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Abstract. The application of machine learning (ML) includ-
ing deep learning models in hydrogeology to model and
predict groundwater level in monitoring wells has gained
some traction in recent years. Currently, the dominant model
class is the so-called single-well model, where one model
is trained for each well separately. However, recent devel-
opments in neighbouring disciplines including hydrology
(rainfall-runoff modelling) have shown that global models,
being able to incorporate data of several wells, may have ad-
vantages. These models are often called “entity-aware mod-
els“, as they usually rely on static data to differentiate the
entities, i.e. groundwater wells in hydrogeology or catch-
ments in surface hydrology. We test two kinds of static in-
formation to characterize the groundwater wells in a global,
entity-aware deep learning model set-up: first, environmen-
tal features that are continuously available and thus theo-
retically enable spatial generalization (regionalization), and
second, time-series features that are derived from the past
time series at the respective well. Moreover, we test ran-
dom integer features as entity information for comparison.
We use a published dataset of 108 groundwater wells in
Germany, and evaluate the performance of the models in
terms of Nash—Sutcliffe efficiency (NSE) in an in-sample
and an out-of-sample setting, representing temporal and spa-
tial generalization. Our results show that entity-aware mod-
els work well with a mean performance of NSE > 0.8 in
an in-sample setting, thus being comparable to, or even out-
performing, single-well models. However, they do not gen-
eralize well spatially in an out-of-sample setting (mean NSE
< 0.7, i.e. lower than a global model without entity infor-
mation). Strikingly, all model variants, regardless of the type
of static features used, basically perform equally well both

in- and out-of-sample. The conclusion is that the model in
fact does not show entity awareness, but uses static features
merely as unique identifiers, raising the research question of
how to properly establish entity awareness in deep learning
models. Potential future avenues lie in bigger datasets, as the
relatively small number of wells in the dataset might not be
enough to take full advantage of global models. Also, more
research is needed to find meaningful static features for ML
in hydrogeology.

1 Introduction

Groundwater is the primary drinking water resource in Ger-
many (Hoelting and Coldewey, 2013) and a major resource
worldwide (WWAP, 2015). As such, it is under growing
pressure due to, e.g. climate change, increased drought fre-
quencies, or irrigation (WWAP, 2015). All of these tran-
sient drivers of change highlight the utmost importance of
functional groundwater management, for which groundwa-
ter level prediction models are a key tool (Wada et al., 2010;
Famiglietti, 2014; Bierkens and Wada, 2019). For func-
tional national groundwater management, groundwater mod-
els need to be available on large or national scales. While
some conceptual modelling approaches do exist that meet
this criterion (Ahamed et al., 2022), they generally lack suf-
ficient local-scale accuracy (Gleeson et al., 2021). Currently,
distributed numerical models are the dominant hydrogeo-
logic model class in groundwater level modelling. However,
while being an excellent tool to answer tangible questions
in complex local to regional hydrogeologic settings, numeri-
cal models do not scale well. It is not trivial to parameterize
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larger-scale numerical models because it is an expensive pro-
cess. The process needs some degree of subjective sophisti-
cation and depends on numbers of unstructured geological or
spatial data.

The ability of machine learning algorithms, especially
neural networks, to incorporate large numbers of data and
to let them sort out the complexity themselves in order to
make highly accurate predictions on the point scale makes
them a useful tool for closing this gap. With large-scale ap-
plicability also comes the potential to realize prediction in
ungauged aquifers (PUA), as put forward by Heudorfer et al.
(2019) and Haaf et al. (2020, 2023), in a global, generaliz-
able way. The idea of PUA is inspired by the widely known
concept of prediction in ungauged basins (PUB) in rainfall-
runoff hydrology (Sivapalan et al., 2003; Hrachowitz et al.,
2013). As the name says, PUA refers to the aim of setting
up models that are capable of predicting groundwater lev-
els in areas where no groundwater data are sampled, i.e. un-
gauged areas. This can be large areas with no or sparse mon-
itoring, but also areas in between groundwater monitoring
wells in well-monitored regions. As groundwater dynamics
can change within rather short distances due to heterogenous
aquifer or infiltration conditions, such models could be used
to create spatially continuous data out of point measurements
at monitoring sites. Continuous groundwater level data are of
great importance, because they serve as a basis for important
decision-making tasks, such as deriving protection zones.

Even though the application of machine learning ap-
proaches in hydrogeology gained some traction in recent
years, the field is still emerging. In a recent review, Tao
et al. (2022) recapitulated that neural network architectures
often prove to be superior to other machine learning model
classes. Thereby, state-of-the-art groundwater level predic-
tion with neural networks is mostly based on single-well
models, where a single neural network model is trained for
each groundwater well (Tao et al., 2022; Wunsch et al.,
2021b, 2022a; Rajaee et al., 2019). While excellent fits can
be achieved this way at the level of individual wells, the
big drawback is that it is not possible to generalize or even
regionalize with these models. A model that is capable of
overcoming this drawback is called a “global model”, where
“global” means encompassing the whole dataset available.
This model class made a first appearance in hydrogeology’s
sister field, hydrology, through the works of Kratzert et al.
(2018, 2019a, b) in the task of rainfall-runoff modelling.
They showed (Kratzert et al., 2019b) that a neural network
can use static features (such as time-series features or en-
vironmental features, see below) to distinguish individual
dynamic input features (meteorological) and target features
(there: runoff) relations in a meaningful way, thereby allow-
ing the model to generalize to locations with similar combi-
nations of static features. They called this set-up an “entity-
aware model” (Kratzert et al., 2019b), a term which is also
common among various disciplines that use entity charac-
teristics to model personalized prediction of responses for
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individual entities caused by external drivers (Ghosh et al.,
2023).

While there have been approaches of global models for
groundwater level modelling (e.g. Clark et al., 2022) or
groundwater abstraction modelling (e.g. Majumdar et al.,
2020, 2022), to the best of the authors’ knowledge, the con-
cept of entity-aware global modelling has not been trans-
ferred to hydrogeology to date. The reason might be that pro-
viding the model with a set of static features that is able to
capture the hydrogeologic dynamics of the system in a con-
ceptual way is much more difficult than in other disciplines,
due to the complex nature of underground flow. Even though
hydrology and hydrogeology are strongly related disciplines
(Barthel, 2014), the question is whether the global entity-
aware approach will work similarly well in hydrogeological
conditions, which exhibit substantially more heterogeneous
and “local” groundwater dynamics (Heudorfer et al., 2019),
which is why nearby wells do not necessarily have high time-
series similarity (Wunsch et al., 2022b). It is not trivial to
expressively link environmental static features taken from
geospatial or geologic data products to groundwater dynam-
ics (Haaf et al., 2020), also because of uncertainties in these
products, which are often only regionalized data from point
measurements, such as for hydraulic conductivity or depth to
groundwater.

For this reason, we test two different versions of a hydro-
geologic global entity-aware model: the time-series feature-
driven model (TSfeat model) and the environmental feature-
driven model (ENVfeat model). Both models have differ-
ent potential applications. The ENVfeat model uses static
environmental features that are available spatially and con-
tinuously (see Sect. 2.2 for more information). It represents
the gold standard of a fully generalizable and regionalizable
model that we seek to achieve, in order to reach the overarch-
ing goal of PUA. However, geospatial data of sufficient qual-
ity to be used in machine learning are not always available.
Also, the aforementioned lack of representativity of geospa-
tial proxy data with regard to groundwater dynamics (Haaf
et al., 2020) hypothetically hampers predictability in a hy-
drogeologic ENVfeat model. Thus, the TSfeat model is the
viable alternative that retains the property of generalizabil-
ity. The TSfeat model differentiates groundwater time se-
ries in multi-well prediction based on static time-series fea-
tures that are derived from the past groundwater time se-
ries itself (Heudorfer et al., 2019; Wunsch et al., 2022b, see
Sect. 2.2). A TSfeat model can therefore hypothetically work
on any existing monitoring network, being able to incorpo-
rate additional unseen groundwater data and thus generalize
on groundwater data alone, despite lacking the ability to re-
gionalize in the sense that it cannot predict groundwater head
based on secondary data sources (i.e. geospatial data) like the
ENVfeat model can. We argue that time-series features are
best suited to describe the dynamics of an individual time se-
ries, and to best distinguish different groundwater dynamics
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from each other, thus hypothesizing that the TSfeat model
outperforms the ENVfeat model.

In general, both “global” model types have the theoreti-
cal advantage of more data compared to single-well models,
i.e. data of similar wells regarding dynamics can contribute
to the training of, e.g. wells with few training data and thus
enhance their performance. To further test our hypotheses,
we compare additional model set-ups, one where the set of
environmental or time-series static features are replaced by
a set of completely random static features (RNDfeat mod-
els), and one with no static features at all, relying only on the
dynamic inputs (DYNonly model).

Regarding architecture, long short-term memory neu-
ral networks (LSTMs) and convolutional neural networks
(CNNs) are currently equally dominant model classes in ma-
chine learning (ML)-guided groundwater level modelling,
as they consistently deliver high-class performance while
maintaining some degree of model simplicity (Tao et al.,
2022). LSTMs are an especially common architecture for se-
quence modelling in hydrological settings (Kratzert et al.,
2018, 2019a, b), but also increasingly in groundwater (Tao
etal., 2022; Rajaee et al., 2019). LSTMs are an improved ver-
sion of simple recurrent neural networks (RNNs) and over-
come the RNN drawback of limited memory of only few time
steps (Bengio et al., 1994), which makes LSTMs suitable
for time-series modelling. They do so by introducing a cell
memory state as well as an input gate, forget gate, and out-
put gate to control information storage and dissipation when
flowing through the LSTM layer during training (Hochre-
iter and Schmidhuber, 1997). For a while, transformer ar-
chitectures seemed promising candidates to generally super-
sede LSTMs in sequence modelling, but their suitability as a
general-purpose method beyond their original domain (lan-
guage modelling) is increasingly called into question because
they can be outperformed by simpler linear neural models
(Zeng et al., 2023), notably across the board (Das et al.,
2023). In the neighbouring discipline of groundwater quality
modelling, extreme gradient boosting (XGB) proved to be a
powerful alternative (Bedi et al., 2020; Ransom et al., 2022;
Haggerty et al., 2023). However, groundwater-quality mod-
elling is a related but different field from groundwater-level
modelling with a number of significant differences, making
the methods not directly transferable. Thus, currently, LSTM
and CNN methods remain the state of the art in groundwa-
ter level modelling. In the present study, we use an LSTM
in the global model set-up to learn the input—output relation-
ship of meteorological forcing data and groundwater level,
and combine it with a multi-layer perceptron (MLP) for pro-
cessing the static features. This is despite precursor studies
by Wunsch et al. (2021b, 2022a) resorting to the CNN ar-
chitecture for the single-well set-up, as in their study, better
performance and stability were achieved with CNNs. How-
ever, in the (global) use case presented here, LSTM showed
overall better performance in preliminary experiments (see
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Fig. Al in the Appendix), and thus an LSTM architecture
was chosen.

The aim of this study is to test whether the concept of
entity-aware global deep learning modelling is transferable
to groundwater level prediction, and, if so, which set of static
features are best suited to do so. First, we introduce the dy-
namic (Sect. 2.1) and static (Sect. 2.2) feature data used in
the study. We then give an overview of the model architecture
and optimization strategy (Sect. 3.1) and an outline of the ex-
perimental design (Sect. 3.3), followed by a brief introduc-
tion of the state-of-the-art learning rate scheduling method
to help learning (Sect. 3.2). We then compare the model per-
formance of the ENVfeat, TSfeat, RNDfeat, and DYNonly
model variants (Sect. 4.1) and discuss possible reasons for
the differences in performance. We further analyse feature
importance (Sect. 4.2) to get to the bottom of performance
differences. The paper ends with concluding remarks and an
outlook in Sect. 5.

2 Data
2.1 Dynamic feature data and study area

Regarding groundwater level data, the dataset of Wunsch
et al. (2022a) is used in this study. This dataset consists of
118 weekly groundwater level time series from the upper-
most unconfined aquifer layer, whose groundwater dynamics
are mainly dominated by climate forcing. The wells are rel-
atively evenly distributed across Germany, as can be seen in
Fig. A2. The dataset was primarily chosen because it is pre-
published and readily available from an open-source repos-
itory, enabling reproducibility and ease of publication. For
additional information on the dataset and details on data pre-
processing routines, please refer to Wunsch et al. (2022a).
Based on this readily available dataset, the only additional
pre-processing step was to exclude time series with start
dates after 1 January 2000 and end dates before 31 Decem-
ber 2015. This was done to make sure that enough data are
present for good model results. Also, four individual time
series were excluded manually because of missing environ-
mental static feature data (see Sect. 2.2). This resulted in a to-
tal number of 108 groundwater time series used in this study.

Dynamic input features used in this study are precipita-
tion (P), temperature (7'), and relative humidity (RH) from
HYRAS 3.0 (Rauthe et al., 2013; Frick et al., 2014), which
proved its suitability in several previous studies (Wunsch
et al., 2021b, 2022a), as well as an annual sinusoidal curve
fitted to temperature (7gy,), which was also shown to be a
valuable driving variable (Wunsch et al., 2021b). HYRAS 3.0
is a 1 x 1 km gridded meteorological dataset covering Ger-
man national territory, with data ranging from 1951 to 2015.
The dataset is essentially the same as in Wunsch et al.
(2022a); however, the HYRAS RH and the fitted sinusoidal
curve were used here additionally.
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2.2 Static feature data

It is well known that no single static feature is able to de-
scribe the totality of control on groundwater dynamics, but
a combination of features can provide a good approxima-
tion (Heudorfer et al., 2019). Consequently, exhaustive yet
compact sets of static input features were compiled. Thereby,
two separate sets of static features were fed into two sep-
arate model set-ups: time-series features and environmental
features. The first type (time-series features) are quantitative
metrics calculated from the groundwater time series them-
selves and express certain aspects of dynamics in these time
series. There is a long history of studies in hydrology and to
a somewhat lesser extent in hydrogeology (see Introduction
by Heudorfer et al., 2019, for a brief review) dedicated to
finding, improving, and analysing which time-series features
best depict certain aspects of time-series dynamics, or the to-
tality of time-series dynamics in a reduced set of time-series
features. Oftentimes redundancy analyses, correlation anal-
yses, dimensionality reduction, or similar methods are con-
ducted to determine a suitable set of features. As a concep-
tual decision, we use the set of time-series features devised
by Wunsch et al. (2022b). This set constitutes a small and
manageable, redundancy-reduced set of time-series features
that was furthermore successfully applied in past studies to
cluster time series in the larger dataset of wells (Wunsch and
Liesch, 2020; Wunsch et al., 2022b) from which the sample
of wells used in this study is taken (see Sect. 2.1). The full
list of time-series features used in this study, along with de-
scriptions, can be found in Table 1.

The second type of features, environmental features, are
descriptors of the hydrogeological, physiographic, and cli-
matic functioning of the underground and landscape. They
are proxies for environmental factors controlling groundwa-
ter recharge and flow and thus the dynamics in groundwater
time series (Haaf et al., 2020). To be able to reach the stated
goal of PUA (see Sect. 1), it is important that environmental
features used in the model are spatially continuously avail-
able across the study domain (Germany). Thus, only nation-
wide geospatial datasets are considered in the selection that
are, for the sake of reproducibility, freely available. More-
over, we use datasets that are not too fine-grained (in the
case of categorical data), in order to ensure that each cate-
gory is represented by one or more monitoring wells. This
means that when multiple-source datasets for the same type
of environmental feature are available, the one with the better
(usually higher) degree of aggregation was chosen. For ex-
ample, for soil type, there is a product called “buek200” with
more than 550 categories (BGR, 2018), and another prod-
uct called “buek5000” (BGR, 2005) which is a generalized
version of buek200 and has only 23 categories. In that case,
Buek5000 was chosen because communality of soil type cat-
egories between groundwater locations would be impossi-
ble with buek200, given the limited size of our groundwater
dataset.
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In surface hydrology, the science of identifying major con-
trolling factors for river flow systems is mature enough to
yield large-scale or even global selection datasets of envi-
ronmental features with which river flow can be predicted
and explained in an exhaustive way (e.g. Addor et al., 2017,
Linke et al., 2019; Kratzert et al., 2019b, 2023). In hydro-
geology, this is not the case yet. No comparable selection
of tried and tested sets of environmental features controlling
groundwater dynamics is available that could be used in ML-
based prediction of groundwater head. In light of this, we
compiled a first selection that is summarized in Table 2. It
was assembled primarily by conceptual decision from avail-
able geospatial datasets to cover the five major domains of
control, namely hydrogeology, soil, topographic drainage,
land cover, and climate. Specifically, climate can be of tran-
sient nature, which is why it was used as a long-term average
over the whole study period. Also, land cover can technically
be transient, e.g. in highly dynamic developing countries.
However, land cover in Germany can be assumed to be static
during the study period with a high degree of confidence.
Some factors such as, e.g. depth to groundwater, which are
important factors based on conceptional understanding, are
omitted, due to the aforementioned reasons of data availabil-
ity. Thus, this selection should be seen as a starting point to
serve the proof of concept in this study.

To ground-truth the effect of the static environmental and
time-series features, a third set of static features was used, by
replacing the number of static features with random counter-
parts of equal size, i.e. sets of randomly generated integers
in the range of 0-9. This was done in two variants, one set
with nine random integers to equal the number of time-series
features (RNDfeat9), and one set with 18 random integers
to equal the number of environmental features (RNDfeat18).
These numbers were chosen to make sure that all aspects but
the values of the static features themselves match the model
set-up of the TSfeat and the ENVfeat models so as to exclude
other influences.

All numeric static features (time series, environmental, or
random) were standard scaled before feeding them into the
model. All categorical static features (only environmental)
were one-hot encoded.

3 Methods
3.1 Model architecture and optimization strategy

We use LSTMs in a global entity-aware model set-up to learn
the input—output relationship between dynamic (meteorolog-
ical) input features and groundwater level as the target fea-
ture. LSTM was chosen over CNN because it proved to be
superior to CNN in the global entity-aware model set-up in
preliminary studies (see Fig. A1 for a comparison). To allow
the global model to distinguish between different groundwa-
ter dynamics of individual wells, static input features that dif-
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Table 1. Static time-series features used in the TSfeat model variant. Features were derived from the groundwater level (see Sect. 2.1) from
the beginning of the time series until 2011 (to exclude the test period from 2012 onwards). Table taken from Wunsch et al. (2022b).

Short name  Feature name Description Citation

RR Range ratio Detection of superimposed long-periodic signals, also sensitive =~ Wunsch et al. (2022b)
to outliers, calculated as the ratio of the mean annual range to
the overall range

Skew Skewness Boundedness, inhomogeneities, outliers, asymmetry of the Wunsch et al. (2022b)
probability distribution

P52 Annual periodicity  Strength of the annual cycle, calculated by correlating (Pearson) ~ Wunsch et al. (2022b)
the mean annual (52 weeks) periodicity with the complete time
series

SDdiff SDdiff Flashiness, frequency, and rapidity of short-term changes, cal-  Wunsch et al. (2022b)
culated as the standard deviation of all first derivatives

LRec Longest recession (Unnaturally) long descending heads, longest sequence without ~ Wunsch et al. (2022b)
rising head values

jumps Jumps Inhomogeneities/breaks, partly also variability, calculated as the =~ Wunsch et al. (2022b)
absolute and standardized maximum change of the mean of 2
successive years

SB Seasonal behaviour  Position of the maximum in the annual cycle, agreement with ~ Wunsch et al. (2022b)
the expected average seasonality (min in September, max in
March)

medO1 Median [0,1] Boundedness, median after scaling to [0,1] Heudorfer et al. (2019)

HPD High pulse duration  Average duration of heads exceeding the 80th percentile of non-  Richter et al. (1996)

exceedance

ferentiate the wells must be fused to the dynamic (meteoro-
logical) input features. Different approaches exist to accom-
plish this data fusion. Most notably, Kratzert et al. (2019a, b)
provide two separate variants to accomplish data fusion. The
first is the basic variant where static features are simply con-
catenated to the meteorological inputs at each time step, to-
gether entering the model through the same input layer. The
second is more sophisticated with a modified LSTM layer
where static features control the input gate, and the dynamic
features control the forget gate, output gate, and memory.
Even though the modified LSTM layer variant provides de-
sirable levels of interpretability, the basic data fusion vari-
ant notably outperformed it (Kratzert et al., 2019b). Thus,
we disregard the modified LSTM layer variant in this study.
But as discussed in Miebs et al. (2020), also the basic data
fusion variant is not an optimal choice for RNN architec-
tures, since such an approach leads to a significant increase
in the number of RNN parameters due to the fact that du-
plicated static features are evaluated each time for every se-
quence, while not adding any meaningful additional informa-
tion. As a consequence, training becomes more memory- and
time-consuming at comparable outcome (Miebs et al., 2020).
Thus, instead of the simplistic basic duplication variant, we
use a model architecture where data fusion of dynamic and
static input features is achieved by providing separate model
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threads that process the dynamic and static inputs individu-
ally and are later concatenated (Fig. 1), as also used and put
forward by, e.g. Miebs et al. (2020), Liu et al. (2022).

In this model, for every time step being processed, a se-
quence of the previous 52 time steps (making up 1 full year)
of the four dynamic input features P, T, Ty, and RH is given
to an LSTM layer of size 128 in the dynamic model thread.
In the same time step, one set of static feature values, as-
sociated with the well whose groundwater head is currently
being processed, is fed into a multi-layer perceptron (MLP)
of one fully connected (Dense) layer of size 128 in the static
model thread. Subsequently, outputs of both threads are con-
catenated and fed into another MLP with a Dense layer of
size 256, which again feeds into an output Dense layer of
size 1. In the whole architecture, all neural layers (despite
the output) are followed by a dropout layer with a dropout
rate of 0.1 for regularization.

For every well separately, both groundwater and meteo-
rological time series were split into three parts: training set,
validation set, and test set. To ensure comparability of per-
formance between wells in light of interannual (or even in-
terdecadal) fluctuations in groundwater, we chose to set a
fixed period for the validation and test sets. The validation
period was scheduled 1 January 2008-31 December 2011,
and the test period was scheduled 1 January 2012-31 De-
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Table 2. Environmental static features used in the ENVfeat model variant. Hydrogeologic, soil, topographic, and land cover features as well
as ETpot were derived from map products by sampling the map value at the location of the groundwater well. Climatic static features with
exception of ETpot were derived from the meteorologic dynamic input features (see Sect. 2.1) in the period from 1991 (to match ETpot data
availability) to 2011 (to exclude the test period from 2012 onwards).

Type Short name Description Unit Citation
Hydrogeologic  Recharge Mean annual groundwater recharge rates 1961-1990 mm BGR (2019)
Percolation Mean annual groundwater percolation rates 1961-1990 mm BGR (2003)
Hygeo_division Division of major hydrogeologic units, defined by simi- categ. BGR and SGD (2015)
lar hydrogeologic properties, groundwater conditions and
geologic genesis
Conductivity Predominant hydraulic conductivity rates (kf value) of ms~!  BGR and SGD (2019)
the aquifer
Aquifer type Classification of aquifer types (4 categories: porous, categ. BGR and SGD (2019)
karstic, fractured, mixed)
Soil Soil type Classification of predominant soil types (23 categories) categ. BGR (2018)
Clay Clay content of the soil in weight fraction % Hengl et al. (2017)
Sand Sand content of the soil in weight fraction % Hengl et al. (2017)
Topographic/ TWI Topographic wetness index; estimate where water will — Calculated after Beven
drainage accumulate in area with elevation differences and Kirkby (1979)
Divide to Distance from hypothetical groundwater catchment di- m Noelscher et al. (2022)
stream vide to nearest stream (hydrologic order 3) at the ground-
water well location
Lateral position  Relative position of the groundwater well lateral along — Noelscher et al. (2022)
the divide-to-stream stretch (hydrologic order 3)
Stream distance  Distance from the groundwater well to nearest stream m Noelscher et al. (2022)
(hydrologic order 3)
Land cover CLC land cover CORINE land cover classification (CLC, 14 categories) categ.  European Union et al.
(2018)
Climatic Tinean Mean annual average temperature °C Calculated from T
Psum Mean annual sum of precipitation mm Calculated from P
ETpot Mean annual sum of potential evapotranspiration mm DWD Climate Data
Center (CDC) (2023)
RHpmean Mean annual average air humidity % Calculated from RH
Frostdays Mean annual percentage of frost days (days with mean % Calculated from T

temperature below 0 °C)

cember 2015, which is 4 years each. The training period was
left open towards the past, meaning the model takes various
time-series lengths during training, under the sole condition
that training data are available at least from 2000 onwards,
i.e. at least 8 years of training data (see Sect. 2.1).

The model was optimized with the Adam optimizer
(Kingma and Ba, 2014) on the mean square error (MSE) loss
function during training, and later evaluated based on Nash—
Sutcliffe efficiency (NSE) calculated from model errors in
the test set, while the coefficient of determination (Rz) as
well as the root mean square error (RMSE) are reported in
this paper merely for comparison. This way of calculating the
NSE metric is directly adapted from (Wunsch et al., 2022a)
to ensure comparability with the NSE values reported therein
for a single-station model set-up. However, for the global
model set-up, specific considerations have to be taken into
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account. As Kratzert et al. (2019b) rightfully noted, MSE and
NSE are both square error loss functions, with the difference
being that the NSE is normalized by variance. This implies
that MSE and NSE are linearly correlated and will yield the
same model results in a single-well model set-up. However,
in multi-well model set-ups this linear relationship is lost be-
cause of differing mean and variance of observed groundwa-
ter levels in different wells, heavily altering un-normalized
MSE scores. As a remedy, Kratzert et al. (2019b) introduces
a custom, basin-averaged NSE, where during training NSE
loss is calculated per basis and averaged afterwards. We ap-
plied a simpler solution with the same effect, by standard-
izing each groundwater time series separately into z scores
during preprocessing. This way, the linear relationship be-
tween MSE and NSE is restored in the multi-well model set-
up when using MSE as a loss function during training and
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Figure 1. The double-threaded global entity-aware model architec-
ture introduced in this paper. Hyperparameters not found in the fig-
ure are reported in the text or can be found in the associated code.

NSE as an evaluation metric, while at the same time avoiding
the use of computationally expensive custom loss functions.

3.2 Learning rate scheduling

To avoid rapid overfitting and exploding gradients, a be-
haviour not uncommon in LSTM models (e.g. Goodfellow
et al., 2016), we used a relatively large batch size of 512
(3 %o of the 160415 samples in the training set) to make the
learning process less stochastic and thus more stable. More-
over, we decreased the overall learning rate to 0.0003 (from
the Keras default of 0.001). To further improve learning effi-
ciency, we applied a learning rate schedule (LRS) combining
a learning rate warm-up with subsequent learning rate de-
cay. Warm-up is a limited phase in the beginning of training
where the learning rate is gradually increased until it reaches
a target learning rate (Irtarger). This fights early overfitting
by reducing the primacy effect of the first training examples
learned by the model, since in unbiased datasets, the model
can learn “superstitions” from the first learning examples
otherwise uncommon in the dataset. We use a warm-up pe-
riod of 1 epoch, starting from Irgp = 0 to the aforementioned
Irgarger = 0.0003. After the initially high Irgyget is reached, it
is slowly reduced again. This strategy — warm-up periods fol-
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lowed by initial high learning rates — was shown to improve
the performance of neural networks (Smith and Topin, 2018;
Li et al., 2019). In our case, it led to a strong stabilization
of the loss curve (see Fig. 2) at an unchanged performance.
We used a cosine-shaped learning rate decay after warm-up
using the formula below, slightly differing from ready-to-use
implementations, e.g. in TensorFlow:

Ir; = 0.5 - Irgarget <1 + cos (M» (1)

Ltotal —warmup

where Ir; is the learning rate at the current batch step, Irgrget
is 0.0003, i; is the integer of the current batch step, iwarmup 1S
the number of batch steps during warm-up (number of total
training samples divided by batch size), and iy is the to-
tal number of batch steps during all training epochs. In our
case, training spanned 30 epochs. The shape of the LRS is
illustrated in Fig. A3.

Figure 2 shows the loss curves for 10 seeds with and with-
out the LRS for the in-sample ENVfeat and TSfeat models
(see Fig. A4 for loss curves of the other model variants). The
TSfeat model does have a slight MSE improvement with a
mean of 0.002 when using LRS, but the ENVfeat model ac-
tually performs slightly worse with a mean MSE decrease of
0.008 when using LRS. The same can be said when consid-
ering NSE in the test period, where mean performance de-
creases by 0.0005 with LRS. These changes in performance
are negligibly small fluctuations around zero, and in essence,
it can be said that model performance is basically the same
with or without LRS. Thus, no greatly improved performance
can be observed, as was achieved by, e.g. Smith and Topin
(2018) and Li et al. (2019). However, introducing LRS comes
with a strong stabilization effect on the loss curve (Fig. 2):
While learning without LRS shows tendencies of rapid over-
fitting as well as of heavily exploding gradients, none of that
is visible when using LRS. Loss curves with LRS are near-
ideal, with train and validation loss curves approaching each
other gently, and the validation loss curve never significantly
increasing after reaching its minimum. The greatly increased
stability of the loss curve implies much better generalization
abilities of the model when applying LRS and shows the big
advantage of this technique.

Figure 2 also shows some degree of bias in the validation
dataset. This can be seen by the faster initial convergence of
the validation loss curve. This is most likely due to the fact
that validation data were not stratified, i.e. uniformly sam-
pled over the whole period or frequency spectrum. Instead,
we used the fixed period of 2008-2011 (and test period is
2012-2015, see Sect. 3.1). These periods constitute the most
recent years, and were consciously chosen as fixed because
the ultimate aim is forward prediction of groundwater levels,
where the most recent groundwater levels are most represen-
tative for future predictions (as opposed of choosing rolling
time periods for validation and testing).
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Figure 2. Loss curves of the training and validation period for the 10 different seed initialization runs for the (a) ENVfeat model and
(b) TSfeat model, each with and without the learning rate scheduling described in Sect. 3.1. The figure shows a strong stabilization effect on

loss curves.

3.3 Experimental design

After evaluating the effect of the LRS approach on training,
we set up three different global model variants with static
features. Using the model architecture described in Sect. 3.1,
we either used static time-series features, static environmen-
tal features, or random static features in the static model
thread to build the time-series feature model (TSfeat model),
the environmental feature model (ENVfeat model), and the
random feature model (RNDfeat model), respectively. The
RNDmodel was run with two different numbers of features,
i.e. 9 to be consistent with the number of features in the TS-
feat model, and 18 as used in the ENVmodel. Additionally,
we ran a ground-truthed model variant without any static fea-
tures, i.e. only the dynamic strand (DYNonly model) as de-
scribed in Sect. 3.1.

To test the performance of the models, we first run all mod-
els in an in-sample (IS) setting where all wells are used for
training and performance is evaluated for each well sepa-
rately based on the NSE score in the test period. We then
compare their test score (NSE) with the results of the single-
station models of Wunsch et al. (2022a), i.e. models trained
and hyperparameter-optimized on every well separately. Im-
portantly, we took their published results for this and did not
rerun any of the single-station models. Also, it should be
noted that comparing with the single-station scores of Wun-
sch et al. (2022a) is not benchmarking in a narrow sense,
since some differences beyond the model architecture exist,
e.g. Wunsch et al. (2022a) did not use RH as an input (which
is used here) and optimized the input sequence length (which
is fixed to 52 here).

To further test desired capabilities of spatial generaliza-
tion, all global models were additionally run in an out-of-
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sample (OOS) setting, where the models are tested on un-
seen data, i.e. wells not used for training. Specifically, for
every well the models are trained leaving the entire data of
the wells out of training, and then predicting the score of the
wells using only the their test data. Practically, this would
equate to applying a leave-one-out (LOO) cross-validation,
but due to computational constraints, we used 10-fold cross-
validation instead to test the described OOS performance. To
ensure robustness of the results, all models were run with 10
different seeds for random weight initialization on both set-
tings (IS and OOS).

Finally, to understand the inner workings of the model, and
how its performance relates to its input data, permutation fea-
ture importance (PFI, Fisher et al., 2019) was applied. PFI
was chosen over alternative methods like SHAP (Lundberg
and Lee, 2017) due to their high computational cost. With
PFI, we measure the importance of features by successively
taking every individual input feature (dynamic or static) of
the trained model, permuting it by shuffling it randomly, and
then calculating the model error (here: MSE) in the test data.
A strong increase in the model error equates to a high im-
portance of the feature being shuffled. This was repeated for
each of the 10 randomized initialization seeds.

An additional side experiment was to compare the LSTM-
based model with a modified version where the LSTM layer
is replaced by a CNN layer, as suggested by the results of
Wunsch et al. (2021b). However, the results of the CNN vari-
ants showed consistently lower performance in the model
set-up used (see Fig. Al), and thus the results shown in the
following focus on those of the LSTM models.
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4 Results and discussion
4.1 Performance comparison of model variants

A side-by-side comparison of all global model scores and
the single-well model scores of Wunsch et al. (2022a) can
be seen in Fig. 3. The mean, lower (10 %), and upper (90 %)
percentile NSE of the 10 ensemble members for all model
variants are shown in Table 3.

In the IS validation, all global models with the excep-
tion of the DYNonly model perform almost identically with
only minor differences, at the level of statistical noise. Only
the RNDfeat9 model seems to show a slightly lower perfor-
mance. Two things are somewhat unexpected in this result:
first, that the TSmodel does not outperform the ENVmodel,
and second and even more striking, that the RNDfeat mod-
els can keep up with the performance of the models with
“meaningful” static features. This result corresponds to the
findings of Li et al. (2022), who replaced their static environ-
mental features with random counterparts and found similar
or even improved performance for rainfall-runoff modelling
in CAMELS basins. We speculate that the models use the
static features solely as a kind of “unique identifier” for the
wells; thus, it does not seem to matter if the static values
represent some meaningful information (in terms of gener-
alization) or not. This shows that our model is not able to
learn from wells with similar static features, probably due
to the number and choice of wells in the dataset considered.
The reason for the inferior IS performance of the DYNonly
model, however, seems obvious: since no static features are
provided, the model is not able to distinguish between the
different wells and instead fits to some average behaviour of
all wells.

All global models with static features also slightly beat
the scores of the single-well models. This result confirms ob-
servations by Kratzert et al. (2019a, b), who also observe
better scores of global models over single-station models
in rainfall-runoff prediction. These seemingly contradictory
results — after all, single-well models are specifically opti-
mized for the one specific location and should know this lo-
cation best — is often attributed to the fact that, contrary to
traditional hydrogeologic or hydrologic models, ML mod-
els benefit from additional data. However, with the RNDfeat
models being as good as the TSfeat and ENVfeat models,
we can widely exclude this as a reason in our case (maybe
with the exception of the TSfeat model, which seems to per-
form slightly better than its RNDfeat9 counterpart). Bene-
fiting from additional data or additional wells, respectively,
would presuppose that the model is able to identify wells that
react similar to meteorological inputs based on the static fea-
tures provided. With the random number features being dif-
ferent for all wells and no meaningful similarity depicted in
them, this cannot be the case.

The differences to the single-well models might just as
well be attributed to the different meteorological input pa-
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rameters (RH and Ty, used additionally) and different op-
timization strategy. Moreover, despite being better on aver-
age, we observe a significant tailing in all global model set-
ups, which the single-well models do not experience to the
same degree (Fig. 3). The tail is the only part of the dataset
where single-well models outperform both global models in
18 wells.

Figure 3 also shows the out-of-sample (OOS) performance
of the global models, represented by 10-fold cross-validation
runs. As expected, there is a sharp decrease in model per-
formance when test data of a times series are predicted by a
model that never saw the time-series training data. However,
with a mean NSE of 0.675 (down from 0.8213, see Table 3)
for the ENVfeat model, and a mean NSE of 0.6914 (down
from 0.8229) for the TSfeat model, on average the OOS mod-
els perform surprisingly well, especially since some of the
performance loss might be attributed to the compromise of
10-fold CV (instead of LOO CV), where about 10 % of pos-
sible training data are lost compared to the IS setting. These
indications of model robustness are counteracted by the large
seeding spread associated with both OOS models (Fig. 4 or
A5), and an amplification of the tailing effect. Also, as in
the IS case, the RNDfeat models perform nearly identically
to the ENVfeat and the TSfeat models (Fig. 3), indicating
that the model is not able to truly generalize well based on
the static features provided, neither on the environmental nor
on the time-series features. The TSfeat model performs at
least slightly better than its RNDfeat9 counterpart, which
could at least partly support our initial hypothesis that the
TSfeat model would outperform the ENVfeat model since
static time-series features are deemed to be informationally
more complete and static environmental features suffer from
high uncertainty. But the differences are minor and might be
indistinguishable from noise due to the relatively low num-
ber of 10 ensemble members, showing a large range (Fig. 4
or AS). In the median, the ranges of NSE values at individ-
ual wells for different model seed realizations for the EN-
Vfeat and TSfeat model are around 0.5 in the OOS setting,
with minimum values of around 0.08 and maximum values of
more than 1. Even though the spread is 1 magnitude smaller
in the IS setting for all models (medians hovering around
0.05, see Fig. 4), this is a significant spread and shows that
even if different model runs have the same NSE on the global
level, they will have significantly different outcomes on the
level of the individual well.

Most strikingly, the DYNonly model, having no static fea-
tures at all, clearly outperforms all models with static features
in the OOS setting (Fig. 3, Table 3). This indicates that the
static features even seem to hamper the global entity-aware
models from learning a meaningful relationship that is gen-
eralizable from the static features in the OOS setting. Fur-
thermore, the OOS performance of the DYNonly model is as
equally good as its IS performance (down to the third dec-
imal, see Table 3), even though it relies on 10 % less train-
ing data. This implies information saturation, meaning that
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Figure 3. Cumulative distributions of NSE for the model variants ENVfeat, TSfeat, RNDfeat9, RNDfeat18, and DYNonly in in-sample mode
(IS) and out-of-sample mode (OOS) against the performance of the single-well models by Wunsch et al. (2022a) (*). Lines represent sorted
median NSE scores of 10 ensemble members. A version that includes the ensemble ranges as envelopes is shown in Fig. AS.

Table 3. Mean(bold font), lower (10 %) and upper (90 %) percentile NSE of the 10 ensemble members for all model variants as well as the
mean NSE for single-well models (also in bold font) as published in Wunsch et al. (2022a). R? and RMSE show similar patterns to NSE and
are reported for comparison, but not discussed in the text.

Variant NSE (Q19) NSE(Qs9) NSE(Qop) | R?(Qs0) RMSE (Qs0)
Single-well - 0.8134 - ‘ 0.8255 0.2961
ENVfeat (IS) 0.8026 0.8213 0.8397 0.8418 0.2656
RNDfeat18 (IS) 0.7909 0.8215 0.8457 0.8354 0.2673
TSfeat (IS) 0.8028 0.8229 0.8395 0.8402 0.2677
RNDfeat9 (IS) 0.7777 0.8135 0.8399 0.8274 0.2746
DYNonly (IS) 0.7094 0.7347 0.7554 0.7670 0.3580
ENVfeat (O0S) 0.3977 0.6750 0.7685 0.5102 0.3437
RNDfeat18 (OOS) 0.4156 0.6767 0.7707 0.5145 0.3396
TSfeat (OOS) 0.4590 0.6914 0.7697 0.5491 0.3403
RNDfeat9 (O0S) 0.4433 0.6817 0.7710 0.5386 0.3401
DYNonly (OOS) 0.7103 0.7326 0.7518 0.7583 0.3574

all information needed to reach the IS performance of the
DYNonly model can be found in a significantly smaller sub-
set of the dataset.

More interesting insights can be drawn on the level of in-
dividual well predictions (Fig. 5, see the Supplement for all
other wells). Basically, there are two groups of wells, where
all wells show more or less the behaviour of one of the two
groups, with smooth transitions in between. In the first group,
exemplarily shown by well BB_30400591 (Fig. 5, top), the
predictions in the IS setting of the ENVfeat, TSfeat, and
RNDfeat models match rather well the observations with
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NSE for all models above 0.8, while the DYNonly model
clearly fails (NSE = 0.169). Moreover, the predictions of the
ENVfeat, TSfeat, and RNDfeat models are quite similar, con-
firming their overall similar performance. Thus, the models
seem to obtain important information from the static features,
that make it possible to better train the model to the individ-
ual behaviour of the well, while (as already postulated ear-
lier) the kind of static information — environmental, time se-
ries, or random — does not seem to matter. On the other hand,
the DYNonly model obviously lacks information about the
special behaviour of the well, and probably predicts some
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Figure 4. Range of NSE scores of the 10 ensemble members of all model variants in in-sample mode (IS) and out-of-sample mode (OOS).

average reactions to the inputs, which do not work well for
the well considered. In the OOS setting, the predictions of all
models are quite similar, or in other words, the predictions
of the ENVfeat, TSfeat, and RNDfeat approach that of the
DYNonly model, which is nearly the same as in the IS set-
ting. The ENVfeat, TSfeat, and RNDfeat have obviously lost
their ability to predict the individual behaviour of the consid-
ered well, as the well was not included in the training, and
the model was obviously not able to generalize the relevant
information from static data from other wells. Thus, there
is a drastic drop in model performance between the IS and
OOS setting. Other good representatives for this group are,
e.g. well BW_107-666-2 and well SH_10L53126001 (see
Supplement).

In the second group, represented by well
SH_10L62060004 (Fig. 5, bottom), all model predic-
tions in the IS and OOS setting, including the DYNonly
model, are quite similar. All models perform well with NSE
> (0.8 and there is no obvious performance drop between
IS and OOS. Our interpretation is that these wells show
a more “average” behaviour in terms of their reaction to
the meteorological inputs, i.e. the “average” reaction to
the meteorological inputs that is learned by the DYNonly
model. Therefore, the additional information provided by
the static parameters does not improve model performance
in the IS setting. Conversely, it also does not negatively in-
fluence model performance when this information is missing
0O0S, explaining the absent or minor drop in performance.
Other good representatives for this group are, e.g. well
BW_124-068-9 and well NI_200001722.

4.2 Permutation feature importance

By looking at the input feature importance of the models, fur-
ther insights can be gained. We applied permutation feature
importance to detect the relative importance of individual in-
put features in the trained models. Figure 6 shows the feature
importance of the ENVfeat, TSfeat, and RNDfeat models,
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separately for static and dynamic features (dynamic feature
importance includes all model variants).

The first thing to note is that every individual dynamic fea-
ture is much more important than any of the static features, as
the permuted MSE increase is higher by orders of magnitude
for dynamic features. Thereby, as expected, precipitation and
temperature are the most important features, followed by the
sinus curve fitted to temperature. RH is least important. Even
though there is some instability involved in these results, es-
pecially with T, and RH, but also P and T experiencing
heavy outliers up to 2 magnitudes above the median, gen-
erally this confirms the findings of previous studies (Wun-
sch et al., 2021b). Admittedly, a more stable feature rank-
ing could be obtained with alternative methods like SHAP
(Lundberg and Lee, 2017), which was, however, not applied
due to limited computational resources available to the au-
thors.

Among static features, we find much less difference be-
tween individual features (Fig. 6). Among static environ-
mental features, CLC land cover comes out on top. This
seems plausible because of its conceptual importance, and
because it is the only feature representing land cover (al-
though comprising 11 categories), unifying all information
of land cover forcings, i.e. being informationally dense for
the model. However, all environmental features show about
the same feature importance as their random counterparts,
confirming conclusions drawn in Sect. 4.1 that they do not
contribute any meaningful and thus generalizable informa-
tion to the model.

Static time-series features are somewhat more sensitive,
with high pulse duration (HPD) and annual periodicity (P52)
outpacing all other time-series features by some margin. But
feature importance remains on a very low level for all other
time-series features, which are even surpassed by the average
(relative) importance of the nine random features, the excep-
tion being HPD. This allows the conclusion to be drawn that
this is the only static feature that might provide some mean-
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Figure 5. Examples of predictions of groundwater levels in the test period (2012-2015) for two wells, representing groups of similar

behaviour (see text for details).

ingful/generalizable information to the model. It also could
be the reason that the TSfeat model at least slightly outper-
forms the RNDfeat9 model (compare Fig. 3).

In general, however, the most important finding to take
from this result is the fact that all static features are orders of
magnitude less important than the dynamic features, which
implies that the model draws the majority of information
used for prediction from the shared dynamic features. This
can be used as an explanation for the finding that EN'Vfeat,
TSfeat, and RNDfeat models perform almost identically (see
Fig. 3), while DYNonly is able to outperform them in the
OOS set-up.
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5 Conclusions

The results of our work offer two main conclusions. First, in
the IS setting, entity-aware global models work well and their
performance can keep up with those of single-well models.
All proposed model variants reached slightly better scores
than the state-of-the-art single-station model. However, con-
trary to our initial hypothesis, the TSfeat model does not out-
perform the ENVfeat model. Moreover, the RNDfeat models
— having random integers instead of “meaningful” static fea-
tures — performed equally well as the TSfeat and ENVfeat
variants. Against the backdrop of the IS DYNonly model
(trained without static features, only on meteorologic input),
which had severely reduced performance, it is evident that
this is because all tested sets of static features appear to only
act as unique identifiers, enabling the model to differentiate
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Figure 6. Permutation feature importance of the ENVfeat, TSfeat, and RNDfeat models, separately for static and dynamic features (dynamic
feature importance includes all model variants). The dotted lines indicate the MSE of the baseline model, which includes all features. Larger

deviations from this baseline indicate higher feature importance.

between time series and memorizing their unique behaviour,
but not to establish meaningful system-characterizing rela-
tionships based on the static features. Thus, we conclude that
the models do not learn adequately from wells with similar
information as provided by the static features. It may not be
worth the effort to gather supposedly meaningful data, since
random numbers might work just as well (as long as a suf-
ficient number of random features is provided). This finding
is in accordance with studies that have been carried out in
rainfall-runoff modelling (Li et al., 2022). Also, observed
performance improvement over single-well models might
just as well be due to architectural differences and the incor-
poration of additional dynamic input features (namely RH
and Tg,) that were not considered in the published single-
well model results used as comparison. In other words, the
models introduced here perform better, but not necessarily
for the reason of being global or entity-aware, according to

https://doi.org/10.5194/hess-28-525-2024

the commonly made claim that global models profit from ad-
ditional similar data.

Second, the OOS performance of all model variants with
static features expectedly decreases significantly. In general
this is still a respectable performance, making a case for
good generalizability in principle. However, the DYNonly
model significantly outperforms TSfeat, ENVfeat, and RND-
feat variants in this setting. This makes it evident that static
features, acting as unique IS identifiers, obscure learning of
the only true meaningful or causal connection, namely of
dynamic (meteorologic) input features to OOS groundwater
levels (i.e. when not included in training). In other words, the
models are not able to learn that wells with a similar static
feature combination should react similar to meteorological
dynamic feature inputs in terms of groundwater level out-
put. Instead, model skill is almost entirely based on learning
from the dynamic input features. This might not come as a
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surprise for the environmental features, which were deemed
to be afflicted with high uncertainties, but for the time-series
features, since these proved in previous works to be well-
suited to describe groundwater dynamics as a result of its
reaction to meteorological inputs. Thus, our results suggest
only a temporal generalizability potential — although valu-
able in itself — of entity-aware models, but lack evidence
of true spatial generalizability potential — which remains the
overarching aim of the field. However, this stands on the pre-
sented database, which, as already stated, might be too small,
not diverse enough, and/or biased.

The tasks set by these conclusions are clear. First, since
the dataset might simply not contain enough data to take
full advantage of global models, we plan to investigate this
with a larger dataset that covers groups of wells with several
similarities as well as dissimilarities in a future study. The
hypothesis is that when more wells with similar meaning-
ful static information are included in the dataset, the entity-
aware model might then be able to better learn and generalize
from the provided features. Second, our study revealed the
glaring research gap of finding and compiling meaningful en-
vironmental descriptors of groundwater dynamics with true
predictive power. The hydrogeologic discipline lacks large-
scale datasets of the kind. This severely restricts the devel-
opment of hydrogeology as an ML research field, and the
establishment of neural network models with physiographi-
cally meaningful internal structures, as was pursued in this
study.

Appendix A
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Figure Al. Comparing the performance of LSTM with CNN on the basis of the ENVfeat model variant. For the CNN model, the LSTM
layer in the dynamic model thread is replaced with a CNN layer (followed by batchnorm and maxpool1D). The figure shows the performance
of the models in an in-sample (IS) and out-of-sample (OOS) set-up. While CNNs and LSTMs perform almost the same in the OOS mode,
CNNs are clearly inferior to LSTMs in the IS mode. Thus, LSTMs were used in this study.
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Figure A2. Location of the groundwater gauges in Germany.
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Figure A3. Visualization of the learning rate schedule used in this study. It consists of one warm-up epoch where the learning rate linearly
increases from 0 to 0.001, followed by 29 epochs of cosine-shaped learning rate decline.
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Figure A4. Loss curves of the training and validation period for the 10 different seed initialization runs for the (a) RNDfeat9 model,

(b) RNDfeat18 model, and (¢) DYNonly model.
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Figure AS. Cumulative distribution function of NSE of the model variants ENVfeat, TSfeat, RNDfeat, and DYNonly in in-sample mode
(IS) and out-of-sample mode (OOS) against the performance of the single-well models by Wunsch et al. (2022a) (*). Lines represent sorted
median NSE scores of 10 ensemble members, envelopes represent ranges of the ensemble forecasts excluding the worst and best member.

Code and data availability. The original groundwater level data
are available free of charge from the respective local authorities:
LUBW Baden-Wuerttemberg, LfU Bavaria, LfU Brandenburg,
HLNUG Hesse, LUNG Mecklenburg-Western Pomerania, NL-
WKN Lower Saxony, LANUV North Rhine-Westphalia, LfU
Rhineland-Palatinate, LfULG Saxony, LHW Saxony-Anhalt and
LLUR Schleswig-Holstein. With the kind permission of these
local authorities, the processed groundwater level data have been
published by Wunsch et al. (2021a). Meteorological input data were
derived from the HYRAS dataset (Rauthe et al., 2013; Frick et al.,
2014), which can be obtained free of charge for non-commercial
purposes on request from the German Meteorological Service
(DWD). The Python code as well as the underlying data are pub-
licly accessible via GitHub (https://github.com/KITHydrogeology/
152023-global-model-germanyTS4, last access: 15 Decem-
ber 2023) and Zenodo (https://doi.org/10.5281/zenodo.10628600,
Heudorfer et al., 2023).
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