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Abstract. The simultaneous incorporation of streamflow and
evaporation data into sensitivity analysis and calibration ap-
proaches has great potential to improve the representation of
hydrologic processes in modelling frameworks. This work
aims to investigate the capabilities of the Variable Infiltration
Capacity (VIC) model in a large-sample application focused
on the joint integration of streamflow and evaporation data
for 189 headwater catchments located in Spain. The study
has been articulated into three parts: (1) a regional sensitiv-
ity analysis for a total of 20 soil, routing, and vegetation pa-
rameters to select the most important parameters conducive
to an adequate representation of the streamflow and evapo-
ration dynamics; (2) a two-fold calibration approach against
daily streamflow and monthly evaporation data based on the
previous parameter selection for VIC; and (3) an evaluation
of model performance based on a benchmark comparison
against a well-established hydrologic model for the Span-
ish domain and a cross-validation test using multiple mete-
orological datasets to assess the generalizability of the cali-
brated parameters. The regional sensitivity analysis revealed
that only two vegetation parameters – namely, the leaf area
index and the minimum stomatal resistance – were sufficient
to improve the performance of VIC for evaporation. These
parameters were added to the soil and routing parameter
during the calibration stage. Results from the two calibra-
tion experiments suggested that, while the streamflow per-
formance remained close in both cases, the evaporation per-
formance was highly improved if the objectives for stream-
flow and evaporation were combined into a single composite

function during optimization. The VIC model outperformed
the reference benchmark, and the independent meteorologi-
cal datasets yielded a slight to moderate loss in model perfor-
mance depending on the calibration experiment considered.
Results from this investigation provide valuable insights into
VIC parameter sensitivities, with a particular focus on large-
sample applications, and highlight the importance of inte-
grating multiple datasets into model calibration as a measure
to reduce model equifinality.

1 Introduction

Large-sample hydrology (Addor et al., 2020) and large-scale
hydrology (e.g. Bierkens, 2015; Wood et al., 2011) aim to
promote the transferability of knowledge between regions
and to assess the applicability of hydrologic models and theo-
ries at regional, continental, and global scales. Large-sample
hydrology involves large sets (tens to thousands) of catch-
ments, and its main focus is to provide generalizable knowl-
edge of hydrological processes and models based on a large
sample of catchments representing different hydroclimatic
conditions (Addor et al., 2020). Similarly, large-scale hy-
drology relies on simulations from land surface models car-
ried out at the so-called spatial hyper-resolution (> 1 km) to
quantify and monitor the terrestrial water cycle at multiple
scales (Bierkens, 2015; Bierkens et al., 2015; Wood et al.,
2011).
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Large-sample and large-scale hydrologic studies play an
important role in supporting water resources planning and
in quantifying hydrologic changes across scales in the con-
text of a changing climate (Addor et al., 2020; Wood et al.,
2011). The gap between both hydrologic fields is becoming
increasingly reduced, and both can be considered to be two
complementary approaches that attempt to provide a solid
understanding of the spatial variability of hydrologic pro-
cesses and to facilitate the intercomparison of model struc-
tures across climates (Addor et al., 2018, 2020). This is also
manifested in the greater areas covered by hydrologic models
(Beck et al., 2016, 2020), the development of gridded runoff
observations (Gudmundsson and Seneviratne, 2016; Ghiggi
et al., 2019), the tendency towards finer resolutions in land
surface models (Bierkens, 2015; Wood et al., 2011), and the
use of macroscale hydrologic models in large-sample studies
(e.g. Mizukami et al., 2017; Newman et al., 2017; Rakovec
et al., 2016a, b, 2019; Sepúlveda et al., 2022; Yeste et al.,
2020, 2021).

From a data perspective, large-sample hydrology encom-
passes hydrologic studies founded on large-sample datasets
of streamflow observations, hydrometeorological data, and
hydroclimatic and landscape attributes (Addor et al., 2020;
Kratzert et al., 2023). This includes investigations on extreme
events (e.g. Blöschl et al., 2017; Do et al., 2017; Gudmunds-
son et al., 2019), climate change impacts (e.g. Marx et al.,
2018; Melsen et al., 2018; Vormoor et al., 2015), variations in
terrestrial water storage (e.g. Zhang et al., 2017), model eval-
uation and benchmarking (e.g. Aerts et al., 2022; Newman
et al., 2017; Prieto et al., 2021, 2022; Rakovec et al., 2019;
Yeste et al., 2020), data and modelling uncertainties (e.g.
Beck et al., 2017; Coxon et al., 2015), parameter estimates
during calibration (e.g. Beck et al., 2016, 2020; Mizukami
et al., 2017; Rakovec et al., 2016a, b), and the transferabil-
ity of parameters in space based on parameter regionalization
techniques (e.g. Almeida et al., 2016; Beck et al., 2020; Pool
et al., 2021; Prieto et al., 2019; Rakovec et al., 2019).

But over and above the extensive hydroclimatic character-
ization commonly provided in large-sample datasets, stream-
flow is considered to be a category of its own (Addor et al.,
2020). Streamflow datasets are primarily based on individual
contributions from national hydrologic services, which con-
stitute the building blocks of continental and global stream-
flow repositories. The role of national water archives is of
capital importance in this respect, and, ultimately, it is the in-
ternational collaboration among national authorities world-
wide which makes it possible to tackle this complex chal-
lenge (Addor et al., 2020). In this respect, the Model Pa-
rameter Estimation Experiment (MOPEX, Duan et al., 2006)
was arguably the first open large-sample dataset, contain-
ing hydrologic information for 438 catchments within the
CONUS (contiguous United States) domain. The MOPEX
dataset was a highly significant contribution to the hydro-
logic community and constituted the basis for many hy-
drologic studies during the Prediction in Ungauged Basins

(PUB) decade (Andreassian et al., 2007). However, MOPEX
covers only up to 2003 and is no longer updated. A simi-
lar approach using up-to-date hydrologic data and landscape
attributes materialized in the Catchments Attributes and ME-
teorology for Large-sample Studies (CAMELS) dataset (Ad-
dor et al., 2017) for the CONUS domain. The standards in
CAMELS were also applied to develop large-sample datasets
for other countries such as Chile (CAMELS-CL, Alvarez-
Garreton et al., 2018), Great Britain (CAMELS-GB, Coxon
et al., 2020), Brazil (CAMELS-BR, Chagas et al., 2020),
Australia (CAMELS-AUS, Fowler et al., 2021) and Switzer-
land (CAMELS-CH, Höge et al., 2023), and most of them
have been recently included in the Caravan dataset (Kratzert
et al., 2023) as a step towards aggregating existing hydro-
logic information and producing a global dataset.

Large-sample hydrologic studies can benefit strongly from
the integration of satellite remote sensing data into modelling
frameworks in order to draw more robust conclusions on
catchment functioning (Clark et al., 2017; Rakovec et al.,
2016a, b, 2019; Yeste et al., 2020, 2021, 2023). In partic-
ular, the use of satellite-based algorithms to retrieve evapo-
ration information represents an unprecedented opportunity
to monitor the dynamics and the climate-driven changes in
evaporative fluxes (Konapala et al., 2020; Koppa et al., 2022).
Evaporation represents the second-largest component of the
global water balance and is expected to increase as a con-
sequence of global warming (IPCC, 2023). These changes
can pose a challenge for future water security and water re-
sources availability from regional to global scales (Lehner
et al., 2019; Konapala et al., 2020; Koppa et al., 2022). There-
fore, the integration of evaporation data into large-sample
modelling approaches is a promising solution to calibrate
and evaluate models for more than one hydrologic variable
(traditionally streamflow; Dembélé et al., 2020a, b) and thus
achieve a more reliable quantification of the water balance
(Yeste et al., 2023).

This study aims to develop a hydrologic modelling frame-
work to investigate the streamflow and evaporation dynam-
ics for a large set of Spanish catchments. As part of the
Iberian Peninsula, Spain constitutes a region where the ef-
fects of climate change are already noticeable and are ex-
pected to be much more pronounced by the end of the 21th
century (IPCC, 2023). The Iberian Peninsula has been pre-
viously identified as a hotspot of climate change (Diffen-
baugh and Giorgi, 2012; Vogel et al., 2021) and has mani-
fested recurrent droughts and an increasing tendency towards
arid conditions over the last decades, with a similar pat-
tern for the Spanish catchments and a clear latitudinal gra-
dient indicating greater aridity for the southern catchments
(García-Valdecasas Ojeda et al., 2021a, b; Páscoa et al.,
2017). From a hydrologic perspective, the Spanish catch-
ments have undergone dramatic streamflow decreases dur-
ing the last decades (Lorenzo-Lacruz et al., 2012, 2013), and
evaporative fluxes play a dominant role in the water balance
for the entire region (García-Valdecasas Ojeda et al., 2020a;
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Vicente-Serrano et al., 2014). These changes are expected
to be exacerbated under climate change (García-Valdecasas
Ojeda et al., 2020b, 2021a, b) and can pose an important
threat to the future water planning and management in the
country.

The large-sample modelling approach followed in this
work will be focused on the Variable Infiltration Capacity
(VIC) model (Liang et al., 1994, 1996), one of the most
widely used hydrologic models in hydrologic studies (Addor
and Melsen, 2019). The VIC model has been successfully
implemented in many previous large-sample studies and
large-scale applications (e.g. Melsen et al., 2018; Mizukami
et al., 2017; Rakovec et al., 2019; Sepúlveda et al., 2022),
including in Spain (Yeste et al., 2020, 2021), which makes
it an excellent choice for the purpose of this investigation.
The capabilities of VIC to integrate streamflow observations
and satellite-based evaporation data will be thoroughly ex-
amined, and its performance will be compared against cur-
rent modelling efforts providing the basis for water resource
planning and management in Spain.

2 Study area and data

2.1 The Spanish catchments and streamflow dataset

This work is focused on a set of 189 headwater catchments
defined for 94 reservoirs and 95 gauging stations belonging
to the main river basin districts in Spain (Fig. 1a, Table 1).
These catchments are representative of the hydroclimatic
variability within the country, with mean annual precipita-
tion ranging from 279 to 2183 mm yr−1, mean annual runoff
from 6 to 1821 mm yr−1, mean annual potential evaporation
from 770 to 2067 mm yr−1, and runoff ratios from 0.02 to
0.98. Their physiography comprises areas ranging from 9
to 3825 km2, with mean elevations from 147 to 1982 m and
mean slopes from 4 to 100 m km−1 (see also Fig. 3 and Ta-
ble 3, which will be introduced later in Sect. 3.2). Stream-
flow observations for the Spanish catchments are monitored
using automatic hydrological information systems (SAIHs,
Sistemas Automáticos de Información Hidrológica) and by
the official network of gauging stations (ROEA, Red Oficial
de Estaciones de Aforo) and are estimated via a daily wa-
ter balance of water storages and releases for reservoirs and
using rating curves for gauging stations.

The 189 study catchments were selected from the
Integrated Network of Gauging Stations (SAIH-ROEA)
dataset (https://www.miteco.gob.es/en/cartografia-y-sig/ide/
descargas/agua/anuario-de-aforos.aspx, last access: 11 De-
cember 2024), a national archive of streamflow observations
maintained and annually updated by the Spanish National
Public Works Research Centre (CEDEX, Centro de Estudios
y Experimentación de Obras Públicas). Similarly to Yeste
et al. (2018, 2020, 2023), the study catchments were se-
lected considering a maximum percentage of missing values

Table 1. Number of headwater reservoirs and gauging stations per
river basin district included in this study.

River basin district Reservoirs Gauging Total
stations

Northern districts 13 15 28
Duero district 11 12 23
Tajo district 14 35 49
Guadiana district 2 0 2
Guadalquivir district 27 0 27
Segura district 6 0 6
Júcar district 8 5 13
Ebro district 13 28 41

Total 94 95 189

in the streamflow series of 10 % for the period October 1990–
September 2010, which was chosen as the study period in
this work. Among those catchments, 171 (84 reservoirs+ 87
gauging stations) presented less than 5 % of missing values,
and 144 (80 reservoirs+ 64 gauging stations) were below
1 %.

An exploratory data analysis of negative values during the
study period was subsequently conducted and revealed that
47 reservoirs presented up to 5 % of negative estimates of
daily streamflow and that 46 reservoirs presented more than
5 % of negative estimates, whereas all 95 gauging stations
and only 1 reservoir did not present values below 0 (Fig. 2a).
In addition, the percentage ratio of negative to positive val-
ues was calculated for each reservoir to quantify their relative
importance, suggesting that negative values are close to 0 for
reservoirs with less than 5 % of negative records and become
more visible above 5 % (the median percentage ratio of neg-
ative to positive values for reservoirs with more than 5 % of
negative records is 2.9 %).

One feasible explanation for the presence of negative val-
ues in the streamflow series of reservoirs in the SAIH-ROEA
dataset is that inflow data are calculated by applying a daily
water balance exclusively to water storages and releases. As
opposed to gauging stations, where streamflow is derived
from rating curves, the daily water balance in reservoirs can
produce negative estimates of streamflow (i.e. inflow) when
the variation in the storage is negative and when its magni-
tude is greater than the water releases. Given the prominent
role of evaporative fluxes in the Spanish catchments, the pres-
ence of negative values is likely to happen on the warmest
days of the hydrologic year, when streamflow is at its mini-
mum or when null and open-water evaporation in reservoirs
become relevant. To further test this hypothesis, the monthly
distribution of negative values for all the catchments was cal-
culated and compared against the average hydrologic year of
streamflow (Fig. 2b). Results confirm that most negative val-
ues occur in summer months, emerging in late spring and
extending to the beginning of the hydrologic year. The hy-
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Figure 1. (a) Topographic boundaries of the 189 headwater catchments and the main river basin districts in Spain. The term “northern
districts” refers to the districts of the Galicia coast, Miño-Sil, and Cantabria, which, for the sake of simplicity, were grouped using a common
label. (b) Spatial distribution of the runoff ratio (Q/P ). (c) Spatial distribution of the sum of the runoff and the evaporation ratios to
precipitation ((Q+E)/P ). Values in (b) and (c) were calculated for the study period and the hydroclimatic datasets considered in this work.

pothesis is also supported by the location of reservoirs with
more than 5 % of negative records as they are mostly concen-
trated in southern Spain (Fig. 2a) and are thus characterized
by a warmer climate.

Unfortunately, incorporating the effect of evaporative
fluxes into the water balance requires additional data that are
not provided in the SAIH-ROEA dataset and that are neither
publicly disclosed nor publicly available for all the reser-
voirs, such as pan-evaporation measurements and elevation
area capacity curves. Hence, this course of action could not
be adopted and was left out of the scope of this work. The ef-
fect of other potential driving factors on the negative records,
such as seepage losses, is supposed to be minor in compari-
son to open-water evaporation as negative estimates tend to
happen in summer for the southernmost reservoirs. There-
fore, on the basis of this initial exploratory analysis, nega-
tive values were considered to be null, and all 189 headwater
catchments were included in the modelling framework. The
validity of such an assumption will be further discussed in
the light of results from the modelling exercise.

2.2 Meteorological forcings and evaporation dataset

Daily precipitation and temperature data were collected
from the Spanish PREcipitation At Daily scale (SPREAD,
Serrano-Notivoli et al., 2017) and the Spanish TEmpera-
ture At Daily scale (STEAD, Serrano-Notivoli et al., 2019)
datasets, two gridded products at ∼ 5 km resolution con-
structed by interpolating daily observations from a dense
network of meteorological stations distributed across Spain.

Monthly evaporation data were collected at 0.25° resolu-
tion from the Global Land Evaporation Amsterdam Model
(GLEAM) version 3.5a (Martens et al., 2017; Miralles et al.,
2011) and were remapped to the study catchments follow-
ing a first-order conservative approach. GLEAM has shown
less uncertainty compared to other satellite-based evapora-
tion products (Xu et al., 2019) and has seen extensive use
within hydrologic studies for the calibration and evaluation
of hydrologic models (e.g. Bouaziz et al., 2021; Dembélé
et al., 2020a, b; Koppa et al., 2019; Mei et al., 2023), par-
ticularly in studies involving data-scarce areas (e.g. Dembélé
et al., 2020a, b; López López et al., 2017) and/or regions
where evaporative fluxes are dominant (e.g. Dembélé et al.,
2020a, b; Yeste et al., 2020, 2021, 2023).

Fig. 1b and c show the computed values of the runoff ra-
tio (Q/P ) and the sum of the runoff and evaporation ratio to
precipitation ((Q+E)/P ) for the study period and the hydro-
climatic datasets described in this and the previous section.
Two-thirds of the catchments manifested Q/P estimates be-
low 0.4 and were predominantly located in the southeastern
sector of the country (Fig. 1b). Approximately 50 % of the
catchments produced (Q+E)/P estimates between 0.9 and
1.1, with negative imbalances ((Q+E)/P < 1) mostly cor-
responding to catchments with a low runoff ratio and with
positive imbalances ((Q+E)/P > 1) towards the northwest
(Fig. 1c). The effect of these imbalances will be thoroughly
examined in light of the results.
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Figure 2. Exploratory data analysis of the negative values in the
daily time series of streamflow gathered from the SAIH-ROEA
dataset for the 189 studied catchments during the study period.
(a) Scatterplot representation of the percentage ratio of negative to
positive values (y axis) against the percentage ratio of the number
of negative values to the number of records (x axis) for each catch-
ment. “R” denotes “reservoir”, and “GS” denotes “gauging station”.
(b) Monthly distribution of the percentage ratio of the number of
negative values per month to the total number of negative values.
The blue line corresponds to the average hydrologic year of stream-
flow expressed as the monthly mean percentage of annual stream-
flow calculated over all the catchments.

3 Methods

3.1 The VIC model

The Variable Infiltration Capacity (VIC) model (Liang et al.,
1994, 1996) version 4.2.d is a semi-distributed macroscale
hydrologic model implementing water and energy balances
within a gridded domain at daily and subdaily time steps.
The model utilizes a three-layer soil profile to conceptualize
runoff generation. Surface runoff, based on the Xinanjiang
formulation (Zhao et al., 1980), occurs in the first two soil
layers, while baseflow is generated in the bottom layer us-
ing the Arno equation (Franchini and Pacciani, 1991). The
VIC model considers the subgrid variability in land uses
through vegetation tiles. Evaporation in each grid cell is cal-
culated as the sum of evaporation from bare soil, evaporation
from the canopy interception, and transpiration and is con-
strained by the atmospheric demand for water vapour accord-
ing to the Penman–Monteith equation. The model structure
includes a snow model for accumulation and melting pro-
cesses, employing snow bands to consider subgrid variability

in topography, land uses, and precipitation, making it appli-
cable across diverse geographical domains. While originally
designed as a land surface scheme for Earth system models,
VIC has seen extensive use globally as a hydrologic model
and stands out for its widespread usage within the hydrologic
community (Addor and Melsen, 2019).

The VIC model was applied with a gridded configuration
at 0.05° resolution (∼ 5 km) and with a spin-up period of
10 years preceding the study period. Meteorological forc-
ings were interpolated to the model resolution through a
nearest-neighbour assignment. Notably, the VIC model lacks
a consideration of the horizontal fluxes between adjacent grid
cells, typically addressed by coupling a routing model. A
gamma function was selected in this study to post-process the
runoff simulations and account for the delay between runoff
generation and catchment discharge (i.e. streamflow). The re-
quired soil and vegetation parameters to run VIC were col-
lected at 1 km resolution from the following datasets: bulk
density and soil textural classes were collected from Soil-
Grids1km (Hengl et al., 2014); porosity, saturated hydraulic
conductivity, field capacity, and wilting point were collected
from EU-SoilHydroGrids ver1.0 (Tóth et al., 2017); and land
uses were collected from the UMD Global Land Cover Clas-
sification (Hansen et al., 2000), with associated vegetation
parameters aligned with Global Land Data Assimilation Sys-
tem (GLDAS) specifications for VIC (Rodell et al., 2004).
Soil parameters were regridded to the model resolution using
a first-order conservative remapping, whereas land uses were
kept at their original resolution as the subgrid variability in
land uses is handled statistically within VIC.

3.2 Regional sensitivity analysis

Parameter sensitivities were analysed using the implemen-
tation of the regional sensitivity analysis (RSA) method of
Hornberger and Spear (1981) in the SAFE Toolbox (Pianosi
et al., 2015). RSA is based on a classification of model
simulations into behavioural and non-behavioural according
to one or more performance metrics and evaluates differ-
ences between parameter distributions corresponding to both
classes. The RSA sensitivity index for a given parameter rep-
resents the maximum vertical distance between the cumula-
tive distribution functions (CDFs) corresponding to the be-
havioural and non-behavioural classes, which is equivalent
to the Kolmogorov–Smirnov distance statistic computed in
the Kolmogorov–Smirnov test. Hence, the RSA sensitivity
index ranges from 0 to 1, with values closer to 1 indicating a
greater parameter sensitivity.

For each of the 189 catchments, the parametric space was
explored by conducting a Monte Carlo simulation for 10 000
Latin hypercube samples (Iman and Conover, 1982) ex-
tracted from the parameter ranges of the 20 soil, vegetation,
and routing parameters analysed in Yeste et al. (2023) and
described in Table 2. Model performance during the Monte
Carlo experiment was evaluated using the Nash–Sutcliffe ef-
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ficiency (NSE), which can be defined as follows (e.g. Knoben
et al., 2019):

NSE= 2αr −α2
−
(β − 1)2

CV2
obs

, (1)

where r is the correlation coefficient between simulations
and observations, α is the ratio of the standard deviations (i.e.
α =

σsim

σobs
), β is the ratio for mean values (i.e. β =

µsim

µobs
), and

CVobs is the coefficient of variation of the observations. r ,
α, and β represent the dynamics, variability, and bias com-
ponents for the comparison of simulations and observations,
respectively, and CVobs is model-independent.

RSA was applied to the NSE for the Monte Carlo sim-
ulations of daily streamflow (NSE(Qd)) and monthly evap-
oration (NSE(Em)) calculated for the study period, choos-
ing the median NSE(Qd) and median NSE(Em) to classify
behavioural and non-behavioural simulations. Similarly to
Sepúlveda et al. (2022), the Spearman correlation coefficient
(rS) between the RSA sensitivity indices for NSE(Qd) and
NSE(Em) and the physiographic and hydroclimatic charac-
teristics defined in Table 3 and depicted in Fig. 3 was cal-
culated. rS measures how similar the spatial patterns of the
parameter sensitivities and the selected attributes are, with
their sign being indicative of a matching pattern (i.e. posi-
tive sign) or an opposite pattern (i.e. negative sign). These
attributes were initially selected based on their ease of access
for the study catchments and allowed for further investigation
of the potential drivers of parameter sensitivities.

The two most influential vegetation parameters in relation
to any of the two performance metrics were finally selected
for each catchment and were incorporated, together with the
five soil parameters and the two routing parameters (SR pa-
rameterization hereafter), into the calibration stage. This se-
lection will be referred to as the SR parameterization here-
after. Adding two extra VIC vegetation parameters to the
SR parameterization is sufficient to improve the joint per-
formance against streamflow and evaporation data according
to previous research in Yeste et al. (2023).

3.3 Calibration and evaluation approach

A split-sample test (SST, Klemeš, 1986) was applied to cali-
brate and evaluate VIC considering two independent periods
of equal duration belonging to the study period: a calibra-
tion period from October 1990 to September 2000 and an
evaluation period from October 2000 to September 2010. A
spin-up simulation of 10 hydrologic years preceding both the
calibration and evaluation periods was conducted to provide
initial states of model storages free from the effect of ini-
tial conditions (this strategy was also applied to the Monte
Carlo simulation described in the previous section). The per-
formance of the VIC model was evaluated through NSE(Qd)

and NSE(Em) and their decomposition into correlation r ,
variability α, and bias β.

The calibration was performed using the shuffled-
complex-evolution algorithm (SCE-UA) of Duan et al.
(1994) and following a single-objective optimization ap-
proach for the nine selected parameters (five soil parameters,
two routing parameters, and two vegetation parameters) to
minimize a composite function that aggregates the perfor-
mance metrics for streamflow and evaporation:

Minimize
√
wQ · (1−NSE(Qd))2+wE · (1−NSE(Em))2. (2)

This problem minimizes the two-dimensional weighted
Euclidean in relation to the ideal vector (1, 1) and belongs
to the more general weighted-metric method used to mini-
mize distances (see Yeste et al., 2023, for a detailed imple-
mentation of this method to integrate streamflow and evap-
oration data). In this work, two calibration experiments for
different weights combinations in Eq. (2) were applied to
the VIC model: firstly, a streamflow-only calibration (Q-
only calibration hereafter) was performed by choosingwQ =
1 and wE = 0. Secondly, the model was calibrated for a
weighted Euclidean distance (Q-E calibration hereafter) se-
lecting two equal weights wQ = wE = 0.5. The case of two
equal weights is equivalent to minimizing the pure Euclidean
distance, that is, wQ = wE = 1, as equal weights do not af-
fect the optimization problem in Eq. (2).

The results of the split-sample test were benchmarked
against the streamflow and evaporation outputs from the
Integrated System for Rainfall-Runoff Modeling (SIMPA)
model (Estrela and Quintas, 1996; Alvarez et al., 2004)
for the study catchments. SIMPA is a well-established
hydrologic model calibrated for the Spanish catchments and
updated yearly; it provides the foundation for water planning
and management in the country (see https://www.miteco.
gob.es/en/agua/temas/evaluacion-de-los-recursos-hidricos/
evaluacion-recursos-hidricos-regimen-natural.html, last
access: 11 December 2024) for additional information).
SIMPA constitutes a semi-distributed implementation of
the model proposed by Témez (1977), a four-parameter
lumped conceptual model that has been extensively used
in hydrologic studies in Spain (e.g. Bejarano et al., 2010;
Marcos-Garcia et al., 2017; Yeste et al., 2018), and has
evolved to include a snow routine and different hydrogeo-
logical modules. SIMPA simulations are run at a monthly
time step and at 500 m spatial resolution and are commonly
used for benchmarking purposes in the region (e.g. Pellicer-
Martínez and Martínez-Paz, 2018; Suárez-Almiñana et al.,
2020; Yeste et al., 2020). Therefore, given the absence of
daily simulations for SIMPA, the performances of VIC and
SIMPA were compared for the Nash–Sutcliffe efficiency of
monthly streamflow (NSE(Qm)) and NSE(Em).

Furthermore, the effect of considering the negative values
in the streamflow series of reservoirs to be null (see Sect. 2.2)
was tested in an additional implementation of theQ-only cal-
ibration experiment for the 47 catchments with less than 5 %
of negative records and the 46 catchments with more than
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Table 2. Parameters included in the RSA sensitivity analysis. As in Yeste et al. (2023), the subscript “f ” corresponds to the VIC vegetation
parameters that were modified using dimensionless multiplication factors.

Parameter Units Min value Max value Description

bi – 10−5 0.4 Variable infiltration shape parameter
DS – 10−9 1 Fraction of Dm where non-linear baseflow begins
WS – 10−9 1 Fraction of the porosity of the bottom soil layer where non-linear baseflow begins
Dm mm d−1 10−9 30 Maximum baseflow
d2 m 0.1 0.9 Thickness of soil layer 2
rout1 – 10−9 10 Shape parameter of gamma function
rout2 d 10−9 2 Scale parameter of gamma function
depth1f – 0.5 1.5 Thickness of root zone for layer 1
depth2f – 0.5 1.5 Thickness of root zone for layer 2
rarcf – 0.5 1.5 Architectural resistance
rminf – 0.5 1.5 Minimum stomatal resistance
LAIf – 0.5 1.5 Leaf area index
albedof – 0.5 1.5 Albedo
roughf – 0.5 1.5 Vegetation roughness
dispf – 0.5 1.5 Vegetation displacement
wind_hf – 0.5 1.5 Height of wind speed measures
RGLf – 0.5 1.5 Minimum incoming shortwave radiation for transpiration
rad_attenf – 0.5 1.5 Radiation attenuation
wind_attenf – 0.5 1.5 Wind speed attenuation through overstorey
trunk_ratiof – 0.5 1.5 Ratio of total tree height that is trunk

Table 3. Definition of the physiographic and hydroclimatic characteristics analysed in this work as potential drivers of parameter sensitivities.

Characteristic Type Definition Source

Elevation Physiographic Mean catchment elevation (m a.s.l.) Digital elevation model (DEM) EU-DEM 30 m
(now at https://dataspace.copernicus.eu/explore-data/
data-collections/copernicus-contributing-missions/
collections-description/COP-DEM, last access: 11 Decem-
ber 2024)

Slope Physiographic Mean catchment slope (m/km) Derived from DEM

Area Physiographic Catchment area (km2) Derived from DEM

Precipitation Hydroclimatic Mean annual precipitation
(mm yr−1)

SPREAD (Serrano-Notivoli et al., 2017)

Temperature Hydroclimatic Mean temperature (°C) STEAD (Serrano-Notivoli et al., 2019)

Aridity Hydroclimatic Aridity index, calculated as the
ratio of precipitation to potential
evaporation (–)

Potential evaporation calculated internally in VIC; precipi-
tation from SPREAD (Serrano-Notivoli et al., 2017)

Snowfall ratio Hydroclimatic Snowfall ratio to precipitation dur-
ing winter months (i.e. December,
January and February) (–)

Snowfall calculated internally in VIC; precipitation from
SPREAD (Serrano-Notivoli et al., 2017)

NDVI Physiographic Normalized difference vegetation
index (–)

Copernicus Global Land Service (https://land.copernicus.
eu/en/products/vegetation/, last access: 11 December 2024)

KS Physiographic Saturated hydraulic conductivity
(mm d−1)

EU-SoilHydroGrids (Tóth et al., 2017)
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Figure 3. Spatial distribution of the physiographic and hydroclimatic characteristics analysed in this work as potential drivers of parameter
sensitivities. These attributes are defined in Table 3.

5 % of negative records (Fig. 2) after considering the nega-
tive values to be gaps. This strategy made it possible to evalu-
ate the extent to which the performance of VIC was affected
by the data-processing approach followed for the negative
records.

Finally, a cross-validation test using multiple meteoro-
logical datasets was carried out to assess the generalizabil-
ity of the calibrated parameters. Thus, the performance of
the VIC model during the study period was further evalu-
ated for the Q-only and Q-E calibration experiments us-
ing precipitation and temperature data gathered from a grid-
ded dataset provided by the Spanish Meteorological Agency
(AEMET; see https://www.aemet.es/en/serviciosclimaticos/
cambio_climat/datos_diarios?w=2, last access: 11 December
2024) and E-OBS (Cornes et al., 2018).

4 Results

4.1 RSA sensitivity analysis

The RSA sensitivity indices for NSE(Qd) and NSE(Em) are
depicted in Figs. 4 and 5, respectively. NSE(Qd) sensitivi-
ties were mostly related to the five soil parameters and the

two routing parameters (i.e. SR parameterization), with little
or no influence from the vegetation parameters and no clear
spatial pattern for the RSA indices (Fig. 4). Among these pa-
rameters, the highest sensitivities corresponded to d2, rout1,
and rout2, although bi ,DS ,WS, andDm were also influential
in relation to the streamflow metric according to several local
estimates.

Contrarily to NSE(Qd), NSE(Em) scores were greatly in-
fluenced by the vegetation parameters (Fig. 5). In this case,
the highest sensitivities corresponded to rminf and LAIf and
manifested a latitudinal gradient, with minimum sensitivities
occurring for the northern catchments. This pattern is also
noticeable, but to a lesser extent, for depth1f , rarcf , albedof ,
roughf , and RGLf . d2 was revealed to be the most important
soil parameter to NSE(Em), and, as expected from the VIC
model implementation, the routing parameters had a null ef-
fect due to the routing scheme being exclusively applied to
post-processing the runoff simulations.

Figure 6 shows the Spearman correlation coefficient (rS)
between the RSA sensitivity indices calculated for NSE(Qd)

and NSE(Em) and the physiographic and hydroclimatic char-
acteristics in Fig. 3. The NSE(Qd) sensitivities for the soil
parameters presented an opposite pattern (i.e. negative cor-
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Figure 4. Spatial distribution of the RSA sensitivity indices calculated for NSE(Qd).

relations) compared to the mean annual precipitation; the
aridity index; the normalized difference vegetation index
(NDVI); and, to a lesser extent, the slope. A similar be-
haviour can be observed for various vegetation parameters
such as rminf and LAIf , although they were not identified
as important to NSE(Qd) (Fig. 4). Conversely, both routing
parameters exhibited a matching pattern (i.e. positive correla-
tions) compared to the previous four attributes, but their mag-
nitude was higher for rout1. Concerning NSE(Em) sensitiv-
ities, the soil parameters produced positive correlations with
respect to those characteristics, whereas the vegetation pa-
rameters still reflected an opposite pattern. The correlations
for mean temperature and saturated hydraulic conductivity
(KS) became noticeable for the NSE(Em) sensitivities and
revealed an opposite pattern compared to the soil parameters

and a matching pattern compared to most of the vegetation
parameters.

The two most influential vegetation parameters in relation
to any of the two performance metrics under study were,
lastly, selected according to the values of the RSA index and
were added to the SR parameterization during the calibration
stage. Figure 7 indicates that LAIf and rminf were the two
most influential parameters for the vast majority of the catch-
ments, with little influence from other vegetation parameters.

4.2 Split-sample test: calibration and evaluation

Figure 8 shows the spatial distributions of NSE(Qd) and
NSE(Em) corresponding to the Q-only (Fig. 8a, c) and Q-
E (Fig. 8b, d) calibration experiments for the calibration pe-
riod. The relative gain or loss in model performance suggests
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Figure 5. Spatial distribution of the RSA sensitivity indices calculated for NSE(Em).

that, while NSE(Qd) remained similar for both calibrations
(Fig. 8a, b), NSE(Em) was highly improved after calibrating
VIC against streamflow and evaporation data simultaneously
(Fig. 8c, d).

This can also be appreciated in the CDFs of NSE(Qd) and
NSE(Em) depicted in Fig. 9a and i. The median NSE(Qd)

was close to 0.6 for both experiments during the calibration
period (Fig. 9a), although the streamflow performance deteri-
orated slightly for theQ-E calibration. On the other hand, the
median NSE(Em) for the Q-E calibration was 0.67 during
the calibration period (Fig. 9i), while the median NSE(Em)

for theQ-only calibration did not exceed 0. As for the evalua-
tion period, the slight to moderate loss in model performance
for NSE(Qd) and NSE(Em) was indicative of an acceptable
implementation and an adequate predictive capability.

The decomposition of NSE(Qd) revealed similar rQd es-
timates for both calibration experiments (Fig. 9b) and αQd

values generally below 1 (Fig. 9c). The βQd distribution is
approximately symmetric around the median for both cali-
brations but reflects a steeper CDF closer to 1 for the Q-
only calibration (Fig. 9d). The NSE(Em) improvement for
theQ-E calibration is also evinced in its decomposition, with
rEm being the component subject to the greatest enhancement
(Fig. 9j). αEm and βEm estimates are comparable for both ex-
periments, with values slightly closer to 1 corresponding to
the Q-E calibration (Fig. 9k, l), and point to a generalized
overestimation of the variability and a slight underestimation
of the bias, respectively.

The results of the split-sample test were subsequently
benchmarked against the performance of the SIMPA model
for monthly streamflow (Fig. 9e–h) and monthly evapora-
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Figure 6. Spearman correlation coefficient (rS) between the RSA sensitivity indices calculated for (a) NSE(Qd) and (b) NSE(Em) and the
physiographic and hydroclimatic characteristics defined in Table 3 and depicted in Fig. 3. Full-size circles indicate statistically significant rS
estimates at the 95 % confidence level.

Figure 7. Frequency of the first-most influential and second-most
influential vegetation parameters according to the RSA sensitivity
indices calculated for NSE(Qd) and NSE(Em).

tion (Fig. 9i–l). Both calibration experiments outperformed
SIMPA in terms of NSE(Qm) and its decomposition, and al-
though the poor performance of SIMPA for monthly evapo-
ration was comparable to that of the Q-only calibration, the
Q-E calibration produced much higher NSE(Em) estimates.

The effect of the imbalances in the hydroclimatic datasets
on model performance during the split-sample test was eval-
uated for NSE(Qd), NSE(Em), and their decomposition for
the complete study period considering the (Q+E)/P ratio
(Fig. 1c) as a signature of how far or close the water bal-
ance is from being closed. Results for the Q-only and Q-

Figure 8. Spatial distribution of NSE(Qd) and NSE(Em) for (a,
c) the Q-only calibration and (b, d) the Q-E calibration during the
calibration period.

E calibration experiments are depicted in Fig. 10a–d and in
Fig. 10e–h, respectively. Both NSE(Qd) and NSE(Em) esti-
mates are higher for both experiments for catchments with
(Q+E)/P close to 1 (Fig. 10a, e). This effect is particularly
noticeable for NSE(Em) and the Q-only calibration as the
model was not calibrated using evaporation data (Fig. 10a).
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Figure 9. CDFs of the NSE and its decomposition calculated for (a–d) daily streamflow, (e–h) monthly streamflow, and (i–l) monthly
evaporation. Blue lines and green lines indicate the performance of VIC for theQ-only andQ-E calibration experiments, respectively, while
grey lines correspond to the performance of SIMPA (note that the SIMPA simulations are only available at a monthly time step). Results for
the calibration (evaluation) period are represented with solid (dashed) lines.

As shown in Fig. 10d and h, both βQd and βEm are closer to
1 for catchments with (Q+E)/P close to 1, with a wider
distribution of βQd for the Q-E calibration due to the imbal-
ances in the hydroclimatic datasets. These imbalances, how-
ever, do not have a marked effect on the dynamics (Fig. 10b,
f) and the variability (Fig. 10c, g).

In order to assess the role of incorporating evaporation
data into model calibration in reducing equifinality (i.e. be-
havioural parameter combinations leading to similar high-
performance estimates), the Monte Carlo simulation per-
formed as part of the sensitivity analysis was leveraged, and
the mean absolute deviation of NSE(Qd) from the max-
imum NSE(Qd) was calculated for every catchment con-
sidering the 1 %, 2 %, and 5 % best-performing simulations
from the Monte Carlo experiment according to two crite-
ria: (1) NSE(Qd) itself and (2) the Euclidean distance for
NSE(Qd) and NSE(Em). Figure 11 reflects that the devi-
ations from the maximum NSE(Qd) (1) become higher as

the percentage of best performers considered increases and
(2) are more pronounced when the best-performing crite-
rion is based on the Euclidean distance. The first effect is
a straightforward consequence of considering an increasing
number of simulations to calculate the mean absolute de-
viation from the maximum NSE(Qd). The second effect is
an indicator of less equifinality as there are fewer parameter
combinations yielding a performance close to the maximum
NSE(Qd).

Finally, the effect of handling the negative records in the
streamflow series of 93 reservoirs (Fig. 2) was evaluated after
considering them to be gaps and re-implementing theQ-only
calibration experiment. Figure 12a–d shows almost identical
distributions for NSE(Qd) and its decomposition for the 47
reservoirs with less than 5 % of negative records, suggest-
ing that the data-processing strategy applied to the negative
values had a minimum impact on the performance of VIC,
thus corroborating the validity of considering them to be null.
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Figure 10. NSE and its decomposition calculated for daily streamflow and monthly evaporation for (a–d) the Q-only experiment and (e–h)
theQ-E calibration considering the complete study period and using the (Q+E)/P ratio as a signature of how far or close the water balance
is from being closed.

Figure 11. Equifinality assessment based on the 1 %, 2 %, and
5 % best-performing simulations from the Monte Carlo experi-
ment according to (1) NSE(Qd) and (2) the Euclidean distance for
NSE(Qd) and NSE(Em). The y axis represents the mean absolute
deviation of NSE(Qd) from the maximum NSE(Qd) estimated dur-
ing the Monte Carlo experiment.

This is also observable for the 46 reservoirs with more than
5 % of negative records (Fig. 12e–h), although slight differ-
ences became apparent for the bias component (i.e. βQd ) as
the number of records modified was greater.

4.3 Cross-validation test using multiple meteorological
datasets

To cross-validate the results from the split-sample test, the
Q/P bias was firstly calculated as the Q/P ratio differ-
ence between the calibrated VIC and the observations us-
ing SPREAD and STEAD, AEMET, and E-OBS data as the
meteorological forcings of VIC for the complete study pe-
riod (Fig. 13). Q/P biases corresponding to the Q-only cal-
ibrated parameters were broadly in the range of ±0.1 for all
the datasets (Fig. 13a–c), while the Q-E calibrated parame-
ters produced increased deviations (Fig. 13d–f).

Results for SPREAD and STEAD and theQ-only calibra-
tion suggest that negative biases tend to be associated with
higherQ/P values and vice versa (see Fig. 13a and compare
to Fig. 1b), whereas the Q/P biases corresponding to the
Q-E calibration display an opposite spatial distribution com-
pared to that observed for the (Q+E)/P values (see Fig. 13d
and compare to Fig. 1c) and exhibit a high negative correla-
tion (r =−0.91). There is a predominance of negative Q/P
biases for both AEMET (Fig. 13b, e) and E-OBS (Fig. 13c,
f), even though these differences became exacerbated when
forcing VIC with E-OBS and reached values below −0.3 in
many of the northern catchments for the Q-E calibration.

The distributions of NSE(Qd) and NSE(Em), as well as
their decomposition for each meteorological dataset, are de-
picted in Fig. 14. The performance attained for NSE(Qd)

using SPREAD and STEAD was closely followed by that
obtained with AEMET but reflected a moderate deteriora-
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Figure 12. CDFs of NSE(Qd) and its decomposition for theQ-only calibration experiment in reservoirs presenting negative records of daily
streamflow: (a–d) 47 reservoirs with less than 5 % of negative records and (e–h) 46 reservoirs with more than 5 % of negative records (see
also Fig. 2). Dark-blue lines and light-blue lines indicate the performance of VIC after considering the negative values to be 0 and gaps,
respectively. Results for the calibration (evaluation) period are represented with solid (dashed) lines.

Figure 13. Spatial distribution of the Q/P bias calculated as the
Q/P ratio difference between the calibrated model and the obser-
vations (see Fig. 1b) using meteorological data from SPREAD and
STEAD, AEMET, and E-OBS to force VIC for the complete study
period. (a–c) Q/P bias corresponding to the Q-only calibrated pa-
rameters. (d–f) Q/P bias corresponding to the Q-E calibrated pa-
rameters.

tion in the case of E-OBS (Fig. 14a). The daily stream-
flow dynamics were generally well captured with the three

datasets (Fig. 14b), particularly with SPREAD and STEAD
and AEMET, although an enhanced underestimation of the
variability, together with an underestimation of the bias, be-
came noticeable for AEMET and E-OBS (Fig. 14c, d).

The performance of VIC for NSE(Em), in turn, was simi-
lar for all the datasets and clearly demonstrated the effect of
both calibration experiments (Fig. 14e). The monthly evapo-
ration dynamics were well reproduced for the Q-E calibra-
tion in all cases (Fig. 14f), with estimates of the variability
and the bias close to 1 (Fig. 14g, h).

5 Discussion

5.1 Parameter sensitivities

This study expands on previous investigations using VIC for
the Duero River basin in Yeste et al. (2020, 2021, 2023) by
involving the main river basin districts in Spain. The large-
sample approach followed in this work allowed for drawing
more robust conclusions on model realism and the hydro-
logic functioning of a wide range catchments representing
the hydroclimatic variability within the country. Parameter
sensitivities were quantified according to the RSA sensitivity
analysis method for the 189 study catchments and the vari-
ous soil, routing, and vegetation parameters indicated in Ta-
ble 2. As in Yeste et al. (2023), sensitivities were calculated
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Figure 14. Distributions of NSE and its decomposition calculated for (a–d) daily streamflow and (e–h) monthly evaporation using the
SPREAD and STEAD (SPST), AEMET, and E-OBS datasets for the complete study period. Blue, red, and purple boxplots (i.e. boxplots to
the left in each pair group) correspond to the Q-only calibration experiment. Green, orange, and pink boxplots (i.e. boxplots to the right in
each pair group) correspond to the Q-E calibration experiment.

with respect to NSE(Qd) and NSE(Em), which were the per-
formance metrics selected to evaluate the goodness of fit of
VIC for streamflow and evaporation, respectively.
d2 and the two routing parameters governing the gamma

distribution function (i.e. rout1 and rout2) were identified
as the most important parameters in relation to NSE(Qd)
(Fig. 4), highlighting the importance of applying a routing
procedure to improve model performance for daily stream-
flow. The rest of the soil parameters were also identified
as important to NSE(Qd) and yielded comparable sensitiv-
ities to those uncovered in previous studies (e.g. Gou et al.,
2020; Lilhare et al., 2020; Melsen and Guse, 2019; Mendoza
et al., 2015; Yeste et al., 2020, 2023). The influence of the
vegetation parameters on NSE(Qd), however, was negligi-
ble, resembling the findings of Sepúlveda et al. (2022) for a
large-sample application of VIC in Chile. The strong depen-
dencies of the NSE(Qd) sensitivities for the soil and vegeta-
tion parameters on mean annual precipitation, aridity index,
and NDVI were manifested as either highly positive (i.e. a
matching pattern) or highly negative (i.e. an opposite pat-
tern) Spearman correlations (Fig. 6a), thus corroborating the
interdependency between parameter sensitivities and climate
variables found in Sepúlveda et al. (2022) for the Chilean
catchments.

From a hydrologic perspective, the five soil parameters are
responsible for the runoff generation process in VIC, and the
negative correlations with respect to mean annual precipita-
tion, aridity index, and NDVI in Fig. 6a indicate that they are

more important for catchments characterized by a more arid
climate. As the precipitation volume to be transformed into
runoff is lower for such catchments, the role of these param-
eters becomes critical in modulating the runoff generation,
whereas their effect is less relevant for catchments belonging
to a more humid climate given the higher water availabil-
ity. The generated runoff volume is subsequently routed to
the catchment outlet according to a gamma-based unit hydro-
graph in a post-processing phase. The two routing parameters
control the delay between runoff generation and catchment
discharge (i.e. streamflow), and the positive correlations in
Fig. 6a suggest that both parameters are important for the
humid catchments as a consequence of the higher runoff vol-
umes to be routed.

On the contrary, NSE(Em) was found to be most sensitive
to the vegetation parameters, with LAIf and rminf being the
most important vegetation parameters according to the RSA
sensitivity indices (Figs. 5, 7). This is in line with the pa-
rameter sensitivities reported in Sepúlveda et al. (2022) and
Yeste et al. (2023), suggesting that the VIC vegetation pa-
rameters have a significant potential to improve the represen-
tation of evaporative processes if included in model calibra-
tion. Among the soil parameters, d2 was the most important
parameter in relation to NSE(Em).

In this case, the negative correlations reflected by LAIf
and rminf with respect to mean annual precipitation, aridity
index, and NDVI in Fig. 6b denote a greater impact for arid
catchments that is likely to be associated with the limiting
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effect on the evaporative processes entailed by a lower vege-
tation density. As for the soil parameters, the high NSE(Em)
sensitivities for d2 could be related to the water uptake by
vegetation in the root zone as it is directly affected by the
thickness of the VIC soil layers. The positive correlations as-
sociated with the five soil parameters with respect to the pre-
vious characteristics are likely to be connected to the imple-
mentation of the closed water balance equation in VIC and
manifest an opposite behaviour compared to that observed
for NSE(Qd). This effect was also appreciated in Yeste et al.
(2020) for the sensitivities of the VIC soil parameters.

5.2 Model performance during the split-sample test
and the cross-validation test

The large-sample application of the VIC model provided
valuable insights into its performance for streamflow and
evaporation in the 189 study catchments. The capability
of VIC to produce satisfactory estimates of NSE(Qd) and
NSE(Em) simultaneously was tested through a split-sample
test encompassing two calibration experiments based on the
weighted Euclidean distance definition for two objectives
(Eq. 2), namely Q-only and Q-E calibration. While the Q-
only calibration led to NSE(Em) scores below 0 for more
than half of the catchments, the Q-E calibration substan-
tially increased the performance for NSE(Em) and concomi-
tantly produced NSE(Qd) values closed to those correspond-
ing to the Q-only calibration (Figs. 8, 9). Similar conclu-
sions were reached in Yeste et al. (2023) according to five
single-objective calibration experiments carried out for one
test catchment located in the Guadalquivir River basin.

The benchmark comparison of VIC against the perfor-
mance of SIMPA for NSE(Qm) and NSE(Em) clearly indi-
cated an increased performance for both metrics when using
VIC (Fig. 9). The monthly simulations from SIMPA stand as
the greatest modelling effort available for the Spanish do-
main and play a fundamental role in supporting water re-
source planning at the national and river basin scales. There-
fore, the implementation of VIC developed in this work con-
stitutes an important leap forward in comparison with the
SIMPA simulations as VIC was run at a finer temporal res-
olution and improved the individual and joint representation
of streamflow and evaporation. Moreover, the performance
of VIC for daily streamflow and monthly evaporation was
similar to that reflected in large-sample applications using
VIC over the CONUS domain in Mizukami et al. (2017)
and Rakovec et al. (2019). The streamflow performance
was also comparable to other modelling efforts involving
the Duero River basin (Morán-Tejeda et al., 2014; Yeste
et al., 2020, 2023), Tajo (Pellicer-Martínez and Martínez-
Paz, 2018; Pellicer-Martínez et al., 2021), Guadalquivir
(Yeste et al., 2018), Segura (Pellicer-Martinez and Martínez-
Paz, 2015; Pellicer-Martínez et al., 2015), Júcar (Marcos-
Garcia et al., 2017; Suárez-Almiñana et al., 2020), and the
northern districts (Prieto et al., 2019, 2021, 2022).

An important role of incorporating multiple datasets into
model calibration is to reduce equifinality as some of the pa-
rameter combinations that perform equally well when only
one observational dataset is considered are rejected when
more datasets are employed. This would be ideally addressed
following a Pareto optimization approach for both NSE(Qd)

and NSE(Em), as in Yeste et al. (2023). Pareto optimiza-
tion is known for reducing equifinality as the model is cal-
ibrated for two or more objective functions simultaneously,
resulting in a lower number of behavioural parameter sets
(Efstratiadis and Koutsoyiannis, 2010). Although this work
does not include a full Pareto optimization, it was still pos-
sible to address this issue for the Q-only and the Q-E cal-
ibration experiments as they represent two important solu-
tions belonging to the Pareto front: the corner correspond-
ing to the maximum NSE(Qd) performance and the compro-
mise solution for NSE(Qd) and NSE(Em) according to the
Euclidean distance definition for both. The equifinality as-
sessment was carried out for the best-performing simulations
from the Monte Carlo experiment according to NSE(Qd) and
the Euclidean distance for NSE(Qd) and NSE(Em) and re-
vealed a reduction in model equifinality for the Euclidean
distance formulation (Fig. 11).

The amount of evaporation represents a key piece of hy-
drologic information that, together with streamflow and pre-
cipitation, allows for identifying gaining and losing catch-
ments as they constitute an indirect measure of the inter-
catchment groundwater flow (Liu et al., 2020). Gaining and
losing catchments are therefore characterized by an unclosed
water balance, which can potentially lead to an unrealistic
representation of the partitioning of precipitation into stream-
flow and evaporation in the case of significant imbalances
when using a (closed) water balance hydrologic model as
VIC. The effect of the existing imbalances in the hydro-
climatic datasets on model calibration was thoroughly ex-
amined in this work by analysing the relative gain or loss
in model performance (Fig. 9), as well as the NSE decom-
position into r , α, and β (Fig. 10) for the Q-only and Q-
E calibration experiments. Although NSE(Qd) values were
slightly lower for the Q-E calibration, they remained simi-
lar for both calibration experiments, suggesting that the im-
balances did not yield a significant deterioration in model
performance for the study catchments. As indicated in Yeste
et al. (2023), the β component is of capital importance from
a water balance perspective when streamflow and evapora-
tion data are integrated together and was revealed to be the
component most sensitive to such imbalances, with a lesser
influence on r and α.

As described in Sect. 2.2, the presence of negative values
in the streamflow series of 93 reservoirs (Figs. 2, 12) is likely
to be related to the indirect estimation of inflow data through
a daily water balance of water storages and releases without
considering the evaporative fluxes from the reservoir. In this
respect, the initial exploratory data analysis for the negative
records represents a call for action for future releases of the
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SAIH-ROEA dataset as it is not feasible to handle this issue
on the basis of the current hydrologic information provided
in this dataset. The effect of considering the negative values
to be null was evaluated during the split-sample test for the
Q-only calibration experiment to quantify their relative sig-
nificance in terms of model performance. The distributions of
NSE(Qd) and its decomposition were virtually identical after
considering the negative values to be null and gaps, suggest-
ing that the simulated streamflow is also null or low during
the warmest part of the hydrologic year.

Finally, the generalizability of the calibrated parameters
was evaluated by means of a cross-validation test using me-
teorological information gathered from AEMET and E-OBS.
As demonstrated in Yeste et al. (2023), the integration of
streamflow and evaporation data into model calibration is ul-
timately subject to the law of conservation of mass and the
magnitude of the imbalance stemming from merging three
independent datasets of precipitation, streamflow, and evap-
oration. This limitation was thoroughly checked for the Q-
only and Q-E calibration experiments and all the meteoro-
logical datasets, with results pointing to a higher Q/P bias
(Fig. 13) and a slight to moderate loss in model performance
for the Q-E calibration (Fig. 14) as a consequence of cali-
brating VIC against streamflow and evaporation data simul-
taneously. The potential of the calibrated parameters, as well
as the trade-off in model performance arising during theQ-E
calibration experiment, will be further explored in future im-
plementations of VIC for the Spanish catchments to produce
seamless distributed parameter maps and Spain-wide simu-
lations based on a fully gridded implementation. In addition,
an assessment of model structure error can be potentially per-
formed using the Framework for Understanding Structural
Errors (FUSE, Clark et al., 2008) or the Structure for Unify-
ing Multiple Modeling Alternatives (SUMMA, Clark et al.,
2015) as a way to overcome the limitations of using one sin-
gle model structure, as in this study.

6 Conclusions

In this work, a large-sample application of the VIC model
was carried out for 189 headwater catchments belonging to
the main river basin districts in Spain. The potential of com-
bining streamflow and evaporation data into the hydrologic
modelling exercise was explored for the sensitivity analysis
stage, the calibration of the VIC parameters, and the evalu-
ation of its performance for the streamflow and evaporation
simulations. The key findings of this study can be summa-
rized as follows:

– A regional sensitivity analysis allowed for the identi-
fication of the parameter sensitivities with respect to
the selected metrics to evaluate the performance of VIC
against daily streamflow and monthly evaporation data
for all the study catchments. The soil and routing pa-
rameters were revealed to be the most important param-

eters in relation to the streamflow performance, while
the influence from the vegetation parameters was neg-
ligible. The performance of VIC for evaporation was
mostly controlled by the soil parameters and two of the
vegetation parameters. The two routing parameters were
identified to be important for the humid catchments as a
consequence of the higher runoff volumes to be routed.

– The calibration of the VIC model was performed by
following two single-objective calibration experiments:
a calibration against daily streamflow data exclusively
and a calibration against daily streamflow and monthly
evaporation data simultaneously. The performance of
VIC was assessed for two independent periods, suggest-
ing that it is possible to achieve satisfactory adjustment
to both hydrologic variables at the same time if their per-
formance metrics are combined into a composite func-
tion based on a weighted Euclidean distance definition.

– A benchmark comparison was made between the per-
formance of VIC and the monthly simulations from the
SIMPA model, with the latter constituting the great-
est modelling effort available to date for the Spanish
domain. The VIC model led to an increased perfor-
mance for both streamflow and evaporation compared to
SIMPA, thus indicating promising potential for a fully
gridded implementation of VIC in the future to carry out
Spain-wide simulations.

– An additional evaluation of the performance of the VIC
model was performed using meteorological observa-
tions from two independent gridded datasets in order
to assess the generalizability of the calibrated param-
eters. The slight to moderate loss in model performance
at this stage was subject to the calibration experiment
under study, with a greater imbalance and a trade-off in
model performance becoming apparent for the calibra-
tion against streamflow and evaporation data simultane-
ously.

Code and data availability. Computer code for VIC (Liang
et al., 1994, 1996) version 4.2.d can be downloaded from
https://github.com/UW-Hydro/VIC/tree/support/VIC.4.2.d. Scripts
to perform the RSA sensitivity analysis are included in the SAFE
Toolbox (Pianosi et al., 2015). Precipitation and temperature
data were collected from SPREAD (Serrano-Notivoli et al.,
2017) and STEAD (Serrano-Notivoli et al., 2019). Stream-
flow time series were obtained from the SAIH-ROEA dataset
(https://www.miteco.gob.es/en/cartografia-y-sig/ide/descargas/
agua/anuario-de-aforos.aspx, MITECO, 2024). The soil and
vegetation parameters required to run VIC were gathered from
SoilGrids1km (Hengl et al., 2014) and EU-SoilHydroGrids ver1.0
(Tóth et al., 2017), and land uses were extracted from the UMD
Global Land Cover Classification (Hansen et al., 2000). Data
supplementing this study are available in the Zenodo repository
https://doi.org/10.5281/zenodo.10670292 (Yeste et al., 2024).
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