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Abstract. Two simple feedforward neural networks (mul-
tilayer perceptrons – MLPs) are trained to detect rainfall
events using signal attenuation from commercial microwave
links (CMLs) as predictors and high-temporal-resolution ref-
erence data as the target. MLPGA is trained against nearby
rain gauges, and MLPRA is trained against gauge-adjusted
weather radar. Both MLPs were trained on 26 CMLs and
tested on 843 CMLs, all located within 5 km of a rain gauge.
Our results suggest that these MLPs outperform existing
methods, effectively capturing the intermittent behaviour of
rainfall. This study is the first to use both radar and rain
gauges for training and testing CML rainfall detection. While
previous studies have mainly focused on hourly reference
data, our findings show that it is possible to classify rainy
and dry time steps with a higher temporal resolution.

1 Introduction

Commercial microwave links (CMLs) are radio links be-
tween telecommunication towers. By exploiting the relation
between CML signal attenuation and rainfall intensity, it is
possible to estimate the average rainfall intensity along the
CML (Messer et al., 2006; Leijnse et al., 2007). As the sig-
nal is also attenuated by factors other than rain, such as air

humidity, these non-rainy factors must be taken into account
in what is often called the baseline attenuation. Rain-induced
attenuation can then be estimated by subtracting the esti-
mated baseline from the total loss. Since each CML can have
a different baseline attenuation and because the baseline at-
tenuation can change between different rainfall events, it is
necessary to estimate the baseline attenuation for each rain-
fall event. A common approach is to use the signal attenu-
ation from time steps that are temporally close to the rain-
fall period (Chwala and Kunstmann, 2019; Graf et al., 2020).
This raises the need for algorithms that can separate the CML
time series into rainy time steps, where the CML experiences
signal attenuation due to rainfall, and dry time steps, where
the CML signal level is not attenuated by rainfall. This task
can be seen as a classification problem, where every time step
is classified as either rainy or dry. The separation of the CML
time series into rainy and dry time steps can also help to fil-
ter out events in the CML signal time series that show some
of the same characteristics as rainfall events but that are not
caused by rainfall. CML signal loss is recorded differently
depending on the network operator and can, for instance, be
available as instantaneous measurements every minute. An-
other popular format is to record the minimum and maximum
signal loss over a period, typically 15 min. In this work, we
focus on instantaneously sampled CML data as these data are
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becoming more available; see, for instance, Andersson et al.
(2022) and Covi and Roversi (2024).

The CML signal experiences fluctuations during rain
events. Based on this, a simple method for rain event de-
tection was developed by Schleiss and Berne (2010). They
suggested using these fluctuations to classify rainy periods
by taking the standard deviation of a 60 min rolling window
and setting time steps with values above a certain threshold
to rainy. This threshold is different between CMLs but can be
derived from local climate characteristics. Graf et al. (2020)
expanded this method by recognising that climate character-
istics are not necessarily valid for different locations; indi-
vidual years; and, in particular, specific rainy periods that
might be of interest. They proposed that one should esti-
mate the threshold by computing the 80 % quantile of the
60 min rolling standard deviation for each CML and then
multiply this number by a constant that was found to be sim-
ilar for all CMLs in the study. A more data-driven approach
was explored by Polz et al. (2020). They trained a convolu-
tional neural network (CNN) to detect rainfall events using
800 CMLs in Germany. As a reference, they used the gauge-
adjusted radar product RADOLAN-RW from Germany’s Na-
tional Meteorological Service (DWD), which has an hourly
resolution. Another approach is to include the signal loss
from nearby CMLs (Overeem et al., 2011). This method was
shown to work for dense CML networks. The literature de-
scribes several other approaches (Habi and Messer, 2018;
Reller et al., 2011; Rayitsfeld et al., 2012; Wang et al., 2012).

Although several of the mentioned approaches classify
rainfall at a high temporal resolution, all large studies us-
ing instantaneously sampled CML data have been evaluated
using hourly reference data. This might be a reasonable ap-
proach as rainfall detection is mostly used for estimating the
baseline, which is typically set to be a constant throughout
a rainfall event (Chwala and Kunstmann, 2019; Uijlenhoet
et al., 2018; Messer and Sendik, 2015). However, existing
methods are not optimised for estimating rainfall at a higher
temporal resolution; thus, the estimates might not reflect the
true intermittency of rainfall. Estimating too-long rainy pe-
riods could, in cases where the baseline attenuation drops
during the rainfall event, result in a bias where the CML es-
timates rainfall during time steps where there is no rain. Fur-
ther, a drawback of estimating too-long rainy periods is that
some of the estimated rainy time steps could contain non-
liquid precipitation. Because dry snow induces a very low
signal attenuation, these time steps appear to be dry in the
CML time series. Thus, correctly estimating rainy time steps
is important because CML time steps that indicate no precip-
itation could contain dry snow.

In this study, we present two methods for detecting rainy
time steps in CML time series data. The goal of both meth-
ods is to detect rainy time steps in the time series of a CML
where the signal attenuation is provided every 1 min. This
is done with a higher temporal resolution compared to ex-
isting methods so that short dry spells during rainy periods

can be identified. One method is trained on radar reference
data, and the other method is trained on rain gauge reference
data. Both methods are tested against rain gauge and radar
data, highlighting their differences. We also examine the per-
formance of the developed methods in comparison to exist-
ing approaches, aiming to gain a clearer understanding of the
differences between the two alternative methods.

2 Material and methods

2.1 Data

A large dataset with 3901 CMLs from Germany was used,
providing transmitted and received signal levels with a tem-
poral resolution of 1 min from 1 to 31 July 2021. The total
signal loss (TL) was computed by subtracting the transmitted
signal level from the received signal level. Each CML con-
sists of two time series called sub-links, reflecting the signal
loss in the beams going from location 0 to 1 and vice versa.
More information on this dataset can be found in Graf et al.
(2020). As the ground truth, two different sources were ex-
plored. The first used rain gauges near the CMLs provided
by DWD. The rain gauge data were provided with a tempo-
ral resolution of 1 min and a volume resolution of 0.01 mm.
We consider a minute to be rainy if the rain gauge records any
rainfall. The other source was the radar product RADKLIM-
YW (Winterrath et al., 2018). This product from DWD is
a gauge-adjusted, climatologically corrected product with a
temporal resolution of 5 min. For the comparison with CML
data, the radar product was averaged over the CML path, with
each grid value being weighted by the length of the CML
path intersection in each grid cell. For a comparison of the
path-averaged RADKLIM-YW reference and the CML rain-
fall estimates, RADKLIM-YW was resampled from a 5 min
resolution to a 1 min resolution by linear interpolation and
then dividing the rainfall sums by 5. To make it comparable
to the rain gauges, minutes with rainfall above 0.01 mm were
set to rainy.

Our study focused on CML–rain gauge pairs located less
than 5 km from each other. This resulted in 882 CMLs where
the CML lengths ranged from 0.3 to 22.9 km, with 90 % of
the CMLs being longer than 2.4km. The CML frequencies
ranged between 7 to 40 GHz, with most CMLs having a fre-
quency above 15 GHz. Even though there are many CMLs
in our dataset, we only have 429 unique rain gauges serving
as references. This means that some CMLs use the same rain
gauge for reference.

2.2 The MLPRA and MLPGA method

In our approach, we have used a simple feedforward neu-
ral network provided by the Python library scikit-learn (Pe-
dregosa et al., 2011). This network consists of an input layer,
fully connected hidden layers, and an output layer. Networks
with a simple architecture of this type are often referred to as
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a multilayer perceptron (MLP). The MLP’s job is to classify
a time step in the CML time series as either rainy or dry. It
does this by analysing the signal loss from the surrounding
40 time steps. In essence, the MLP acts like a sliding win-
dow, moving across 40 time steps at a time and determining
whether each centred time step is rainy or dry. The predictor
data – that is, the 40-time-step moving window – are organ-
ised in a so-called design matrix (Eq. 1), where tls1,t and tls2,t
represent the total signal loss at time step t for sub-link 1 and
sub-link 2, respectively.

tls1,t0−20 . . . tls1,t0+20 tls2,t0−20 . . . tls2,t0+20
...

...
...

...
tls1,ti−20 . . . tls1,ti+20 tls2,ti−20 . . . tls2,ti+20

...
...

...
...

tls1,tn−20 . . . tls1,tn+20 tls2,tn−20 . . . tls2,tn+20

 (1)

We experimented with longer windows but could not find
any improvements by increasing the window size beyond 40
time steps. There was also an improvement as a result of us-
ing both sub-links rather than one. This improvement could
be because using two sub-links includes more information,
which could help the MLP filter out noise.

As pre-processing, we subtracted the 12 h centred rolling
median from the signal level for each CML. This removes
longer trends from the signal level, making the time series
stationary. We experimented with other detrending methods
such as differencing but got poorer results.

Next, two approaches were explored, one where we
trained the neural network against radar data (MLPRA) and
one where we trained the MLP against rain gauge data
(MLPGA). It must be noted that both references observe rain-
fall at different locations and different spatio-temporal aggre-
gates as compared to the CML. In particular, the rain gauges
observe time-aggregated point rainfall, whereas the CML ob-
serves instantaneous path-averaged rainfall. Thus, the refer-
ences are just an approximation of the rainfall observed by
the CML.

For testing, the optimal MLPRA and MLPGA were inte-
grated into pycomlink, a Python library for CML processing
(Chwala et al., 2024). Since the current pycomlink environ-
ment does not support sklearn, the weights and network ar-
chitecture were exported to tensorflow using the Keras appli-
cation programming interface (API) (Abadi et al., 2015). The
final testing was performed by loading the exported MLPs
from the pycomlink environment.

2.3 Reference methods

Two reference methods were used for comparing the MLP
results from the σ80 method of Graf et al. (2020) and from
the CNN method of Polz et al. (2020). We note that, simi-
larly to our MLP, the CNN method is also trained to use two
sub-links, whereas the σ80 method just uses one. Both meth-
ods are described in the Introduction and can be run from
pycomlink.

2.4 Performance metrics

The performance of the methods was evaluated by record-
ing the classified CML rainy and dry periods against the ref-
erence data (rain gauge or radar) in a confusion matrix. In
our case, the confusion matrix is a 2× 2 matrix listing the
number of true positives (TPs), true negatives (TNs), false
positives (FPs), and false negatives (FNs). Although no per-
fect performance metric exists, a balanced way of describing
the confusion matrix as a single number can be done using
the Matthews correlation coefficient (MCC) (Chicco and Ju-
rman, 2020). The MCC is a diagnostic that gives a number
between −1 and 1, where 1 represents a perfect classifica-
tion, 0 is no better than a random guess, and −1 is a perfect
disagreement with the reference.

2.5 Train–test split

In order to assess how well the models performed, the CML
data were split into a training set and a test set. Due to, for
instance, noisy CMLs, malfunctioning rain gauges, or spatio-
temporal uncertainties, some CMLs showed a poor correla-
tion with the rain gauges or the radar. As these pairs could
result in poor training data, we opted to exclusively include
pairs with high MCCs in our training set. We selected train-
ing pairs for MLPRA and MLPGA by estimating the CML
rainy periods using the σ80 method. The top 26 CML–radar
pairs with the highest MCCs, evaluated using radar data as
the ground truth, were chosen for MLPRA. MLPGA used the
26 CML–rain gauge pairs with the highest MCCs, evaluated
using rain gauge data as the ground truth. As some of the
CMLs share the same neighbouring rain gauge, simply se-
lecting the pairs with the highest MCCs could make the train-
ing data too focused on very similar rainfall events. Thus, to
ensure diversity in the training data, the training data used
only unique rain gauges. The remaining 843 pairs were used
for testing. A possible drawback of this approach is that the
MLPs are not trained on noisy CMLs, hindering their ef-
fectiveness in dealing with erratic signal fluctuations. How-
ever, erratic CMLs are usually removed before the rain event
detection step, for instance, by removing CMLs where the
rolling standard deviation of the total loss exceeds 2 dB at
least 10 % of the time or where the 1 h rolling standard devi-
ation of the of the total loss exceeds 0.8 dB at least 33 % of
the time (Graf et al., 2020; Blettner et al., 2023).

2.6 Hyperparameter estimation and cross-validation

During training, the MLP classifier can be tuned using sev-
eral hyperparameters such as activation function, hidden lay-
ers, initial learning rate, and L2 regularisation. The optimal
hyperparameters were found by using k-fold cross-validation
over a grid search over the hyperparameter values listed in
Table 1. We performed k-fold cross-validation by splitting
the CMLs in the training data into five folds and iteratively

https://doi.org/10.5194/hess-28-5163-2024 Hydrol. Earth Syst. Sci., 28, 5163–5171, 2024



5166 E. Øydvin et al.: Technical note: A simple feedforward artificial neural network

Figure 1. MCC as a function of network architecture for the relu
and logistic activation function; [5, 5] means two layers with five
neurons in each layer. The MLP was trained using k-fold cross-
validation with five folds over 26 CML–rain gauge pairs using radar
(MLPRA) and rain gauge (MLPGA) data as the reference. The solid
line is the mean value of the five folds, while the shaded area shows
the minimum and maximum score of the five folds.

trained the MLP on four folds of data and validated on the
fifth fold using the MCC. The final score is the mean of all
five validation MCC scores.

The rainfall time series is characterised by extended peri-
ods of no rain, leading to an imbalance that can impede the
effectiveness of neural network training. A common method
to address this issue is random undersampling, where sam-
ples from the majority class are discarded to create a bal-
anced dataset (Hoens and Chawla, 2013). However, rain-
fall time series often include short intermittent dry periods
within longer events, which are of particular interest in our
approach. If we were to use random undersampling, these
events might be underrepresented in the training dataset.
Recognising that the total signal loss moving window can in-
clude rainy time steps during dry periods close to rainy ones,
we have adopted a modified undersampling strategy. Specifi-
cally, we only discard dry steps more than 30 min away from
any rainfall events as detected by the reference methods.

3 Results and discussion

3.1 Training the MLP

The performances (MCC) of MLPRA and MLPGA for the
training and test datasets as a function of the increased num-
ber of neurons and hidden-layer sizes are shown in Fig. 1.
For each hidden-layer configuration, the optimal regularisa-
tion and initial learning rate that yielded the highest mean
MCC were selected and plotted together with the minimum
and maximum of all five folds obtained from k-fold cross-
validation.

We can observe that the MLPGA generally has a lower
score than the MLPRA method. This could be because the
rain gauges can be located up to 5 km away from the CMLs,

causing errors related to spatial variability. For the radar data,
this issue with spatial representation is most likely to be miti-
gated by the comparison based on CML path-weighted inter-
sections. Another reason could be that the spatial averaging
performed by the radar and CMLs produces less intermittent
rainfall time series than what is the case for the rain gauges,
resulting in better agreement between the CML and radar.

The relu activation function has a lower score for simple
network architectures (for instance, [1]) but produces larger
scores with increased network architecture compared to the
logistic activation function. Further, for the relu activation
function with larger networks ([70] and [100, 100]), MLPRA
shows a larger deviation between the training set and the val-
idation set, indicating that the model is not generalising very
well. MLPRA has a smaller deviation between training and
validation when the logistic activation function is used, indi-
cating more general fits. Thus, MLPRA seems to have a good
compromise between model complexity and score when us-
ing a single layer with 20 neurons and the logistic activation
function. MLPGA, on the other hand, has a smaller deviation
between the training and validation set and provides a good
compromise between model complexity and score when us-
ing two layers with 50 neurons in each and the relu activa-
tion function. The optimal hyperparameters for MLPRA and
MLPGA are shown in Table 2.

3.2 Testing the MLP

The MCC scatter plot density for the MLPRG and MLPRA
method compared with the benchmark methods σ80 and
CNN using the radar and rain gauge test data as the refer-
ence is presented in Fig. 2.

For both radar and rain gauge references, we can observe
that, for most data pairs, the MCC score is higher when us-
ing one of the MLP methods than when using one of the
reference methods. Another observation is that MLPGA per-
formed slightly better (median MCC of 0.57) than MLPRA
(median MCC of 0.52) when the rain gauge was used as a
reference. When the radar was used as a reference, MLPRA
scored slightly better (median MCC of 0.64) than MLPGA
(median MCC of 0.60). This difference could be explained
by the inherent differences in the measurement methods,
where the rain gauge captures the rainfall differently com-
pared to the weather radar due to, for instance, wind.

3.3 CML time series

To illustrate how the MLPs perform in comparison to the
CNN and σ80 method, we have selected two events where
the MLPs outperform the reference methods (Figs. 3 and 4)
and one event where the MLP performs less well (Fig. 5).
The figures show the CML signal loss as a function of time,
as well as the estimated rainy periods for all methods and the
ground truth. We also plot the confusion matrix and the cor-
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Table 1. MLP hyperparameters used in grid search.

Hyperparameter Values

Hidden-layer sizes [[1], [10], [20], [70], [5, 5], [10, 10], [50, 50], [100, 100]]
Activation function [“relu”, “logistic”]
Regularisation [0., 0.175, 0.35, 0.525, 0.7]
Initial learning rate [0.0000001, 0.00000147, 0.00002154, 0.00031623, 0.00464159, 0.06812921, 1]

Figure 2. Scatter density plot of the MCC score for the MLP trained on the rain gauge reference (MLPGA) and the MLP trained on the radar
reference (MLPRA) compared with the benchmark methods σ80 and CNN. Panel (a) used the radar as the reference, and panel (b) used the
rain gauges as the reference. CML, radar, and rain gauge data use a 1 min resolution. Scores were computed based on the test dataset.

Table 2. Optimal hyperparameters for the MLP trained with the
radar reference (MLPRA) and the MLP trained with the rain gauge
reference (MLPGA).

Hyperparameter MLPRA MLPGA

Network architecture [20] [50, 50]
Activation function logistic relu
Regularisation 0.175 0.175
Initial learning rate 0.00031623 0.00031623

responding MCC score for each method using the rain gauge
as a reference.

Figure 3 shows the results from a 10 h long period for a
CML where the MLPRA method (MCC: 0.73) and MLPGA
method (MCC: 0.76) outperformed the CNN method (MCC:
0.08) and the σ80 (MCC: 0.47). Looking at the CML total loss
(TL), we can observe that the CML has a relatively constant
baseline outside the rainy time steps. Around 06:00 UTC, the
radar reference (RA) shows a short rainy period, while the
rain gauge shows a longer highly intermittent rainy period.
The intermittent behaviour of the rain gauge might be due
to low-intensity rainfall or smaller droplets falling into the
scale from the collector. MLPGA was able to detect a short

rainy period at this time, whereas MLPRA did not. For the full
10 h, the CNN generally estimates a very long rainy period,
missing several dry events and leading to a poorer MCC. This
is not surprising as it was trained to detect rainy periods on
an hourly basis. The σ80 method was better in classifying the
dry events but still estimated longer rainy periods than the
MLPs. Further, MLPRA tended to estimate rainy periods that
started shortly before the CML TL started to rise, while the
MLPGA tended to estimate rainy periods shortly after the TL
had started to rise; see, for instance, time step 01:00. This
is an interesting feature and could be due to the rain gauges
showing short breaks at the beginning of rainfall events due
to low rainfall intensity. If the beginning of a rainy event has
more dry minutes than rainy minutes, as seen by the rain
gauge, this could lead MLPGA to just estimate no rain on
these occasions. This could also be caused by the radar ob-
serving rainfall before it is measured on the ground, making
the MLPRA estimate rainfall shortly before MLPGA.

Figure 4 shows a 6 h case for a different CML. Like in
Fig. 3, MLPRA estimates a rainy period starting at 12:00,
shortly before MLPGA estimates a wet period. As in the pre-
vious case, the CNN estimates a very long rainy period, while
the σ80 estimates rain before and after the rain gauge and
radar reference rainfall estimates. In this case, none of the
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Figure 3. (a) CML signal loss (TL) for a 10 h long interval for the
CNN, σ80, MLPRA, and MLPGA methods. The reference rainy pe-
riods for the rain gauge (RG) and gauge-adjusted radar (RA) were
also plotted. The blue-shaded area marks the rainy periods, and
the white marks the dry periods. (b) Confusion matrix and its cor-
responding MCC score for the 10 h period using the CNN, σ80,
MLPRA, and MLPGA methods with the rain gauge as a reference.

CML rainfall detection methods can accurately estimate the
radar or rain gauge reference rainy periods. Looking at the
TL, we can see that it increases gradually over an extended
period, suggesting a longer rainy period. In contrast, the ref-
erence data only indicate one or two short rainy events. This
discrepancy may be attributed to very low rainfall rates, caus-
ing an elevated TL due to CML wet-antenna attenuation.

Figures 3 and 4 also raise some interesting questions. The
final rainfall amount is often derived from a baseline that is
typically estimated based on the values of the dry periods
before the rainfall event. Since these baseline values are esti-
mated differently for the different methods we have explored

Figure 4. (a) CML signal loss (TL) for a 6 h long interval for the
CNN, σ80, MLPRA, and MLPGA methods. The reference rainy
periods for the rain gauge (RG) and gauge-adjusted radar (RA)
were also plotted. The blue-shaded area marks the rainy periods,
and the white marks the dry periods. (b) Confusion matrix and its
corresponding MCC score for the 6 h period using the CNN, σ80,
MLPRA, and MLPGA methods with the rain gauge as a reference.

in this study, the resulting rainfall rates are expected to vary.
For instance, if the MLPGA is used, the baseline would be
placed at a higher level than if the MLPRA method was used,
resulting in a lower rainfall rate estimate. Looking at Fig. 3
and the first and last rainfall events detected by MLPGA (time
steps 01:00 and 08:00), it is clear that MLPGA estimates rain-
fall shortly after the TL has started to rise.

In Fig. 5 we have depicted the TL, as well as the estimated
rainy periods and reference rainy periods, for a CML with
more erratic signal fluctuations. For σ80, multiple rainy peri-
ods are estimated. While these estimated rainy periods may
seem plausible when observing the TL, the reference data
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Figure 5. (a) CML signal loss (TL) for a 6 d long interval for the
CNN, σ80, MLPRA, and MLPGA methods. The reference rainy
periods for the rain gauge (RG) and gauge-adjusted radar (RA)
were also plotted. The blue-shaded area marks the rainy periods,
and the white marks the dry periods. (b) Confusion matrix and its
corresponding MCC score for the 6 d period using the CNN, σ80,
MLPRA, and MLPGA methods with the rain gauge as a reference.

reveal that there is no actual rainfall during this time. There-
fore, the rainfall estimates likely stem from a noisy CML sig-
nal.

3.4 General discussion

Our MLPs were trained using CML, weather radar, and rain
gauge data from 26 CML–rain gauge pairs over 1 month.
The trained MLPs were then tested on 843 CML–rain gauge
pairs that were kept out of the training process. A possible
limitation of our approach is that 1 single month might not
adequately represent the different rainfall types associated

with other months or different geographical locations. On the
other hand, since our dataset covers the whole of Germany,
the dataset contains widely different precipitation events. For
instance, in addition to several smaller events, the dataset also
captures the large precipitation event that happened in Ger-
many between 13 and 15 July 2021. Moreover, to ensure con-
vergence of the MLPs, the training data used only 26 CML–
rain gauge pairs. Including more pairs, however, did not im-
prove the results of the validation dataset, indicating that, in
fact, the MLPs generalise to several different events.

Our results indicate that MLPRA provides rainfall esti-
mates that are more continuous and more consistent over
time compared to the more intermittent estimates generated
by MLPGA (see, for instance, Fig. 3, time step 06:00). This
could come from the fact that the rain gauges have a 1 min
resolution, while the weather radar has a 5 min resolution,
making the radar rainy periods more continuous. Another ex-
planation could be that, at low rainfall rates, the rain gauge
will not record any rainfall before the droplets have been
transported to the scale, making the period seem more inter-
mittent than it actually is. Further, while the rain gauges mea-
sure point rainfall close to the CML, the weather radar mea-
sures average rainfall along the CML. This path averaging
blurs the rainy periods, making the rainy period more contin-
uous, with fewer intermittent breaks. An interesting finding is
that, even though the rain gauges do not represent the average
rainfall along the CML, MLPGA is able to capture more of
the underlying intermittency as compared to MLPRA. This is
also reflected in the neural network configuration where the
MLPGA benefits from a more complex network architecture
as compared to MLPRA.

Both MLPs were trained using the 26 CML–reference
pairs that showed the highest MCC estimated using the σ80
method. This can be thought of as a pre-processing step,
where the goal was to ensure training data with a good match
between the reference and the CML. In our case, this was
important for making the MLPs converge to approximately
the same weights every time we trained the model. Since
they, by selection, have a good correlation with their ref-
erence, these particular pairs might also contain little or no
noise. Thus, the MLP training datasets might lack exposure
to noisy CML time series, and, as a consequence, the MLPs
might not handle noisy periods very well. On the other hand,
from Fig. 2, we know that the MLPs still outperform the σ80
and CNN method based on the 843 CMLs used in the test
dataset, which was not subject to any noise filtering, suggest-
ing that the MLPs can handle noise, at least to some extent.
Moreover, very noisy CMLs are typically handled using pre-
processing methods such as filtering out CMLs with strong
diurnal cycles or plateaus, such as what is done in Graf et al.
(2020) and Blettner et al. (2023).

Overall, it must be noted that, while the MCC is a use-
ful and balanced metric, its score must be seen in relation to
the reference chosen for evaluation. As weather radar pro-
vide average rainfall intensities for the entire radar grid cell,
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we expect that the radar rainfall estimates are less intermit-
tent than what is observed by a rain gauge. This is supported
by the findings in Fig. 3, where the weather radar rainfall
events are less intermittent than what is the case for the rain
gauges. The CML, like the weather radar, also measures spa-
tially averaged rainfall. However, the CML measures rainfall
closer to the ground and thus might be able to better cap-
ture the intermittency as seen by the rain gauge. In this study,
MLPGA was able to better detect rainfall events seen by the
rain gauge than MLPRA. This suggests that there is no single
best reference or method for evaluating CML rainy periods.
Rather, the CML rain event detection method must be seen
in relation to its application.

4 Conclusions

In this technical note, we introduced two simple feedforward
neural networks (MLPs) trained to detect rainy time steps
in signal attenuation data from commercial microwave links
(CMLs). The MLPs are trained and tested using reference
data from rain gauges (MLPGA) with a temporal resolution
of 1 min and from gauge-adjusted radar (MLPRA) with a tem-
poral resolution of 5 min. Whereas existing methods tend to
estimate longer continuous rainy periods, the MLPs estimate
shorter rainy periods that more closely resemble the intermit-
tent rainfall patterns that are observed by the rain gauges and
weather radar. The performance of the MLPs is evaluated by
comparing the MLP estimates with estimates produced by
two existing methods using the Matthews correlation coef-
ficient. Our results show that the MLPs outperform existing
methods in almost all cases.

Interestingly, even if the rain gauges do not resemble the
path-averaged rainfall as observed by the CML, MLPGA was
still able to learn the rainfall pattern in the CML time series.
Moreover, MLPGA better estimates rainy periods as recorded
at the nearby rain gauges than what is the case for MLPRA,
while both methods perform equally well when radar data are
used as the reference.

While MLPRA tends to estimate rainy periods shortly be-
fore MLPGA, both MLPs tend to estimate rainy periods after
the CML total loss has started to increase. Thus, if the MLPs
are used for baseline estimation, the user should consider us-
ing dry time steps at least 5 min away from the identified
rainy time step for baseline estimation, similarly to Pastorek
et al. (2022). Another possibility is to use the median value
of a longer period before the rainy period.

Future work may involve further refining the model archi-
tecture and testing its robustness in terms of generalisation
to other datasets. Another interesting topic could be to better
understand how different wet and dry classifications affect
the resulting baselines and the effect this has on rainfall rate
estimation from CML data. Overall, MLPRA and MLPGA
showed successful skill in the challenge of rainfall event de-
tection in CML attenuation time series.

Code availability. The MLP_RA method and MLP_RG method
as well as example notebooks are available within pycomlink
(https://doi.org/10.5281/zenodo.14181846, Chwala et al., 2024).
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