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Abstract. In recent years, there has been a growing recog-
nition of the significance of land–atmosphere (L–A) inter-
actions and feedback mechanisms in understanding and pre-
dicting Earth’s water and energy cycles. Soil moisture plays a
critical role in mediating the strength of L–A interactions and
is important for understanding the complex and governing
processes across this interface. This study aims to identify
the significance of soil moisture in identifying L–A coupling
strength within the convective triggering potential (CTP) and
humidity index (HI) framework. To address this, a consis-
tent and reliable dataset of atmospheric profiles is created
by merging CTP and HI using triple collocation (TC) with
three reanalysis datasets. The merged CTP and HI product
demonstrates enhanced performance globally compared to
the individual datasets when validated with radiosonde and
satellite observations. This merged product of CTP and HI
is then used to compare the L–A coupling strength based on
Soil Moisture Active Passive Level 3 (SMAPL3) and SMAP
Level 4 (SMAPL4) over 2 decades (2003–2022) where L–
A coupling strength is defined as the persistence probabil-
ity within the dry and wet coupling regimes. Results indi-
cate that the persistency-based coupling strength is related to
the ability of soil moisture to predict future atmospheric hu-
midity and dry vs. wet coupling state. The coupling strength
in SMAPL4 is consistently stronger than in SMAPL3 and
is likely due to its reliance on a land surface model and
reduced susceptibility to random noise. The difference in
coupling strength based on the same CTP–HI underscores
the importance of soil moisture data in estimating coupling
strength within the CTP–HI framework. These findings lay
the groundwork for understanding the role of L–A interac-

tions and drought evolution due to soil moisture variations by
providing insight into the quantification of coupling strength
and its role in drought monitoring and forecast efforts.

1 Introduction

Land–atmosphere (L–A) interactions are critical to Earth’s
complex climate processes and environmental sustainability
(Seo and Dirmeyer, 2022; Seneviratne and Stöckli, 2008).
These interactions are primarily driven by the two-way en-
ergy, momentum, and mass exchanges between the land
surface and the overlying atmosphere (Hsu and Dirmeyer,
2023). Among the many components influencing L–A inter-
actions, soil moisture is a critical element (Zhou et al., 2019;
Santanello et al., 2018; Saini et al., 2016; Alexander et al.,
2022; Wakefield et al., 2019; Findell et al., 2024). Soil mois-
ture is not merely a passive participant but an active modifier
of water and heat transfer between the land and the atmo-
sphere (Qi et al., 2023). It serves as a vital component in the
climate system and is considered an essential climate vari-
able (ECV) (Liu et al., 2020; Miranda Espinosa et al., 2020;
Pratola et al., 2015).

Soil moisture is a critical intermediary in L–A feedbacks,
affecting a wide range of atmospheric processes at local and
regional scales (Seo and Ha, 2022). Its influence on partition-
ing energy at the land surface into sensible and latent heat
fluxes directly impacts weather patterns, climate variability,
and extreme meteorological events (Zhou et al., 2019). L–A
interactions are often separated into different regimes (Ben-
net et al., 2023), such as dry and wet coupling regimes. Dry
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coupling refers to conditions where the land’s dryness limits
moisture availability to the atmosphere, typically resulting
in less cloud formation and precipitation, leading to hotter,
drier conditions that exacerbate droughts. Conversely, wet
coupling describes a scenario where abundant soil moisture
enhances evaporation and transpiration, increasing humidity,
cloud formation, and potentially precipitation. Understand-
ing these interactions is crucial to diagnosing and predicting
how the land condition may affect weather and climate.

Classifying L–A coupling regimes requires characteriz-
ing both the land state and the atmosphere. An integrated
approach, highlighted by Findell and Eltahir (2003), pro-
vides a framework for understanding the complex exchanges
and feedback loops between the Earth’s surface and the air
above. Specifically, this framework uses the convective trig-
gering potential (CTP) and humidity index (HI) as metrics
to classify L–A feedback based on the likelihood of convec-
tive precipitation. The CTP is critical in gauging the potential
for convection by assessing atmospheric stability, while the
HI quantifies the moisture content in the lower troposphere.
The CTP–HI framework was further developed by Roundy
et al. (2013), which added the use of soil moisture within the
CTP–HI framework. This eliminated the need for a model-
based approach for linking the thermodynamic precondition-
ing of the lower troposphere to the triggering or suppression
of convective activities in response to surface conditions.
This method underscores the critical role of soil moisture as a
crucial driver influencing convective dynamics and provides
a means for understanding and predicting weather patterns
and regimes based on L–A interactions (Roundy and Wood,
2015; Roundy et al., 2014).

Despite this, the sensitivity of the classification system to
soil moisture remains largely unexplored, especially relative
to satellite-based observations of soil moisture. Furthermore,
quantifying the impact of soil moisture within the CTP–HI
framework requires a consistent and reliable dataset of atmo-
spheric profiles (i.e., for CTP and HI). However, this is not
straightforward, as global observations of lower-tropospheric
temperature and humidity are limited (Teixeira et al., 2021).
Reanalysis data provide the best global estimate of atmo-
spheric data for quantifying the CTP–HI, yet inherent un-
certainties in the data cannot be overlooked. These uncer-
tainties often arise from varied data sources, measurement
approaches, and spatial and temporal resolution. These fac-
tors, along with diverse data assimilation techniques, can
contribute to biases and uncertainties within climate reanaly-
sis, thus complicating the quantification of land–atmosphere
dynamics, as highlighted by both Jach et al. (2022) and
Mukherjee and Mishra (2022).

One way to address the challenge of uncertainties in re-
analysis datasets is to employ data merging techniques, as
suggested by Sun and Fu (2021), Lu et al. (2021), and
Feng and Wang (2018), to create a more reliable dataset of
CTP and HI based on multiple reanalysis data. Many merg-
ing techniques exist, including M-kernel merging (Zhou et

al., 2003), optimal interpolation (Lorenzo et al., 2017), ran-
dom forest algorithms (Nguyen et al., 2021), and approaches
rooted in Bayesian analysis (Wilson and Fronczyk, 2016) to
name a few. However, the triple collocation (TC) method has
emerged as an invaluable technique for estimating error vari-
ances within datasets, as evidenced by research from Gruber
et al. (2017, 2020), Stoffelen (1998), and Saha et al. (2020).
The widespread application of the TC method is primarily
due to its effectiveness in utilizing the statistical attributes of
multiple datasets to reduce the bias and quantify the uncer-
tainties associated with each dataset. Consequently, the TC
method is an ideal choice to create a more robust merged
CTP and HI metric for analysis of L–A coupling strength.

This study aims to enhance our understanding of L–A cou-
pling classification by developing and applying a merged
CTP and HI dataset to isolate the impact of different soil
moisture products on the CTP–HI framework and the asso-
ciated coupling strength. Specifically, it focuses on the L–A
coupling that results from using either the Soil Moisture Ac-
tive Passive Level 3 (SMAPL3; Entekhabi et al., 2016) or
SMAP Level 4 (SMAPL4; Reichle et al., 2021) soil mois-
ture products in the CTP–HI framework. The goal of this
comparative study is to uncover how soil moisture, as de-
tected through direct satellite observations (SMAPL3) and
assimilated data products (SMAPL4), influences L–A cou-
pling strength across the globe. The anticipated insights into
how soil moisture variability influences coupling strength
will provide critical advancements for assessing hydrological
extremes. The comprehensive analysis of the coupling series,
detailed in the Results section and the Discussion section, un-
derscores the contributions of this study towards improving
predictive models for weather and climate applications.

2 Methodology

2.1 L–A coupling classification

To quantify the L–A coupling, the observational-based CTP–
HI framework developed by Roundy et al. (2013) is used.
This framework is similar to the Findell and Eltahir (2003)
framework in that it utilizes measures of atmospheric sta-
bility (CTP) and humidity (HI), but it goes a step further
by using soil moisture (SM) to classify the CTP–HI into
coupling regimes. The use of soil moisture to classify the
CTP–HI space provides an observationally based approach
to L–A classification, which is different from the Findell and
Eltahir (2003) approach that utilized model simulations to
classify the CTP–HI space. A brief overview of the classifi-
cation methodology from Roundy et al. (2013) is given be-
low, organized into three sections. First, the input variables
are discussed. Next, a description of the methodology used
to classify the CTP–HI space into coupling regimes is pre-
sented. Finally, the development of a daily time series of L–
A coupling classification and its use in creating a measure of
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coupling strength is described. A conceptual diagram of this
process is given in Fig. 1.

2.1.1 Classification input variables

The left panel in Fig. 1 shows a conceptual diagram of the in-
put variables required and includes an atmospheric thermo-
dynamic diagram showing the CTP (atmospheric stability)
and HI (atmospheric moisture) as well as a representation of
SM (surface moisture). The CTP is the integrated area be-
tween the temperature profile and a moist adiabat between
100 and 300 hPa above the surface. It quantifies the stability
of the atmosphere, where a more negative value indicates sta-
ble conditions, and a more positive value indicates unstable
conditions. The HI quantifies moisture content in the lower
atmosphere, explicitly reflecting the lower-tropospheric dew
point depression. The HI is calculated as the sum of the dew
point depressions at 50 and 150 hPa above the surface. A
large value of HI indicates a dry atmosphere as there is a
significant difference between the temperature and the dew
point temperature at the specified pressure levels. As the dew
point temperature approaches the temperature, the HI de-
creases and eventually reaches zero when the atmosphere is
saturated. SM is a measure of surface wetness and is usually
taken as the top-level soil moisture, thus making satellite re-
mote sensing estimates an ideal input. Daily values of each
of the three input variables are typically taken before sunrise
to capture the state of the land and atmosphere prior to the
impact of solar radiation. It is not always possible to have
estimates right before sunrise, especially for remote sens-
ing variables which are available only at a fixed overpass
time. For these cases, any observation obtained before sun-
rise may be used, but care must be taken when comparing
datasets with inconsistent measurement times (Roundy and
Santanello, 2017).

2.1.2 Classification of the CTP–HI space

The classification process relies on daily values of the early
morning estimates of CTP, HI, and SM over a classification
period. In this work, the classification period was selected
as April 2015 to December 2022 to be consistent with the
SMAP observational record. An example of the joint proba-
bility space, with the CTP on the x axis, the HI on the y axis,
and the SM averaged over bins in the CTP–HI space, is given
in the middle panel of Fig. 1. This joint probability space is
then used to define L–A coupling regimes within the two-
dimensional CTP–HI space based on the distribution of soil
moisture. This is done by comparing the soil moisture in each
bin to the climatological soil moisture using the two-sample
Kolmogorov–Smirnov test. Bins with soil moisture distribu-
tions significantly wetter than the climatological distribution
are classified as a wet regime bin, while those with signif-
icantly drier soil moisture distributions are classified as a
dry regime bin. This process is repeated using multiple bin

sizes and statistical significance thresholds within the CTP–
HI space to arrive at a probabilistic classification considering
algorithmic uncertainty (see Roundy et al., 2013, for more
details) as shown in the right panel. The fundamental under-
pinning of this approach is that consistent areas within the
CTP–HI space with fundamentally different distributions of
soil moisture represent a persistent coupling between the land
and the atmosphere. Wet coupling regions in the CTP–HI
framework are typified by a positive feedback loop through
higher surface moisture, which results in increased latent
heat fluxes that can initiate convection through an increase
in moist static energy and a lower lifting condensation level.
On the other hand, the dry coupling regime is identified in
regions of drier soil moisture within the CTP–HI framework
and is characteristic of high sensible heat fluxes, leading to
strong boundary layer growth and possibly convection, thus
causing negative feedback. However, this regime is often as-
sociated with less frequent and smaller precipitation events,
resulting in an overall drying effect. Locations with a non-
dominant combination of wet and dry classification based
on the uncertainty parameters are considered to be in a tran-
sitional L–A coupling regime. Lastly, areas in the CTP–HI
framework that do not show a significantly different distribu-
tion of soil moisture relative to the climatology are classified
as atmospherically controlled, signifying that the convective
processes are predominantly driven by atmospheric factors
rather than land surface feedback. To simplify the analysis
and to emphasize the crucial role that soil moisture plays in
defining the dry and wet regimes, the atmospherically con-
trolled and transitional regimes are merged into a single cat-
egory termed “atmospherically controlled” for this analysis.
The classification process is done for each dataset of CTP–
HI–SM at the grid scale, thus allowing the coupling classi-
fication to account for the difference in climatology across
datasets and regions around the globe, overcoming a limi-
tation of the original Findell and Eltahir (2003) framework
(Ferguson and Wood, 2011).

2.1.3 L–A coupling strength

Once the CTP–HI space is classified based on estimates of
morning observations of CTP, HI, and SM, a daily coupling
time series can be generated. The daily coupling is deter-
mined by mapping the CTP and HI values for a day onto
the classified CTP–HI space (right panel in Fig. 1). For ex-
ample, if the CTP and HI for a particular day map to a wet
coupling regime, then that day is classified as a wet cou-
pling regime day. This process is repeated for every day
where there is an estimate of CTP and HI. Since the pro-
cess for determining the daily coupling regime does not re-
quire the SM variable, the coupling time series can extend
beyond the availability of SM data if there are CTP and HI
data. Therefore, even though the CTP–HI space was classi-
fied based on data from 2015–2022, the time series of daily
coupling was extended to 2003 based on the availability of
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Figure 1. A visual representation of the soil moisture (SM), convective triggering potential (CTP), and humidity index (HI) on a thermody-
namic diagram, along with a joint probability space of CTP–HI–SM at a specific grid location (38.89, −115.59). The CTP–HI framework is
depicted after applying a two-sample Kolmogorov–Smirnov test to the joint probability space of CTP–HI–SM for the classification period
from April 2015 to 2022.

CTP and HI data from remote sensing. This extended period
provides for a more robust analysis of L–A coupling strength.
Within this context, coupling strength is defined as the per-
sistency of a specific coupling regime over the derived time
series. The coupling strength is calculated by applying a first-
order three-state (dry, wet, and atmospherically controlled)
Markov chain model to the time series. A first-order three-
state Markov chain describes the evolution of the coupling
state through three persistence probabilities and six transi-
tional probabilities based on a 1 d lag (i.e., tomorrow’s cou-
pling state is only dependent on the current coupling state).
Of the nine probabilities calculated, only the two persistence
probabilities for the dry and wet regimes are used to define
the coupling strength (i.e., the probability that it remains in
its current state). Since coupling strength is a probability ex-
pressed as a percentage (ranging from 0 % to 100 %, with
100 % indicating strong coupling or persistence), higher per-
centages signify a stable interaction between the land and
the atmosphere that can impact weather patterns and short-
term climate variability. In contrast, low values of coupling
strength indicate weaker L–A interactions.

2.2 Merged CTP and HI

Evaluating the sensitivity of the coupling strength to different
soil moisture datasets requires a consistent dataset of CTP–
HI. The only global CTP and HI datasets available are from
reanalysis or satellites. Relying solely on a single reanaly-
sis dataset for CTP–HI could introduce biases and limit the
comparability when evaluated alongside multiple soil mois-
ture products. Moreover, satellite-derived CTP–HI estimates
face significant challenges, such as missing observations and
lower vertical resolution (Roundy and Santanello, 2017),
which can impact the quality and reliability of the data.

To address the limitations inherent in single-source CTP–
HI estimates, a merged CTP–HI product is developed from
three different reanalysis datasets. This approach aims to pro-
vide a more comprehensive and reliable benchmark for com-
paring the impact of soil moisture dynamics on L–A coupling
strength. Previous research has shown that the triple colloca-
tion (TC) data merging methodology is reliable for combin-
ing hydrologic variables without requiring ground-based ob-
servational data (Yilmaz et al., 2012). This study uses a 30 d
centered window (15 d on either side of the day) that removes
the effect of seasonality. To reduce complexity due to leap
years, the analysis only considers 28 d in February for each
year. The TC technique employs a least-squares approach to
calculate weight distributions for each dataset based on the
root mean square error (RMSE). A core assumption of this
method is the independence of each dataset – that is, a lack of
correlated errors between the datasets. This condition ensures
the accuracy of the TC method, as otherwise the merged es-
timate is prone to biases. Mathematically, the errors within
each dataset can be articulated as a linear combination of mu-
tually independent error terms, as mentioned in Eq. (1) (Wu
et al., 2020):

θi = ai + biθ + εi, (1)

where θi represents collocated measurements of an arbitrary
variable (here CTP and HI) for i = 1, 2, and 3 related to the
true value θ with εi as random errors, and ai and, bi corre-
spond to the intercept and slope obtained through ordinary
least-squares regression. Considering these assumptions and
their potential implications, the resulting merged dataset pro-
vides a more comprehensive and accurate representation of
the underlying physical phenomenon.

The TC methodology is employed to create a merged CTP
and HI dataset from three reanalysis products: the Modern-
Era Retrospective Analysis for Research and Application
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version 2 (MERRA-2), the Climate Forecast System Re-
analysis (CFSR), and the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5).
The TC method requires choosing a reference dataset (used
to estimate the true values of the measured physical phe-
nomenon). MERRA-2 is selected to be the reference dataset;
however, it is worth noting that previous studies have indi-
cated that the choice of reference dataset does not impact
the outcome of TC error variance (Anderson et al., 2012).
The first step involves converting the CFSR and ERA5 esti-
mates (θ ) into the MERRA-2 climatology (θ ′) using Eqs. (2)
and (3) to establish a common reference framework for the
datasets.

θ ′CFSR = µMERRA-2+ (θCFSR− µCFSR)

(
σMERRA-2

σCFSR

)
(2)

θ ′ERA5 = µMERRA-2+ (θERA5− µERA5)

(
σMERRA-2

σERA5

)
(3)

In the above step,µ represents the mean and σ is the standard
deviation of the respective datasets. The normalized compos-
ites are linearly scaled and used as input in TC analysis, as
described below in Eqs. (4)–(6). Each dataset was rescaled
to a consistent grid resolution of 1°× 1° before applying the
TC method and was evaluated from 2003 to 2022 to calculate
the TC error value (ε2).

ε2
MERRA-2 =

{(
θMERRA-2− θ

′
CFSR

)
(θMERRA-2− θ

′
ERA5)

}
(4)

ε2
CFSR =

{(
θCFSR− θ

′
MERRA-2

)
(θCFSR− θ

′
ERA5)

}
(5)

ε2
ERA5 =

{(
θERA5− θ

′
CFSR

)
(θERA5− θ

′
MERRA-2)

}
(6)

The above equation brackets indicate the temporal average of
differences between two datasets over the study area. Math-
ematically, the ideal merger of a variable from numerous
datasets requires information regarding errors such that a
highly accurate data source receives the larger weight for
merging and vice versa (Chen et al., 2022). To generate
an unbiased merged data product from the three datasets,
the sum of individual weights at each grid cell should be
1 (wMERRA-2+wCFSR+wERA5 = 1) (Gruber et al., 2017).
The merged outcome or cost function is calculated using
Eqs. (7)–(9), which minimizes the error variance in the
merged outcome obtained from the least-squares approach
and highly depends on the TC error (Lyu et al., 2021).

wMERRA-2 =

ε2
CFSRε

2
ERA5

ε2
MERRA-2ε

2
CFSR+ ε

2
MERRA-2ε

2
ERA5+ ε

2
CFSRε

2
ERA5

(7)

wCFSR =

ε2
MERAR-2ε

2
ERA5

ε2
MERRA-2ε

2
CFSR+ ε

2
MERRA-2ε

2
zERA5+ ε

2
CFSRε

2
ERA5

(8)

wERA5 =

ε2
MERRA-2ε

2
CFRS

ε2
MERRA-2ε

2
CFSR+ ε

2
MERRA-2ε

2
ERA5+ ε

2
CFSRε

2
ERA5

(10)

The merged CTP is then calculated using the weighted sum
of the individual datasets.

CTPmerged = wMERRA-2CTPMERRA-2+ wCFSRCTPCFSR

+ wERA5CTPERA5
(11)

HImerged = wMERRA-2HIMERRA-2+ wCFSRHICFSR

+ wERA5HIERA5 (12)

The weights remain consistent with the three datasets. The
resulting merged CTP and HI, as well as the individual re-
analysis products (MERRA-2, CFSR, and ERA5), are evalu-
ated against estimates of CTP and HI from in situ radioson-
des and satellite remote sensing based on several summary
metrics, including the mean absolute error (MAE), bias, and
the correlation coefficient (CC) as discussed in Sect. 4.1.

3 Dataset description

This study utilizes datasets that include soil moisture prod-
ucts derived from satellite remote sensing, as well as atmo-
spheric profiles for calculating the CTP and HI metrics. The
computation of CTP and HI requires surface pressure, 2 m
temperature (T2m) and dew point temperature (DP2M), and
vertical profiles of humidity (q) and temperature (T ). A sum-
mary of these datasets, including their horizontal and tempo-
ral resolutions and coverage, is presented in Table 1.

Satellite remote sensing and in situ data are used to as-
sess the performance of the merged CTP–HI dataset. Specif-
ically, CTP and HI are calculated using data from the At-
mospheric Infrared Sounder Version 7 (AIRSv7) as well as
radiosonde observations from Integrated Global Radiosonde
Archive Version 2 (IGRA2). To ensure spatial consistency in
the study, all datasets were standardized to a uniform spa-
tial resolution of 1°× 1°, which aligns the analysis with the
spatial and temporal coverage of the AIRSv7 from 2003 to
2022.

The merged product is validated using the AIRS overpass
time (∼ 01:30 local time) to leverage the benefits of remote
sensing data (i.e., global coverage). However, the theoretical
basis for the CTP–HI framework relies on early morning ob-
servations of CTP and HI (Findell and Eltair, 2003; Roundy
et al., 2013), which more closely align with the SMAP over-
pass time (∼ 06:00 local time). Estimates of CTP and HI cal-
culated from reanalysis at 01:30 and 06:30 reveal variations
that suggest that the timing of data acquisition may influence
these measurements. Therefore, the merged product is cre-
ated at two different times: the AIRS overpass time (∼ 01:30)
and at sunrise. The validation of the merged product is based
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Table 1. Description of the dataset for convective triggering potential (CTP), humidity index (HI), and soil moisture (SM) used in this study.

Dataset Type Variable Horizontal Vertical Temporal Temporal
resolution resolution resolution range

MERRA-2 Reanalysis CTP, HI 0.5°× 0.625° 72 levels 6 h 2003 to 2022
CFSR Reanalysis CTP, HI 0.5°× 0.5° 64 levels 6 h 2003 to 2022
ERA5 Reanalysis CTP, HI 31 km 137 levels 1 h 2003 to 2022
IGRA2 In situ CTP, HI – n/a 6–12 h 2003 to 2022
AIRSv7 Remote sensing CTP, HI 1°× 1° 24 levels 12 h 2003 to 2022
SMAPL3 Remote sensing SM 9 km n/a 12 h April 2015 to 2022
SMAPL4 Assimilated soil moisture SM 9 km n/a 3 h April 2015 to 2022

n/a: not applicable

on CTP and HI calculated at the AIRS overpass time so that
it can be directly compared to AIRS, while the merged sun-
rise CTP and HI product is used for the analysis of coupling
strength to be consistent with previous L–A coupling work.

3.1 CTP and HI datasets

The CTP and HI are calculated using three reanalysis
datasets (MERRA-2, CFSR, and ERA5), satellite estimates,
and in situ observations. When performing TC analysis, it
is crucial to consider the presence of biases and errors in
the datasets across different variables and applications. For
instance, Park et al. (2020), Dong et al. (2020), Arshad et
al. (2021), and Kozubek et al. (2020) have observed varia-
tions among these reanalysis datasets in their respective stud-
ies. Yingshan et al. (2022) found seasonal trend variations
in all three datasets and concluded that ERA5 demonstrated
superior performance in shortwave and longwave radiation
compared to MERRA-2. Zhang et al. (2021) evaluated the
surface air temperature in China and reported significant in-
terannual variability in the MERRA-2, CFSR, and ERA5
datasets. Hassler and Lauer (2021) noted that performance
in tropical areas varies depending on the subset of data used,
such as land only, ocean only, or land–atmosphere–ocean.
Santanello et al. (2015) reported a dry bias in CFSR and a
wet bias in MERRA in the overall surface planetary bound-
ary layer (PBL) based on local land–atmosphere coupling
(LoCo) analyses over the US Southern Great Plains. A de-
scription of each of the CTP–HI datasets is given below.

3.1.1 The Modern-Era Retrospective Analysis for
Research and Application version 2 (MERRA-2)

NASA’s Global Modelling and Assimilation Office (GMAO)
developed MERRA-2 as an atmospheric reanalysis dataset,
employing the Goddard Earth Observing System (GEOS)
atmospheric general circulation model (AGCM) (GMAO,
2015). The AGCM is a sophisticated numerical model that
simulates the Earth’s atmospheric processes, providing a
comprehensive framework for understanding climate dynam-
ics and variability. MERRA-2 provides 6-hourly observa-

tions with an approximate spatial resolution of 0.5°× 0.625°
and includes 72 hybrid pressure levels ranging from the sur-
face to 0.01 hPa (Gelaro et al., 2017). The data assimilation
system of MERRA-2 utilizes the 3D-Var algorithm and spans
from 1980 to the present. Gelaro et al. (2017) describe how
the dataset incorporates observation-based precipitation to
force the land model, ensuring realistic precipitation inputs,
along with advancements and improvements made in the sys-
tem.

3.1.2 The Climate Forecast System Reanalysis (CFSR)

The Climate Forecast System Reanalysis (CFSR) is devel-
oped by the National Center for Environmental Prediction
(NCEP). It covers the period from 1979 to the present. It
provides 6-hourly variable estimations, including 64 atmo-
spheric levels at a 0.5°× 0.5° horizontal resolution (Saha et
al., 2011). Operating as a global coupled atmosphere–ocean–
land surface–sea ice system, CFSR incorporates satellite ra-
diance data and employs the Integrated Forecasting System
(IFS) Cycle 41r2 with the 3D-Var data assimilation system.
Observations are carefully considered for each component
during the assimilation process of the CFSR dataset; how-
ever, CFSR uses observation-based precipitation to force the
land model, enhancing precipitation accuracy, as highlighted
in Saha et al. (2010).

3.1.3 European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v5 (ERA5)

ERA5, the fifth ECMWF reanalysis of global climate, is ac-
cessible from January 1959 to the present and produced by
the Copernicus Climate Change Service (C3S) (Hersbach et
al., 2023). ERA5 provides hourly land and atmospheric cli-
mate variable estimations at approximately a 31 km spatial
resolution and 137 levels from the surface to 80 km (Bell
et al., 2021). It employs the Integrated Forecasting System
(IFS) Cycle 41r2 and assimilates satellite and in situ observa-
tions. ERA5 includes advanced screen-level assimilation for
2 m temperature and relative humidity components, where
the soil moisture is nudged to better match the 2 m observa-
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tions. ERA5 assimilates soil moisture from spaceborne scat-
terometers and integrates various precipitation data sources,
improving soil moisture and precipitation estimates. Hers-
bach et al. (2020) compared ERA5 with radiosonde data and
showed temperature, wind, and humidity improvements in
the troposphere for the latest version.

Differences in land surface observations among these
datasets can impact atmospheric variables and introduce bi-
ases. Soil moisture influences evaporation and humidity,
while observation-based precipitation enhances land model
accuracy, influencing atmospheric moisture and stability.
ERA5 benefits from direct soil moisture assimilation, which
potentially reduces bias. In contrast, MERRA-2 and CFSR
use observation-based precipitation to force their land mod-
els and rely on model-generated soil moisture. This approach
can introduce bias in temperature and humidity profiles due
to uncertainties in the modeled soil moisture.

3.1.4 The Integrated Global Radiosonde Archive
(IGRA) Version 2

The Integrated Global Radiosonde Archive Version 2
(IGRA2) is a comprehensive dataset provided by the Na-
tional Center for Environmental Information (NCEI) of the
National Oceanic and Atmospheric Administration (NOAA)
in the United States (Durre et al., 2016). It offers access
to high-quality radiosonde observations over 1500 stations
worldwide from 1905 to the present (Durre and Yin, 2008).
The dataset has undergone quality control and adjustments to
correct instrument biases across various regions. These pro-
cedures ensure that the IGRA records are homogeneous and
robust, making them valuable for long-term climate studies.

Despite its comprehensive coverage, the IGRA2 dataset
presents challenges, including nonuniform data distribution
across the world due to variable observation frequencies. Al-
though radiosonde observations are typically recorded twice
daily at 00:00 and 12:00 Coordinated Universal Time (UTC),
in some regions, additional observations are taken at 06:00
and 18:00 UTC. Therefore, the frequency and timing of these
observations differ among stations and locations. In this
study, calculations for CTP and HI are performed using ra-
diosonde data that fall within a ±3 h window of the night-
time AIRS overpass (∼ 01:30 local time). This targeted ap-
proach aligns CTP and HI calculations with the same obser-
vation time during the merging and validation process. Also,
when multiple observations are available for a single grid
cell, the selection criteria prioritize the station offering the
most frequent data. A map of the geographic location of the
IGRA2 radiosonde observation sites, along with regional to-
tals in North America (NAM), South America (SAM), Africa
(AFR), Europe (EUR), Asia (ASA), and Australia (AUS), is
given in Fig. 2. Across the world, 534 locations have data
available from 2003 to 2022. Most observations are in Asia,
followed by North America and Europe.

3.1.5 Atmospheric Infrared Sounder Version 7
(AIRSv7)

AIRS was launched in 2002 on NASA’s Aqua satellite.
AIRS retrieved thermodynamic profiles (temperature and hu-
midity) using passive radiance observations. This study fo-
cuses on the descending orbit, covering Northern to Southern
Hemisphere movement with an Equator crossing at ∼ 01:30
local time. Data have a twice-daily temporal resolution,
capturing half of the 8 d Aqua orbit repeat cycle. Level 3
files contain averaged quality and geophysical parameters in
1°× 1° grid cells, including humidity and temperature pro-
files at 24 pressure levels from 1 to 1000 hPa (AIRS Project,
2019). In Version 7, shortwave exclusion in the retrieval algo-
rithm reduces bias, and targeted channel selection focused on
water vapor retrieval improves temperature and water vapor
profile performance (Zhang et al., 2023a). It should be noted
that for the processing and analysis of the AIRSv7 data, no
alterations were made to the predefined quality control (QC)
flags.

3.2 Soil Moisture Active Passive (SMAP)

NASA’s Soil Moisture Active Passive (SMAP) mission pro-
vides global monitoring of soil moisture content. The en-
hanced SMAP Level 3 (SMAPL3) product, derived from the
foundational Level 1 and 2 data, provides standardized, grid-
ded global soil moisture at 9 km resolution with the capa-
bility to observe the entirety of the Earth’s surface every 2–
3 d (O’Neill et al., 2021). While the enhanced SMAP Level
3 is provided at a 9 km resolution, it should be noted that
the native radiometer footprint is at ∼ 36 km and the bright-
ness temperatures are interpolated to the 9 km resolution us-
ing an optimally localized average method. SMAP Level 4
(SMAPL4) data are produced using a land surface model-
ing system that assimilates SMAP brightness temperatures.
SMAPL4 integrates SMAP Level 2 brightness temperature
measurements, along with initialization and forcing inputs
from the Catchment Land Surface Model (CLSM) (Reichle
et al., 2017), thus producing 3-hourly, comprehensive esti-
mates of surface and root-zone soil moisture at a 9 km spa-
tial resolution (Qiu et al., 2021). SMAPL3 provides direct
satellite remote sensing retrievals of surface soil moisture,
while SMAPL4 uses a sophisticated data assimilation sys-
tem within a modeling framework to create a more compre-
hensive (i.e., in time and space) soil moisture record. This
differentiation is the basis of the analysis, providing a con-
trasting comparison of the impact of different estimates of
soil moisture on the L–A coupling framework and the re-
sulting impact on L–A coupling strength. The morning over-
pass is used for SMAPL3, while the sunrise soil moisture
is estimated through linear interpolation from the 3 h data
for SMAPL4. All available SMAPL3 data are used with-
out filtering based on the quality flags in order to maintain
a larger dataset for a comprehensive analysis. SMAPL3 also
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Figure 2. IGRA2 observation stations across the globe, along with regions selected for further analysis and the number of observation stations
in each region.

has missing observations due to the satellite’s orbital con-
straints, which is not the case with the SMAPL4 dataset due
to its reliance on the land surface model. This difference in
data completeness may affect the comparative analysis. To
quantify this impact, a dataset called SMAPL4_L3 is also in-
cluded, which utilizes SMAPL4 but with the temporal cov-
erage of SMAPL3 data, ensuring a comparison with equal
samples of soil moisture estimates.

4 Results

4.1 Evaluation of merged CTP–HI

The foundational concept of the TC method emphasizes that
inaccuracies in individual datasets should remain uncorre-
lated to avoid errors in the merged product. However, in prac-
tice, it is likely that the three reanalysis datasets will exhibit
correlated errors. In Fig. 3a, the scatterplots show the corre-
lated errors between different reanalysis datasets (MERRA-
2, CFSR, and ERA5) with respect to the IGRA2 observations
at a location in Kansas, United States (coordinates 39.96,
−95.26). For instance, MERRA-2 vs. CFSR represents the
errors in MERRA-2 plotted against the errors in CFSR, both
with respect to the IGRA2 observations. These errors are an-
alyzed at the AIRS overpass (∼ 01:30 local time). The analy-
sis indicates a significant correlation of errors, with a correla-
tion coefficient of∼ 0.85 when assessed against IGRA2 data.
This correlation appears more pronounced for the CTP than
the HI, suggesting a stronger association of errors within the
stability metric (CTP). This is further seen at the global scale
in Fig. 3b, showing box plots for observed error correlation
across the 534 IGRA2 locations. Most locations have a cor-
relation exceeding 0.7. This high correlation points to similar
error sources in the datasets for CTP and HI across the three
datasets considered. This may stem from similar approaches
and data used in assimilating temperature and humidity pro-

files or their radiances, while HI may be influenced more
by differences in model physics and parameters, as well as
screen-level nudging (in ERA5), compounded by challenges
in assimilating near-surface humidity data. Even though the
datasets employ diverse methods of data assimilation (DA)
and feature distinct physics and parameters, the common in-
put of in situ and satellite data likely contributes to this cor-
relation. These correlated errors may affect the accuracy of
the resulting merged dataset, which is validated against ob-
servations in Sect. 4.1.2.

The triple-collocation-based error (TC error) using
Eqs. (4)–(6) given in the Supplement (Fig. S1) reveals a re-
markably high TC error for the CTP within the MERRA-2
and CFSR datasets, most notably over the Northern Hemi-
sphere and South America. The merged product is con-
structed based on the weights derived from the error variance
calculated by Eqs. (7)–(9). Locations with a higher error vari-
ance are assigned lower weights, reflecting their reduced re-
liability. Conversely, locations with lower error variance are
deemed more reliable and are thus given greater weights in
the grid-level merging process.

Table 2 demonstrates the distribution of TC-based weights
for CTP and HI across various global regions for the three
datasets. The spatial maps in the Supplement (Fig. S2) detail
the weights for each reanalysis product for CTP and HI glob-
ally. These weights are directly proportional to the relative er-
ror variance; areas where MERRA-2 and CFSR show larger
variances (Fig. S3), especially in the Northern Hemisphere
and South America, tend to favor ERA5 for the weighting
of the merged CTP. Based on Table 2, ERA5 emerges as the
leading dataset for CTP, being allocated the highest weight in
most regions. However, in Europe and Africa, the weight dis-
tribution for CTP is almost similar among the three datasets,
indicating a balanced reliance on each dataset within these
continents.

The weight allocation for the HI shows considerable re-
gional variation. In South America, the MERRA-2 dataset
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Figure 3. (a) Observed errors between IGRA2 and reanalysis datasets at a location in Kansas, United States (latitude: 39.96, longitude:
−95.26), for CTP and HI from 2003 to 2022, along with the Pearson correlation displayed in the upper left corner. (b) Observed error
correlation between reanalysis datasets at IGRA2 stations across the globe (529 sites).

Table 2. Average weight across North America (NAM), South
America (SAM), Africa (AFR), Europe (EUR), Asia (ASA), and
Australia (AUS). The color gradient is applied based on the mini-
mum value (yellow color) to the maximum value (green color) for
CTP and HI for AIRS overpass.

Weight distribution across the region for CTP (J kg−1)

Region NAM SAM AFR EUR ASA AUS

MERRA-2 0.27 0.27 0.32 0.35 0.28 0.30
CFSR 0.30 0.30 0.32 0.34 0.30 0.30
ERA5 0.43 0.43 0.35 0.31 0.42 0.40

Weight distribution across the region for HI (°)

Region NAM SAM AFR EUR ASA AUS

MERRA-2 0.33 0.29 0.35 0.37 0.35 0.31
CFSR 0.31 0.31 0.33 0.34 0.30 0.34
ERA5 0.36 0.40 0.32 0.29 0.35 0.36

is assigned the lowest weight, implying that it contributes
less to the combined HI product. Conversely, in Europe, it
is the ERA5 dataset that receives the lowest weight, signify-
ing its reduced contribution to the HI variable in this region.
These regional differences in the weighting of datasets under-
score the merging process, allowing for a location-specific
approach to creating a merged product.

4.1.1 Performance of merged CTP–HI

The data are merged following Eqs. (10a) and (10b), and
the resultant spatial distribution of average CTP and HI dur-
ing the summer season (June, July, and August of JJA) for
the year 2012 is portrayed in the Supplement (Figs. S3 and
S4). These figures compare the CTP and HI values derived
from the MERRA-2, CFSR, and ERA5 alongside the merged
product.

The accuracy of the merged data, along the individual re-
analysis datasets MERRA-2, CFSR, and ERA5, is evaluated
through a comparison with IGRA2 radiosonde and AIRSv7
satellite observations, as depicted in Figs. 4 and 5. The evalu-
ation utilizes the mean absolute error (MAE), bias, and corre-
lation coefficient (CC) across major global regions. The re-
sults indicate that the merged dataset consistently achieves
the lowest MAE for CTP and HI variables, outperforming the
individual reanalysis datasets. This improvement in accuracy
suggests that the merging process effectively consolidates the
strengths of the individual datasets while mitigating their re-
spective biases despite the correlated errors seen in Fig. 3.

The merged product compensates for these inaccuracies
in regions where the MERRA-2 dataset exhibits substantial
discrepancies with observational data, demonstrating a prac-
tical approach that improves the overall metric. Furthermore,
the merged dataset shows a considerable reduction in posi-
tive bias for CTP across South America, Europe, and Asia,
as well as a decrease in negative bias for HI in most regions,
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Figure 4. Bar plot of performance metrics and intercomparison of merged data and reanalysis with radiosonde observations from IGRA2 in
different regions and globally for (a) CTP and (b) HI.

except for Asia. These improvements highlight the efficacy
of the merging process in yielding a more reliable dataset,
which is especially beneficial for L–A coupling studies in re-
gions challenged by less accurate reanalysis data.

Figure 5 presents the same set of performance metrics as
in Fig. 4 but compared against the AIRSv7 data. The re-
sult indicates a general trend of overestimation for CTP and
HI by the reanalysis and merged datasets across all regions
compared to AIRSv7. It is essential to acknowledge the lim-
itations in measurement capabilities and inherent biases of
AIRSv7, particularly in terms of lower-troposphere retrieval
due to limited vertical resolution in AIRS, which is different
from those in the reanalysis datasets. Specifically, the lim-
ited sensitivity and vertical resolution of AIRSv7 in the PBL
might lead to positive biases, resulting in discrepancies with
the reanalysis datasets vs. that observed with radiosonde data
as the reference.

Regarding temporal correlation, the merged dataset and
the ERA5 reanalysis score the highest values, reflecting
a consistent signal with observations from IGRA2 and
AIRSv7 (as shown in Figs. 4 and 5). When evaluated against
both ground-based observations and satellite remote sens-
ing, there is a noticeable improvement in the performance
of the merged product compared to the individual reanalysis

datasets. The merged product demonstrates a closer align-
ment with the ground truth, as represented by IGRA2, cap-
turing the observed signal with greater accuracy. Overall, the
outcome remains consistent across the globe when validating
the merged product and individual reanalysis datasets with
respect to IGRA2 and AIRSv7 for CTP and HI.

The previous evaluation of the CTP and HI products was
done at the AIRS overpass time (∼ 01:30 local time); how-
ever, the theory of the CTP–HI framework for classifying
coupling relies on early morning observations of the CTP
and HI (Findell and Eltair, 2003), which also aligns with the
SMAP overpass time (∼ 06:00 local time). Table S5 gives
the weights for the merged product at sunrise. Compared to
the AIRS overpass weights (Table 2), the sunrise weights
show similar spatial patterns with marginal variations. This
is consistent with previous research by Roundy and San-
tanello (2017) that demonstrated the application of the CTP–
HI framework with AIRS estimates and demonstrated simi-
larity in the overarching pattern of L–A coupling classifica-
tion. Thus, the remainder of the analysis will use the sunrise
merged CTP and HI products to classify and analyze L–A
coupling.
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Figure 5. Bar plot of performance metrics and intercomparison of merged data and reanalysis with satellite remote sensing from AIRSv7 in
different regions and globally for (a) CTP and (b) HI.

4.2 Coupling strength in the contiguous United States

The sunrise merged CTP and HI products and three differ-
ent datasets of soil moisture (SMAPL3, SMAPL4_L3, and
SMAPL4) are used to classify the CTP–HI space and create
a time series of L–A coupling from 2003–2022. The time
series is then used to quantify the L–A coupling strength
based on the persistence probabilities from a first-order three-
state Markov chain. Figure 6 examines the coupling strength
over the contiguous United States using the same CTP–HI
data but with different soil moisture datasets. Figure 6a re-
veals a consistent pattern of a persistent dry regime in the
inter-mountain west region and a persistent wet regime in the
northwestern and eastern parts of the country. A side-by-side
evaluation shows that the SMAPL4 dataset displays a more
persistent pattern under dry and wet regimes. This indicates
a stronger representation of L–A coupling in SMAPL4 that
may be due to the strong vertical coupling of soil moisture
in the catchment assimilation processes. On the other hand,
SMAPL4_L3 data show less persistence than SMAPL4, sug-
gesting that part of observed difference between SMAPL3
and SMAPL4 is due to sample size. Despite these differ-
ences, the overarching spatial pattern remains consistent

across all datasets except over the northern Great Lakes for
SMAPL4 where it shows a persistent wet coupling regime.

To delve deeper into the noted differences in coupling
strength, the lagged correlation between the three sets of soil
moisture and the CTP and HI over 2015–2022 is analyzed.
Lag correlation is employed to identify the relationship be-
tween soil moisture and future CTP and HI and vice versa.
While previous work has discussed the potential for soil
moisture predictability out to 60 d (Dirmeyer et al., 2018),
this analysis uses a 10 d lag to capture the role of soil mois-
ture in predicting the atmospheric state (CTP and HI) and the
atmospheric state in predicting soil moisture on timescales
relative to typical weather predictability. Within this setup,
the ability of soil moisture to predict future CTP and HI is
given as a positive lag correlation and the ability of the CTP
and HI to predict future soil moisture is given as a negative
lag. For both the CTP and HI, the correlation with soil mois-
ture is negative due to the relationship between SM–CTP and
SM–HI. Wet soil typically results in surface cooling when so-
lar radiation is limited, leading to a more stable temperature
profile in the lower atmosphere. This stability restricts verti-
cal movement and consequently leads to a lower CTP, thus
creating a negative correlation. HI, on the other hand, mea-
sures atmospheric moisture content. Higher HI values sig-
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Figure 6. Comparative analysis of L–A coupling strength using SMAPL3, SMAPL4_L3, and SMAPL4 data. (a) Coupling strength for the
dry and wet coupling regime and (b, c) lag correlation between soil moisture and CTP and HI averaged over the contiguous United States.

nify drier air, while lower values indicate moisture-rich air
closer to saturation. High soil moisture enhances evapora-
tion, which adds water vapor to the atmosphere, reducing the
gap between temperature and dew point and thus lowering
the HI, resulting in a negative correlation.

Figure 6b and c show the average lag correlation out to
10 d over the contiguous US and indicate that soil mois-
ture has a stronger predictive influence on CTP and HI as
shown by the larger magnitudes of correlations over posi-
tive lags, which suggest that while CTP and HI are not as
strong in predicting soil moisture (lower magnitude of cor-
relations over negative lags), soil moisture is more effec-
tive in predicting changes in CTP and HI. This is particu-
larly noticeable for shorter lags, suggesting a more imme-
diate impact of soil moisture on atmospheric stability and
humidity. Conversely, the decrease in correlation magnitude
with longer lags highlights the diminishing influence of L–
A interaction over time. For the different datasets, SMAPL4
consistently shows higher correlations at all lag intervals for
both CTP and HI. However, the sample size does play a role
in this assessment as noticed by a decrease in the magni-
tude of correlation for the SMAPL4_L3. Despite this, the
SMAPL4_L3 dataset still shows a higher magnitude in lag
correlation compared SMAPL3, particularly for CTP. This
suggests that the assimilation of SMAP observations into a
model, as in SMAPL4, may yield a stronger relationship in
the temporal dynamics between the land surface and the at-
mosphere. In contrast, the pattern of a stronger L–A connec-
tion for SMAPL4 is less evident for HI.

To further analyze the impact of soil moisture on coupling
strength, Fig. 7 delves into a grid-scale analysis at a location
in Nevada, USA (38.89, −115.59). Figure 7a illustrates the
classified CTP–HI space based on SMAPL3, SMAPL4_L3,
and SMAPL4 datasets. The coupling regimes are clearly dis-
tinguished within the CTP–HI framework across the datasets,
highlighting the variations and interactions between soil
moisture and atmospheric conditions. SMAPL4 indicates
more bins assigned to wet and dry coupling regimes, thereby
resulting in an increased coupling strength within the time se-
ries. In Fig. 7b, the joint probability of CTP–HI–SM space il-
lustrates the bin average SM within the CTP–HI space based
on historical observations and helps to identify patterns in
the CTP–HI–SM relationship. States of wet coupling are as-
sociated with higher soil moisture levels in the combined
probability space of CTP–HI–SM, whereas dry states are
linked to consistent lower moisture levels within the CTP–
HI space. While the overall disparities between SMAPL3
and SMAPL4 in the distribution of soil moisture are quite
evident in Fig. 7c, there is also very little difference in soil
moisture distribution due to sample size (difference between
SMAPL4 and SMAPL4_L3). Given that the classification
algorithm accounts for climatological difference in the soil
moisture datasets, the difference stems from the shape of the
soil moisture distribution and its projection on to the CTP–
HI space. The SMAPL3 dataset shows a tendency for ob-
servations to skew toward the lower end of the soil mois-
ture spectrum, while the SMAPL4 tends to exhibit a clus-
tering of observations in the mid-range between 0.4 and 0.8.
These differences in both the soil moisture distribution and
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its projection in the CTP–HI space affect the classification
of coupling regimes and therefore the coupling strength of
the time series. Figure 7d depicts the daily coupling classi-
fication for an arbitrary month (May 2010). The SMAPL4
dataset, with its higher number of wet regime classifications,
demonstrates a greater likelihood of days being categorized
as a wet regime. This is evidenced in the time series, where
most days are classified under wet conditions in SMAPL4, in
contrast to the SMAPL3 dataset, which indicates more days
in an atmospherically controlled regime. Sample size has a
small impact on the classification, with only 2 d being dif-
ferent between SMAPL4_L3 and SMAPL4. This difference
underscores the influence of soil moisture on the daily clas-
sification of L–A coupling within the CTP–HI framework,
even though it is not directly used in creating daily time se-
ries.

4.3 Global coupling strength

The previous section highlighted the connection between
coupling strength and the lag correlation between SM and
the CTP and HI. To explore this further, Fig. 8 presents the
average coupling strength (for both dry and wet regimes) on
the x axis and the average positive (soil moisture predicts
CTP–HI) lag correlation out to 10 d on the y axis for all land
grid cells across the globe. Overall, all soil moisture datasets
show a nonlinear relationship between coupling strength and
lag correlation, with little relationship between the variables
for low coupling strength that transitions into a stronger rela-
tionship as coupling strength increases. To help quantify this,
the data are fit to a quadratic model, and the R2 for this rela-
tionship is shown. TheR2 value is calculated to measure how
well the variance in the observed data can be explained by
the quadratic model. As indicated in Fig. 8a, all soil moisture
datasets show a weaker relationship between average cou-
pling strength and average lag correlation for CTP, as indi-
cated by a lower R2 (explained variance by the regression
line) and a shallower slope in the regression line. In contrast,
Fig. 8b shows that the SM–HI relationship is stronger, with
higher R2 values and a more pronounced nonlinear relation-
ship. This indicates that persistency as a measure of coupling
strength is predominantly driven by the SM–HI relationship,
suggesting a direct influence of soil moisture on lower-level
humidity and its correlation over time. In contrast, the SM–
CTP relations is more complex due to the indirect influence
on atmospheric stability, which may be more influenced by
larger-scale atmospheric conditions. Furthermore, SMAPL4
shows a stronger relationship compared to SMAPL3 that is
only slightly impacted by the difference in sample size be-
tween SMAPL3 and SMAPL4.

The average coupling strength for dry and wet regimes
across the different regions and globally using SMAPL3,
SMAPL4_L3, and SMAPL4 is given in Fig. 9. All datasets
are consistent in showing that Africa has the largest aver-
age coupling strength, while North America has the small-

est average coupling strength. Yet, there are differences in
the relative strength for other regions. Notably, the SMAPL4
dataset demonstrates a stronger coupling strength in both
the dry and wet regimes, indicating a stronger temporal per-
sistence in the coupling regime. The variation in coupling
strength becomes noticeable when the sample size is con-
sidered. This is particularly true for Africa, where there is
little difference between the average coupling strength be-
tween SMAPL3 and SMAPL4_L3. In contrast, North Amer-
ica shows the largest difference in coupling strength between
SMAPL3 and SMAPL4_L3. As with other regions of the
globe, there is little difference in the coupling strength for
the dry regime, as differences are predominantly seen in the
wet regime coupling strength. This outcome is consistent
with Fig. 6, which shows the spatial variability of coupling
strength over the contiguous United States.

5 Discussion

An important aspect of this analysis is the development of
the merged CTP and HI product. The merging process em-
ploys the triple collocation method based on the relative er-
rors among the MERRA-2, CFSR, and ERA5 datasets. The
variations in the weight distributions for CTP and the HI re-
flect the inherent differences in the datasets. In the merged
dataset, the ERA5 reanalysis had the highest weight, which
may be a result of improved representations of tropospheric
temperature and humidity (Hersbach et al., 2020). Nonethe-
less, it is critical to understand that a higher weight for ERA5
does not mean that the merged product will closely resemble
ERA5 in its characteristics. The merging process involves in-
tegrating information from multiple datasets, and the result-
ing merged product is a distinct and independent entity. Fig-
ure 3 also reveals the presence of correlated errors when com-
pared with radiosonde observations, suggesting the potential
for a biased merged product. However, the merged product
outperformed the individual reanalysis datasets when com-
pared to radiosondes and satellite-based estimates of CTP
and HI (Figs. 4 and 5). This suggests that the merging pro-
cess reduces the bias arising from the individual reanalysis
products and provides a more accurate product. While this
validation of the merged product is robust, it is not without
its flaws. The differences in spatial and temporal resolutions
between the merged product and the IGRA2 radiosonde and
AIRSv7 observations are prone to uncertainty. Despite this,
the merged dataset demonstrates a more accurate reflection
of in situ and satellite observations of CTP and HI compared
to individual datasets, thus providing a temporal and spatially
consistent dataset for analyzing L–A coupling.

The merged CTP–HI product was used to investigate how
soil moisture from SMAP contributes to quantifying L–A
coupling strength globally. As depicted in Figs. 6 through 9,
the findings underscore the pivotal role of soil moisture in the
representation of L–A coupling strength within the CTP–HI
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Figure 7. Multifaceted assessment of coupling classification influenced by soil moisture across SMAPL3, SMAPL4_L3, and SMAPL4 data
at a specific grid location (38.89, −115.59) situated in Nevada, USA. (a) CTP–HI framework. (b) A joint probability space of CTP–HI–SM.
(c) Saturated soil moisture distribution. (d) Coupling classification time series for May 2010.

Figure 8. Comparative analysis of average dry and wet coupling strength and 10 d lag correlation using SMAPL3, SMAPL4_L3, and
SMAPL4 soil moisture datasets for (a) CTP and (b) HI.
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Figure 9. Comparative analysis of land–atmosphere average
coupling strength using different soil moisture from SMAPL3,
SMAPL4_L3, and SMAPL4 data across various regions and glob-
ally.

framework developed by Roundy et al. (2013). The coupling
strength is quantified as the persistence in the wet and dry
coupling regimes defined using a three-state Markov chain
model. Figures 6 and 8 demonstrate the ability of soil mois-
ture to predict future CTP and HI through lag correlation
analysis and its direct relationship with coupling strength.
The observed lag correlation is most pronounced for the SM–
HI relation, indicating the direct influence of soil moisture on
lower-tropospheric humidity. In contrast, there is a weaker
relationship between soil moisture and atmospheric stabil-
ity, as indicated by the SM–CTP lag correlation. Reinforc-
ing this point, Entekhabi et al. (1996) discussed the signifi-
cant feedback mechanisms between soil moisture and atmo-
spheric processes, highlighting how changes in soil moisture
can directly impact the atmospheric environment. Wang et
al. (2024) further substantiate this argument, which demon-
strates the potential for soil moisture to predict the future
coupling state and the utility of the persistence in the cou-
pling regime as a measure of coupling strength.

The SMAPL4 dataset exhibits higher coupling strength
in both the wet and dry regimes across the globe (Fig. 9).
This indicates that SMAPL4 would give stronger short-term
predictions of future coupling states using the Coupling
Stochastic Model (CSM) developed by Roundy and Wood
(2015) compared to the SMAPL3 product. However, it is un-
clear if the stronger coupling predictions would lead to more
skillful predictions, and this topic is left to future research.
One possible reason for the weaker coupling strength in
SMAPL3 is that all available SMAPL3 data points were used
to maintain a larger dataset without considering the qual-
ity flags. Dong and Crow (2019) highlight the importance
of high signal-to-noise ratios in L-band SMAP soil moisture
data for accurately quantifying L–A coupling strength. How-
ever, reducing the SMAPL3 sample size by filtering out data
based on quality flags may introduce additional variability

and noise, potentially impacting the coupling strength, espe-
cially in regions with variable data quality. This could po-
tentially be teased out with a longer SMAP data record that
would allow greater scrutiny of the retrievals without com-
promising the sample size.

The higher coupling strength observed in SMAPL4 is at-
tributed to the reliance on a land surface model and assimila-
tion process. The constraints of a deterministic model, based
on fixed equations, make a land surface model less suscep-
tible to variation and random noise and thus create a higher
autocorrelation compared to SMAPL3. While this is a unique
characteristic of SMAPL4, it is important to remember that
the strong coupling may not accurately mirror the complex-
ities of real-world conditions (Van Vuuren et al., 2012). The
accuracy of the stronger coupling in SMAPL4 is difficult to
quantity due to the scarcity of in situ observations across
the globe where simultaneous atmospheric profile and soil
moisture measurements can be obtained. The limitation of
comprehensive ground-based observations poses a signifi-
cant challenge in validating the true representation of cou-
pling and understanding the intricate interplay between soil
moisture and atmospheric conditions (Santanello et al., 2018;
Beamesderfer et al., 2022). This conclusion also aligns with
the insight provided by Findell et al. (2024), who empha-
sized the importance of high-frequency data for accurately
assessing land–atmosphere coupling in climate models. Con-
sequently, our ability to ascertain which dataset offers a more
accurate representation of L–A coupling remains a subject of
ongoing investigation.

Figure 7c shows that differences between the SMAPL3
and SMAPL4 coupling strengths are mainly due to the shape
of the distribution of soil moisture and its projection in the
CTP–HI space. A minor difference in soil moisture distribu-
tion is observed in Fig. 7c when comparing SMAPL4 and
SMAPL4_L3, though this difference is more notable in the
joint probability space of CTP–HI–SM (Fig. 7a and b). Soil
moisture estimates from SMAPL3 tend to skew towards drier
values, likely due to the retrieval of the topsoil layer, which
tends to dry quickly after rainfall events. This skew is in-
fluenced by fixed conditions in the retrieval process such as
the prescribed freeze–thaw condition, as well as land surface
characteristics like vegetation cover and soil properties. In
contrast, SMAPL4, which uses observations from the same
satellite, employs model-based soil hydraulic parameters,
providing a greater range in the depiction of soil moisture
variations across different landscapes. Studies by Reichle et
al. (2017) and Reichle et al. (2019, 2021) have shown a re-
duced bias and expanded dynamic range of surface soil mois-
ture in SMAPL4 compared to in situ observations and the
previous version of SMAPL4. These differences highlight
the varying methodologies and characteristics of SMAPL3
and SMAPL4, resulting in distinct soil moisture estimates.

Recent research underscores the vital role of the SMAPL3
soil moisture product in agricultural applications, as demon-
strated by Zhu et al. (2024). The accuracy of soil mois-
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ture measurement is crucial, and Tavakol et al. (2019) high-
lighted that the SMAPL3 and SMAPL4 soil moisture prod-
ucts are at the forefront of soil moisture accuracy. For
instance, Xu (2020) concluded that the SMAPL4 surface
soil moisture product is more accurate, with lower errors
(ubRMSE< 0.04 m3 m−3), compared to the SMAPL3 prod-
uct (∼ 0.06 m3 m−3). Moreover, SMAP outperforms other
soil moisture products, such as AMSR2 L3 and SMOS-IC,
across most of the global land surface (Kim et al., 2021).
This enhanced accuracy has been corroborated by Zhang et
al. (2017), who showed that SMAPL4 captures spatial and
temporal soil moisture variations more reliably than the Ad-
vanced Microwave Scanning Radiometer (AMSR2) across
the United States. Reichle et al. (2017) have shown that the
version 4 SMAPL4 bias is significantly reduced compared to
version 3, exhibiting a 46 % decrease in surface soil moisture
uncertainty. Considering the above points, SMAP observa-
tions could improve drought monitoring and provide detailed
insight into drought conditions, as demonstrated in studies by
Mishra et al. (2017), Velpuri et al. (2016), and Mladenova et
al.(2020). This work further demonstrates the particular rele-
vance of SMAP observations for studies of drought and L–A
interaction, providing deeper insights into how land surface
conditions influence atmospheric responses (Zhang et al.,
2023b) and how it could potentially improve drought moni-
toring and prediction using statistical modeling (Roundy and
Wood, 2015).

6 Conclusion

This work developed a merged reanalysis-based product for
CTP and HI, which outperforms individual reanalysis prod-
ucts when validated against radiosonde and satellite observa-
tions. The merged CTP and HI product was used in com-
bination with two different SMAP soil moisture products
to analyze the coupling strength across the globe. Coupling
strength is defined by the persistence probability for wet and
dry coupling regimes as given by a first-order three-state
Markov chain model and is directly related to the ability of
soil moisture to predict future atmospheric states out to 10 d.
It is demonstrated that the measure of coupling strength is
primarily driven by the SM–HI relationship, suggesting a di-
rect influence of soil moisture on lower-tropospheric humid-
ity over time. In contrast, the SM–CTP relationship is more
complex and likely influenced by larger-scale atmospheric
conditions.

Another key conclusion is that SMAPL4 consistently
presents a stronger representation of coupling strength com-
pared to SMAPL3. While some of the difference in cou-
pling strength can be attributed to the limited sample size of
SMAPL3, analyzing similar samples from both SMAP prod-
ucts still demonstrates stronger persistence in the wet cou-
pling regimes in SMAPL4. The increased coupling strength
in SMAPL4 may result from SMAPL4’s reliance on a land

surface model, which reduces susceptibility to random noise
compared to SMAPL3. The difference in coupling strength
in the two soil moisture datasets using the same CTP–HI un-
derscores the importance of soil moisture data in estimating
coupling strength using the CTP–HI framework. Neverthe-
less, it is not clear which of the two SMAP measures of cou-
pling strength provide a better representation of the “real-
world coupling” as enhanced observation networks (i.e., col-
located ground and atmospheric profile measurements) are
needed to assess the accuracy of L–A interactions on a global
scale.

Future work will investigate how the differences and sim-
ilarities in the SMAP coupling strength may influence the
ability to monitor and forecast the initiation, intensification,
and abatement of drought conditions using methods such as
the L–A-coupling-based drought index (Roundy et al., 2014)
and coupling stochastic model (Roundy and Wood, 2015).
Such work may lead to potential improvements to drought
monitoring and forecasting, strengthening the capacity for
effective drought preparedness and response.
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https://doi.org/10.5067/7KKNQ5UURM2W (Entekhabi
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CFSR dataset is accessible via https://doi.org/10.5065/D61C1TXF
(Saha et al., 2011). The ERA5 dataset is available
at https://doi.org/10.24381/cds.bd0915c6 (Hersbach et
al., 2023). The AIRS version 7 dataset is available at
https://doi.org/10.5067/UO3Q64CTTS1U (AIRS Project, 2019). In
addition, the merged dataset for CTP and HI can be accessed via
https://doi.org/10.4211/hs.90bf9b575b684c849e617f620c2d63fb
(Makhasana et al., 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-5087-2024-supplement.

Author contributions. PRM led the development of the triple-
collocation-based merging dataset, conducted the analysis on cou-
pling strength, and was primarily responsible for writing the origi-
nal draft of the manuscript. JAS and PMLP contributed to the refine-
ment of the study design by proving critical reviews and edits to the
manuscript, enhancing its intellectual content. JKR developed the
code for revised CTP–HI framework for coupling classification and
participated in manuscript editing. JAS, PMLP, and JKR played a
significant role in shaping the research direction and methodology,
ensuring the rigor and accuracy of the work presented.

Hydrol. Earth Syst. Sci., 28, 5087–5106, 2024 https://doi.org/10.5194/hess-28-5087-2024

https://doi.org/10.5067/7KKNQ5UURM2W
https://nsidc.org/data/spl4smlm/versions/4
https://doi.org/10.7289/V5X63K0Q
https://doi.org/10.5067/VJAFPLI1CSIV
https://doi.org/10.5065/D61C1TXF
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.5067/UO3Q64CTTS1U
https://doi.org/10.4211/hs.90bf9b575b684c849e617f620c2d63fb
https://doi.org/10.5194/hess-28-5087-2024-supplement


P. R. Makhasana et al.: Deducing land–atmosphere coupling regimes from SMAP soil moisture 5103

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge the generous support and
funding provided by the NASA Soil Moisture Active Passive
(SMAP) Mission Science Team Program. We also extend our grat-
itude to the reviewers for their insightful comments, which have
significantly improved the quality of this work.

Financial support. This research has been supported by
the National Aeronautics and Space Administration (grant
no. NNH19ZDA001N-SMAP).

Review statement. This paper was edited by Nunzio Romano and
reviewed by two anonymous referees.

References

AIRS Project: AIRS/Aqua L3 Daily Standard Physical Re-
trieval (AIRS-only) 1°× 1° V7. Greenbelt, MD, USA, God-
dard Earth Sciences Data and Information Services Center
(GES DISC) [Temperature profile, Humidity profile, Surface
Pressure, Surface Air Temperature and Surface Humidity],
https://doi.org/10.5067/UO3Q64CTTS1U, 2019.

Alexander, G. A., Holmes, H. A., Sun, X., Caputi, D., Faloona, I. C.,
and Oldroyd, H. J.: Simulating land-atmosphere coupling in the
Central Valley, California: Investigating soil moisture impacts on
boundary layer properties, Agr. Forest Meteorol., 317, 108898,
https://doi.org/10.1016/j.agrformet.2022.108898, 2022.

Anderson, W. B., Zaitchik, B. F., Hain, C. R., Anderson, M. C.,
Yilmaz, M. T., Mecikalski, J., and Schultz, L.: Towards an in-
tegrated soil moisture drought monitor for East Africa, Hydrol.
Earth Syst. Sci., 16, 2893–2913, https://doi.org/10.5194/hess-16-
2893-2012, 2012.

Arshad, M., Ma, X., Yin, J., Ullah, W., Liu, M., and Ul-
lah, I.: Performance evaluation of ERA-5, JRA-55, MERRA-
2, and CFS-2 reanalysis datasets, over diverse climate re-
gions of Pakistan, Weather and Climate Extremes, 33, 100373,
https://doi.org/10.1016/j.wace.2021.100373, 2021.

Beamesderfer, E. R., Buechner, C., Faiola, C., Helbig, M., Sanchez-
Mejia, Z. M., Yáñez-Serrano, A. M., Zhang, Y., and Richard-
son, A. D.: Advancing Cross-Disciplinary Understanding of
Land–Atmosphere Interactions, J. Geophys. Res.-Biogeo., 127,
e2021JG006707, https://doi.org/10.1029/2021JG006707, 2022.

Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P.,
Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers,

D., Soci, C., Villaume, S., Bidlot, J., Haimberger, L., Woollen,
J., Buontempo, C., and Thépaut, J.: The ERA5 global reanaly-
sis: Preliminary extension to 1950, Q. J. Roy. Meteor. Soc., 147,
4186–4227, https://doi.org/10.1002/qj.4174, 2021.

Bennet, M. J., Kingston, D. G., and Cullen, N. J.: Extreme
Compound and Seesaw Hydrometeorological Events in New
Zealand: An Initial Assessment, J. Geophys. Res.-Atmos., 128,
e2022JD038346, https://doi.org/10.1029/2022JD038346, 2023.

Chen, C., He, M., Chen, Q., Zhang, J., Li, Z., Wang,
Z., and Duan, Z.: Triple collocation-based error estima-
tion and data fusion of global gridded precipitation prod-
ucts over the Yangtze River basin, J. Hydrol., 605, 127307,
https://doi.org/10.1016/j.jhydrol.2021.127307, 2022.

Dirmeyer, P. A., Halder, S., and Bombardi, R.: On the Har-
vest of Predictability From Land States in a Global Fore-
cast Model, J. Geophys. Res.-Atmos., 123, 13111–13127,
https://doi.org/10.1029/2018JD029103, 2018.

Dong, J. and Crow, W. T.: L-band remote-sensing increases
sampled levels of global soil moisture-air temperature
coupling strength, Remote Sens. Environ., 220, 51–58,
https://doi.org/10.1016/j.rse.2018.10.024, 2019.

Dong, X., Wang, Y., Hou, S., Ding, M., Yin, B., and Zhang, Y.:
Robustness of the Recent Global Atmospheric Reanalyses for
Antarctic Near-Surface Wind Speed Climatology, J. Climate, 33,
4027–4043, https://doi.org/10.1175/JCLI-D-19-0648.1, 2020.

Durre, I. and Yin, X.: Enhanced Radiosonde Data For Studies
of Vertical Structure, B. Am. Meteorol. Soc., 89, 1257–1262,
https://doi.org/10.1175/2008BAMS2603.1, 2008.

Durre, I., Yin, X., Vose, R. S., Applequist, S., Arnfield, J.,
Korzeniewski, B., and Hundermark, B.: Integrated Global
Radiosonde Archive (IGRA), Version 2, NOAA Na-
tional Centers for Environmental Information [data set],
https://doi.org/10.7289/V5X63K0Q, 2016.

Entekhabi, D., Rodriguez-Iturbe, I., and Castelli, F.: Mutual inter-
action of soil moisture state and atmospheric processes, J. Hy-
drol., 184, 3–17, https://doi.org/10.1016/0022-1694(95)02965-6,
1996.

Entekhabi, D., Das, N., Njoku, E., Johnson, J., and Shi, J.: SMAP
L3 Radar/Radiometer Global Daily 9km EASE-Grid Soil Mois-
ture, Version 3 [Surface Soil Moisture], NASA National Snow
and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/7KKNQ5UURM2W, 2016.

Feng, F. and Wang, K.: Merging Satellite Retrievals and Re-
analyses to Produce Global Long-Term and Consistent Sur-
face Incident Solar Radiation Datasets, Remote Sens., 10, 115,
https://doi.org/10.3390/rs10010115, 2018.

Ferguson, C. R. and Wood, E. F.: Observed Land–
Atmosphere Coupling from Satellite Remote Sens-
ing and Reanalysis, J. Hydrometeorol., 12, 1221–1254,
https://doi.org/10.1175/2011JHM1380.1, 2011.

Findell, K. L. and Eltahir, E. A. B.: Atmospheric Controls
on Soil Moisture–Boundary Layer Interactions. Part II:
Feedbacks within the Continental United States, J. Hy-
drometeorol., 4, 570–583, https://doi.org/10.1175/1525-
7541(2003)004<0570:ACOSML>2.0.CO;2, 2003.

Findell, K. L., Yin, Z., Seo, E., Dirmeyer, P. A., Arnold, N.
P., Chaney, N., Fowler, M. D., Huang, M., Lawrence, D. M.,
Ma, P.-L., and Santanello Jr., J. A.: Accurate assessment of
land–atmosphere coupling in climate models requires high-

https://doi.org/10.5194/hess-28-5087-2024 Hydrol. Earth Syst. Sci., 28, 5087–5106, 2024

https://doi.org/10.5067/UO3Q64CTTS1U
https://doi.org/10.1016/j.agrformet.2022.108898
https://doi.org/10.5194/hess-16-2893-2012
https://doi.org/10.5194/hess-16-2893-2012
https://doi.org/10.1016/j.wace.2021.100373
https://doi.org/10.1029/2021JG006707
https://doi.org/10.1002/qj.4174
https://doi.org/10.1029/2022JD038346
https://doi.org/10.1016/j.jhydrol.2021.127307
https://doi.org/10.1029/2018JD029103
https://doi.org/10.1016/j.rse.2018.10.024
https://doi.org/10.1175/JCLI-D-19-0648.1
https://doi.org/10.1175/2008BAMS2603.1
https://doi.org/10.7289/V5X63K0Q
https://doi.org/10.1016/0022-1694(95)02965-6
https://doi.org/10.5067/7KKNQ5UURM2W
https://doi.org/10.3390/rs10010115
https://doi.org/10.1175/2011JHM1380.1
https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2


5104 P. R. Makhasana et al.: Deducing land–atmosphere coupling regimes from SMAP soil moisture

frequency data output, Geosci. Model Dev., 17, 1869–1883,
https://doi.org/10.5194/gmd-17-1869-2024, 2024.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Re-
ichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella,
S., Buchard, V., Conaty, A., Da Silva, A. M., Gu, W., Kim, G.-
K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Par-
tyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-
0758.1, 2017.

GMAO (Global Modeling and Assimilation Office):
inst3_3d_asm_Cp: MERRA-2 3D IAU State, Meteorology
Instantaneous 3-hourly (p-coord, 0.625× 0.5L42), version
5.12.4, Greenbelt, MD, USA: Goddard Space Flight Center
Distributed Active Archive Center (GSFC DAAC) [data set],
https://doi.org/10.5067/VJAFPLI1CSIV, 2015.

Gruber, A., Dorigo, W. A., Crow, W., and Wagner, W.:
Triple Collocation-Based Merging of Satellite Soil Mois-
ture Retrievals, IEEE T. Geosci. Remote, 55, 6780–6792,
https://doi.org/10.1109/TGRS.2017.2734070, 2017.

Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L.,
Calvet, J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W.,
Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., Mc-
Coll, K., Montzka, C., Muñoz-Sabater, J., Peng, J., Reichle, R.,
Richaume, P., Rüdiger, C., Scanlon, T., Van Der Schalie, R.,
Wigneron, J.-P., and Wagner, W.: Validation practices for satellite
soil moisture retrievals: What are (the) errors?, Remote Sens. En-
viron., 244, 111806, https://doi.org/10.1016/j.rse.2020.111806,
2020.

Hassler, B. and Lauer, A.: Comparison of Reanalysis and Obser-
vational Precipitation Datasets Including ERA5 and WFDE5,
Atmosphere, 12, 1462, https://doi.org/10.3390/atmos12111462,
2021.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-
ers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Bal-
samo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,
L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-
N.: ERA5 hourly data on pressure levels from 1940 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.

Hsu, H. and Dirmeyer, P. A.: Soil moisture-evaporation coupling
shifts into new gears under increasing CO2, Nat. Commun., 14,
1162, https://doi.org/10.1038/s41467-023-36794-5, 2023.

Jach, L., Schwitalla, T., Branch, O., Warrach-Sagi, K., and
Wulfmeyer, V.: Sensitivity of land–atmosphere coupling strength
to changing atmospheric temperature and moisture over Europe,

Earth Syst. Dynam., 13, 109–132, https://doi.org/10.5194/esd-
13-109-2022, 2022.

Kim, S., Dong, J., and Sharma, A.: A Triple Collocation-
Based Comparison of Three L-Band Soil Moisture
Datasets, SMAP, SMOS-IC, and SMOS, Over Varied
Climates and Land Covers, Front. Water, 3, 693172,
https://doi.org/10.3389/frwa.2021.693172, 2021.

Kozubek, M., Krizan, P., and Lastovicka, J.: Homogene-
ity of the Temperature Data Series from ERA5 and
MERRA2 and Temperature Trends, Atmosphere, 11, 235,
https://doi.org/10.3390/atmos11030235, 2020.

Liu, Y., Yao, L., Jing, W., Di, L., Yang, J., and Li, Y.: Comparison
of two satellite-based soil moisture reconstruction algorithms:
A case study in the state of Oklahoma, USA, J. Hydrol., 590,
125406, https://doi.org/10.1016/j.jhydrol.2020.125406, 2020.

Lorenzo, A. T., Morzfeld, M., Holmgren, W. F., and Cronin, A.
D.: Optimal interpolation of satellite and ground data for irra-
diance nowcasting at city scales, Sol. Energy, 144, 466–474,
https://doi.org/10.1016/j.solener.2017.01.038, 2017.

Lu, J., Wang, G., Chen, T., Li, S., Hagan, D. F. T., Kattel, G., Peng,
J., Jiang, T., and Su, B.: A harmonized global land evaporation
dataset from model-based products covering 1980–2017, Earth
Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-
5879-2021, 2021.

Lyu, F., Tang, G., Behrangi, A., Wang, T., Tan, X., Ma, Z., and
Xiong, W.: Precipitation Merging Based on the Triple Colloca-
tion Method Across Mainland China, IEEE T. Geosci. Remote,
59, 3161–3176, https://doi.org/10.1109/TGRS.2020.3008033,
2021.

Makhasana, P., Roundy, J., Santanello, J. A., and Lawston-
Parker, P. M.: Triple Collocation based Merged
Dataset for Convective Triggering Potential (CTP)
and Humidity Index (HI), HydroShare [data set],
https://doi.org/10.4211/hs.90bf9b575b684c849e617f620c2d63fb,
2024.

Miranda Espinosa, M. T., Giuliani, G., and Ray, N.: Reviewing the
discoverability and accessibility to data and information prod-
ucts linked to Essential Climate Variables, Int. J. Digit. Earth,
13, 236–252, https://doi.org/10.1080/17538947.2019.1620882,
2020.

Mishra, A., Vu, T., Veettil, A. V., and Entekhabi, D.:
Drought monitoring with soil moisture active pas-
sive (SMAP) measurements, J. Hydrol., 552, 620–632,
https://doi.org/10.1016/j.jhydrol.2017.07.033, 2017.

Mladenova, I. E., Bolten, J. D., Crow, W., Sazib, N., and
Reynolds, C.: Agricultural Drought Monitoring via the
Assimilation of SMAP Soil Moisture Retrievals Into a
Global Soil Water Balance Model, Front. Big Data, 3, 10,
https://doi.org/10.3389/fdata.2020.00010, 2020.

Mukherjee, S. and Mishra, A. K.: Global Flash Drought Analysis:
Uncertainties From Indicators and Datasets, Earth’s Future, 10,
1–14, https://doi.org/10.1029/2022EF002660, 2022.

Nguyen, G. V., Le, X.-H., Van, L. N., Jung, S., Yeon, M., and Lee,
G.: Application of Random Forest Algorithm for Merging Multi-
ple Satellite Precipitation Products across South Korea, Remote
Sens., 13, 4033, https://doi.org/10.3390/rs13204033, 2021.

ONeill, P. E., Chan, S., Njoku, E. G., Jackson, T., Bindlish, R.,
Chaubell, M. J., and Colliander, A.: SMAP Enhanced L3 Ra-
diometer Global and Polar Grid Daily 9km EASE-Grid Soil

Hydrol. Earth Syst. Sci., 28, 5087–5106, 2024 https://doi.org/10.5194/hess-28-5087-2024

https://doi.org/10.5194/gmd-17-1869-2024
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.5067/VJAFPLI1CSIV
https://doi.org/10.1109/TGRS.2017.2734070
https://doi.org/10.1016/j.rse.2020.111806
https://doi.org/10.3390/atmos12111462
https://doi.org/10.1002/qj.3803
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.1038/s41467-023-36794-5
https://doi.org/10.5194/esd-13-109-2022
https://doi.org/10.5194/esd-13-109-2022
https://doi.org/10.3389/frwa.2021.693172
https://doi.org/10.3390/atmos11030235
https://doi.org/10.1016/j.jhydrol.2020.125406
https://doi.org/10.1016/j.solener.2017.01.038
https://doi.org/10.5194/essd-13-5879-2021
https://doi.org/10.5194/essd-13-5879-2021
https://doi.org/10.1109/TGRS.2020.3008033
https://doi.org/10.4211/hs.90bf9b575b684c849e617f620c2d63fb
https://doi.org/10.1080/17538947.2019.1620882
https://doi.org/10.1016/j.jhydrol.2017.07.033
https://doi.org/10.3389/fdata.2020.00010
https://doi.org/10.1029/2022EF002660
https://doi.org/10.3390/rs13204033


P. R. Makhasana et al.: Deducing land–atmosphere coupling regimes from SMAP soil moisture 5105

Moisture, Version 5 [Surface Soil Moisture], NASA National
Snow and Ice Data Center Distributed Active Archive Center
[data set], https://doi.org/10.5067/4DQ54OUIJ9DL, 2021.

Park, S., Son, S.-W., Jung, M.-I., Park, J., and Park, S. S.:
Evaluation of tropospheric ozone reanalyses with independent
ozonesonde observations in East Asia, Geosci. Lett., 7, 12,
https://doi.org/10.1186/s40562-020-00161-9, 2020.

Pratola, C., Barrett, B., Gruber, A., and Dwyer, E.: Qual-
ity Assessment of the CCI ECV Soil Moisture Product
Using ENVISAT ASAR Wide Swath Data over Spain,
Ireland and Finland, Remote Sens., 7, 15388–15423,
https://doi.org/10.3390/rs71115388, 2015.

Qi, Y., Chen, H., and Zhu, S.: Influence of Land–Atmosphere
Coupling on Low Temperature Extremes Over Southern
Eurasia, J. Geophys. Res.-Atmos., 128, e2022JD037252,
https://doi.org/10.1029/2022JD037252, 2023.

Qiu, J., Dong, J., Crow, W. T., Zhang, X., Reichle, R. H., and
De Lannoy, G. J. M.: The benefit of brightness temperature
assimilation for the SMAP Level-4 surface and root-zone soil
moisture analysis, Hydrol. Earth Syst. Sci., 25, 1569–1586,
https://doi.org/10.5194/hess-25-1569-2021, 2021.

Reichle, R., De Lannoy, G., Koster, R., Crow, W., Kimball, J.,
and Liu, Q.: SMAP L4 Global 3-hourly 9 km EASE-Grid Sur-
face and Root Zone Soil Moisture Geophysical Data, Ver-
sion 6, [Surface Soil Moisture], NASA National Snow and
Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/08S1A6811J0U, 2021.

Reichle, R. H., De Lannoy, G. J. M., Liu, Q., Ardizzone, J. V.,
Colliander, A., Conaty, A., Crow, W., Jackson, T. J., Jones, L.
A., Kimball, J. S., Koster, R. D., Mahanama, S. P., Smith, E.
B., Berg, A., Bircher, S., Bosch, D., Caldwell, T. G., Cosh, M.,
González-Zamora, Á., Holifield Collins, C. D., Jensen, K. H.,
Livingston, S., Lopez-Baeza, E., Martínez-Fernández, J., Mc-
Nairn, H., Moghaddam, M., Pacheco, A., Pellarin, T., Prueger,
J., Rowlandson, T., Seyfried, M., Starks, P., Su, Z., Thibeault,
M., Van Der Velde, R., Walker, J., Wu, X., and Zeng, Y.: Assess-
ment of the SMAP Level-4 Surface and Root-Zone Soil Mois-
ture Product Using In Situ Measurements, J. Hydrometeorol., 18,
2621–2645, https://doi.org/10.1175/JHM-D-17-0063.1, 2017.

Reichle, R. H., Liu, Q., Koster, R. D., Crow, W. T., De Lannoy, G.
J. M., Kimball, J. S., Ardizzone, J. V., Bosch, D., Colliander, A.,
Cosh, M., Kolassa, J., Mahanama, S. P., Prueger, J., Starks, P.,
and Walker, J. P.: Version 4 of the SMAP Level-4 Soil Moisture
Algorithm and Data Product, J. Adv. Model Earth Sy., 11, 3106–
3130, https://doi.org/10.1029/2019MS001729, 2019.

Reichle, R. H., Liu, Q., Ardizzone, J. V., Crow, W. T., De Lan-
noy, G. J. M., Dong, J., Kimball, J. S., and Koster, R. D.:
The Contributions of Gauge-Based Precipitation and SMAP
Brightness Temperature Observations to the Skill of the SMAP
Level-4 Soil Moisture Product, J. Hydrometeorol., 22, 405–424,
https://doi.org/10.1175/JHM-D-20-0217.1, 2021.

Roundy, J. K. and Santanello, J. A.: Utility of Satellite Remote
Sensing for Land–Atmosphere Coupling and Drought Metrics,
J. Hydrometeorol., 18, 863–877, https://doi.org/10.1175/JHM-
D-16-0171.1, 2017.

Roundy, J. K. and Wood, E. F.: The Attribution of
Land–Atmosphere Interactions on the Seasonal Pre-
dictability of Drought, J. Hydrometeorol., 16, 793–810,
https://doi.org/10.1175/JHM-D-14-0121.1, 2015.

Roundy, J. K., Ferguson, C. R., and Wood, E. F.: Temporal Vari-
ability of Land–Atmosphere Coupling and Its Implications for
Drought over the Southeast United States, J. Hydrometeorol., 14,
622–635, https://doi.org/10.1175/JHM-D-12-090.1, 2013.

Roundy, J. K., Ferguson, C. R., and Wood, E. F.: Impact of land-
atmospheric coupling in CFSv2 on drought prediction, Clim. Dy-
nam., 43, 421–434, https://doi.org/10.1007/s00382-013-1982-7,
2014.

Saha, K., Dash, P., Zhao, X., and Zhang, H.: Error Estima-
tion of Pathfinder Version 5.3 Level-3C SST Using Ex-
tended Triple Collocation Analysis, Remote Sens., 12, 590,
https://doi.org/10.3390/rs12040590, 2020.

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S.,
Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes,
D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.,
Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D.,
Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei,
H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang,
W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W.,
Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.
W., Rutledge, G., and Goldberg, M.: The NCEP Climate Fore-
cast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058,
https://doi.org/10.1175/2010BAMS3001.1, 2010.

Saha, S. et al.: NCEP Climate Forecast System Version 2 (CFSv2)
6-hourly Products. Research Data Archive at the National Center
for Atmospheric Research, Computational and Information Sys-
tems Laboratory [data set], https://doi.org/10.5065/D61C1TXF,
2011.

Saini, R., Wang, G., and Pal, J. S.: Role of Soil Moisture Feed-
back in the Development of Extreme Summer Drought and
Flood in the United States, J. Hydrometeorol., 17, 2191–2207,
https://doi.org/10.1175/JHM-D-15-0168.1, 2016.

Santanello, J. A., Roundy, J., and Dirmeyer, P. A.: Quantifying
the Land–Atmosphere Coupling Behavior in Modern Reanaly-
sis Products over the U.S. Southern Great Plains, J. Climate, 28,
5813–5829, https://doi.org/10.1175/JCLI-D-14-00680.1, 2015.

Santanello, J. A., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L.,
Tawfik, A. B., Berg, A., Ek, M., Gentine, P., Guillod, B. P.,
Van Heerwaarden, C., Roundy, J., and Wulfmeyer, V.: Land–
Atmosphere Interactions: The LoCo Perspective, B. Am. Mete-
orol. Soc., 99, 1253–1272, https://doi.org/10.1175/BAMS-D-17-
0001.1, 2018.

Seneviratne, S. I. and Stöckli, R.: The Role of Land–Atmosphere
Interactions for Climate Variability in Europe, in: Climate Vari-
ability and Extremes during the Past 100 Years, edited by: Brön-
nimann, S., Luterbacher, J., Ewen, T., Diaz, H. F., Stolarski,
R. S., and Neu, U., Springer Netherlands, Dordrecht, 179–193,
https://doi.org/10.1007/978-1-4020-6766-2_12, 2008.

Seo, E. and Dirmeyer, P. A.: Understanding the diurnal cy-
cle of land–atmosphere interactions from flux site ob-
servations, Hydrol. Earth Syst. Sci., 26, 5411–5429,
https://doi.org/10.5194/hess-26-5411-2022, 2022.

Seo, Y.-W. and Ha, K.-J.: Changes in land-atmosphere cou-
pling increase compound drought and heatwaves over
northern East Asia, NPJ Clim. Atmos. Sci., 5, 100,
https://doi.org/10.1038/s41612-022-00325-8, 2022.

https://doi.org/10.5194/hess-28-5087-2024 Hydrol. Earth Syst. Sci., 28, 5087–5106, 2024

https://doi.org/10.5067/4DQ54OUIJ9DL
https://doi.org/10.1186/s40562-020-00161-9
https://doi.org/10.3390/rs71115388
https://doi.org/10.1029/2022JD037252
https://doi.org/10.5194/hess-25-1569-2021
https://doi.org/10.5067/08S1A6811J0U
https://doi.org/10.1175/JHM-D-17-0063.1
https://doi.org/10.1029/2019MS001729
https://doi.org/10.1175/JHM-D-20-0217.1
https://doi.org/10.1175/JHM-D-16-0171.1
https://doi.org/10.1175/JHM-D-16-0171.1
https://doi.org/10.1175/JHM-D-14-0121.1
https://doi.org/10.1175/JHM-D-12-090.1
https://doi.org/10.1007/s00382-013-1982-7
https://doi.org/10.3390/rs12040590
https://doi.org/10.1175/2010BAMS3001.1
https://doi.org/10.5065/D61C1TXF
https://doi.org/10.1175/JHM-D-15-0168.1
https://doi.org/10.1175/JCLI-D-14-00680.1
https://doi.org/10.1175/BAMS-D-17-0001.1
https://doi.org/10.1175/BAMS-D-17-0001.1
https://doi.org/10.1007/978-1-4020-6766-2_12
https://doi.org/10.5194/hess-26-5411-2022
https://doi.org/10.1038/s41612-022-00325-8


5106 P. R. Makhasana et al.: Deducing land–atmosphere coupling regimes from SMAP soil moisture

Stoffelen, A.: Toward the true near-surface wind speed: Error mod-
eling and calibration using triple collocation, J. Geophys. Res.,
103, 7755–7766, https://doi.org/10.1029/97JC03180, 1998.

Sun, L. and Fu, Y.: A new merged dataset for analyzing clouds,
precipitation and atmospheric parameters based on ERA5 re-
analysis data and the measurements of the Tropical Rainfall
Measuring Mission (TRMM) precipitation radar and visible
and infrared scanner, Earth Syst. Sci. Data, 13, 2293–2306,
https://doi.org/10.5194/essd-13-2293-2021, 2021.

Tavakol, A., Rahmani, V., Quiring, S. M., and Kumar, S. V.: Eval-
uation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil
moisture data in the United States, Remote Sens. Environ., 229,
234–246, https://doi.org/10.1016/j.rse.2019.05.006, 2019.

Teixeira, J., Chen, S., Clayson, C. A., Fridlind, A. M., Leb-
sock, M., McCarty, W., Salmun, H., Santanello, J. A., Turner,
D. D., Wang, Z., and Zeng, X.: Toward a Global Planetary
Boundary Layer Observing System: The NASA PBL Incuba-
tion Study Team Report, NASA PBL Incubation Study Team,
134 pp., https://science.nasa.gov/earth-science/decadal-surveys/
decadal-pbl/ (last access: 3 May 2024), 2021.

Van Vuuren, D. P., Batlle Bayer, L., Chuwah, C., Ganzeveld, L.,
Hazeleger, W., Van Den Hurk, B., Van Noije, T., O’Neill, B.,
and Strengers, B. J.: A comprehensive view on climate change:
coupling of earth system and integrated assessment models,
Environ. Res. Lett., 7, 024012, https://doi.org/10.1088/1748-
9326/7/2/024012, 2012.

Velpuri, N. M., Senay, G. B., and Morisette, J. T.: Evaluat-
ing New SMAP Soil Moisture for Drought Monitoring in the
Rangelands of the US High Plains, Rangelands, 38, 183–190,
https://doi.org/10.1016/j.rala.2016.06.002, 2016.

Wakefield, R. A., Basara, J. B., Furtado, J. C., Illston, B. G., Fer-
guson, Craig. R., and Klein, P. M.: A Modified Framework for
Quantifying Land–Atmosphere Covariability during Hydrome-
teorological and Soil Wetness Extremes in Oklahoma, J. Appl.
Meteorol. Clim., 58, 1465–1483, https://doi.org/10.1175/JAMC-
D-18-0230.1, 2019.

Wang, G., Fu, R., Zhuang, Y., Dirmeyer, P. A., Santanello,
J. A., Wang, G., Yang, K., and McColl, K.: Influence of
lower-tropospheric moisture on local soil moisture–precipitation
feedback over the US Southern Great Plains, Atmos. Chem.
Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-
2024, 2024.

Wilson, A. G. and Fronczyk, K. M.: Bayesian Reliabil-
ity: Combining Information, Qual. Eng., 9, 119–129,
https://doi.org/10.1080/08982112.2016.1211889, 2016.

Wu, X., Lu, G., Wu, Z., He, H., Scanlon, T., and Dorigo,
W.: Triple Collocation-Based Assessment of Satellite Soil
Moisture Products with In Situ Measurements in China:
Understanding the Error Sources, Remote Sens., 12, 2275,
https://doi.org/10.3390/rs12142275, 2020.

Xu, X.: Evaluation of SMAP Level 2, 3, and 4 Soil Moisture
Datasets over the Great Lakes Region, Remote Sens., 12, 3785,
https://doi.org/10.3390/rs12223785, 2020.

Yilmaz, M. T., Crow, W. T., Anderson, M. C., and Hain,
C.: An objective methodology for merging satellite- and
model-based soil moisture products: Objectively merging
soil moisture products, Water Resour. Res., 48, W11502,
https://doi.org/10.1029/2011WR011682, 2012.

Yingshan, W., Weijun, S., Lei, W., Yanzhao, L., Wentao, D., Jizu,
C., and Xiang, Q.: How Do Different Reanalysis Radiation
Datasets Perform in West Qilian Mountains?, Front. Earth Sci.,
10, 852054, https://doi.org/10.3389/feart.2022.852054, 2022.

Zhang, L., Ding, M., Zheng, X., Chen, J., Guo, J., and Bian, L.: As-
sessment of AIRS Version 7 Temperature Profiles and Low-Level
Inversions with GRUAN Radiosonde Observations in the Arc-
tic, Remote Sens., 15, 1270, https://doi.org/10.3390/rs15051270,
2023a.

Zhang, L. N., Short Gianotti, D. J., and Entekhabi, D.: Land Sur-
face Influence on Convective Available Potential Energy (CAPE)
Change during Interstorms, J. Hydrometeorol., 24, 1365–1376,
https://doi.org/10.1175/JHM-D-22-0191.1, 2023b.

Zhang, S.-Q., Ren, G.-Y., Ren, Y.-Y., Zhang, Y.-X., and Xue, X.-
Y.: Comprehensive evaluation of surface air temperature re-
analysis over China against urbanization-bias-adjusted obser-
vations, Advances in Climate Change Research, 12, 783–794,
https://doi.org/10.1016/j.accre.2021.09.010, 2021.

Zhang, X., Zhang, T., Zhou, P., Shao, Y., and Gao, S.: Validation
Analysis of SMAP and AMSR2 Soil Moisture Products over
the United States Using Ground-Based Measurements, Remote
Sens., 9, 104, https://doi.org/10.3390/rs9020104, 2017.

Zhou, A., Cai, Z., Wei, L., and Qian, W.: M-kernel merging:
towards density estimation over data streams, in: Eighth In-
ternational Conference on Database Systems for Advanced
Applications, Proceedings Eighth International Conference
on Database Systems for Advanced Applications (DAS-
FAA 2003), Kyoto, Japan, 26–28 March 2003, 285–292,
https://doi.org/10.1109/DASFAA.2003.1192393, 2003.

Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hage-
mann, S., Lorenz, R., Seneviratne, S. I., and Gentine, P.: Land–
atmosphere feedbacks exacerbate concurrent soil drought and at-
mospheric aridity, P. Natl. Acad. Sci. USA, 116, 18848–18853,
https://doi.org/10.1073/pnas.1904955116, 2019.

Zhu, L., Tian, G., Wu, H., Ding, M., Zhu, A.-X., and Ma, T.: Re-
gional Assessment of Soil Moisture Active Passive Enhanced L3
Soil Moisture Product and Its Application in Agriculture, Re-
mote Sens., 16, 1225, https://doi.org/10.3390/rs16071225, 2024.

Hydrol. Earth Syst. Sci., 28, 5087–5106, 2024 https://doi.org/10.5194/hess-28-5087-2024

https://doi.org/10.1029/97JC03180
https://doi.org/10.5194/essd-13-2293-2021
https://doi.org/10.1016/j.rse.2019.05.006
https://science.nasa.gov/earth-science/decadal-surveys/decadal-pbl/
https://science.nasa.gov/earth-science/decadal-surveys/decadal-pbl/
https://doi.org/10.1088/1748-9326/7/2/024012
https://doi.org/10.1088/1748-9326/7/2/024012
https://doi.org/10.1016/j.rala.2016.06.002
https://doi.org/10.1175/JAMC-D-18-0230.1
https://doi.org/10.1175/JAMC-D-18-0230.1
https://doi.org/10.5194/acp-24-3857-2024
https://doi.org/10.5194/acp-24-3857-2024
https://doi.org/10.1080/08982112.2016.1211889
https://doi.org/10.3390/rs12142275
https://doi.org/10.3390/rs12223785
https://doi.org/10.1029/2011WR011682
https://doi.org/10.3389/feart.2022.852054
https://doi.org/10.3390/rs15051270
https://doi.org/10.1175/JHM-D-22-0191.1
https://doi.org/10.1016/j.accre.2021.09.010
https://doi.org/10.3390/rs9020104
https://doi.org/10.1109/DASFAA.2003.1192393
https://doi.org/10.1073/pnas.1904955116
https://doi.org/10.3390/rs16071225

	Abstract
	Introduction
	Methodology
	L–A coupling classification
	Classification input variables
	Classification of the CTP–HI space
	L–A coupling strength

	Merged CTP and HI

	Dataset description
	CTP and HI datasets
	The Modern-Era Retrospective Analysis for Research and Application version 2 (MERRA-2)
	The Climate Forecast System Reanalysis (CFSR)
	European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5)
	The Integrated Global Radiosonde Archive (IGRA) Version 2
	Atmospheric Infrared Sounder Version 7 (AIRSv7)

	Soil Moisture Active Passive (SMAP)

	Results
	Evaluation of merged CTP–HI
	Performance of merged CTP–HI

	Coupling strength in the contiguous United States
	Global coupling strength

	Discussion
	Conclusion
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

