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S1 Inundation Performance Metrics

Quantitative evaluation of flood inundation grids is commonly accomplished using a diverse set of metrics that communicate
and quantify over- and under-predictions and their proportions. To compute these metrics, simulations for maximum inundation
are evaluated against some observed binary data grid of wet and dry cells. First, each cell is classified according to Table S1 by
comparing the simulated to the observed data grids to generate a confusion map. From this confusion map, the total counts of5
each of the four classifications is computed. These total counts are then used to calculate the domain-wide inundation metrics
commonly used in flood inundation evaluation shown in Table S2.

Table S1. Inundation confusion matrix. For a given simulation, each cell in the domain is compared to the corresponding cell in the observed
grid and classified according to this table. Adapted from Wing et al. (2017).

Simulated
Wet Dry

Observed
Wet True Positive (TP) False Negative (FN)

Dry False Positive (FP) True Negative (TN)

Table S2. Flood inundation performance metrics. See Table S1 for acronyms. Adapted from Wing et al. (2017).

Metric Equation Poor Perfect Description

Critical Success Index TP
TP+FP+FN

0 1
ratio of accurate wet cells to total wet cells and missed wet
cells

Hit Rate TP
TP+FN

0 1 portion of observed wet cells reproduced by the model
False Alarms FP

TP+FP
1 0 portion of modelled wet cells which are erroneous

Error Bias FP
FN

0 or inf 1 ratio of over-predictions to under-predictions
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S2 Hydrodynamic Model Calibration

To obtain accurate water level grids at coarse (s2 = 32m) and fine (s1 = 4m) resolutions, twin hydrodynamic models are con-
structed in the RIM2D platform and calibrated using a mix of brute force and scipy’s implementation of the Newton-Conjugate10
Gradient algorithm (Nocedal and Wright, 2006; Virtanen et al., 2020). Roughness values for built-up and channel/floodplain
are treated as two (independent) free parameters for the optimization. A single performance metric, Critical Success Index
(CSI) defined in Table S2, is calculated against the observed inundation for each iteration and used to optimize with the free
parameters. Optimization trials were undertaken on a Tesla P100 GPU using python scripts.

Results of the two calibration trials are shown in Fig. S1 and S2. The performance metrics shown in Table S2 are also shown;15
however, only CSI was used for optimization. In general, the fine (s1 = 4m) model replicates the target inundation with over-
and under-predictions roughly balancing (Error Bias = 1.2) while the coarse model (s2 = 32m) generally under-predicts when
CSI is optimized (Error Bias = 0.33). Focusing on water surface elevations (which were not part of the optimization), the
fine (s1 = 4m) model has lower WSE values upstream and higher WSE values downstream when compared to the coarse
(s2 = 32m); likely owing to the difficulties in modelling the narrower channel in this region at the coarser resolutions. While20
this difference would be problematic for some hydrodynamic model applications, here we focus on inundation extents – not
elevations. If elevations and flow dynamics were the focus, the coarse hydrodynamic model would be an inappropriate choice,
because the model resolution is about 3 times larger than the width of the river, which results in the observed deviations in
water slope profile compared to the fine resolution model. For an estimation of the flood extent, however, the coarse model
can provide useful results despite the deficiencies in simulating the flow dynamics. Because of our focus on flood extent,25
we use a simple calibration of two roughness parameters to optimize the Critical Success Index which is a measure of fit to
the observed inundation extents. It is therefore not surprising that inundation is reproduced well by both models while water
elevations are less satisfactory. A more sophisticated (e.g., multi-metric optimization) calibration could have been pursued to
try and address this; however, as our paper focuses on downscaling (not model calibration) we felt this would be distracting.
Note the performance metrics reported in the manuscript are computed on a smaller domain.30
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Figure S1. Calibration results for 32 m hydrodynamic model showing the four metrics from Table S2. Points denote individual model runs
(at the shown roughness) and contours are computed via interpolation of the metric value at each point. Red ’X’ marks the optimal (using
the maximum CSI) and the parameterization used for downscaling.
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Figure S2. Calibration results for 4 m hydrodynamic model similar to Figure S1.
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Figure S3. WSE max difference between coarse (s2 = 32m) and fine (s1 = 4m) models at their respective optimum roughnesses clipped to
intersecting inundation region. Red denotes regions where the fine (s1 = 4m) solution yielded higher or larger water depths than the coarse
(s2 = 32m). Domain used for hydrodynamic modelling (13.4 x 6.6 km) and subset used for downscaling analysis (8.9 x 3.5 km) shown in
black for reference.
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S3 Additional Results Figures
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Figure S4. Downscale and hydrodynamic model WSE detail results as in Figure 8 for a separate location.
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