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A minor error in the data processing code was identified af-
ter publication, affecting the cross-validation (called out-of-
sample, OOS, in the paper) results reported in the original
publication. Specifically, static features were incorrectly as-
signed to dynamic data during training sample creation. This
corrigendum presents corrected figures and updated perfor-
mance metrics, mostly concerning the TSfeat model vari-
ant which experienced larger changes in performance, while
all other model variants perform effectively the same. Since
the TSfeat model variant is not the primary concern of the
original publication, the overall conclusions of the study re-
main unchanged. This corrigendum maintains the same sec-
tion names and numbering as the original publication but de-
tails the specific adjustments made to the original text and
figures.

3 Methods

3.1 Corrections made to the code

A coding error was discovered in the data pre-processing
stage of the original study. In one line of the code responsible
for generating cross-validation runs (model_CV.py), a misat-
tribution of station identifiers occurred during the fusion of
static to dynamic features to form the overall training sam-
ples. Specifically, a wrong iterator–ID vector pair was used
when subsetting the station ID vector while matching sets of
dynamic and static features. This error resulted in the incor-
rect pairing of static features with dynamic features for sta-

Figure 3. Cumulative distributions of NSE for the model vari-
ants ENVfeat, TSfeat, RNDfeat9, RNDfeat18, and DYNonly in in-
sample (IS) mode and out-of-sample (OOS) mode against the per-
formance of the single-well models by Wunsch et al. (2022a) (*).
Lines represent sorted median NSE scores of 10 ensemble mem-
bers. A version that includes the ensemble ranges as envelopes is
shown in Fig. A5.

tions, effectively dissolving the intended physiographic cor-
respondence for the stations. The erroneous line of code was
corrected, and the affected figures and performance metric
table are presented in Sect. 4 of this corrigendum, next to an
assessment of these changes. Since the coding error only oc-
curred in the OOS code, all results concerning the in-sample
(IS) models remain unchanged.
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Figure 4. Range of NSE scores of the 10 ensemble members of all model variants in IS mode and OOS mode.

Table 3. Mean (bold font), lower (10 %), and upper (90 %) percentile NSE scores of the 10 ensemble members for all model variants as well
as the mean NSE for single-well models (also in bold font) as published in Wunsch et al. (2022a). R2 and RMSE show similar patterns to
NSE and are reported for comparison but not discussed in the text.

Variant NSE (Q10) NSE (Q50) NSE (Q90) R2 (Q50) RMSE (Q50)

Single-well – 0.8134 – 0.8255 0.2961

ENVfeat (IS) 0.8026 0.8213 0.8397 0.8418 0.2656
RNDfeat18 (IS) 0.7909 0.8215 0.8457 0.8354 0.2673
TSfeat (IS) 0.8028 0.8229 0.8395 0.8402 0.2677
RNDfeat9 (IS) 0.7777 0.8135 0.8399 0.8274 0.2746
DYNonly (IS) 0.7094 0.7347 0.7554 0.7670 0.3580
ENVfeat (OOS) 0.6392 0.7105 0.7646 0.7663 0.3726
RNDfeat18 (OOS) 0.6059 0.6867 0.7434 0.737 0.3900
TSfeat (OOS) 0.7712 0.7995 0.8238 0.8312 0.3250
RNDfeat9 (OOS) 0.5837 0.6619 0.7249 0.7187 0.4033
DYNonly (OOS) 0.7095 0.7319 0.7508 0.7749 0.3708

4 Results

4.1 Performance comparison of model variants

Originally, the study showed that all static feature models
performed similarly poorly in OOS predictions, suggesting
that static features did not contribute significantly to model
generalization. However, after correcting the error we re-ran
the experiments, which yielded a somewhat elevated OOS
performance that was however marginal for most model vari-
ants (compare Fig. 3 and Table 3 in the original paper and this
corrigendum). The models remained on a comparable level,
and the overall conclusions from these results do not change.
But now a notable exception is revealed, namely the TS-
feat model (with time-series-derived static features), which
competes almost favourably with IS models now, suggest-
ing that time-series-derived static features provide valuable
information for spatial generalization. This corrects the orig-
inal assertion that all static feature models performed equally
poorly in OOS settings. With regard to the ENVfeat model,
the updated results affirm that it still performs on a similar
level to the RNDfeat models in the OOS setting, and the
ENVfeat model is still outperformed by the DYNonly model

(without static features), confirming that environmental (and
of course random) static features do not enhance OOS per-
formance.

The initial hypothesis that the TSfeat model would out-
perform the ENVfeat model is now partially supported, at
least in the OOS setting. The original text stated that the hy-
pothesis was overall incorrect. Now it is only incorrect for
the IS setting. The corrected results indicate that time-series
static features provide more robust information for general-
ization. However, this indication still remains limited in its
applicability, since time-series features can only be derived
in gauged locations, defeating the purpose of OOS models to
provide prediction in ungauged locations.

Appendix A

Figure A1 shows the same hierarchy of model performance
between the LSTM (long short-term memory) and CNN
(convolutional neural network) models as in the original pa-
per. The LSTM still outperforms the CNN in exactly the
same way, still underlining the choice of the LSTM over the
CNN as used in previous studies.
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Figure A1. Comparing the performance of LSTM with CNN on the
basis of the ENVfeat model variant. For the CNN model, the LSTM
layer in the dynamic model thread is replaced with a CNN layer
(followed by batchnorm and maxpool1D). The figure shows the per-
formance of the models in an IS and an OOS set-up. While CNNs
and LSTMs perform almost the same in the OOS mode, CNNs are
clearly inferior to LSTMs in the IS mode. Thus, LSTMs were used
in this study.

Figure A5. Cumulative distribution function of NSE of the model
variants ENVfeat, TSfeat, RNDfeat, and DYNonly in IS mode and
OOS mode against the performance of the single-well models by
Wunsch et al. (2022a) (*). Lines represent sorted median NSE
scores of 10 ensemble members, and envelopes represent ranges of
the ensemble forecasts excluding the worst and best members.

Figure A5 shows the updated ranges of performance
among the seeds. There is no major change except a reduced
uncertainty range for the TSfeat model, as also reflected in
Fig. 4.
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