implies that the quality control in
Sect. 3.1 has been omitted, except that the 1 h PWS accu-
mulations are used for merging if both the unadjusted radar
value and the Netatmo gauge value are larger than 0.25 mm.
When no QC is applied to Netatmo gauge data, the perfor-
mance of the merged radar dataset is already clearly better
than that of the unadjusted OPERA dataset. The underesti-
mation strongly decreases. Values for ρ, MAE and CV im-

prove, especially for larger precipitation accumulations (ex-
cept for CV for 1 h accumulations). Using quality-controlled
Netatmo accumulations in the merging leads to an additional
improvement. The relatively good performance when no QC
is applied could be attributed to the quality of PWS gauge
data and to the merging algorithm acting as a kind of quality
control. Only radar–gauge pairs are used in the merging for
which radar and PWS observe more than 0.25 mm. More-
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over, a spatial adjustment factor is computed by distance-
weighted averaging of radar and PWS values, which can av-
erage out outliers.

Findings are summarised for daily precipitation with QC
(Table 1): (1) the strong average underestimation of ∼ 28 %
diminishes to∼ 3 %; (2) more extreme daily precipitation un-
derestimates are greatly reduced but not eliminated; (3) cor-
relation increases, especially for more extreme precipitation;
and (4) the values for CV and MAE clearly decrease for all
thresholds. The scatter density plots (Fig. 3a–c) align much
better along the 1 : 1 line compared to the unadjusted dataset.
Its performance is lower than for the EURADCLIM dataset
(Fig. 3d), though. This is partly caused by the fact that the
same gauges used for verification are part of the EURAD-
CLIM dataset, and hence this verification is not independent.
The scatter density plots also reveal how quality control has a
positive impact: a group of large precipitation accumulations
in the case of lower gauge accumulations is removed.

For hourly rainfall (Table 2) the underestimation decreases
from∼ 36 % for OPERA to∼ 12 % for the OPERA-Netatmo
dataset with QC, if the ECA&D gauge accumulation is above
0.25 mm. The improvement in the value of ρ is moderate.
The value of CV only improves for a gauge threshold of
0.25 mm. The values for MAE show a clear decrease. The
scatter density plots for 1 h accumulations (Fig. 4) show that
for the merged radar datasets the values are closer to the
1 : 1 line. Again, the QC helps to remove the group of high
merged OPERA-Netatmo values for low ECA&D gauge ac-
cumulations. Although the impact of QC on overall statistics
is small, this is an important improvement. The values for
CV and ρ2 for the QC’ed OPERA-Netatmo dataset are (rel-
atively) close to those from EURADCLIM. Note that leave-
one-out statistics have been used for EURADCLIM, which is
an independent verification. The only dependence for all four
datasets is the use of 1 and 24 h unadjusted OPERA radar ac-
cumulations to disaggregate daily to hourly gauge accumula-
tions.

For each ECA&D rain gauge location a spatial verification
is performed on 1 h accumulations for the unadjusted and
Netatmo-adjusted (with QC) OPERA radar datasets (Fig. 5).
The quality of the unadjusted radar dataset is spatially vari-
able, especially for CV and relative bias. The values for ρ
are reasonably high for the OPERA dataset but clearly im-
prove after merging. The improvement appears higher than
found in Table 2 because of the discrete and relatively wide
classes used in Fig. 5. Locally, clear improvements in the val-
ues for CV are found, although these can still be quite high.
The relative bias strongly improves for the merged OPERA-
Netatmo dataset compared to the unadjusted OPERA dataset
and its spatial variability diminishes. Regionally, lower Ne-
tatmo gauge network densities may be a reason for poorer
performance (e.g. Poland, Romania).

The spatial verification reveals severe underestimations for
some regions, especially in Scandinavia. This may be related
to colder climates. The more frequent occurrence of solid

precipitation may result in undercatch or delayed measure-
ments by PWS gauges because precipitation is not melted
by a heating device. The manufacturer’s specifications even
report an operating temperature from 0 to 50 ◦C (Netatmo,
2023). To study a possible relationship between performance
of merged radar precipitation accumulations and precipi-
tation type, the evaluation is split into two: a group with
lower (< 5 ◦C) and higher (≥ 5 ◦C) daily average tempera-
tures from the gridded E-OBS dataset. Because only daily av-
erages of temperature are available, a relatively high thresh-
old of 5 ◦C has been used to account for the possibility of
1 h solid precipitation occurring at temperatures below this
daily average. Scatter density plots presented in Fig. 6 re-
veal a much more severe underestimation by the OPERA
dataset at lower temperatures than at higher temperatures.
This is expected given the generally higher influence of the
vertical profile of reflectivity in radar QPE and the use of
retrieval relations for rainfall in snow conditions. Much bet-
ter results are obtained for higher temperatures. The same
holds for the Netatmo-adjusted OPERA dataset. For lower
temperatures, the underestimation is less severe than the un-
adjusted OPERA dataset, but still a strong underestimation
of 27 % is found. This is 21 percentage points lower than the
underestimation for higher temperatures, suggesting that the
quality of Netatmo rainfall measurements declines for lower
temperatures when the probability of solid precipitation is
higher. The EURADCLIM dataset still reveals a better per-
formance for higher temperatures, but the difference in rel-
ative bias is small between the two groups. Rain gauges are
generally expected to have either a heating device (in case
of automatic gauges) or instructions to melt precipitation (in
case of manual gauges). Moreover, rain gauges operated by
NMHSs often have a larger reception cone volume than PWS
rain gauges, enabling them to collect more solid precipita-
tion, which can gradually melt, even if the gauges are not
heated.

Figure 7 shows annual precipitation sums for the OPERA
dataset without and with Netatmo-adjustment. A compari-
son against the EURADCLIM dataset is also presented to
assess the performance over the entire radar grid. The an-
nual precipitation for the merged OPERA-Netatmo dataset is
much larger than the unadjusted OPERA precipitation sum
(Fig. 7a and b). The ratio between the merged OPERA-
Netatmo dataset and the EURADCLIM dataset (Fig. 7d) is
between 0.8–1.1, confirming its quality. For some regions,
a large underestimation with respect to EURADCLIM is
found. This may partly be related to solid precipitation (Scan-
dinavia), which is not expected to be captured well by Ne-
tatmo gauges. The limited spatial extent of the employed ad-
justment method may also result in an underestimation at
locations far(ther) away from radars and rain gauges (e.g.
above sea around the Iberian Peninsula and Scotland).
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Figure 3. Scatter density plots of daily radar precipitation accumulations against ECA&D rain gauges (default measurement interval) over
the period 1 September 2019–31 August 2020. Results are shown for the unadjusted dataset (a), for the merged OPERA-Netatmo datasets
without (b) and with (c) quality control (QC) on Netatmo gauge data, and for the gauge-adjusted EURADCLIM dataset (d). Note that the
latter is not an independent verification.

4.2 Heavy-rainfall regional case study

Figure 8 illustrates the potential of merging with PWS
gauge accumulations for heavy-precipitation monitoring. It
shows precipitation accumulations for a widespread event
over northeastern Spain, with large areas with daily accu-
mulations exceeding 50 mm (Fig. 8c) and locally more than
150 mm (Fig. 8f). This event with very heavy rainfall led
to a strong rise in discharge of many small rivers in the
south of Catalonia, causing four deaths and estimated dam-
age of over EUR 700 000 (Rigo et al., 2021). The large un-
derestimation by OPERA (Fig. 8a) mainly disappears for the
merged OPERA-Netatmo dataset (Fig. 8b) given its resem-
blance with EURADCLIM (Fig. 8c). The underlying Ne-
tatmo gauge values (Fig. 8e) are in reasonable agreement
with the ECA&D gauge values, although underestimations
are found (Fig. 8f). Moreover, the density of the PWS net-
work is higher than that of the ECA&D network (Fig. 8d),
and the data could potentially be available in real time, which
is usually not the case for gauges in the ECA&D dataset.
Note that for this region, the ECA&D network is rather dense
compared to most of Europe, and real-time data from these
gauges are employed by the Meteorological Service of Cat-
alonia for merging with radar data. Note that only gauge lo-

cations (and values) are plotted if more than 0.25 mm of rain
has been reported in (at least) 1 h. Zooming in to a clock
hour in this 24 h period, a squall line becomes much more
pronounced in the two merged radar datasets (Fig. 8h and i)
compared to the unadjusted OPERA dataset (Fig. 8g). The
Netatmo network provides more measurements (Fig. 8j), and
this results in better sampling of the maximum precipitation
within this hour (Fig. 8k and l). The squall line is more se-
vere for EURADCLIM, though, possibly because of the local
mean-field bias adjustment, which precedes the spatial ad-
justment for EURADCLIM only. It is difficult to tell which
dataset has the most realistic 1 h precipitation.

Rigo et al. (2021) provide gauge-adjusted precipitation
estimates for the event presented in Fig. 8 employing data
from four local C-band radars, which are not incorporated
in the OPERA-based datasets. Hence, the distance to radars
is much shorter than for the OPERA datasets, and precip-
itation is detected at a lower altitude. Rigo et al. (2021)
present a real-time radar product which includes data from
the gauges contributing to ECA&D, as well as a climatolog-
ical product where the gauge data have undergone additional
QC. Both the merged OPERA-Netatmo dataset and EURAD-
CLIM dataset underestimate precipitation compared to the
local gauge-adjusted radar products. Hence, Fig. 8 does not
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Figure 4. Scatter density plots of 1 h radar precipitation accumulations against disaggregated ECA&D rain gauge precipitation accumulations
over the period 1 September 2019–31 August 2020. Results are shown for the unadjusted dataset (a), for the merged OPERA-Netatmo
datasets without (b) and with (c) quality control (QC) on Netatmo gauge data, and for the gauge-adjusted EURADCLIM dataset (d). The
independent verification for EURADCLIM is performed via leave-one-out statistics (LOOS).

provide the best possible precipitation estimates, but it does
confirm that merging with PWS gauge data gives a large im-
provement in OPERA radar precipitation accumulations.

4.3 Heavy-rainfall urban case study

The potential of PWS gauge accumulations for improving
radar precipitation accumulations is expected to be higher
in urban areas. It can be more difficult to find an appro-
priate setup for rain gauges in urban environments. Hence,
to comply with World Meteorological Organization regula-
tions, NMHSs typically measure in areas with few or lower
obstacles. Therefore, the (automatic) weather stations are
typically located outside city centres, often in more rural ar-
eas, although open areas can also be found in cities. Note that
originally NMHS weather stations were often installed at air-
ports, close to large cities, and are present to date. Although
urban rainfall monitoring is relevant, cities generally repre-
sent only a small fraction of the land surface of a country.
Meteorological networks have been designed to ensure reg-
ular coverage of countries. In contrast, urban areas generally
have the highest PWS network densities. Figure 9 illustrates
a 1 h heavy-precipitation event for the city of Brussels, Bel-
gium. There are more than 80 Netatmo rain gauges in this

area, whereas there are only 2 ECA&D gauges. The precipi-
tation accumulations increase for the EURADCLIM dataset
(Fig. 9c) with respect to the unadjusted OPERA dataset
(Fig. 9a). The increase is much stronger for the OPERA-
Netatmo dataset (Fig. 9b), and it has the highest 1 h accumu-
lation, 20 mm. The Netatmo rain gauges measure high accu-
mulations (Fig. 9e). The ECA&D rain gauges only provide
limited coverage, and their values are lower than those from
the closest PWS gauges (Fig. 9d–f). The high network den-
sity of PWS gauges helps to capture the localised heavy pre-
cipitation (Fig. 9e), which is hence reflected in the OPERA-
Netatmo dataset (Fig. 9b). The PWS gauges can not be con-
sidered to be the ground truth. But the fact that most gauges
observe high(er) accumulations gives confidence.

5 Discussion and recommendations

5.1 Suitability of reference data

The ECA&D rain gauge dataset is used as a reference
dataset because of its established quality and its indepen-
dence. The disaggregated 1 h data are less independent be-
cause the OPERA radar data have been used for disaggrega-
tion. This may partly explain that for the OPERA-Netatmo
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Figure 5. Spatial evaluation of 1 h precipitation accumulations against disaggregated clock-hourly ECA&D gauge precipitation accumu-
lations over the period 1 September 2019–31 August 2020. As indicated in Fig. 1a, fewer ECA&D data are available for some gauge
locations, and hence the evaluation period is shorter. Verification results are displayed for the unadjusted OPERA radar dataset (a, c
and e) and for the gauge-adjusted OPERA-Netatmo dataset (b, d and f). Maps made with Natural Earth. Free vector and raster map data
©https://www.naturalearthdata.com (last access: 7 February 2024).

dataset of 1 h accumulations, ρ only improves moderately,
and the value of CV only improves for a gauge threshold of
0.25 mm. Since EURADCLIM already uses OPERA, there
is also some dependence with the merged OPERA-Netatmo
dataset. A disadvantage of using gauges as reference is the
mismatch in sampling areas (a few squared decimetres (dm2)
for gauges and 4 km2 grid cells for OPERA) between the two
datasets. This and other representativeness errors can be large
when radar and gauge accumulations are compared (Kitchen
and Blackall, 1992), especially for sub-daily accumulations.

Hence, differences between (merged) radar and gauge accu-
mulations are not solely caused by sources of error in QPE.

The comparison with the performance of the radar dataset
EURADCLIM is provided to put the quality of the merged
radar–PWS dataset into perspective compared to a clima-
tological dataset employing official rain gauges. The di-
rect comparison with EURADCLIM for annual precipitation
and case studies allows for a high-resolution spatial com-
parison. The performance of the merged OPERA-Netatmo
dataset could also be compared to that of the near-real-
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Figure 6. Scatter density plots of 1 h radar precipitation accumulations against ECA&D rain gauges over the period 1 September 2019–
31 August 2020. Disaggregated clock-hourly gauge precipitation accumulations are employed. Results are shown for the unadjusted OPERA
dataset (a, b), for a merged OPERA-Netatmo dataset (c, d), and for the EURADCLIM dataset (e, f). For each dataset, results are shown for
1 h accumulations on days with mean daily air temperature < 5 ◦C (a, c and e) and ≥ 5 ◦C (b, d and f). The independent verification for
EURADCLIM is performed via leave-one-out statistics (LOOS).

time OPERA-based radar rainfall product for the Euro-
pean Rainfall-InduCed Hazard Assessment (ERICHA) sys-
tem (Park et al., 2019). This would give more insight into the
potential of crowdsourcing for improving near-real-time pan-
European radar data. This is outside the scope of this paper
but could be investigated in future research.

5.2 Improving quality control of PWS rain gauge data

This study should be seen as a starting point for merging
PWS and radar precipitation accumulations. As shown in

Fig. 4 and Tables 1 and 2, the QC of PWS rain gauge data
has a positive effect but with a relatively limited magnitude.
A possible explanation for this is that the merging algorithm
already acts as a QC by reducing the impact of outliers. Mul-
tiple radar–gauge pairs are employed to compute the adjust-
ment factor for a given pixel, thus limiting the influence of
a single gauge. Moreover, only radar–gauge pairs are used
for which radar and PWS both reported more than 0.25 mm
in 1 h, which helps to reduce erroneous values. The quality
of the merged product could potentially be further improved
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Figure 7. Maps with annual precipitation accumulations over the period 1 September 2019–31 August 2020 for unadjusted OPERA (a)
and the merged OPERA-Netatmo dataset (b). Maps with ratios of annual precipitation accumulations for both datasets with respect to
EURADCLIM (c, d). Map made with Natural Earth. Free vector and raster map data ©https://www.naturalearthdata.com (last access: 7
February 2024).

by applying additional QC to the PWS gauge data, for in-
stance, by applying a station outlier filter and a dynamically
updated bias correction factor (De Vos et al., 2019). Note that
the radar-based part of the QC developed in this study (limits
on the PWS / radar ratio and maximum difference between
PWS and radar accumulations) implicitly acts as a station
outlier filter. Moreover, the performance of this radar-based
filter does not depend on the local PWS network density. The
suggested station outlier filter (De Vos et al., 2019) compares
time series (by computing correlations) from neighbouring
stations from at least the last 2 weeks (and longer if there has
been insufficient precipitation in this period) to detect devi-
ations in local rainfall dynamics. These deviations could be
caused by, for example, incorrect station locations.

Network density can affect the performance of a QC
method and whether a QC method is suitable at all. Van An-
del (2021a, b) developed a radar version of the QC developed
by De Vos et al. (2019) and applied it to different rain gauge
datasets, including a 1-year Netatmo PWS gauge dataset over
the Netherlands. This version of the QC algorithm performs
well in the case of lower gauge density. Depending on the
chosen setting (flex or strict filtering), results are not as good
or similar for an area with high network density (the Ams-

terdam metropolitan area) compared to applying the original
PWS-based algorithm. Moreover, this radar-based QC algo-
rithm removes twice as many observations. But its potential
for use in regions with lower PWS network densities, such as
commonly found in the European dataset, warrants further
investigation.

Also note that the default parameter values from De Vos
et al. (2019) for QC, based on Netatmo rain gauge data from
the Netherlands, are applied to data from the whole of Eu-
rope. Different parameter values could be tested on a Eu-
ropean scale or could be regionalised to take into account
local precipitation climatology and local network character-
istics. For instance, the range with neighbouring PWSs is set
to 10 km but could be longer for stratiform rainfall. The same
holds for regions with low PWS network density.

Considering other QC algorithms, specifically the spatial
consistency test (SCT) against neighbours could be relevant
for application to the PWS dataset used in this study because
it assesses the likelihood of an observation with stricter test-
ing in case of higher station density (Lussana et al., 2010;
Alerskans et al., 2022) . The temporal consistency test and
the spatial conformity test from Ośródka et al. (2022) could
be interesting to apply on PWS rain gauge data. In particu-
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Figure 8. A heavy-precipitation event over northeastern Spain from 22 October 2019 00:00 UTC–23 October 2019 00:00 UTC (24 h precip-
itation accumulation; a–f) and for 18:00–19:00 UTC within this period (g–l; 1 h accumulation). Accumulations are shown for the unadjusted
OPERA (a, g), merged OPERA-Netatmo (b, h) and EURADCLIM (f, l) datasets. Locations of Netatmo and ECA&D gauges and their val-
ues are also provided (d–f, j–l). Map data ©OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database
License (ODbL) v1.0.

lar, the assignment of a quality index to each gauge observa-
tion is methodologically interesting. Only observations with
a sufficiently high quality index could be selected for merg-
ing with radar data, or the quality index could be used as
weighting factor in the radar–PWS merging. The QC in this
study mainly consists of inter-station checks and the use of an
auxiliary source: radar data. The development and applica-
tion of time series analyses from single stations (intra-station
checks) may be explored to improve QC. Finally, NMHS rain

gauge data could also be taken into account in the quality
control of PWS rain gauge data.

5.3 Bias correction of PWS and merged radar–PWS
data

The quality of PWS gauge observations and sources of errors
in radar QPE can be highly variable in space and time. This
results in spatial variability of the relative bias in 1 h merged
precipitation accumulations (Fig. 5). The quality of PWS
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Figure 9. A heavy-urban-precipitation event over the city of Brussels, Belgium, from 17 June 2020 13:00–14:00 UTC (1 h precipitation
accumulation). Accumulations are shown for the unadjusted OPERA (a), merged OPERA-Netatmo (b) and EURADCLIM (c) datasets. Lo-
cations of Netatmo and ECA&D gauges and their values are also provided (d–f). Map data ©OpenStreetMap contributors 2023. Distributed
under the Open Data Commons Open Database License (ODbL) v1.0.

gauge data could be improved by computation of a dynam-
ically updated bias correction factor per gauge, employing
neighbouring PWSs. This is intertwined with the station out-
lier filter (De Vos et al., 2019), as is the case for the radar
version (Van Andel, 2021b). An extension to this could be
to remove a gauge if the bias correction is smaller than 0.5
or greater than 2 (Van Andel, 2021b). The approach by Bár-
dossy et al. (2021), who apply bias correction via quantile
mapping employing rain gauge observations from the Ger-
man weather service, is also worth investigating.

A seasonally and regionally variable bias correction fac-
tor could be applied to the merged radar–PWS dataset using
the methodology of Imhoff et al. (2021). This bias correction
field can be derived from comparing with a reference (the
EURADCLIM dataset) from previous years. This approach
assumes that the quality of EURADCLIM is high across Eu-
rope and stationary in time. Improvements in OPERA pre-
cipitation data would require recalculation of bias correction
factors. Applying this approach seems challenging, given the
large improvement found for daily unadjusted OPERA ac-
cumulations for the warm seasons from 2015 to 2018 (Park
et al., 2019).

5.4 Adaptive merging of radar and PWS data

Another possible improvement in the merged radar–PWS
dataset could be obtained by the application or development
of other adjustment methods (see, for example, Gouden-

hoofdt and Delobbe, 2009) or, for instance, by taking into
account the local gauge network density and local precipita-
tion climatology (instead of the climatology from the Nether-
lands) to select radar–gauge pairs employed to adjust radar
precipitation for a given grid cell. Improving the climatolog-
ical gauge-adjusted radar dataset EURADCLIM by merging
the PWS and the ECA&D rain gauge data at once is an-
other avenue that can be explored. The merging algorithm
employed in this study can use quality information about the
gauge observations and could give lower weight to lower-
quality gauges (in this case the PWS gauges).

5.5 Opportunities for merged precipitation products

In addition to Netatmo PWS gauge data, data from other
PWS platforms and companies could also potentially be
taken into account for merging with radar data. Examples
of such platforms are the Weather Observations Website
(WOW; free access; https://wow.metoffice.gov.uk/ (last ac-
cess: 7 February 2024); https://wow.knmi.nl/, last access: 7
February 2024, Kirk et al., 2021; O’Hara et al., 2023), the
Weather Underground website (https://www.wunderground.
com/wundermap, last access: 7 February 2024) (Bell
et al., 2013), Weathercloud (https://app.weathercloud.net/
map#, last access: 7 February 2024), Meteonetwork (https://
www.meteonetwork.it/rete/livemap/, last access: 7 February
2024 and https://meteonetwork.eu/en, last access: 7 February
2024), PWSweather (https://www.pwsweather.com/map, last
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access: 7 February 2024) and (solely for daily precipitation in
the United States) the Community Collaborative Rain, Hail
& Snow Network (CoCoRaHS; https://www.cocorahs.org/,
last access: 7 February 2024) (Reges et al., 2016). The sen-
sor quality and setup of PWSs for these data sources can be
better compared to Netatmo PWSs. For WOW, station own-
ers can fill in location attributes related to the surroundings,
measurement device and timeliness of reporting. These are
employed to compute site ratings (https://wow.metoffice.gov.
uk/support/siteratings, last access: 7 February 2024), which
could be used as part of the QC on PWS data or as qual-
ity index in radar–PWS merging. For Meteonetwork, setup
guidelines need to be followed for a station to be accepted.
Automatic QC is applied to data from Italy (Giazzi et al.,
2022).

PWS air temperature measurements (Bárdossy et al.,
2021) or air temperatures forecasts (Båserud et al., 2020)
could be used to estimate whether precipitation is solid or
liquid and could hence be used to select which gauges to
use in merging. This could prevent the influence of under-
catch (particularly in high-wind situations) of snow or de-
layed measurements due to the fact that frozen precipitation
is only registered when it melts (see also Fig. 6).

Real-time data from official networks of automatic rain
gauges are generally much sparser, and a latency of 5–30 min
is not uncommon. Several crowdsourced rain gauge networks
potentially disseminate data with similar or even shorter la-
tency. Arrangement of data contracts with commercial com-
panies, preferably on a European or even global level, could
help make these data available for everyone (either directly
or indirectly through merging in precipitation products). In
return, these companies would receive valuable feedback on
the quality of their data. And the availability of these data
could spur further development of QC algorithms by the
scientific community that could then be employed by these
companies for their platforms.

Commercial microwave link (CML) data (Messer et al.,
2006; Leijnse et al., 2007; Overeem et al., 2016; Graf et al.,
2020) could also be considered as a candidate for merg-
ing with radar data. The quality control, rainfall retrieval
and merging of opportunistic sensing data, including PWSs,
CMLs and SMLs (satellite microwave links), are being stud-
ied in the OpenSense (Opportunistic Precipitation Sensing
Network; https://opensenseaction.eu/, last access: 7 Febru-
ary 2024) COST Action. OpenSense will address the bench-
marking of QC algorithms on datasets, allowing for a fair and
standardised comparison of QC algorithms. Development of
operational merged products based on radar, PWS or CML
data is already being investigated by some NMHSs in Eu-
rope (Wenzel et al., 2023). For a specific country or region,
it may be efficient to focus on the most promising oppor-
tunistic data sources: those for which network densities are
highest, obtained experiences and results are favourable, and
the probability of continuous data access is higher.

Merging opportunistic sensing data with radar data also in-
volves risks and creates dependence on data beyond the con-
trol of NMHSs. For instance, PWS sensors and setups could
degrade over the course of time, and network densities may
decrease. As a result, the quality of merged products could
decrease. Methods that are employed to merge such data with
radar accumulations should therefore be designed such that
they can deal with the varying quality and availability of op-
portunistic sensors. Another way to try to prevent the decline
in quality and number of opportunistic sensors is social en-
gagement of citizen scientists and outreach to increase the
number of citizen scientists. Garcia-Marti et al. (2023) pro-
vide an overview of ways to achieve this. Another issue that
may play a role with the increased use of opportunistic sen-
sors is the decrease in perceived importance of data from of-
ficial rain gauge networks, potentially leading to abandoning
such networks. However, such high-quality station data are
indispensable for climate monitoring. This should be kept in
mind by agencies operating these networks.

6 Conclusions

A 1-year, quality-controlled Netatmo PWS rain gauge
dataset of 1 h accumulations was merged with 1 h OPERA
radar accumulations over Europe. The PWS rain gauge data
were subjected to QC, employing neighbouring PWSs and
unadjusted radar accumulations. A default bias correction
factor of 1.063 was applied to the PWS accumulations. The
potential of crowdsourced data for improving radar precipi-
tation products is confirmed by an evaluation against inde-
pendent official rain gauges from ECA&D for hourly and
daily precipitation. Underestimation for daily precipitation
declines from ∼ 28 % for the unadjusted radar dataset to
∼ 3 % for the merged radar–PWS dataset (using all values).
In some regions, much stronger underestimations are found,
which may be related to solid precipitation and lower PWS
network densities. Underestimation of 1 h precipitation is
∼ 27 % for mean daily air temperatures < 5 ◦C and ∼ 7 %
for mean daily air temperatures≥ 5 ◦C (only using values for
which the gauge value exceeds 0.25 mm). Underestimation is
much less pronounced for the EURADCLIM dataset, which
has been adjusted using data from official networks and can
largely correct for radar underestimation of solid precipita-
tion. This suggests that solid precipitation is not properly
captured by Netatmo PWSs, which limits the performance
of a merged radar–PWS dataset.
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The quality of the merged radar–PWS dataset is gener-
ally lower than that of the climatological EURADCLIM
dataset. When compared to daily ECA&D gauge accumu-
lations, scatter is higher, and an underestimation of ∼ 10 %
instead of an overestimation of 1 % is found. Since the avail-
ability of (near) real-time rain gauge accumulations from of-
ficial networks is usually much lower compared to climato-
logical data, a (near) real-time merged OPERA-gauge prod-
uct is not expected to achieve the same quality as EURAD-
CLIM. The outcome of this study paves the way for (near)
real-time merging of PWS and OPERA radar precipitation
accumulations for the European continent, but its findings
may also be applicable to other regions with (national) radar
coverage, such as North America. The potential of such a
merged dataset for the nowcasting of precipitation could also
be investigated at the continental scale. To conclude, PWS
rain gauge data can add value to radar accumulations that
already have a high resolution, by improving the quality
of localised precipitation estimates. This potentially allows
for better warnings of severe weather and associated (flash)
floods and better-informed decision-making for disaster risk
management (Fig. 9).

Code and data availability. The EURADCLIM 1 and
24 h precipitation open datasets can be obtained from
https://doi.org/10.21944/7ypj-wn68 (Overeem et al., 2022a)
and https://doi.org/10.21944/1a54-gg96 (Overeem et al., 2022b).
Unadjusted OPERA radar data are available for the research
community after registration (https://www.eumetnet.eu/activities/
observations-programme/current-activities/opera/, last access: 7
February 2024). The dataset of pan-European 1 h OPERA radar
precipitation accumulations adjusted with quality-controlled rain
gauge accumulations from Netatmo personal weather stations
(OPERA+Netatmo QC) can be freely obtained from Overeem
et al. (2023a) (https://doi.org/10.4121/675f3f64-04a8-48db-
ae3e-4a6c004a0776.v1). The gridded dataset of daily mean air
temperature, E-OBS version 26.0e (release October 2022), is
publicly available (Cornes et al., 2018; Copernicus Climate Change
Service, 2022). Most daily rain gauge time series from the ECA&D
project are publicly available (https://www.ecad.eu, last access: 7
February 2024). The Netatmo rain gauge dataset was purchased
from commercial company Netatmo and can not be made publicly
available due to legal restrictions. The preprocessing and part
of the quality control of the Netatmo gauge data, i.e. the faulty
zeroes and high-influx filters, are based on openly available code
written in R language (https://doi.org/10.5281/zenodo.10629489,
De Vos, 2024). This was developed by De Vos et al. (2019), with
some modifications to work with the data on a European level
and not including any computations with a reference dataset.
Precipitation maps and maps showing the shortest distance to
a gauge were made with publicly available code written in
Python (https://doi.org/10.5281/zenodo.7473816, Overeem, 2022;
https://doi.org/10.5281/zenodo.7611398, Overeem, 2023).
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