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Abstract. Snow is a vital component of the earth system,
yet no snow-focused satellite remote sensing platform cur-
rently exists. In this study, we investigate how synthetic ob-
servations of snow water equivalent (SWE) representative of
a synthetic aperture radar remote sensing platform could im-
prove spatiotemporal estimates of snowpack. We use a fra-
ternal twin observing system simulation experiment, specif-
ically investigating how much snow simulated using widely
used models and forcing data could be improved by assim-
ilating synthetic observations of SWE. We focus this study
across a 24◦× 37◦ domain in the western USA and Canada,
simulating snow at 250 m resolution and hourly time steps
in water year 2019. We perform two data assimilation exper-
iments, including (1) a simulation excluding synthetic ob-
servations in forests where canopies obstruct remote sens-
ing retrievals and (2) a simulation inferring snow distribu-
tion in forested grid cells using synthetic observations from
nearby canopy-free grid cells. Results found that, relative to
a nature run, or assumed true simulation of snow evolution,
assimilating synthetic SWE observations improved average
SWE biases at maximum snowpack timing in shrub, grass,
crop, bare-ground, and wetland land cover types from 14 %,
to within 1 %. However, forested grid cells contained a dis-
proportionate amount of SWE volume. In forests, SWE mean
absolute errors at the time of maximum snow volume were
111 mm and average SWE biases were on the order of 150 %.
Here the data assimilation approach that estimated forest
SWE using observations from the nearest canopy-free grid

cells substantially improved these SWE biases (18 %) and
the SWE mean absolute error (27 mm). Simulations employ-
ing data assimilation also improved estimates of the temporal
evolution of both SWE and runoff, even in spring snowmelt
periods when melting snow and high snow liquid water con-
tent prevented synthetic SWE retrievals. In fact, in the Up-
per Colorado River region, melt-season SWE biases were
improved from 63 % to within 1 %, and the Nash–Sutcliffe
efficiency of runoff improved from −2.59 to 0.22. These re-
sults demonstrate the value of data assimilation and a snow-
focused globally relevant remote sensing platform for im-
proving the characterization of SWE and associated water
availability.

1 Introduction

Snow plays important roles in the earth system by regulat-
ing global temperatures and cooling the land surface because
of its reflective properties (Barry, 2002). Snow is also a ma-
jor source of water storage for many regions, especially in
areas that rely on snowpack to sustain water resources dur-
ing the dry season. In fact, it has been estimated that more
than 2 billion people around the world are reliant on seasonal
snowmelt for their water supply (Barnett et al., 2005). Snow-
pack is the natural “integrator” of climatic conditions and of-
fers more predictability of water availability than variables
with shorter memory, such as precipitation and streamflow
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(Terzago et al., 2023). Accurate winter estimates of snow-
pack are therefore critical for water management and agri-
cultural planning (Koster et al., 2010). For example, in the
western USA, where a vast majority of streamflow originates
from snow (Li et al., 2017), it is common practice to use
the 1 April snowpack, the historical date of maximum snow-
pack in that region, for developing water supply estimates for
later in the season. However, climate change impacts have
led to increased variability in the snow seasonality (Livneh
and Badger, 2020), with warmer temperatures reducing the
amount of snow accumulation and seasonal snow storage,
and advancing the timing of the spring melt. Therefore, accu-
rate characterization of winter snowpack and its variability is
critically important for making informed water supply quan-
tifications.

In recognition of the critical need to have spatially dis-
tributed measurements of snow mass, there have been sev-
eral efforts to measure and estimate SWE from many dif-
ferent remote sensing platforms in the past several decades.
Airborne lidar systems have been able to provide high reso-
lution, accurate measurements of snow mass (Painter et al.,
2016), but this approach has significant logistical barriers
for global and frequent snow measurements, and the hydro-
logic utility of a practical spaceborne lidar platform is lim-
ited (Kwon et al., 2021). In the past three decades, snow
depth and SWE estimates have been derived from passive
microwave remote sensing measurements, but these mea-
surements are at coarse spatial resolutions and have limited
accuracies over deep and wet snow, complex terrain, and
dense vegetation (Derksen et al., 2014; Foster et al., 2005).
Active microwave remote sensing instruments, such as syn-
thetic aperture radars (SARs), can provide finer spatial res-
olution measurements to help resolve some of these issues.
For example, C-band SAR observations from the Sentinel-1
constellation have shown promise in obtaining high quality,
moderate resolution (1 km) observations in deep snow envi-
ronments (Lievens et al., 2019). A volume scattering radar
approach, using X- and Ku-band SAR, has also been demon-
strated in several airborne campaigns and proposed for mul-
tiple snow mission concepts (Yueh et al., 2009; Rott et al.,
2010) because of its potential to achieve high resolution and
global coverage over a range of snow depths. While these
microwave instruments can observe in nighttime and cloudy
conditions, they are still limited over areas with dense veg-
etation (Tsang et al., 2022). Furthermore, all spaceborne in-
struments have inherent coverage gaps due to their orbital
and revisit configurations.

To overcome these limitations, modeling and data assim-
ilation systems are needed that can extend the coverage and
utility of available measurements to areas, times, and vari-
ables that are not directly observed. In this article, we present
a novel approach through data assimilation, designed specifi-
cally to improve the usefulness of spaceborne SWE retrievals
over forested areas. The approach is demonstrated using an
observing system simulation experiment (OSSE; e.g., Cho

et al., 2023; Errico et al., 2007) which is an approach used to
formally assess the impact of the data to be collected from an
anticipated mission. Several prior studies have examined the
use of OSSEs for snow mission studies (Garnaud et al., 2019;
Kwon et al., 2021; Wrzesien et al., 2022). Among them,
SAR-focused OSSEs have been conducted by Garnaud et
al. (2019) and Cho et al. (2023) to assess the utility of hypo-
thetical snow observations. Garnaud et al. (2019) focused on
a Ku-band SAR to quantify trade-offs between sensor con-
figurations (e.g., various spatial resolutions and revisit fre-
quencies) with retrieval algorithm accuracy and SWE perfor-
mance in southern Quebec, Canada, where temperate forests
are dominant with shallow and moderate snowpack condi-
tions. Cho et al. (2023) conducted a X-/Ku-band SAR OSSE
with an achievable sensor configuration (1 km spatial resolu-
tion, 7 d revisit frequency, and orbital configurations) focus-
ing on mountainous environments in western Colorado and
testing the degree to which various SAR retrieval capabili-
ties in different forest densities and snow volumes could im-
prove observationally based SWE estimates. Here we build
on this prior research by developing an OSSE covering the
entire western USA and portions of Canada. We simulate
finer-scale (250 m) synthetic SWE observations that could
be provided from a future X-/Ku-band SAR mission, which
are then incorporated within a land surface model (LSM)
through data assimilation to assess their capability to im-
prove snow state estimates and the integrated impact on hy-
drologic states in space and time. The assimilation experi-
ments here are conducted with and without a novel strategy to
extend SAR-based SWE estimates from unforested regions
into forested landscapes where SAR retrievals of the snow-
pack may be obscured by the forest canopy.

The primary contribution of this paper is the develop-
ment of a viable strategy for extending hypothetical remotely
sensed SWE retrievals from a volume-scattering X-/Ku-band
SAR satellite mission into difficult-to-observe forest land-
scapes. We specifically focus on addressing the following
questions:

1. What is the added utility of spaceborne active remote
sensing SWE retrievals (assuming retrievals meet cur-
rently defined mission requirements) across the Western
USA and Canada?

2. How much can spatiotemporal representations of SWE
be improved by focusing on developing observationally
based snow estimates over areas with dense vegetation,
where SAR sensors may be limited?

3. How much added hydrologic utility can be obtained
through spaceborne active remote sensing measure-
ments and data assimilation approaches, particularly
when coverage over forested areas is improved?

Section 2 describes the study domain and OSSE model-
ing setup. This is followed by a description of the results
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(Sect. 3), a discussion of the findings (Sect. 4), and the
study’s conclusions (Sect. 5).

2 Methods

2.1 Study domain and OSSE setup

An OSSE is used to assess the value of the data to be col-
lected from an anticipated mission. OSSEs often consist of
the following steps: (1) developing a “nature run” that uses
a state-of-the-art model employed with the best available
boundary conditions (Sect. 2.1); (2) using the nature run to
generate simulated remote sensing observations, accounting
for sources of sensing limitations, sensing uncertainties, and
orbital configurations (Sect. 2.2); (3) incorporating the simu-
lated observations (often through data assimilation, Sect. 2.3)
in a separate, “open loop” model configuration with accura-
cies representative of common modeling biases and uncer-
tainties; and (4) evaluating how much the simulated remote
sensing data improve the open loop model performance rel-
ative to the nature run. In addition to this OSSE approach,
this study goes further by (1) testing the degree of improve-
ment to both the remotely sensed variable (i.e., SWE) and
the resulting changes to land surface runoff in snow cov-
ered regions, and (2) developing two separate data assimila-
tion experiments, one which masks simulated observations in
forested pixels where SAR retrievals may be most challeng-
ing and the other including a novel approach for inferring
SWE in forested pixels using simulated observations from
nearby, unforested pixels (Sect. 2.4). The details of the OSSE
setup used in this study are described in more depth through-
out this section.

We employ the NASA Land Information System (LIS; Ku-
mar et al., 2006), an infrastructure for high performance,
ensemble-based land surface modeling and data assimila-
tion to enable this OSSE. LIS encompasses several advanced
land surface models that can simulate terrestrial water, en-
ergy, and carbon balances as well as related states such as
soil moisture, land surface temperature, and SWE, among
others. These include different versions of community mod-
els such as Noah (Ek et al., 2003), Variable Infiltration Ca-
pacity (VIC; Liang et al., 1994), Catchment (Koster et al.,
2000), Joint UK Land Environment Simulator (JULES; Best
et al., 2011), and Noah-MP (Niu et al., 2011). The LIS frame-
work also includes support for specialized models that are
designed to provide more detailed representations of cer-
tain land surface processes (e.g., snow) while enabling in-
teraction with LSMs that solve for water, energy, and carbon
balances at a macroscale. For example, the advanced snow
physics model called SnowModel (Liston and Elder, 2006)
has been incorporated within LIS in a manner that allows
coupling to existing LSMs. This structure allows the use of
the advanced snow physics from SnowModel while leverag-
ing the existing process schemes (e.g., sub-surface, ground-

water, and canopy) within the LSMs. Here we utilize these
unique capabilities for enabling the OSSE integrations. The
study is conducted over a large domain (Fig. 1) covering the
western USA and southern Canada from 31 to 55◦ N and 93
to 130◦W at a 250 m spatial resolution. As shown in Fig. 1,
this modeling domain encompasses a broad range of vege-
tation types, topographical regimes, and water resources re-
gions of the Pacific Northwest, California, Great Basin, and
Upper Colorado. 22 % of the domain is covered by forests,
with grasslands, croplands, and shrublands accounting for
20 %, 23 %, and 26 % of the domain, respectively. Forests
dominate the coverage of areas with significant snowpack,
occupying 58 % of regions that are in the mid-elevation range
of 2500–3500 m and 15 % of the areas with elevations over
3500 m. From a modeling perspective, the domain extent of
Fig. 1 (∼ 83 million land grid points) is computationally
challenging. The scalable high performance computational
and parallel inputting and outputting capabilities of NASA
LIS were leveraged to enable these simulations. A multipro-
cessor configuration involving approximately 1000 proces-
sors was employed to facilitate large model simulations for
the nature run, open loop simulation, and two simulations
with data assimilation.

Simulations in this study are conducted by forcing LIS
LSMs with the surface meteorology from NASA’s Modern
Era Retrospective Reanalysis, version 2 (MERRA-2; Gelaro
et al., 2017) and ECMWF Reanalysis, version 5 (ERA5;
Hersbach et al., 2020) products. The model integrations
were conducted for the water year 2019 (September 2018–
September 2019), which was a wetter than normal year based
on the long-term average meteorological conditions over this
domain.

The open loop and data assimilation integrations per-
formed in this study are conducted using the Noah land
surface model with multi-parameterization (Noah-MP) ver-
sion 4.0.1 (Niu et al., 2011) and forcing from ERA5. The
Noah-MP model evolved from the Noah LSM, with multi-
ple options for various land surface processes. It represents
energy, water, and carbon balances at the land surface by
accounting for processes related to infiltration, evaporation,
transpiration, runoff generation, and groundwater recharge.
A TOPMODEL-based runoff model (Beven et al., 2021) is
used to calculate surface runoff and groundwater discharge.
Options for prognostic vegetation dynamics models that rep-
resent the growth and senescence of vegetation are also avail-
able within Noah-MP. A two-stream radiative transfer ap-
proach is employed to calculate surface energy processes. Fi-
nally, a multilayer snowpack model (with up to three layers)
is used to account for snowmelt metamorphisms, compaction
by overlying snow, sublimation of canopy intercepted snow,
and snowmelt–refreeze cycles within Noah-MP (Niu and
Yang, 2004).

Snow states like snow depth and SWE were also mod-
eled across the western USA (domain highlighted in Fig. 1)
at 250 m resolution and hourly time steps using a state-of-
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Figure 1. Maps of the land and vegetation classes (a) and elevation (in meters) (b) used in the simulations. Outlines and labels in panel (a)
indicate regions discussed in the Results (Sect. 4). Red contours in panel (b) indicate hydrologic regions used in the analysis.

the-art and physically based single-layer snow model (named
SnowModel; Liston and Elder, 2006), provided forcing from
MERRA-2 with LIS-provided lapse rates and topography-
based meteorological downscaling approaches, like incom-
ing shortwave corrections based on topographical shading
(Cosgrove et al., 2003; Kumar et al., 2013). SnowModel has
seen widespread use in the snow community, demonstrating
the capability to resolve snow evolution in a variety of land-
scapes and complex snow processes like the redistribution of
snow via wind, and the resulting impact on snow distribution,
melt season snow duration, glacier mass balance, and snow
habitat for species like polar bear and Dall sheep (Hiemstra et
al., 2002; Liston et al., 2016; Mahoney et al., 2018; Mernild
et al., 2017; Sturm and Wagner, 2010). In addition to wind re-
distribution, snow evolution within SnowModel accounts for
a wide variety of snow processes, including snow sublima-
tion, snow grain size evolution, solar topographical shading,
canopy shading, and canopy snow interception. Through the
coupling within LIS, Noah-MP snow states and the result-
ing snow-driven runoff were updated using the SnowModel
outputs at hourly time steps for each grid cell.

Preliminary research has shown that relative to Noah-MP,
LIS simulations coupling Noah-MP with SnowModel have
improved the volume and spatial distribution of simulated
snow depth and SWE (Arsenault et al., 2021; Wrzesien et
al., 2022). Therefore, the coupled SnowModel and Noah-MP
model was a prime candidate for the “nature run” in this
study, or the simulation (1) most representative of the true
underlying spatiotemporal snow states from which simulated
observations were derived (Sect. 2.2), and (2) the simulation
the assimilated model was compared against. Here the nature
run and open loop simulations detailed above were compared
with a widely used western USA snow reanalysis product
(Fang et al., 2022) to ensure that (1) the nature run exhibited

reasonable model accuracy and (2) the departure between the
open loop simulation and nature run are representative of
common regional, continental, and global modeling efforts
(Figs. S1 and S2 in the Supplement). The OSSE developed
for this study is a “fraternal twin” OSSE wherein two dif-
ferent models are used to simulate snow in the open loop
(Noah-MP) and nature run (SnowModel) simulations. This
approach is selected since “identical twin” OSSEs, which
use the same model, can result in less divergence in model
states and information content, biasing the degree of model
improvement that could come from assimilating an observa-
tion (e.g., Yu et al., 2019). More information on the differ-
ence between the open loop and nature run models can be
found in Table S1 in the Supplement.

2.2 Observation simulator

Synthetic SWE retrievals at 250 m spatial resolution, repre-
sentative of a hypothetical X- and Ku-band SAR mission, are
simulated from the nature run. To do this, the orbital swaths
are simulated using TAT-C (Le Moigne et al., 2017). TAT-
C is a NASA software system designed for future distribu-
tion spacecraft missions that enables us to explore a range of
feasible design options (e.g., constellation vs. single, geosta-
tionary vs. polar-orbiting, low vs. high temporal frequencies)
to estimate optimal gains for the given mission configura-
tion. Previous OSSEs have been conducted to test the impact
from different snow mission configurations (e.g., Garnaud et
al., 2019). Here we instead focus on demonstrating the value
of a gap-filling approach (Sect. 2.4) for estimating snow in
forested landscapes where SAR retrievals may be most chal-
lenging. Therefore, we used TAT-C to design a conservative
mission configuration consisting of a small constellation of
X- and Ku-band SAR satellites. Using a 10–14 d revisit fre-
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quency, depending on latitude, TAT-C orbital swaths were ap-
plied to the nature run outputs to simulate the satellite view-
ing area. The remote sensing spatial coverage is simulated
by extending the ground track to a swath width. The daily
viewing extents are then simulated as a daily binary map (so-
called cookie cutter) masking the surface as viewed or not at
a 250 m spatial resolution.

Based on an error level of 20 %, spatially and temporally
uncorrelated random errors drawn from a Gaussian distribu-
tion are added to the synthetic SWE retrievals. This 20 % er-
ror level is selected using a conservative estimate of SWE
measurement uncertainty for a volume-scattering X-/Ku-
band SAR mission based on developed mission design con-
cepts and ground validation. For example, the ESA Cold Re-
gions Hydrology High-Resolution Observatory (CoREH2O)
mission expected to meet instrument and retrieval require-
ments of ±30 mm accuracies for an SWE of 300 mm and
±10 % for an SWE greater than 300 mm (Rott et al., 2010,
2012). Similarly, the Canadian Terrestrial Snow Mass Mis-
sion (TSMM) concept that is currently under development
aims to achieve better than 20 % measurement uncertainty
for an SWE greater than 50 mm, though it is expected to have
higher uncertainties in deep snow conditions (e.g.,≥ 200 mm
SWE) (Garnaud et al. 2019). Airborne and tower-based field
data have demonstrated that a combination X- and Ku-band
system can provide SWE retrievals over a range of snow
conditions at accuracies better than 20 % (Zhu et al., 2018,
2021; Tsang et al., 2022; Durand et al., 2024; Singh et al.,
2023). However, we use an assumption of uniform error lev-
els throughout the domain, whereas in reality, the errors are
likely to be dependent on other factors, including the terrain
characteristics, snow characteristics, and vegetation. This is
discussed more in Sect. 4.

2.3 Data assimilation setup

A one-dimensional ensemble Kalman filter (EnKF; Reichle
et al., 2002) is used to assimilate the synthetic observations
within the open loop configuration of the model. The EnKF
is widely used for land data assimilation studies (Kumar et
al., 2022), as it provides a flexible approach for the treatment
of model and observation errors and non-linear models. An
ensemble of model realizations is used by EnKF to assess
and propagate model errors. In this instance, the ensemble
requirement further adds to the significant computational re-
quirements of the large model domain (Fig. 1) and fine spa-
tial resolution of the simulations (250 m). Therefore, a five-
member ensemble with perturbations applied to the meteo-
rological variables and model prognostic fields are used for
simulating uncertainty in the modeled estimates. Table 1 de-
tails the parameters for meteorological and model state per-
turbations, which are based on recent snow data assimilation
studies (Lahmers et al., 2022; Kwon et al., 2021). Though a
larger ensemble size is better for ensuring sufficient sampling
density, our choice of five ensembles is reasonable given that

the model state vector used in the assimilation consists of
only two variables: the total SWE and snow depth. The as-
similation setup employs a sequential update strategy, where
at each time step an ensemble of model forecasts is propa-
gated forward in time, followed by an update based on ob-
servational inputs. The model states are updated toward the
observations based on the relative uncertainties in the model
and observations using the following equation at a certain
time k:

xi+
k = xi−

k +Kk

[
yi

k −Hkx
i−
k

]
, (1)

where xk and yk are the model and observation state vectors,
respectively. The term Hk represents the observation opera-
tor that maps the model states to the observed variables. The
superscripts i− and i+ represent the ith ensemble member
before and after the update, respectively. Kk is the “Kalman
gain” term, which allows the weighting of the observations
and model forecasts to be a function of the model and obser-
vation error covariances.

The data assimilation procedure detailed here assimilated
the synthetic SWE retrievals (Sect. 2.2) with the open loop
simulation. The degree to which the simulation with data
assimilation approached SWE simulated by the nature run
is intended to represent the extent to which an SAR remote
sensing platform with the SWE retrieval characteristics from
Sect. 2.2 could be combined with a land surface model to
provide near-real-time estimates of SWE at 250 m resolution.
However, the SAR observations synthesized in this study
have known issues with observing snow with high liquid wa-
ter content and dense forest cover. Therefore, synthetic ob-
servations at each time step were masked at grid cells where
the most dominant land cover type from the North Ameri-
can Land Change Monitoring System (NALCMS; Latifovic
et al., 2017) was forested, including deciduous, evergreen,
and mixed forest cover (Fig. 1). Synthetic observations were
also masked at grid cells where and when snow was experi-
encing melt, identified by the presence of liquid water in the
snowpack from the nature run. Although limited in area, grid
cells with “ice” land cover (Fig. 1) were also excluded. In
this study, this simulation which used assimilation only in un-
forested, non-melting, and ice-free grid cells is termed “data
assimilation, without the forest strategy” (DA). In Sect. 2.4
below, we present a novel approach used to infer SWE in grid
cells with forests using the nearest canopy-free synthetic ob-
servations.

2.4 Extending observations over forests

The 1-D EnKF approach employed here updated each model
grid SWE from the open loop simulation based on the ob-
servations available at that grid point. Though studies have
employed 3-D EnKF approaches to spatially propagate ob-
servational information to neighboring grid cells (De Lannoy
et al., 2012), here we relied on 1-D updates due to several fac-
tors. First, a 2-D update requires the knowledge of spatial er-
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Table 1. Model forcing and state-variable perturbations used by the five-member ensemble of LIS simulations. SD references the standard
deviation of the perturbation.

Variable Perturbation type SD Cross correlation across variables

Meteorological forcing SW corr LW corr PCP corr T corr

Downward shortwave (SW) Multiplicative 0.2 1 −0.3 −0.5 0.3
Downward longwave (LW) Additive 30 −0.3 1 0.5 0.6
Precipitation (PCP) Multiplicative 0.5 −0.5 0.5 1 −0.1
Near surface air temperature (T ) Additive 0.5 0.3 0.6 −0.1 1
Noah-MP LSM snow states SWE Snow depth
SWE Multiplicative 0.01 1 0.9
Snow depth Multiplicative 0.01 0.9 1

ror correlations and their variability, which is challenging to
specify (Ying, 2020). Most prior studies using such schemes
employ uniform specifications and are limited to small do-
mains. Second, a 2-D update increases the size of the state
vector and consequently requires the use of a larger ensem-
ble. This, combined with the added computational expense
of a 2-D analysis, significantly increases the computational
cost. Therefore, we employed an alternate approach that is
computationally more efficient while allowing the extension
of observations to nearby areas.

Assuming that the SWE retrievals from the hypothetical
SAR instrument are limited over areas where the dominant
vegetation type are forests (Fig. 1a), we employ a novel ap-
proach to extend the observations obtained in non-forested
areas (Fig. 2). For every forested location, valid retrievals
over nearby non-forested locations within a radius of influ-
ence of 750 m are identified. An observation at the forested
pixel is then estimated by scaling the model SWE by the ra-
tio of the average observed SWE to a modeled SWE over
the “clearing” areas (Fig. 2). This scaled observation is then
used for assimilation over the forested pixel. Here we im-
plicitly use the spatial correlations inherent in the model be-
tween forested and clearing areas to extend observational
coverage over the clearing to forested locations, the afore-
mentioned “data assimilation, with the forest strategy” (sym-
bolized by DA+F in Sect. 3). To evaluate the accuracy and
added value of this scaling approach, we compare SWE and
runoff from the nature run simulation, versus simulations
with data assimilation both (1) employing the forest scaling
strategy discussed here and (2) masking synthetic observa-
tions in forested grid cells (Sect. 2.3).

3 Results

In this section, we compute the difference between the open
loop simulation, nature run, and the two open loop simula-
tions with data assimilation: one masking synthetic observa-
tions over regions with forests, and time periods with melting
snow, and ice; and the other applying the same data assim-
ilation but extending snow estimates in forested regions us-

ing the strategy from Sect. 2.4 and Fig. 2. The differences
between these simulations are detailed in Sect. 2 and Ta-
ble S1. We focus on the differences between these four simu-
lations using (1) average SWE from the winter snow accumu-
lation season, i.e., December, January, and February (DJF),
when snowmelt is minimized and synthetic observations are
masked by grid cells with liquid water content to the smallest
degree; (2) spatially distributed SWE on 13 March, the date
corresponding to the timing of maximum SWE volume in
water year 2019; and (3) daily average SWE and total runoff
for each day in water year 2019 over a number of selected hy-
drologic regions including the Pacific Northwest, California,
Great Basin, and Upper Colorado (Fig. 1b).

The open loop and nature run simulations exhibited differ-
ences in both the volume and spatial distribution of average
winter (i.e., DJF) SWE (Fig. 3a and b). Relative to the na-
ture run, the open loop simulation tended to simulate lower
elevation winter SWE that was both larger in magnitude and
persisted for longer before melting. In the Pacific Northwest
domain (Fig. 4), DJF average snow cover (defined as grid
cells with mean DJF SWE exceeding 5 mm), was approxi-
mately 12 % larger for the open loop simulation than the na-
ture run (Table 2). These snow extent biases were also appar-
ent in the other hydrologic regions (Figs. S3–S5), where open
loop snow extents exceeded snow extents from the nature run
by 26 % in the Upper Colorado, 45 % in the Great Basin,
and 6 % in California. Visually, the nature run had signifi-
cant increases in the spatial variability of winter SWE, bet-
ter representing the differences in SWE between mountain
peaks and valleys, and the patchiness of snow cover in re-
gions with winter snowmelt and ephemeral snow cover (e.g.,
Figs. 4, S1). Relative to the nature run, DJF SWE from the
open loop simulation was biased high across the full model-
ing region (Fig. 3) by approximately 26 %, on average, with
a mean absolute error of 41 mm and spatial coefficient of cor-
relation of approximately 0.74. Across the Pacific Northwest
(Fig. 4), DJF mean SWE biases were approximately 37 %,
with a mean absolute error of 55 mm. Open loop model per-
formance for the other hydrologic regions can be found in
Table 2.
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Figure 2. Conceptual depiction and equations demonstrating the forest strategy used here, which estimates a SWE observation at a given
grid cell (outlined blue box) based on the modeled SWE (SWEmodel,f ) and the ratio between the average synthetic SWE observations
(SWEobs,c) and average modeled SWE (SWEmodel,c) from grid cells within a 750 m radius (dashed box). The light gray shading represents
the satellite swath, the tree icons indicate forested locations, and the snowflake icons represent grid cells with valid SWE retrievals at non-
forested locations. The grid cell from this example is near the satellite swath edge, so observations are unavailable in the nearby regions south
and east of this pixel.

As expected, the simulations assimilating the synthetic
SWE observations agreed with the nature run better than the
open loop simulation. However, on 13 March 2019 (the date
of maximum domain SWE volume), the simulation with data
assimilation without the forest strategy had high-biased SWE
across large portions of the Rocky Mountains and the Cas-
cade Mountain range (Figs. 1 and 5b, e). Low-biased SWE
was more common in the northernmost Canadian portions
of the Rocky Mountains and Cascade Range, the western-
montane regions in Washington state, the northern portions
of the Great Basin, and the lower-lying elevations of the Cal-
ifornia Sierra Nevada. Additionally, despite the assimilation,
snow extents were still biased high relative to the nature run
(Fig. 3) at magnitudes similar to those of the open loop sim-
ulation (Table 2). This was driven by the expansive snow
extents of the open loop simulation, which were decreased
by data assimilation, but still resulted in widespread early-
season SWE increases for short periods of time between
synthetic observations (at 10–14 d frequencies), increasing
to the number of grid cells with DJF SWE exceeding 5 mm
(the threshold used to define average winter snow extents in
Fig. 3).

Assimilating the synthetic SAR observations without the
forest strategy best improved SWE in shrub, grass, crop,

bare, and wetland land cover types (Fig. 6b and c). For ex-
ample, relative to the open loop simulation (Fig. 5a and d),
data assimilation without the forest strategy (Fig. 5b and e)
corrected the high SWE biases in the Great Plains (Fig. 1).
While 13 March SWE in shrub, grass, crop, bare-ground,
and wetland regions was typically small in magnitude, these
land cover types accounted for 77 % of the modeling domain
area, and 61 % of the domain total SWE volume on 13 March
(Fig. 6a). In these regions, SWE from the open loop simula-
tion had a mean absolute error of 22 mm, and a mean bias of
approximately 14 %, relative to the nature run (Table 2). Data
assimilation significantly improved the SWE bias in these
land cover types to within 1 %, on average (Fig. 6b), with
a mean absolute error of 14 mm, relative to the nature run.

The data assimilation results discussed above did not use
the synthetic observations over forested grid cells, where re-
trievals from SAR instruments may be either partially or fully
occluded by the canopy overstory (Tsang et al., 2022; Ruiz et
al., 2022; Huang et al., 2019). However, a significant portion
of the snow volume in mid-latitude domains overlaps with
forests. For example, although forests only covered approx-
imately 22 % of the study region investigated here (Fig. 1a),
forested grid cells contained just over 34 % of the total 13
March SWE volume, a volume about 10 % higher than the
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Table 2. Simulation performance, relative to the nature run simulation, for the open loop (OL) simulation and the simulations with data
assimilation, both with (DA+F) and without (DA) the forest strategy. Statistics are presented for the full domain, the four hydrologic regions,
and all forested and unforested grid cells.

13 March 2019 SWE Seasonal SWE and runoff

DJFa Mean SWE Coeff. MAMb Nash–
Snow- bias abs. of mean Sutcliffe
extent error corr. SWE efficiency
biases [mm] bias

Full study OL +22% +26% 41 0.74 – –
domain DA +23% +9% 36 0.79 – –

DA+F +22% +4% 17 0.91 – –

Upper OL +26% +37% 55 0.74 +63% −2.59
Colorado DA +28% +27% 50 0.74 +86% −3.71

DA+F +28% +8% 23 0.90 <1 % 0.22

Pacific OL +12% +42% 89 0.69 +44% −0.17
Northwest DA +13% +32% 80 0.74 +80% −0.34

DA+F +13% +6% 35 0.89 +15% 0.39

Great OL +45% +35% 38 0.62 −29 % 0.58
Basin DA +46% +46% 32 0.75 +10% 0.58

DA+F +46% +28% 23 0.83 −38 % 0.53

California OL +6% −34 % 50 0.64 −50 % 0.92
DA +8% −6 % 40 0.79 −15 % 0.88
DA+F +8% −6 % 28 0.88 −26 % 0.89

Unforested OL +19% +14% 22 0.83 – –
DA +20% <1 % 14 0.91 – –
DA+F +20% <1 % 14 0.91 – –

Forested OL +29% +150% 111 0.67 – –
DA +30% +150% 111 0.67 – –
DA+F +30% +18% 27 0.93 – –

a DJF=December, January, and February. b MAM=March, April, and May (averages).

snow volume contained in the next-largest land cover type
(Fig. 6a). In forested grid cells, SWE values simulated by
the open loop simulation were biased high by approximately
87 mm (+150 %) on average (Fig. 6), with a mean absolute
error of 111 mm (Table 2). These errors were propagated
into the simulation with data assimilation without the for-
est strategy. Fortunately, the ratio between modeled SWE
and synthetic SWE observations in forested grid cells and
the nearest canopy-free grid cells had high levels of simi-
larity. Therefore, estimating snow in forest regions using the
nearest canopy-free pixels (Fig. 2) improved snow simula-
tions significantly (Figs. 3d, 4d, and 5c, f). In fact, snow
simulated in forest landscapes using data assimilation with
the forest strategy agreed well with the nature run, exhibit-
ing a 13 March SWE average bias in forested grid cells of
only 14 mm (+8 %) (Fig. 6), and a mean absolute error of
27 mm. This forest strategy resulted in large-scale improve-
ments to total domain SWE (Fig. 5), reducing the 13 March
full-domain SWE volume bias by 28 %, and improving the

spatial coefficient of correlation by 0.12, relative to the data
assimilation simulation without the forest strategy.

The comparisons above focused on mean DJF SWE
and SWE from the date nearest maximum snow volume
(13 March 2019). However, assimilating the synthetic SWE
data also improved estimates of snow water resources
throughout the duration of the water year, even in peri-
ods when most snow covered regions were experiencing
snowmelt and synthetic observations were masked. For ex-
ample, in the Upper Colorado, approximately 75 % of the
region had DJF snow cover with little or no winter snowmelt
(Fig. 7). The simulation with data assimilation and the for-
est strategy substantially improved mean SWE evolution
in the snow accumulation season in this hydrologic region
(October–March in Fig. 7). However, snowmelt onset in the
March, April, and May (MAM) months increased the num-
ber of grid cells experiencing snowmelt from the open loop
model outputs, reducing the number of grid cells across the
full Upper Colorado that could be observed by the synthetic
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Figure 3. Winter (December, January, and February) mean SWE simulated at 250 m resolution from the open loop (a) and nature run (b),
and data assimilation simulations, both without (c) and with (d) the forest strategy presented in Sect. 2.4.

SAR observations to approximately 5 %, on average, over
this period of time. Despite this, since the simulation with
data assimilation improved the volume, timing, and spatial
distribution of maximum SWE, mean SWE evolution tracked
the nature run simulation significantly better than the open
loop simulation in the spring snowmelt period. In fact, rela-
tive to the nature run, MAM SWE from the open loop simu-
lations was biased high by approximately 63 %, on average,
in the Upper Colorado (Table 2). The simulation with data
assimilation using the forest strategy improved this bias to
less than 1 %, on average, over the same period. In this study,
simulations using Noah-MP (open loop and data assimila-
tion simulations) melted snow more rapidly in the latter half
of the spring snowmelt season than the nature run simulation
which evolved SWE using SnowModel (Sect. 2.1). There-
fore, although maximum SWE volume, maximum SWE tim-
ing, and MAM SWE were improved by data assimilation, the
timing of snow disappearance for the simulation with data
assimilation using the forest strategy was approximately 18 d
earlier than that of the nature run in the Upper Colorado.

Much like the Upper Colorado, SWE simulated by the
open loop simulation in the Pacific Northwest (Fig. S7) was
biased high for the entirety of the snow season. Both do-
mains also had greater than 80 % synthetic snow observa-
tion coverage in March (including grid cells that filled snow

estimates using the forest strategy), and as a result, the simu-
lation with data assimilation using the forest strategy closely
matched SWE from the nature run. However, both of these
domains had a significant portion of the seasonal snowpack
in forested land cover (the difference between the hatched
and solid bars in Figs. 7 and S7). These grid cells had winter
SWE estimates from the open loop simulation that were pre-
dominately high-biased (Figs. 3 and 5). Therefore, although
data assimilation improved winter SWE in non-forested land
cover types (Fig. 6), the simulation without the forest strat-
egy caused little to no improvement in the simulated domain
mean maximum SWE (Table 2). This highlights the value
of the forest strategy used here (Fig. 2), which drew infor-
mation from synthetic observations in relatively few nearby
pixels to infer the mean snow volume in forested grid cells.
Given the four hydrologic regions investigated in this study, a
far smaller volume of snow existed in forested land cover for
the California (Fig. S8) and Great Basin regions (Fig. S6), re-
sulting in a DJF domain-mean SWE evolution that was more
similar between the simulations with and without the for-
est strategy. We expect results in these domains to be more
indicative of the value of winter SAR observations in less-
vegetated snowy landscapes such as Tundra and Prairie snow
regimes (Sturm and Liston, 2021).
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Figure 4. Winter (December, January, and February) mean SWE in
the Pacific Northwest region simulated at 250 m resolution from the
open loop (a) and nature run (b), and data assimilation simulations,
both without (c) and with (d) the forest strategy.

Finally, the improvements to the spatial and temporal es-
timates of SWE discussed above had trickle-down improve-
ments on simulated runoff. For example, in the Upper Col-
orado (Fig. 7), total annual runoff from the open loop simu-
lation was biased high by approximately 35 % relative to the
nature run. This error was driven mostly by high-biased win-
ter snow accumulation, which nearly doubled the melt season
(March–July) runoff estimated by the nature run simulation.
Here, by assimilating the synthetic SWE observations and
estimating forest snowpack from the relationship between
modeled and observed SWE from the nearest canopy-free
pixels, total annual streamflow in this domain was improved
to within 1 %. Not only was domain total runoff improved,
but the seasonal evolution of high and low flows vital for wa-
ter management and planning was also improved. This im-
proved the Nash–Sutcliffe efficiency (NSE) from −2.59 to
0.22 between the open loop simulation and simulation with
data assimilation employing the forest strategy (Table 2).
These results were similar for the Pacific Northwest, which
had an NSE that improved from −0.17 to 0.39. However,
due to the smaller changes to SWE and more-rapid snowmelt
simulated by Noah-MP, changes to runoff from data assimi-
lation in California and the Great Basin were small (Table 2),
with improvements that were largely outweighed by the dif-
ference in snowmelt timing and rates between Noah-MP and
SnowModel.

4 Discussion

The differences between the open loop simulation and na-
ture run in this study were representative of snow modeling
errors common for continental and global-scale models used
for seasonal to long-term future snow predictions (e.g., Franz
et al., 2010; Garousi-Nejad and Tarboton, 2022; Kim et al.,
2021; Liu et al., 2022). The greatest source of these snow
modeling errors is commonly errors in meteorological forc-
ing data, and in particular, biases in precipitation (Garousi-
Nejad and Tarboton, 2022; Henn et al., 2018; Pflug et al.,
2021; Raleigh and Lundquist, 2012; Wayand et al., 2013).
These biases are especially prevalent in the portions of the
earth’s surface with the greatest volumes of snow, such as
the tundra and montane regions (Kim et al., 2021), where
ground observations and observation station maintenance are
hindered by harsh winter conditions and inaccessibility. This
suggests that the greatest need for improving global estimates
of snow is improved estimates of snow accumulation in re-
mote, under sampled landscapes. Here we expect that the
SAR observations evaluated in this study could address these
needs, thus providing a path forward for pairing common
snow models with observations as a basis for determining
global snow mass. For example, assimilating SAR observa-
tions at 10–14 d intervals with the observational error char-
acteristics reported in Sect. 2.2, improved midlatitude winter
SWE volume by approximately 22 %, on average (Table 2).
In unforested landscapes, which account for the majority of
the earth’s snow water storage (Kim et al., 2021), assimila-
tion improved the mean SWE bias at maximum SWE timing
to within 1 %, on average, and reduced the standard deviation
of errors by approximately 45 mm (∼ 85 %) (Fig. 6).

Despite the benefits discussed above, SAR observations
have known limitations in forested landscapes where the
canopy overstory obstructs retrievals from the underlying
snowpack (Huang et al., 2019; Ruiz et al., 2022; Tsang et
al., 2022). Therefore, this study was designed to investigate
a forest strategy that uses the relationship between modeled
SWE estimates and synthetic SWE observations from neigh-
boring grid cells as the basis for inferring snow distribution
in regions with forested land cover (Fig. 2). To focus on the
benefits of this approach, we chose a domain (Fig. 1) that
included both significant forest spatial coverage (22 %) with
disproportionate amounts of winter snow (34 %) within the
forested pixels (Fig. 6). Relative to the open loop simulation,
the simulation with data assimilation and the forest strategy
dramatically improved the spatial distribution of SWE (e.g.,
Figs. 3 and 4) and the resulting SWE biases at domain maxi-
mum snowpack timing (Fig. 5). In fact, in forested grid cells,
the SWE on 13 March was only biased by 14 mm (mean ab-
solute error of 27 mm), on average, for the simulation with
data assimilation and the forest strategy, relative to the nature
run. This was opposed to the open loop simulation, which
was biased by 87 mm (mean absolute error of 111 mm) over
the same regions and date. Despite the fact that the two sim-
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Figure 5. The 13 March 2019 SWE difference (a–c) and percent difference (d–f), relative to the nature run, for the open loop simulation (a,
d) and simulations with data assimilation, both with (c, f) and without (b, e) the forest strategy. The SWE percent-different maps (d–f) only
compare grid cells where the SWE from the nature run was greater than 5 mm.

Figure 6. The SWE volume on 13 March 2019 broken down by land cover type in (a). For each land cover type, the interquartile range and
median of SWE differences (b) and SWE percent differences (c) are calculated for the open loop simulation (black bars) and each simulation
with data assimilation (blue bars). The SWE differences (b) and (c) are calculated relative to the nature run.
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Figure 7. Time series comparison of mean SWE (a) and total runoff (b) between the open loop, nature run, and simulations assimilating the
synthetic observations, both with and without the forest strategy in the Upper Colorado. Hatched bars in (a) represent the monthly percentage
of the Upper Colorado grid cells with no snowmelt. Solid bars also exclude grid cells with forest coverage.

ulations with data assimilation agreed in all grid cells ex-
cept forested grid cells, the simulation employing the forest
strategy had a mean absolute error (17 mm) across the full
modeling region that was approximately 51 % smaller than
the simulation without the forest strategy. Here we recognize
that this study used a single date (13 March) to represent
snow water resources at maximum SWE timing. However,
the date of maximum SWE volume from the nature run var-
ied by less than a week across the four hydrologic regions
(11–16 March; Figs. 7, S6–S8). Therefore, this was a rele-
vant date for model comparisons, especially given that water
resource and allocation decisions in the western USA are of-
ten based on the volume of snow at maximum snow timing.

This research shows how a modeling framework and rel-
atively few observations can be used to gap-fill estimates of
snow in regions where remote sensing observations from a
future platform may be most challenged. Despite the fact that
snowpack with properties able to be retrieved by SAR in-
strumentation (i.e., canopy-free land cover and no snowmelt)
sometimes only accounted for only small portions of a mod-
eling domain (e.g., Fig. 7), SWE from the model and SAR
observations in nearby canopy-free grid cells were predic-
tive of the snow in forested grid cells. We hypothesize that
this could have partly been driven by the 250 m resolution
of synthetic observations and simulations. At this length
scale, snow distribution is typically driven by processes like
mesoscale weather patterns and their interaction (orographic

lapse rates, wind loading and/or sheltering, terrain-shading,
etc.) with static topographical features like elevation, slope,
and aspect (e.g., Clark et al., 2011; Lehning et al., 2011;
McGrath et al., 2018; Minder et al., 2008; Trujillo et al.,
2007). However, we acknowledge that snow in forested and
open grid cells is subject to different snow processes. In
fact, the nature run simulation used here attempts to simu-
late snow-canopy interactions, such as snow interception and
solar shading from the canopy overstory (Liston and Elder,
2006). Here, since we focus predominantly on model im-
provements from data assimilation in the SWE accumulation
season, we hypothesize that the primary difference between
SWE accumulation in forested pixels and the nearest canopy-
free grid cells could be driven by canopy interception, or
the lack thereof. In other words, inferring forested snowpack
using the nearest canopy-free grid cells could bias snow in
forested regions where snow processes differ slightly. While
the forest strategy improved SWE simulated in forested grid
cells at the date of maximum SWE volume, SWE was still bi-
ased high relative to the nature run (Fig. 6). We hypothesize
that a correction factor, based on variables like forest canopy
type, vegetation density, wind speed, and temperature during
snowfall, all of which influence snow interception (Lundquist
et al., 2021), could be used to facilitate the difference in snow
accumulation expected between a forest pixel and SWE ob-
servations from nearby canopy-free grid cells. This approach
will be a topic of future research. However, since errors with
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precipitation are often the overwhelming source of model er-
rors, we hypothesize that the forest strategy (Fig. 2), which
corrected modeled SWE in forested areas using the ratio be-
tween modeled and observed SWE in nearby open areas, was
well suited to correct precipitation biases.

The results presented here are subject to a number of as-
sumptions. These assumptions were intended to apply re-
gionally consistent and conservative rules about how (1) syn-
thetic SAR observations were generated and (2) the grid cells
and time periods in which SAR observations occurred. For
example, we used a 20 % and zero-mean random distribution
of errors to generate observations from the nature run. We
expect the error from a future satellite mission to be less than
20 % over the majority of snow covered regions (Sect. 2.2).
However, observational biases may be more common in cer-
tain locations and periods based on snow depth, particularly
in very shallow or very deep snowpacks, terrain character-
istics, and vegetation characteristics. Additionally, the land
cover classification used in this study (Fig. 1) was based on
the dominant land cover type within each model grid cell,
as defined from the North American Land Change Monitor-
ing System (Latifovic et al., 2017). For forested grid cells,
this included needleleaf, broadleaf, and mixed forest types.
To be conservative, this study completely masked synthetic
observations in 250 m grid cells classified as forest, thereby
assuming (1) no observation capabilities in predominantly
forested areas and (2) full observation capabilities in grid
cells where forests were not the dominant land cover type.
In reality, SAR may be able to achieve accurate snow re-
trievals in some forested-dominated regions based on the for-
est type, forest distribution, and canopy density (Tsang et al.,
2022). Conversely, some regions with sparser or no forest
cover may still have observation limitations based on the do-
main and snow characteristics mentioned above. The large
domain used in this study also made tests over multiple years
computationally challenging. Here the intent of this study
was to investigate a strategy for deriving SWE corrections
in difficult-to-observe forest landscapes, and we hypothesize
that precipitation biases and the resulting modeled SWE ac-
cumulation could be improved to a similar degree in years
with both larger and smaller snow volumes. Finally, while
strategies for identifying and correcting systematic SAR ob-
servation errors are a topic of continued research (e.g., Du-
rand et al., 2024; Singh et al., 2023), OSSEs are an inherently
flexible framework for evaluating sensor utility, so future re-
search could use the simulations performed here to test a
wider array of sensor configurations and non-normal retrieval
errors. Future work could build upon these results to investi-
gate multiple years, perhaps considering warmer and/or drier
snow years, when the role of snowpack for water supply
and midwinter snowmelt and rain-on-snow frequency may
be more likely to increase snowpack liquid water content, or
years with late-season spring snow accumulation. Future re-
search should also investigate other gap-filling approaches,
like methods to infer SWE in grid cells where snowmelt is

occurring and liquid water may prevent SAR retrievals, and
gap-filling approaches using different window sizes and/or
searching windows that more heavily weight unforested grid
cells with similar characteristics (elevation, aspect, etc.).

This study tested a simple model setup using a popular
land surface model (Noah-MP) and Kalman-based data as-
similation procedure. This data assimilation procedure up-
dated modeled snow states, like snow depth and SWE, based
only on synthetic SWE observations at 10–14 d temporal
frequencies where/when snowmelt was not occurring. De-
spite the limitations and assumptions discussed above, we
expect that the results presented here could represent the
lower boundary of performance that could be achieved from
a real-time modeling framework that could accompany a
space-borne SAR remote sensing platform. For example,
many studies have demonstrated repeatable patterns of snow
accumulation in years with similar winter meteorological
characteristics (e.g., Deems et al., 2008; Pflug et al., 2022;
Schirmer et al., 2011; Sturm and Wagner, 2010; Woodruff
and Qualls, 2019). This suggests that retrospective informa-
tion about snow distribution patterns in previous years could
be used as the basis for extrapolating and updating snow
model states in grid cells not covered by SAR observations
on a given date. From the modeling perspective, only five
ensemble members were used in the ensemble Kalman data
assimilation (Sect. 2.3), whereas a larger ensemble of sim-
ulations may have improved uncertainty characterization of
simulated snow and hydrologic states even more. This study
also assumed that synthetic SAR observations were unable
to observe snow in all forested landscapes, when retrievals of
snow in forested stands could be achievable for some forested
regions with smaller tree cover fractions and biomass (Mon-
tomoli et al., 2015; Tsang et al., 2022). Finally, the SAR con-
figuration tested here had 10–14 d repeat times, but future
satellite configurations with more-frequent observational re-
peats are possible and have been recommended by the 2018
Decadal Survey (NASM, 2018). Despite all of these con-
servative assumptions, the difference between the open loop
simulation (representative of current modeling accuracies)
and the simulation with synthetic observation data assimila-
tion using the forest strategy demonstrated large-magnitude
and widespread improvements to real-time estimates of win-
ter SWE and the associated improvement to spring SWE and
runoff. Therefore, we expect the findings of this study, par-
ticularly the strategy to extend the observational utility to
forested areas, to significantly aid in the full exploitation of
the information from a future SAR-based snow satellite mis-
sion.

5 Conclusions

Global estimates of snow volume and distribution have un-
certainties stemming from limited snow observations and
biases in meteorological forcing data. These uncertainties
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stress the need for a global snow-focused satellite remote
sensing platform. Here we investigate the degree to which
synthetic observations of SWE representative of a synthetic
aperture radar remote sensing platform could correct com-
mon snow modeling errors and provide spatiotemporally
continuous SWE estimates. We investigate this using an ob-
serving system simulation experiment, specifically investi-
gating how much snow simulated using a widely used land
surface model and meteorological forcing dataset could be
improved by assimilating synthetic SAR observations of
SWE.

The difference between the open loop simulation and the
nature run was representative of common modeling errors.
Snow simulated by the open loop simulation had larger win-
ter snow extents and total snow volume that was biased high
by approximately 35 %. The open loop simulation also sim-
ulated snow that was more spatially homogeneous, underes-
timating the variability across variations in topography and
underestimating lower-elevation snowmelt from the nature
run. Assimilating the synthetic SWE observations improved
SWE simulated in the shrub, grass, crop, bare-ground, and
wetland land cover types. In fact, SWE biases on the date of
domain maximum SWE volume (13 March 2019) in these
land cover types improved from 14 % for the open loop sim-
ulation to within 1 % after data assimilation. However, de-
spite only covering 22 % of the study area, forested grid cells
contained just over 34 % of the domain SWE on 13 March.
The open loop simulation and the simulation with data as-
similation without the forest strategy had SWE that was high
biased by 150 % (87 mm), on average, in these forested grid
cells. The relationship between modeled SWE and synthetic
SWE observations in forested grid cells exhibited similari-
ties with the nearest canopy-free grid cells. Therefore, SWE
in forested regions was able to be inferred using the simple
modeling framework and synthetic SAR observations from
nearby canopy-free grid cells. In fact, the simulation with
data assimilation using this forest gap-filling strategy sub-
stantially improved SWE biases to 4 % (∼ 22 % improve-
ment) at maximum SWE timing, with an SWE mean absolute
error of 17 mm (24 mm improvement) and spatial correlation
of 0.91 (0.17 improvement) across the western USA.

Improvements in winter SWE accumulation also improved
estimates of melt-season SWE evolution and total runoff in
four major western USA hydrologic regions, even in periods
when winter snowmelt greatly reduced the number of grid
cells that could be observed by the synthetic SWE observa-
tions. In fact, in the Upper Colorado, melt season SWE biases
improved from 63 % to less than 1 % after assimilation, and
the runoff Nash–Sutcliffe efficiency improved from−2.59 to
0.22. These results demonstrate the value of SAR observa-
tions and simple spatial-filling strategies in grid cells where
SAR retrievals could be obstructed by the canopy. Here we
expect our results to represent a lower-boundary of model
performance which could be improved further by more ro-
bust assimilation approaches, more-frequent SAR observa-

tions, further developments to SAR retrieval algorithms in
forested landscapes, and adaptations to the forest gap-filling
strategy developed here. However, our results also show that
widespread improvements to global SWE could be available
in near real-time provided data assimilation approaches and
an SAR remote sensing platform.
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Copernicus Climate Change Service, 2024).
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