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Abstract. Inversion in subsurface hydrology refers to esti-
mating spatial distributions of (typically hydraulic) proper-
ties often associated with quantified uncertainty. Many meth-
ods are available, each characterized by a set of assumptions,
approximations, and numerical implementations. Only a few
intercomparison studies have been performed (in the remote
past) amongst different approaches (e.g., Zimmerman et al.,
1998; Hendricks Franssen et al., 2009). These intercompar-
isons guarantee broad participation to push forward research
efforts of the entire subsurface hydrological inversion com-
munity. However, from past studies until now, comparisons
have been made among approximate methods without firm
reference solutions. Note that the reference solutions are the
best possible solutions with the best estimate and posterior
standard deviation and so forth. Without reference solutions,
one can only compare competing best estimates and their as-
sociated uncertainties in an intercomparison sense, and abso-
lute statements on accuracy are unreachable.

Our current initiative defines benchmarking scenarios
for groundwater model inversion. These are targeted for
community-wide use as test cases in intercomparison sce-
narios. Here, we develop five synthetic, open-source bench-
marking scenarios for the inversion of hydraulic conductiv-
ity from pressure data. We also provide highly accurate ref-
erence solutions produced with massive high-performance
computing efforts and with a high-fidelity Markov chain

Monte Carlo (MCMC)-type solution algorithm. Our high-
end reference solutions are publicly available along with
the benchmarking scenarios, the reference algorithm, and
the suggested benchmarking metrics. Thus, in comparison
studies, one can test against high-fidelity reference solutions
rather than discussing different approximations.

To demonstrate how to use these benchmarking scenar-
ios, reference solutions, and suggested metrics, we provide
a blueprint comparison of a specific ensemble Kalman filter
(EnKF) version. We invite the community to use our bench-
marking scenarios and reference solutions now and into the
far future in a community-wide effort towards clean and con-
clusive benchmarking. For now, we aim at an article collec-
tion in an appropriate journal, where such clean comparison
studies can be submitted together with an editorial summary
that provides an overview.

1 Introduction

Subsurface flow processes take place in geologic media
where heterogeneities occur across a multiplicity of scales.
These cause the values of relevant hydrogeological parame-
ters to vary over several orders of magnitude. When consid-
ering this heterogeneity together with the fact that we have a
limited ability to look deep into the subsurface, it is easy to

Published by Copernicus Publications on behalf of the European Geosciences Union.



5376 T. Xu et al.: Benchmarking for groundwater model inversion

understand the reasons why predicting the behavior of sub-
surface environments is fraught with remarkable uncertainty.

Only data can assist in reducing this uncertainty. In prac-
tice, direct measurements of model parameters (such as hy-
draulic conductivity, porosity, or storativity) are scarce and
only available at a limited number of locations. Additionally,
such data are defined or measured as scales inconsistent with
the used model, and they are subject to measurement inac-
curacies and imprecision. Hence, one must employ indirect
information, i.e., observations of state variables such as pres-
sure heads and/or concentrations. To embed these data in a
procedure to estimate system parameters is typically termed
model calibration or inverse modeling. Solving the inverse
problem is at the heart of characterizing complex natural sys-
tems.

There are multiple contributing factors to the uncertainty,
including cognitive limitations of models, recharge values,
lateral inflows, data scarcity, and subsurface heterogeneity.
These factors are responsible for the persistence of uncer-
tainty even after calibration. The latter type of uncertainty
is crucial and must be quantified to provide robust decision
support in engineering and management practice. Stochas-
tic (or probabilistic) inverse approaches (also known as con-
ditional simulation, Bayesian updating, and statistical pa-
rameter inference) are the only way to obtain such uncer-
tainty estimates. Providing algorithms for solving stochastic
inverse problems acceptably fast, robustly, and accurately is
one of the remaining key challenges in modern subsurface
characterization approaches. In recent years, a remarkable
variety of inverse modeling approaches has been proposed.
The most popular approaches, such as geostatistical regular-
ization (de Marsily, 1978), pilot points and sequential self-
calibration (e.g., RamaRao et al., 1995; Gómez-Hernández
et al., 1997, 2001; Hendricks Franssen et al., 1999, 2003),
quasi-linear geostatistical approaches (e.g., Kitanidis, 1995;
Nowak and Cirpka, 2006; Schwede and Cirpka, 2009),
MCMC-based approaches (e.g., Laloy et al., 2013; Cotter
et al., 2013b; Xu et al., 2020), and ensemble Kalman fil-
ters (EnKFs) and ensemble smoothers (e.g., Evensen, 2003;
Van Leeuwen and Evensen, 1996; Xu et al., 2021), have been
applied in many fields. However, a conclusive and convinc-
ing assessment of their relative merits and drawbacks is still
lacking, especially in the area of groundwater modeling. This
is mostly related to the fact that there are no well-defined
benchmarking scenarios for rigorous comparison under stan-
dardized, controlled, and reproducible conditions.

There are only two large comparison studies in which
many (i.e., seven in both studies) methods were com-
pared against each other (Zimmerman et al., 1998; Hen-
dricks Franssen et al., 2009). Although very useful, these
two comparison studies still suffered from several limita-
tions: (1) several more recent methods were not included
(e.g., all EnKF-based methods and non-multi-Gaussian in-
version approaches); (2) the candidate solutions were not
compared against reference inverse solutions (obtained, e.g.,

with brute-force Monte Carlo approaches) but to synthetic
data-generating realities, which also implies that estimated
post-calibration variances could not be evaluated properly;
(3) no joint efforts were undertaken by the scientific com-
munity as a whole to consistently disseminate and use/ad-
vance these test cases in future studies; and (4) the tests were
strongly idealized and contained only a limited number of
variants, which were not sufficient to assess and compare
methods under a broader set of conditions.

Most other comparison studies are smaller in scope. For
example, Keidser and Rosbjerg (1991) and Kuiper (1986)
compared four and three inverse methods, respectively, and
Sun et al. (2009) compared four deterministic Kalman filters.
A significant number of works rely on comparisons between
only two (with a maximum of three) inverse methods when
proposing a new approach. Most remarkably, new EnKF
variants are typically compared against the classical EnKF
(e.g., Li et al., 2015; Gharamti et al., 2015; Liu et al., 2016)
but are seldom tested against other improved versions of the
EnKF. Xu and Gómez-Hernández (2015) compared inverse
sequential simulation and the sequential normal-score EnKF.
Hendricks Franssen and Kinzelbach (2009) compared the
EnKF and sequential self-calibration. Keating et al. (2010)
compared null-space Monte Carlo and the MCMC-based
DREAM algorithm. Berg and Illman (2015) compared var-
ious methods for estimating hydraulic conductivities, includ-
ing two inverse methods. Nowak (2009) compared the so-
called Kalman ensemble generator to the quasi-linear geosta-
tistical method by Kitanidis (1995). Keller et al. (2018, 2021)
compared seven EnKF-based inverse algorithms in both stud-
ies using as reference (different) synthetic realities. Keller
et al. (2018, 2021) repeated data assimilation experiments
with different ensemble sizes, including very large ensem-
ble sizes and also different repetitions for the same ensemble
size (just varying the random seed used to generate the en-
semble members). This increases the robustness of the com-
parison but is still based on a comparison with a synthetic
reality. All of these listed comparison studies were impor-
tant but had similar limitations as the two large comparison
studies by Zimmerman et al. (1998) and Hendricks Franssen
et al. (2009).

The major limitation is that almost all of these compar-
ison studies were ad hoc comparisons to data-generating
synthetic realities; they did not compare with accurate ref-
erence solutions to the inverse problem. Without the latter,
one can only compare two different approximations against
each other and speculate about the correctness of both es-
timates. It is incorrect to ask for inverse modeling results
to be as close as possible to a numerically generated syn-
thetic truth unless in the limit of infinite information that is
never reached in reality. Thus, the resulting estimate has to be
a specific compromise between the smoothness of prior as-
sumptions and the limited amount of information contained
in the available data. For the same reason, it is inadequate
to require the post-calibration uncertainty to be as small as
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possible and celebrate a competitor that pretends a smaller
estimation variance as the winner. Instead, there is an exact
level of post-calibration uncertainty that is justified by the
weakness of prior information combined with the strength
of information in the data (prior information inherently con-
tains a certain degree of subjectivity, and its effectiveness di-
rectly influences the accuracy and reliability of estimation
outcomes). A remarkable exception is the study by Schöniger
et al. (2012), who compared their normal-score version of the
EnKF against a brute-force bootstrap filter. This is one of the
very few studies where a high-accuracy, non-linearized refer-
ence solution was actually provided and used. However, the
conditions in this study were tuned in an ad hoc fashion (little
data and relatively large measurement error variance) so that
it would be possible to obtain that reference solution within
a reasonable computing time.

The objective of our work is to overcome these short-
comings. We do so by providing a suite of well-defined
benchmarking scenarios for stochastic inversion together
with highly accurate reference solutions for the groundwater
model inversion problem. As a starting point for this devel-
opment, we choose a non-linear groundwater model inver-
sion of groundwater flow in multi-Gaussian log-conductivity
fields. We take this choice because this is the most frequent
type of scenario found in previous comparison papers. Later
extensions to non-multi-Gaussian problems, to advective–
diffusive transport, or to multiphase flow are desirable. If our
current study is successful, then researchers from the com-
munity will gladly use our benchmarking scenarios for as-
sessing their new methods in future studies and provide fur-
ther extensions to the benchmarking scenarios in a controlled
and well-selected manner.

To achieve this goal, we first discuss a suite of benchmark-
ing metrics. This suite aims at capturing a fair trade-off be-
tween the various properties that a groundwater model inver-
sion algorithm could have (e.g., accuracy under increasing
non-linearity, speed, non-intrusiveness, and ease of imple-
mentation to name a few). Then, we propose a set of bench-
marking scenarios, hoping that they will find widespread use
as a standard in the community in future studies. We also se-
lect and quickly summarize a recent MCMC-based algorithm
that is capable of computing high-end reference solutions to
these benchmarking scenarios even if at a high computational
expense. With that algorithm, we produce and then present
the reference solutions. Both the algorithm and the refer-
ence solutions are made publicly available for download. The
reference algorithm is the pCN-PT (preconditioned Crank–
Nicolson parallel tempering) MCMC algorithm recently pro-
posed by Xu et al. (2020) for that very purpose.

To provide a guiding example of how to use these bench-
marking scenarios for comparisons, we perform and demon-
strate a blueprint comparison between a specific EnKF vari-
ant and our reference solutions in our benchmarking scenar-
ios. We do this with our discussed set of benchmarking met-
rics. When future studies add new algorithms to the litera-

ture and consistently use these scenarios, solutions, and met-
rics, then an intercomparable body of benchmarking stud-
ies will build up over time. With this, we hope to assist
the groundwater model inversion community to move faster
and more efficiently in their research work. That means, we
cordially welcome the scientific community to apply these
benchmarking scenarios and reference solutions and eval-
uate their candidate inverse modeling methods in a multi-
objective manner that will fairly and transparently reveal
trade-offs between computational intensity, achievable ac-
curacy, (non-)intrusiveness to forward simulation codes, ro-
bustness against non-linearities, and limits of applicability
posed by more or less restrictive assumptions.

Accordingly, this paper is organized as follows. In Sect. 2,
we recapitulate the Bayesian groundwater model inversion
problem. Then, we discuss benchmarking metrics. Next, we
define a base domain for the benchmarking scenarios and
provide five scenario versions. To conclude, we present our
choice of reference algorithm and present the reference so-
lutions. In Sect. 6, we quickly summarize the EnKF version
we are testing as a demonstrator example and then perform
the benchmarking comparison as a blueprint example of how
to discuss the metrics and results in future studies. We final-
ize our study with a discussion and conclusion on the unified
benchmarking idea.

2 Problem definition: Bayesian groundwater model
inversion

Given a forward model (here, the groundwater flow equation)
y =M(θ) with a vector of uncertain parameters (here, hy-
draulic log conductivity) θ and the vector of simulated mea-
surements (here, hydraulic head values) y, the relation to the
measured data, d, to be used for inversion is commonly writ-
ten as

d =M(θ)+ e, (1)

where e represents the lump sum of unavoidable measure-
ment errors and model errors. In the context of numeri-
cal modeling, the parameter vector, θ , contains discretized
values of a random space function, such as hydraulic log-
conductivity values on some numerical grid.

The purpose of groundwater model inversion is to cali-
brate this model, i.e., to learn about θ by assimilating in-
formation in the hard and other data (or the prior). As typi-
cally the number of uncertain, discretized values in θ is larger
than the number of data values available in d , the best one
can do is estimate θ . Conventionally, this is done by provid-
ing a best-fit estimate under the regularization of geostatisti-
cal information about the spatial variability in θ . The next
best thing one can do is equip this estimate with a state-
ment of uncertainty, e.g., via an estimation variance. The
fully Bayesian approach provides a so-called posterior dis-
tribution of the uncertain parameter, θ , given statistical prior
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knowledge about θ and the measurement data, d . The poste-
rior distribution is a full probabilistic description of the post-
calibration uncertainty using a joint, multivariate probability
distribution of all model parameters.

The posterior distribution of the uncertain parameter, θ ,
can be obtained through Bayes’ rule as in, for example, Con-
gdon (2003):

p(θ |d)=
p(θ)p(d|θ)

p(d)
∝ p(θ)p(d|θ), (2)

where p(θ) is the prior distribution of the unknown (hy-
draulic) parameter, θ , which statistically describes the prior
knowledge of θ before collecting any data, d; p(d|θ) is the
likelihood function, which quantifies the probability of the
data, d, for a given realization of the uncertain parameter, θ ;
and p(d) is the marginal likelihood, which is a normalizing
factor for the posterior distribution. This factor can often be
ignored (hence the last part of Eq. 2) when inferring param-
eters (e.g., Duijndam, 1988; Cary and Chapman, 1988).

In our benchmarking scenarios, we consider the residual,
e, to be independently Gaussian with zero mean and uniform
variance. This leads to a likelihood function, p(d|θ), that fol-
lows the Gaussian distribution over the residual, e. Given the
zero-mean (unbiasedness) assumption, one merely needs to
specify a variance for the errors and the definition of like-
lihood is complete. Separating between observational errors
and model errors, and speculating over their correlation or
other form of dependence is beyond our scope of study (see,
e.g., Schoups and Vrugt, 2010).

As statistical prior, we will consider p(θ) to be populated
with log-hydraulic conductivities that are multivariate Gaus-
sian and second-order stationary; i.e., it suffices to specify a
value for the mean and a spatial covariance that depends on
lag distances between locations on the numerical grid.

As a general property of the Bayesian inverse problem in
this situation, the posterior distribution p(θ |d) would again
be multivariate Gaussian if (and only if) the forward model
y =M(θ) was linear in θ additionally to the Gaussian as-
sumptions on errors and parameters. Only in that case would
the posterior distribution be fully specified by a posterior
mean and by a posterior (co)variance. In typical applications,
however, the forward model is non-linear in its parameters
(like the groundwater flow equation), and therefore we are
interested in solving the full Bayesian problem. The posterior
mean and its posterior variance are still a good visualization
of key aspects, but other aspects of the entire multivariate
posterior distribution may be just as important.

3 Information and benchmarking metrics to be
provided

To fairly evaluate the overall properties, performance, and
fitness of a candidate inversion method, specific fundamental
information about the method and implementation must be

provided, its solutions must be compared to the reference so-
lution, and user-relevant and application-relevant metrics and
properties are to be assessed and reported. Ideally, these are
the same metrics and properties across all tested candidate
methods and even across different studies so that intercom-
parable results can accumulate to an overall body of knowl-
edge. Thus, we propose a range of statistics and metrics; see
Table 1.

For obtaining easily interpretable visual diagnostics over
a bundle of metrics, we ensure that all metrics fall into the
interval [0,1], where 0 means the best (no error) and 1 means
the worst. This can be achieved, in most cases, by meaningful
scaling or normalization, although there are specific metrics
or application environments where normalization may not be
appropriate and should remain unnormalized.

All five categories are discussed in the upcoming sections.

3.1 Methods and implementation

To assess the benchmarking performance later on and ensure
the reproducibility of results, it is helpful to first recall the
fundamental assumptions, equations, and specific numerical
settings chosen for the method.

1. List of assumptions and/or simplifications inherent in
the method. Usually, each method has its own assump-
tions and/or simplifications when performing ground-
water model inversion. For instance, EnKF methods as-
sume the usefulness of correlations in inversion, which
is related to an implicit global linearization (Nowak,
2009). Listing the assumptions and/or simplifications of
the candidate method is helpful to get a more complete
understanding of its performance.

2. Ease of implementation/intrusiveness into forward
code. To our knowledge, this aspect can be generally
divided into three different levels, and so we suggest
expressing it on a discrete point scale between 0 and 1:

a. perfectly non-intrusive, which is just forward calls
with parameter modification (value of 0);

b. modified forward calls with different initial and
boundary conditions as in adjoint-state sensitivities,
which can be controlled by simple adapted func-
tions calls (value of 0.5);

c. actual need to enter the source code of the forward
problem, of which examples are dedicated adjoint
computations or stochastic moment equations that
need new types of computations not foreseen in the
original forward code (value of 1).

3. Ease of result reproducibility by the scientific com-
munity. Therefore, we encourage authors to not only
make their data FAIR (findable, accessible, interoper-
able, reusable, Wilkinson et al., 2016)), but also apply
the same principles to their software (Lamprecht et al.,
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Table 1. Overview of information and metrics to be provided for the candidate inverse method.

Subsection Category Name Equation

3.1 Methods and implementation 1. Assumptions, simplifications (text) (–)
2. Ease of implementation (point-scale) (–)
3. Code FAIRness (point scale) (–)

3.2 Benchmark selection Reasons for choosing benchmarking scenarios (text) (–)

3.3 Simulation verification Assessing the plausibility of inversion results (text) (–)

3.4 Metrics: accuracy 1. Mean absolute error (NMAE∗)1 (5), (3)
2. Root mean square error (NRMSE∗)2 (7), (3)
3. Averaged KS distance (ADKS) (10)
4. Energy distance (NDE)3 (13)

(optional) 5. Potential scale reduction factor (R̂) (17)

3.5 Metrics: compute cost 1. Log number of forward calls (LN∗f )4 (–), (3)
2. Percent overhead wall-clock time (To) (18)
3. Multi-core/multi-thread speedup loss (S%) (19)

1 The mean absolute error (MAE) needs a normalization (NMAE) to put it onto an interpretable scale and an additional transformation (NMAE∗;
Eq. 3) to ensure it is bounded to [0,1] like all other metrics. 2 The root mean square error (RMSE) needs a normalization (NRMSE) to put it onto
an interpretable scale and an additional transformation (NRMSE∗; Eq. 3) to ensure it is bounded to [0,1] like all other metrics. 3 The energy
distance (DE) needs a normalization (NDE) but no additional transformation to ensure it is bounded to [0,1] like all other metrics. 4 The log
number of forward model calls (LNf) requires an additional transformation (LN∗f ; Eq. 3) to ensure it is bounded to [0,1] like all other metrics.

2020; Martinez et al., 2019). If none of the following
standards are met, a score of 1 is given; for each point
met, the score reduces by 0.25.

a. The software is accessible online and explain how
to set up an environment to run the code. Make ver-
sions that were used to generate published results
explicit and assign a DOI to them.

b. Domain-relevant community standards of your
documentation are met.

c. Output data follow FAIR principles (types and for-
mats).

d. Licenses (see, e.g., ChooseALicense, 2023, for an
overview of open-source licenses) are valid (depen-
dent on the dependencies) and clearly stated.

3.2 Benchmark selection

What are the reasons to choose all, or only a subset of,
the benchmarking scenarios? Although all the benchmark-
ing scenarios are chosen carefully for a relatively fair and
complete comparison, one may not use all the benchmarking
scenarios due to some reasons. For example, if the candi-
date method is designed to solve problems with strong het-
erogeneity or large observational errors, then running bench-
marking scenarios for mild heterogeneity is optional.

3.3 Simulation validation

We propose showing results and discuss some standard views
on inversion results to allow domain experts to assess the so-
lution. For this, we suggest plotting the spatial distribution

of log-hydraulic conductivity via E(ln(K)) and the corre-
sponding inversion uncertainty via SD(ln(K)) and the same
for hydraulic head or pressure, as appropriate, with E(p) and
SD(p). When using more than one benchmarking scenario,
we recommend appending the respective plots after the first
presented set of plots.

3.4 Metrics for accuracy

Accuracy means how close an approximate solution is to the
true (reference) solution of the Bayesian inverse problem.
The most comprehensive metric would address some (hope-
fully small) distance between the joint high-dimensional pos-
terior distributions of the discretized random space function
of the candidate method and those of the reference solution.
Since this is computationally unfeasible, we propose a selec-
tion of different benchmark metrics, each of which highlights
specific aspects that should be met by the inversion method.

Recall that we wish to have all metrics in the interval [0,1].
If a metric (METRIC) cannot be bounded even after scaling
(i.e., things worse than a score of 1 cannot be excluded), it
can be transformed for visualization in a non-linear fashion
that achieves a visually bounded representation:

METRIC∗(x)=
METRIC

1+METRIC
. (3)

This transformation is almost linear for METRIC� 1.0 and
then saturates for larger values, thus limiting the range of the
transformed metric (METRIC∗) to [0,1]. These transformed
metrics will be marked by an asterisk as a superscript, e.g.,
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METRIC∗ instead of METRIC for a bounded normalized
mean square error.

Overall, we suggest the following five metrics (plus their
variations):

1. Mean absolute error (MAE) across point-wise inversion
statistics.

MAE(X̂)=
1
N

N∑
i=1
|X̂cand,i − X̂ref,i |, (4)

where N is the number of discrete points (nodes) in the
spatial domain. X̂cand,i is a posterior statistic of X at
node i provided by a candidate method for inversion,
and X̂ref,i is the corresponding posterior statistic ofX at
node i in the reference solution. The featured variable
X could be the hydraulic head or hydraulic conductiv-
ity. The statistic X̂ to be compared can be either the best
estimate (posterior mean) or the corresponding uncer-
tainty (posterior standard deviation).

Being the (spatial) `1 norm (rather than `2), it is rela-
tively mild on strong outliers at individual spatial posi-
tions. For meaningful normalization to a range between
0 (perfect identity between solutions) and 1 (largest
meaningfully expectable error), we define

NMAE(X̂)=
MAE(X̂)

MAE(X̂prior)
, (5)

MAE(X̂prior)=
1
N

N∑
i=1
|X̂prior,i − X̂ref,i |, (6)

where X̂prior,i is the same statistic as X̂cand,i and X̂ref,i ,
but assessed based on the prior distribution of the same
variable X. Thus, NMAE(X̂)= 0 means a solution as
accurate as the reference solution, and NMAE(X̂)= 1
means that the candidate inverse method is no better
than performing no inversion at all. As it cannot be ex-
cluded that some inversion method could produce re-
sults worse than the prior, we will use the non-linear
transform from Eq. (3) to obtain NMAE∗ ∈ [0,1].

2. Root mean square error (RMSE) in point-wise inversion
statistics.

RMSE(X̂)=

√√√√ 1
N

N∑
i=1
(X̂cand,i − X̂ref,i)

2, (7)

with all symbols already defined above.

Being the (spatial) `2 norm, the RMSE penalizes in-
dividual outliers against the reference solution more
strongly than the MAE. Again for normalization, we de-
fine

NRMSE(X̂)=
RMSE(X̂)

RMSE(X̂prior)
, (8)

RMSE(X̂prior)=

√√√√ 1
N

N∑
i=1
(X̂prior,i − X̂ref,i)

2, (9)

so that NRMSE= 0 implies a fully accurate solution,
and NRMSE= 1 again means that the solution provided
by the candidate method is no better than performing no
inversion at all. Again, we use the bounded version, i.e.,
NRMSE∗.

3. Kolmogorov–Smirnov (K–S) distance, DKS, in point-
wise posterior distributions.

DKS(Xcand,i,Xref,i)= sup
t
|FX,cand,i(X)

−FX,ref,i(X)|, (10)

where FX,(·) denotes the (empirical or theoretical) cu-
mulative distribution function (CDF) of a variable of in-
terest X at a specified node i of interest.

The K–S distance measures the difference between two
univariate probability distributions. It assesses the simi-
larity between the posterior univariate distribution of an
inferred variable (e.g., hydraulic conductivity, and hy-
draulic heads) at an individual node i by the candidate
method (FX,cand,i(X)) and the same by the reference so-
lution (FX,ref,i(X)). The K–S distance is the largest (of
all possible values of a variable) difference between the
two empirical or theoretical CDFs and so is naturally
bounded between 0 (perfect match) and 1. The latter
occurs when the compared distributions allocate prob-
abilities to entirely different value ranges of the variable
under investigation.

The K–S distance can be plotted as a map (i.e., for each
node i) and then spatially aggregated by taking the spa-
tial mean across the domain. Thus, we get as the aver-
aged K–S distance ADKS(X) for a quantity of interest
X:

ADKS(X)=
1
N

N∑
i=1

DKS(Xcand,i,Xref,i), (11)

which is again naturally bounded between 0 (when the
compared distributions are entirely identical at all aver-
aged locations) and 1.

4. Energy distance,DE, for global assessment of posterior
distributions.

While we use the K–S distance from above as a uni-
variate tool (and make it global only via averaging), we
can use the energy distance for a full, joint (multivari-
ate) assessment of the posterior distribution. It serves
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that purpose well because it does not require building a
multivariate (empirical) distribution as the K–S distance
would. The energy distance is defined as

DE(Xcand,Xref)= (2E‖Xcand−Xref‖

−E‖Xcand−X
′

cand‖

−E‖Xref−X
′

ref‖)
1/2, (12)

where E denotes the expectation, ‖ · ‖ denotes the Eu-
clidean norm (here, over the spatial domain, essentially
a root mean square error), and the primed quantities
are independent and identically distributed copies of the
non-primed quantities. Being a proper distance, it has
a lower bound of zero when the compared distributions
are entirely identical. Although it has no natural upper
limit, it can be easily normalized as follows:

NDE(Xcand,Xref)

=

(
2E‖Xcand −Xref‖−E‖Xcand −X

′

cand‖−E‖Xref −X
′

ref‖

2E‖Xcand −Xref‖

)1/2

. (13)

This normalized energy distance is always between 0
and 1; therefore, there is no need to use any transforma-
tion.

5. Potential scale reduction factor (PSRF), R̂.

The PSRF R̂ (Gelman and Rubin, 1992) is defined for a
set of m Markov chains, each of which has n samples.
The within-chain variance (for each node separately) is
estimated as follows:

W =
1

m(n− 1)

m∑
j=1

n∑
i=1
(X

(i)
j −Xj )

2, (14)

where X(i)j is the ith sample of the j th chain and Xj is
the mean of the samples in the j th chain (for each node
separately). The between-chain variance (for each node
separately) is estimated as follows:

B =
n

m− 1

m∑
j=1

(
Xj −

1
m

m∑
j=1

Xj

)2

. (15)

Then, the estimated variance, V , is a weighted average
of the within-chain variance and between-chain vari-
ance:

V = (1−
1
n
)W +

1
n
B. (16)

Finally, the PSRF R̂ (for each node separately) is de-
fined as

R̂ =

√
V

W
, (17)

and we obtain a global metric by averaging it across all
spatial nodes, i.e., the average PSRF R.

This metric serves to test a method against itself un-
der repeated executions. It applies to methods that con-
tain random components, such as MCMC methods. We
mainly use it to establish and discuss the accuracy of
our reference solutions. As recommended by Gelman
et al. (2013) and Brooks and Gelman (1998), the poten-
tial scale reduction factor, R̂, should be lower than 1.2
so that one can claim to achieve convergence and fully
explore the target posterior. One could, in principle, also
use R̂ to compare m= 2 methods rather than m chains.
We will not do so because Eqs. (14) to (17) reveal that
R̂ is a variant of MAE that is just scaled differently for
a different purpose.

We refrain from including correlation maps in our set of
metrics. With correlation maps, we refer to cross-covariance
fields between a quantity of interest at one spatial location
and some other quantity of interest at all possible spatial
locations. An example would be the cross-covariance be-
tween hydraulic heads at a pumping well location and the
hydraulic log conductivity throughout the domain. We do not
include such maps because different methods provide either
prior or posterior covariances: MCMC-type methods would
provide posterior covariances; quasi-linear geostatistical ap-
proach (QLGA)-type methods would provide prior covari-
ances (linearized about MAP); EnKF-type methods would
provide prior covariances before the first data assimilation
step and conditional covariances during/after assimilation,
and iterative/sequential EnKF-type methods would provide
intermediate iterates.

3.5 Metrics for computational effort

A high accuracy, as measured with the metrics introduced
in Sect. 3.4, might come at high computing costs. Very ac-
curate methods may be too computationally demanding for
larger-scale problems. Therefore, the trade-off between ac-
curacy and computing costs provided by different methods is
important. We use a total of three metrics of computing cost:

1. The number of forward calls,Nf, in the inversion is rela-
tively easy to evaluate. We propose looking at this num-
ber as an order of magnitude. For example, there could
be around 100 model evaluations for sequential self-
calibration using the adjoint state method and Gauss–
Newton optimization but 1000 if gradient descent is
used instead of Gauss–Newton. It could be 100–1000
model evaluations for EnKFs and ≈ 105–106 model
evaluations for efficient MCMCs. To consider the log-
arithmic scale, we use LNf = log10(Nf) and then apply
Eq. (3) to obtain LN∗f between 0 (no computing effort)
and 1 (infinite computing effort).

2. The second metric is percent overhead wall-clock time,
To. Wall-clock time is the actual time elapsed while the
code runs. We define overhead wall-clock time, To, as
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wall-clock time, Tw, with the time spent on calls to the
forward model, Tf, subtracted. Finally, we take the frac-
tion

To =
Tw− Tf

Tw
, (18)

and realize that To is automatically in [0,1]. As wall-
clock time aspects can depend on the machine used
(although many machine influences would cancel out
in the above normalization), technical machine details
have to be reported.

3. Multi-core/multi-thread speedup loss, S%, is another
metric to consider. If one took N times the number of
compute nodes, one could ideally be N times faster.
With mutually waiting algorithms, real-life implemen-
tations, and real hardware, the achievable speedup fac-
tor is K ≤N . As speedup loss, we define

Ls% = 1−
K

N
, (19)

and Ls% is automatically between 0 (for an ideal, loss-
less speedup at perfect scaling) and 1 (for absolutely no
speedup although we are using n→∞ compute nodes).
Report this metric if (and only if) you tested paral-
lel scaling on dedicated parallel hardware. If so, com-
ment on the technical and programming aspects of par-
allelization. Also, as Ls% usually depends on the num-
ber N of nodes used (scaling is typically not linear), N
must be reported. If not, it is optional to provide infor-
mation about possible (future) parallelization options.

3.6 Suggested reporting and visualization

To ensure consistency in reporting and visualization, we
strongly recommend that benchmarking results are reported
in the same order as specified in Table 1. For user con-
venience, we also provide a Jupyter notebook, available
for download at https://doi.org/10.18419/darus-2382 (last ac-
cess: 2 November 2024, Xu, 2023b). It accesses the refer-
ence solutions as discussed in Sect. 5.3 and asks the user to
provide access to their own candidate solution (to be bench-
marked). Then, it automatically computes and plots the set
of metrics for accuracy. It also offers the option to enter all
other aspects discussed above from the list of assumptions in
Sect. 3.1 to multi-core/multi-thread speedup loss in Sect. 3.5.

We provide our example exercise of benchmarking in
Sect. 6 exactly in the recommended order and using our pro-
vided notebook and its output figures.

Table 2. Pumping wells used in benchmarking scenarios.

Well Grid Position Pumping rate
number (m, m) (m3 d−1)

1 (10,47) (500, 2350) 120
2 (70,47) (3500, 2350) 70
3 (40,71) (2000, 3550) 90
4 (40,21) (2000, 1050) 90

4 Benchmarking scenarios and obtaining their
reference solution

4.1 Governing equations, basic domain, and forward
model

In our benchmarking scenarios, the forward model, M(θ),
is given by steady-state or transient groundwater flow in 2D
confined aquifers depending on the exact scenario definition.
The governing equation for fully saturated transient ground-
water flow in confined aquifers is given in Bear (1972):

∇ · (K∇H)+W − Ss
∂H

∂t
= 0, (20)

where Ss is specific storage [L−1], H is the hydraulic head
[L], t is time [T], ∇· is the divergence operator, ∇ is the gra-
dient operator, K is the hydraulic conductivity [LT−1], and
W is the volumetric injection flow rate per unit volume of
aquifer [T−1]. In our scenarios, K is scalar, i.e., we look at
locally isotropic aquifers.

For steady-state flow, the third item on the left side of the
equation is equal to zero, and thus the steady-state ground
flow equation can be written as

∇ · (K∇H)+W = 0. (21)

Although Eqs. (20) and (21) are originally for 3D flow,
in this work they are applied to 2D flow conditions. Both
flow regimes need boundary conditions. In all of our sce-
narios, we use a 5000 [L]× 5000 [L] domain. Please note
that this study employs dimensional analysis without specific
units, and any coherent set of units will produce equivalent
results. Its north and south boundaries are impermeable; its
west and east boundaries have specified heads equal to 20 [L]
and 0 [L], respectively. Scenarios with transient groundwater
flow additionally need initial conditions, and we set the ini-
tial head to be uniform and equal to 20 [L] throughout the
domain except for the east boundary. Regardless of the flow
regime, we define four pumping wells for groundwater ab-
straction (Fig. 1). The exact locations and pumping rates are
provided in Table 2.

Both equations are solved by the groundwater flow sim-
ulator MODFLOW (McDonald and Harbaugh, 1988). We
define a synthetic aquifer as a flow domain on a grid of
100× 100× 1 cells, where each cell is 50 [L] by 50 [L] by
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Figure 1. Distribution of pumping wells (blue asterisks) and observation wells (red circles) in the benchmarking scenarios. Panel (a) shows a
random distribution of observation wells (scenarios S0, S2, S3, and S4), and panel (b) shows regularly distributed observation wells (scenario
S1).

50 [L]. For transient simulations, the total simulation time is
10 000 [T], evenly discretized into 10 time steps. All model
setup files have been published online (Xu, 2023b).

4.2 Benchmarking scenarios

Overall, we define five different benchmarking scenarios
based on the basic domain described above. Good candidate
inverse methods should be able to solve problems with dif-
ferent characteristics. Therefore, our scenarios differ accord-
ing to (1) groundwater flow (steady-state versus transient),
(2) the distribution of observations (random versus regular),
(3) the degree of heterogeneity that affects the non-linearity
of the inverse problem, and (4) the magnitude of measure-
ment error, which affects the convergence requirements of
candidate inverse methods.

All scenarios share a mean value for log-hydraulic con-
ductivity, θ = lnK , of µθ =−2.5 [ln(LT−1)]. Although they
have different standard deviations for log conductivity, all
scenarios share the exponential covariance model with a
slightly rotated anisotropy. It has correlation length param-
eters λmax = 2000L and λmin = 1500L, and the dominant
principal axis (the one for λmax = 2000L) is aligned from
north-west to south-east. Also, across all scenarios, specific
storage is homogeneous and equal to 0.003 [L−1].

The details of all scenarios are provided in Table 3. We
deliberately do not include all possible combinations as sce-
nario variations. Instead, we define a base scenario S0 and
from there do “one-at-a-time” variations:

– S0 is the base case. It features a relatively strong degree
of heterogeneity with σθ = 2, relatively accurate mea-
surement data with σe = 0.05 [L], irregularly placed ob-
servations, and steady-state groundwater flow.

– S1 features the regular grid of observations instead of
the random one. While irregular monitoring networks

are more realistic, the very close spacing of a few mon-
itoring wells may pose a problem to some methods due
to their high autocorrelation. Therefore, S1 is a fallback
scenario.

– S2 is again like S0, but it reduces the strength of het-
erogeneity from σθ = 2 to σθ = 1. While σθ = 2 is a
more realistic degree of heterogeneity, it may already be
challenging for methods that are explicitly or implicitly
linearization-based. Therefore, S2 is a fallback scenario.

– S3 is again like S0, but it increases the assumed level of
observational errors from σe = 0.05 [L] to σe = 0.1 [L].
Given the overall head difference of 20 [L] across the
domain by the boundary conditions, these values can be
classified as high and medium accuracy, respectively. It-
erative or sampling-based methods may have problems
with the accuracy requirement posed by the large ac-
curacy in S0. Once again, S3 is a fallback solution.
However, as posterior uncertainties will remain larger
for smaller measurement accuracy, S3 may also trig-
ger stronger non-linearities across the larger remaining
post-calibration uncertainty ranges.

– S4 changes S0 to feature transient (instead of steady-
state) groundwater flow. This is relevant for EnKF-type
methods that work via transient data assimilation and
that do not iterate.

4.3 Synthetic cases for our benchmarking scenarios

We use the sgsim code, a sequential Gaussian simulation
module of the GSLIB software (Deutsch and Journel, 1998),
to generate two log-conductivity fields according to our
benchmarking scenarios. We use them as data-generating
synthetic truth fields, providing synthetic measurement data
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Table 3. Definitions of scenarios.

Scenario SD of SD of Well Flow
lnK synthetic measurement distribution state

truths errors

S0 2 0.05 Random Steady
S1 2 0.05 Regular Steady
S2 1 0.05 Random Steady
S3 2 0.1 Random Steady
S4 2 0.05 Random Transient

for inversion. Therefore, we generate one realization with
σθ = 1 (scenario S2) and then simply scale it to obtain a
realization for σθ = 2 (scenarios S0, S1, S3, and S4). The
resulting synthetic fields are shown in Fig. 2, and are called
synthetic truth 1 (left) and synthetic truth 2 (right). All details
of the parameters and covariance function settings are shown
in Table 4. Please be aware that the goal of benchmarking is
not to be as close to the synthetic fields as possible (with a
posterior uncertainty as small as possible) but to be as close
to a high-end reference solution as possible (i.e., close in best
estimate, posterior standard deviation and so forth).

There are 25 observation wells where we simulate mea-
surements for providing synthetic data values of hydraulic
heads. Their spatial distribution is either random (scenarios
S0 and S2–S4) or regular (scenario S1). For all scenarios, the
measurement errors follow Gaussian distributions with zero
mean. The standard deviation (SD) varies between scenar-
ios as shown in Table 3. Note that the measurement error is
given here, but in reality, the measurement error is uncertain.
Although often reliable information is available, for example,
considering instrument precision, the uncertainty of the mea-
surement error could also be considered in an inverse mod-
eling approach. After simulation with MODFLOW, we add
randomly generated error values according to these distribu-
tions to obtain the synthetic data to be used for inversion. For
the steady-state scenarios (S0 to S3), this results in 25 data
values, and for the transient scenario (S4), this results in 10
time steps multiplied by 25 data values, i.e., in a total of 250
data values.

4.4 Algorithm used for the reference solutions: the
pCN-PT

Markov chain Monte Carlo (MCMC) simulation is a widely
used sampling method to approximate the Bayesian statis-
tical inverse solution (Tierney, 1994; Grandis et al., 1999;
Schott et al., 1999; Smith and Marshall, 2008). In the
literature, many MCMC algorithms have been proposed.
The Metropolis–Hastings algorithm (Hastings, 1970) is a
widely used MCMC algorithm for standard cases. How-
ever, it has relatively low efficiency in reaching conver-
gence, especially when encountering high-dimensional prob-
lems (Haario et al., 2006). In the context of groundwater

model inversion, the dimensionality relevant to MCMC effi-
ciency is equal to the number of discretization cells used for
the random field. This is not to be confused with the spatial
dimension of groundwater flow.

Later, several new methods were proposed to improve the
efficiency and effectiveness of MCMC algorithms (Tierney
and Mira, 1999; Haario et al., 2001, 2006; ter Braak, 2006).
The preconditioned Crank–Nicolson (pCN) algorithm (Cot-
ter et al., 2013a) is an efficient MCMC algorithm with di-
mension robustness. In plain words, the pCN is tailored to
automatically fulfill multi-Gaussian priors so that spatial re-
finement does not affect its performance. Therefore, the ac-
ceptance probability for proposed solutions only depends on
the likelihood of matching with the data.

However, for many hydrogeological inverse problems, an
additional problem is that the posterior distribution is multi-
modal. To effectively sample such multimodal posterior dis-
tributions, parallel tempering (PT) (Altekar et al., 2004; Earl
and Deem, 2005) is a good candidate. It runs multiple chains
with different temperatures in parallel. The hot chains can
more easily explore the whole parameter space since the like-
lihood of the hotter chains is flatter and broader as the tem-
perature increases. The cold chains perform precise sampling
in high-likelihood regions of the parameter space. With reg-
ular swaps between the members of hot and cold chains, the
hotter chains can help the coldest chain with unit tempera-
ture (target chain) access the desired regions of the parameter
space.

In this work, we use the pCN-PT algorithm by Xu et al.
(2020) to get the reference solution. It combines the pCN al-
gorithm with PT. We chose it because it is well-suited for
high-dimensional and non-linear problems even when the
posterior distribution is multimodal. Xu et al. (2020) has
proven its capacity to deal with both high-dimensional lin-
ear problems and high-dimensional non-linear problems. The
performance in linear problems was tested in a synthetic
study, and Xu et al. (2020) could be compared to exact (ana-
lytical) reference solutions obtained by kriging. For the non-
linear cases, Xu et al. (2020) compared multiple MCMC runs
to assess convergence. Again, to work with reference solu-
tions, they compared it to a solution obtained by plain rejec-
tion sampling in a case with very weakly informative data.
Finally, they showed that their pCN-PT is superior to the
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Figure 2. Synthetic truth of lnK . (a) Synthetic truth 1 with a standard deviation of 2 ln(L/T ) and (b) synthetic truth 2 with a standard
deviation of 1 ln(L/T ). Please note that to maintain the primary characteristics of the lnK fields given their diverse standard deviations, the
scale for these two synthetic truths has been adjusted individually.

Table 4. Parameters of the random functions describing the heterogeneity of the two synthetic truth fields. λmax and λmin are the correlation
ranges along the principal axes of orientation.

Mean Variogram type λmax λmin SD Angle

Synthetic truth 1 −2.5 Exponential 2000 1500 2 135
Synthetic truth 2 −2.5 Exponential 2000 1500 1 135

original pCN-MCMC for Bayesian inversion of multi-Gaus-
sian parameter fields. The algorithm for pCN-PT is provided
in the appendix, and full details can be found in Xu et al.
(2020). Possible extensions for multi-facies aquifers with in-
ternal (Gaussian) heterogeneity or to cases with uncertain co-
variance parameters exist (e.g., Xiao et al., 2021).

4.5 Generating the high-end reference solutions

Operating the pCN-PT requires a set of decisions to be
taken. This mainly concerns tuning its parameters such as
the temperature ladder, the pCN jump size parameter per
temperature, and the frequency of between-chain swapping
proposals. Many studies (e.g., Gelman et al., 1996, 1997;
Roberts and Rosenthal, 2001; Predescu et al., 2005; Laloy
et al., 2016) indicated that acceptance rates for MCMC-based
methods between 10 % to 40 % perform close to the optimal
and that the optimal acceptance swap rates for parallel tem-
pering should range from 8 % to 39 %. Here, like in the study
by Xu et al. (2020), we control the acceptance rate in a range
from 20 % to 30 % and the swap acceptance rate in a range
from 10 % to 30 % by adjusting the jumping factor and tem-
perature ladders.

Finally, we have to decide on the length of runtime. For
scenarios S0–S4, we generate 800 000 MCMC realizations
by the pCN-PT, saving every 20th realization. The first half
of all realizations is discarded as a burn-in period. That
means the reference solution for each benchmarking scenario
consists of 400 000 MCMC steps, thinned out to 20 000 re-

alizations. This thinning-out mostly serves to reduce mem-
ory requirements. It has virtually no effect on the quality of
the reference solutions as it mainly reduces the along-chain
autocorrelation of the realizations. For a later assessment of
convergence, we repeat each scenario four times in indepen-
dent pCN-PT runs. These solutions are uploaded and made
publicly available on an institutional data repository (Xu,
2023b).

5 Results: high-end reference solutions for the
benchmarking scenarios

5.1 Solutions

To visualize the reference solutions to the benchmarking sce-
narios, Figs. 3 and 4 show the maps of mean and standard
deviation of the lnK realizations obtained by the pCN-PT
for all scenarios, S0 to S4. It can be seen that the reference
solutions in all scenarios capture the main features of the syn-
thetic fields. As an additional plausibility check, comparing
the results of S4 with those of scenarios S0–S3, one can see
that the more observations have been assimilated, the bet-
ter the identification that can be achieved. Also, scenario S2
(with the smaller prior standard deviation compared to S0)
has a smaller posterior standard deviation, and scenario S3
(with the larger measurement error variance compared to S0)
has a slightly smoother mean.
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Figure 3. Scenarios S0–S4. The mean of lnK realizations obtained by the pCN-PT. The color scale used for scenario S2 is the same as that
used for the synthetic truth 2 in Fig. 2. Please note that S2 exhibits the same standard deviation as synthetic truth 2, while the others exhibit
the same standard deviation as synthetic truth 1. Therefore, the scale of S2 should align with that of synthetic truth 2, and the scale of other
scenarios should align with that of synthetic truth 1.

5.2 Convergence assessment

For more quantitative assessment, Fig. 5 shows the root mean
square error (RMSE) of lnK plotted against the synthetic
truth for scenarios S0–S4 along the runtime of the pCN-
MCMC algorithm. The RMSE is calculated according to
Eq. (7) while swapping the roles of the candidate and ref-
erence with the reference and synthetic truth. To obtain the

shown trace plots, these RMSE values are computed and
recorded for each step in the target MCMC chain. Recall
that the expectation for a reference solution is not to yield
values as small as possible here but to strike the correct com-
promise between prior information and noise-affected data.
We merely use the RMSE here to discuss aspects of the
MCMC operation for our reference solutions. It is observed
that RMSE in all scenarios decreases sharply within a very
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Figure 4. Scenarios S0–S4. The standard deviation of lnK realizations obtained by the pCN-PT. Scenario S2 is shown using a different color
scale because it has only half the prior field variance. Please note that S2 exhibits the same standard deviation of 1 as synthetic truth 2, while
the others exhibit a standard deviation of 2 similarly to synthetic truth 1. Therefore, to ensure the distinct features of the figures, the scale
setting for S2 is adjusted differently from the others.

short (and hence hardly visible) initial period in the plots
and then quickly converges to a stable distribution along the
chains. The RMSE for scenario S2 (the one with the smaller
prior standard deviation) is smaller than for all other scenar-
ios. This is because the more narrow prior leads to a more
narrow posterior closer to the data-generating synthetic truth,
which is to be expected.

Figure 6 shows log-likelihood values in matching the syn-
thetic data along the target MCMC chain for scenarios S0–
S4. The pCN-PT converges more quickly in the steady-state
scenarios (S0 to S3) than in the transient scenario (S4). The
visible aspects of burn-in periods are very short in scenarios
S0–S3. Due to the more informative data in S4, the poste-
rior is much more narrow and more shifted against the prior.
The more narrow posterior also requires smaller jump size
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Figure 5. The RMSE error between the lnK values of scenarios S0–S4 of the pCN-PT solution vs. the synthetic MODFLOW-based truth
over all samples. The blue line and dashed–diamond black line in the figure correspond to the RMSE of the updated samples and the mean
of the RMSE, respectively. Please note that in order to maintain the primary characteristics of the evolution of the RMSE, the scale for these
RMSEs has been adjusted individually.

factors in MCMC algorithms. Together with the more offset
posterior, this results in a longer visible burn-in period. After
the burn-in period, all scenarios show a good exploration of
realizations with a stable distribution of likelihood values.

Figures 7 and 8 show the potential scale reduction factor,
R̂, of the reference solutions for all scenarios. Specifically,
Fig. 7 shows the evolution of the spatial maximum and the
mean of R̂ along the MCMC runtime, and Fig. 8 shows the
spatial pattern of the final R̂ values at the end of MCMC

runtime. Recall that the recommended value for R̂ is 1.2 or
below. The figures show that we achieve values for the spatial
average, R, of below 1.2 in all scenarios. For the spatial max-
imum of R̂, i.e., the worst single pixel on the map, we achieve
values close to 1.2 in all scenarios but in scenario S4. This
scenario is the transient one. Overall, these results confirm
the conclusions from before: the reference solutions in all
scenarios have an excellent quality (with scenario S4 falling
behind and showing only a plain good quality); scenario S3
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Figure 6. Scenarios S0–S4. Log likelihood as obtained by the pCN-PT for the different cases. The solid blue line, dashed red line, and
dashed–diamond black line in the figure of the log likelihood correspond to the log likelihood of the updated samples, the reference, and the
mean of the log likelihood for the pCN-PT, respectively.

with its more forgiving (larger) measurement error variance
is easier to handle and converges faster, and so the values of
R̂ drop below the threshold value of 1.2 more quickly and in
larger parts of the spatial domain. Scenario S2 with the more
narrow prior is only slightly easier to handle and converges
only slightly faster than the other ones; scenario S4 with the
more informative data is harder to handle, and it converges
more slowly.

5.3 Accessing the high-end reference solutions

The reference solutions are published on an online data
repository (Xu, 2023b). There, with the prefix ref_, are the
reference chains of the different scenarios accessible.
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Figure 7. Scenarios S0–S4. The evolution of mean (blue) and maximum (red) potential scale reduction factor obtained by the pCN-PT. The
dashed red line, the blue line, and the brown line in the evolution of mean and maximum potential scale reduction factor correspond to the
value of 1.2, the mean value, and the maximum value for posterior samples, respectively.

6 Example application: testing the EnKF

6.1 EnKF: methods and implementation

The EnKF was proposed by Evensen (1994) based on the
Kalman filter (Kalman, 1960) and the extended Kalman filter
(McElhoe, 1966) to better deal with non-linear state-transfer

functions. The Kalman filter is an efficient recursive filter but
can only handle linear problems. The extended Kalman filter
can handle non-linear state-transfer functions by linearizing
non-linear systems through a Taylor expansion. Still, it fails
to handle large, strongly non-linear systems due to the large
storage, time consumption, and accumulative error induced
by the linearization process (Xu et al., 2013a). To tackle data
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Figure 8. Scenarios S0–S4. Potential scale reduction factor field obtained by the pCN-PT.

assimilation in large, non-linear systems, the EnKF was pro-
posed, in which an ensemble of realizations is used to ap-
proximate the (cross-)covariances during the analysis step
instead of propagating the (cross-)covariances using a lin-
ear(ized) state-transfer function as in the Kalman filter. As
an efficient and effective inverse modeling approach for pa-
rameter estimation, the EnKF has received lots of attention
and applications in many fields (e.g., Evensen, 2003; Bertino
et al., 2003; Chen and Zhang, 2006; Aanonsen et al., 2009;

Hendricks Franssen and Kinzelbach, 2008, 2009; Xu et al.,
2013b; Xu and Gómez-Hernández, 2018).

The EnKF used here mainly contains the following steps:

1. Initialization step. An initial ensemble of hydraulic log-
conductivity fields, lnK0, is generated from the prior,
here using sequential Gaussian simulation.

2. Forecast step. For the ith realization at the t th time step,
the set of the piezometric head,Hi,t , is forecasted on the
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basis of the set of the piezometric head Hi,t−1 and the
log conductivity lnKi,t−1 from the (t − 1)th time step
through a state-transition equation ψ(·) (see Eq. 22),
which is the transient groundwater flow equation.

Hi,t = ψ(Hi,t−1, lnKi,t−1) (22)

3. Assimilation step. The log conductivities lnKa
i,t (a func-

tion of the log conductivities at the last time step,
lnK f

i,t−1; the Kalman gain, Gi,t ; and the misfit between
the set of forecasted head, H f

i,t , and the set of observed
head, H o

t , at observation locations) are sequentially up-
dated by assimilating observed piezometric head, H o

t

(Eq. 23). The Kalman gain, Gi,t , is a function of the
cross-covariance ClnKi,t−1Hi,t between log conductivi-
ties and forecasted heads at observation locations and
auto-covariances CHi,tHi,t of forecasted heads at obser-
vation locations (Eq. 24).

lnKa
i,t = lnK f

i,t−1+Gi,t (H
o
t + ei,t −H

f
i,t ), (23)

Gi,t = ClnKi,t−1Hi,t (CHi,tHi,t +Ri,t
)−1

, (24)

where ei,t is the observation error, which has a zero
mean and covariance Ri,t .

4. Repetition step. Go back to step 2 and repeat the pro-
cesses until all the observed heads are assimilated.

6.2 EnKF: benchmark selection

We use only scenario S4, i.e., the transient scenario, because
the EnKF in its original form is a data assimilation frame-
work. That means it works on time series of data in transient
systems by design. There exist other versions of EnKFs that
were extended to work, e.g., with iteration, on steady-state
problems, but these other versions are not the focus of the
current benchmarking example.

6.3 EnKF: simulation validation

Figure 9 shows the mean and the standard deviation of the
updated lnK set of realizations obtained by the reference so-
lution (top row) and by the EnKF (bottom row) in the fea-
tured (transient) benchmarking scenario S4. In comparison
with the pCN-PT reference solutions in the top row, we find
that the EnKF successfully captures the main features of the
reference solution in the mean (left column); however, it vi-
sually lacks some contrast. Also, the EnKF seems to specify
a larger standard deviation (right column) by visual compar-
ison. Yet the general shape of standard deviation, with re-
duced uncertainty in regions of the highest data density, is
plausible.

6.4 EnKF: metrics for accuracy

In this section, we compare the results obtained by the EnKF
with the reference results obtained by pCN-PT based on the

Table 5. Metrics values (original, normalized and transformed) of
different versions for the EnKF with an ensemble size of 1000.

Original Normalized Transformed

MAE mean 0.808 0.659 0.397
MAE SD 0.520 0.625 0.385
RMSE mean 1.035 0.660 0.398
RMSE SD 0.605 0.657 0.396
KS distance 0.341 (–)a (–)b

Energy distance 8.073 0.379 (–)c

a As the KS distance is automatically normalized, we provide no additional
normalization. b As per definition, KS ∈ [0,1], and there is no need for
additional transformation. c Upon normalization, the Energy distance is
automatically within [0,1], so there is no need for additional transformation.

Table 6. Metrics values (original, normalized and transformed) of
different versions for EnKF with an ensemble size of 100.

Original Normalized Transformed

MAE mean 1.294 1.056 0.514
MAE SD 0.375 0.450 0.310
RMSE mean 1.626 1.038 0.509
RMSE SD 0.480 0.521 0.343
KS distance 0.477 (–) (–)
Energy distance 11.893 0.545 (–)

proposed metrics for accuracy in Sect. 3.4. The ensemble size
of the EnKF is set to 1000. In Table 5, we provide the met-
rics of the comparison to the reference results in their origi-
nal form (before normalization), after normalization, and af-
ter transformation, according to what applies to each metric.
The shown metric values are close to each other and gener-
ally between 0.3 and 0.4. This indicates that the EnKF (with
ensemble size= 1000) has some deviation compared to the
reference results. In addition, it also shows that the accuracy
of the EnKF (ensemble size= 1000) is consistent across dif-
ferent metrics.

To demonstrate the impact of a potentially worse result on
the metrics, we computed the metric values for EnKF using
an ensemble size of 100. This is anticipated to yield higher
values (lower accuracy) for all metrics. The obtained met-
ric values are shown in Table 6. It can be seen that with a
smaller ensemble size, the metric values related to standard
deviation (MAE SD and RMSE SD) become smaller, while
other metric values become larger. Since EnKF is a Monte
Carlo-based approach, a smaller ensemble size may not fully
represent the distribution and can lead to biased estimation.
A look at the updated standard deviation map of lnK (not
shown here) reveals problems of filter collapse; i.e., the pos-
terior standard deviation has shrunk to become too small,
which also makes the EnKF unable to continue doing pro-
ductive updates in later assimilation steps.

Hydrol. Earth Syst. Sci., 28, 5375–5400, 2024 https://doi.org/10.5194/hess-28-5375-2024



T. Xu et al.: Benchmarking for groundwater model inversion 5393

Figure 9. The mean (a, c) and standard deviation (b, d) of lnK realizations according to the reference solution (a, b) and obtained by the
EnKF (c, d; N = 1000 realizations) after the 10th (i.e., last) assimilation step in the featured (transient) benchmarking scenario S4.

6.5 EnKF: computing effort

As mentioned in Sect. 6.4, the compared numerical meth-
ods are evaluated in their accuracy and at what computational
price the accuracy is obtained. Whereas the posterior distri-
butions were evaluated as metrics, the computing costs are
not compared but simply reported as key performance indi-
cators (KPIs) and allow us to compare the methods between
each other.

1. For EnKF-1000, we have 10 time segments each, with
the 1000 samples resulting in 10 · 1000 forward calls
when counting formally, but the 10 segments in a row
come at the total cost of one full forward-model run.
Therefore, we count Nf = 1000. The computational ef-
fort of step 1 (initialization) and step 3 (assimilation)
is sometimes not negligible but does not require for-
ward calls; thus, they are only accounted for in the wall-
clock time. Note that we use this metric although it
is evident that the consumed wall-clock time also de-
pends on some external poorly controllable factors not
directly linked to the efficiency of the inverse model-

ing framework. With Nf = 1000, we get LNf = 3.0 and
LN∗f = 0.75.

The overhead wall-clock time on an Intel®Core™i7-
7700 3.60 GHz CPU (four cores) is To =
211.129 s−115.85 s

211.129 s ≈ 0.451.

2. For EnKF-100, we have 10 time segments each, with the
100 samples resulting in cost equivalents of Nf = 100
forward calls, and again, the computational effort of
steps 1 and step 3 are only accounted for in the time
measurement. With Nf = 100 we get LNf = 2.0 and
LN∗f =

2
3 .

The overhead wall-clock time is on the same computer
To =

66.102 s−55.017 s
66.102 s ≈ 0.168.

In both cases, the calculation of step 1 was not incorpo-
rated into the calculation as this was pre-calculated. Paral-
lelization was not tested; however, this could speed up the
calculations considerably (Houtekamer et al., 2014; Kurtz
et al., 2016).
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6.6 EnKF: metric summary

In Fig. 10, we summarize the accuracy and computational
effort. Note that we only plot normalized metrics on the right
y axis because normalization is often metric-dependent.

6.7 Discussion: performance of the EnKF evaluated
through the benchmarking metrics

The example showed nicely that the EnKF using 1000 en-
semble members had overall a higher accuracy than the
EnKF with only 100 ensemble members based on a compar-
ison with the reference solution generated by pCN-PT. The
comparison also showed that this was at the expense of in-
creased computing costs.

Two of the plotted metrics showed counterintuitive results
because the posterior uncertainty (after data assimilation)
would be characterized slightly better by the 100-member
EnKF than the 1000-member EnKF. The posterior standard
deviation for EnKF with 100 ensemble members is closer
to the “true” reference standard deviation by pCN-PT than
EnKF with 1000 ensemble members. This can be attributed
to an overestimation of the posterior standard deviation by
EnKF-1000, which is countered by an underestimation of the
posterior standard deviation by EnKF-100 due to filter col-
lapse. Therefore, by lucky cancellation of errors, this brings
the EnKF with 100 realizations closer to the average standard
deviation of the reference results, which causes smaller er-
ror metric values associated with the standard deviation. The
price to pay is an increase in the error metrics addressing the
mean.

Therefore, it is advantageous and important to evaluate the
performance of a method taking into account all metrics, and
for MAE and RMSE, it can be noticed (see Table 6) that the
mean shows much larger deviations from the reference solu-
tion than the standard deviation, pointing to the underestima-
tion of the standard deviation by the small EnKF ensemble.
We conclude that the metrics perform well for the evaluation
of a candidate method but that the metrics should be evalu-
ated carefully in the context of each other and that their in-
terpretation, supported by the plotted results, has to be done
thoroughly.

7 Discussion and conclusion

In this study, we have designed and implemented a suite of
five well-defined benchmarking scenarios for groundwater
flow with different levels of spatial heterogeneity, different
spatial configurations of hydraulic head observations, differ-
ent levels of data noise variance, and groundwater flow at
a steady or transient state. We also developed highly accu-
rate solutions for these five inversion benchmarking scenar-
ios with the pCN-PT algorithm, which can serve as reference
solutions for the community in future comparison studies.

We proposed a group of metrics to compare inverse mod-
eling solutions with the reference solutions: metrics for ac-
curacy of solution (MAE, RMSE, Kolmogorov-Smirnov dis-
tance, energy distance, and potential scale reduction factor),
metrics for computing costs (number of forward calls, per-
centage overhead wall-clock time, and scaling efficiency),
and metrics for ease of implementation and reproducibility
of results.

To demonstrate and illustrate the intended application of
these benchmarks, reference solutions, and metrics, we pro-
vided an example application of benchmarking at the exam-
ple of a plain vanilla EnKF (with 1000 and 100 ensemble
members). The metrics that we proposed for the evaluation of
candidate inverse methods performed well, with worse per-
formance for an EnKF with a small ensemble size compared
to an EnKF with a large ensemble size. However, the exam-
ple also showed that it is important to evaluate the different
metrics jointly and add visual comparisons of the results.

Reflecting on our reference solutions, we found in this
work that the pCN-PT needs more sampling iterations to con-
verge if more observations are available, but a better estima-
tion of multi-Gaussian parameters can be achieved. Conver-
gence of the pCN-PT is also slower with smaller error vari-
ance of observations and in the case of stronger heterogene-
ity of parameter fields. In all those cases, the slower conver-
gence is associated with more accurate results. We found for
the transient case that already a lot of computing power is
needed to calculate a reference inverse solution with pCN-
PT.

Reflecting back on our suggested benchmarking initiative,
a logical endeavor is an extension of more realistic and more
challenging cases. This would include non-multi-Gaussian
parameter fields, which are often more realistic for subsur-
face media than multi-Gaussian parameter fields given the
presence of fractures and fluvial deposits. It would also in-
clude the extension to flow in unsaturated porous media (or
multiphase flow) and/or coupled flow–transport processes.
However, for all of these extensions, it would be much more
challenging to derive a reference inverse solution. It was
shown that pCN-PT can also handle non-multi-Gaussian pa-
rameter fields, but it will be difficult to achieve convergence
for a transient flow case and a similar problem size as in the
current study. Either a brute-force computing effort has to
be undertaken to calculate reference solutions for such cases
or the pCN-PT algorithm has to be further optimized to be-
come more efficient. As already quite a body of literature
exists on solutions for non-multi-Gaussian flow problems, it
can be expected that reference solutions for such cases are
received with interest by the inverse modeling community.
A reference inverse solution for a coupled 3D unsaturated–
saturated flow problem will be even more challenging given
the non-linearity of the governing equation. The challenge is
then limited to not only the more difficult sampling of the
parameter space, but also the much more expensive forward
model run calls. As an alternative, we think that it could be of
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Figure 10. Comparison of the accuracy and computational effort of the EnKF with 100 and 1000 ensemble sizes to the reference results.
The correct axis for each metric is given in round brackets; scale A is the transformed value, which is the value normalized and then non-
linearly squeezed into [0,1]. Scale B corresponds to original values that were not normalized or transformed, and scale C corresponds to
only normalized metrics.

interest for the community to calculate reference inverse so-
lutions with pCN-PT for 1D soil hydrological problems con-
sidering the uncertainty in all soil hydraulic parameters.

It would also be interesting to evaluate the resolved scales
of variability. The evaluation of inverse methods that are ap-
plied to the benchmarking cases could also consider the re-
production of scale-dependent variability using, for example,
scale-centric accuracy benchmarks such as discrete cosine
transform coefficients. It would be helpful then that bench-
mark solutions are calculated at a high spatial discretization
and for more complex subsurface spatial patterns but this was
beyond the scope of this work. However, it is certainly an in-
teresting future endeavor. Furthermore, it would be intriguing
to undertake a comparative analysis of various hydrogeolog-
ical conditions to gain a comprehensive understanding of the
efficacy of inverse methods.

In addition to the above outcomes, this study aims to initi-
ate a comparison study within the scientific community based
on the suite of benchmarking scenarios for stochastic in-
verse modeling and reference solutions for the benchmark-
ing scenarios. The (groundwater) inverse modeling commu-
nity must work with benchmarks to compare (new) inverse
modeling methods more easily with existing methods. In ad-
dition, estimates of posterior uncertainty can be better evalu-
ated with the benchmark solutions. The algorithms, reference
cases, and datasets are freely available to the community. We
very much hope that they will be used by the community
and extended to include cases such as non-multi-Gaussian
groundwater flow, unsaturated flow, and coupled flow and
transport.

Appendix A: EnKF results for the steady-state scenario
S0

Here, we show the results for scenario S0 with a steady-state
flow problem and application of the EnKF. Figure A1 dis-
plays the mean and the standard deviation for this scenario
and the application of the EnKF. We find that the updates are
not able to reproduce the main features of the reference and
have a large uncertainty.
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Figure A1. The mean (a) and the standard deviation (b) of updated lnK realizations for scenario S0 (steady-state groundwater flow problem).

Appendix B: Details on the pCN-PT MCMC algorithm
used for computing the reference solutions

The pCN-PT proposed by Xu et al. (2020) is an efficient
method for Bayesian inversion of multi-Gaussian parame-
ters. It combines the parallel tempering technique (Swend-
sen and Wang, 1986) with the pCN-MCMC (Cotter et al.,
2013b). It employs several parallel Markov chains to sample
from a series of tempered posterior distributions, making the
target chain (also called the cold chain) efficiently explore
the target distribution after swapping it with hot chains. Due
to the pCN, it proposes samples that automatically honor the
prior multi-Gaussian distribution.

Briefly, the algorithm of the pCN-PT mainly consists of
the following four steps:

1. Initialization step. An initial conductivity field, u0
i , for

chain i, i = 1, . . .,n, is generated following the multi-
Gaussian distribution u0

i ∼N(0,C), where n is the to-
tal number of chains and C is the covariance matrix
of the random field. In addition, since the pCN-PT
is a combination of the parallel tempering technique
and the pCN-MCMC, a temperature ladder, T1 < T2 <

.. . < Ti < .. . < Tn, with T1 = 1; a jumping factor lad-
der, β1 < β2 < .. . < βi < .. . < βn, with βn < 1; and a
swap proposal frequency, d, need to be designed. Here,
the likelihood, L(u), of the hotter chains gets flattened
by the temperature, inducing the posterior, πt (u), to get
flattened towards the prior as well. Therefore, the pos-
terior πt (u) can be rewritten as below according to the
Bayesian theorem:

πt (u)∝ L(u)
1
T p(u). (B1)

2. Proposal step. At the kth sampling iteration, a pCN pro-
posal, vki , for all chains i = 1, . . .,n is calculated accord-
ing to the proposal function, which is dependent on the

sample, uki ; the jumping factor, βi ; and colored noise, ε
(following the same distribution as the prior).

vki =

√
1−β2

i u
k
i +βiε

k
i ,ε

k
i ∼N(0,C) (B2)

3. Acceptance step. Recall that the acceptance probabil-
ity, a(ui,vi), of the traditional MCMC is dependent on
the ratio of the likelihood, L(vi); prior, p(vi); and pro-
posal density, q(vi,ui), of the proposed sample, vi , to
L(ui), p(ui), and q(ui,vi) of the previous sample, ui
(see Eq. B3) (Xu et al., 2020). Specifically for the pCN-
PT, due to the assumption of a multi-Gaussian prior,
p(vi) · q(vi,ui) equals p(ui) · q(ui,vi), and the like-
lihood L(ui) is flatted by the temperature, Ti . There-
fore, for each chain i at the kth sampling iteration,
Eq. (B3) for the acceptance probability can be rewrit-
ten as acceptance-pCN-MCMC, i.e., Eq. (B4):

a(ui,vi)=min
{

1,
L(vi) ·p(vi) · q(vi,ui)

L(ui) ·p(ui) · q(ui,vi)

}
, (B3)

a(uki ,v
k
i )=min

1,

[
L(v

k|y
i )

L(u
k|y
i )

] 1
Ti

 , (B4)

where y is the set of measured observations. Note that
when all observation errors and modeling errors fol-
low Gaussian distributions, the log likelihood φ(u)=
lnL(u | y) can be given as follows:

φ(u)= lnL(u | y)

= ln
{
(2π)−

m
2 ‖Cy‖−

1
2 exp[

−
1
2
(y− yo)TC−1

y (y− yo)

]}
, (B5)

with

y = g(u)+ η,η ∼N(0,Cn), (B6)
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where yo is the set of simulated observations, g(·) de-
notes steady or transient groundwater flow model, η
is the measurement-and-model error, and Cn is the as-
sumed covariance matrix of these errors. Thus, Eq. (B4)
can further be rewritten as follows:

a(uki ,v
k
i )=min

{
1,exp

[
φ(vki )−φ(u

k
i )

Ti

]}
. (B7)

After that, accept vki with the acceptance probability
a(uki ,v

k
i ), and then uk+1

i = vki ; otherwise, reject vki , and
then uk+1

i = uki .

4. Swapping step. For any pair of chains i and j , swap
values between them, uki � ukj , with swap acceptance
probability, as(u

k
i ,u

k
j ), according to the swap proposal

frequency, d (if k
d

is an integer).

as(u
k
i ,u

k
j )=min{

1,exp
[(
φ(ukj )−φ(u

k
i )
)
·

(
1
Ti
−

1
Tj

)]}
(B8)
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