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Abstract. For users of hydrological models, the suitability of
models can depend on how well their simulated outputs align
with observed discharge. This study emphasizes the crucial
role of factoring in discharge observation uncertainty when
assessing the performance of hydrological models. We intro-
duce an ad hoc approach, implemented through the eWater-
Cycle platform, to evaluate the significance of differences in
model performance while considering the uncertainty associ-
ated with discharge observations. The analysis of the results
encompasses 299 catchments from the Catchment Attributes
and MEteorology for Large-sample Studies Great Britain
(CAMELS-GB) large-sample catchment dataset, addressing
three practical use cases for model users. These use cases in-
volve assessing the impact of additional calibration on model
performance using discharge observations, conducting con-
ventional model comparisons, and examining how the vari-
ations in discharge simulations resulting from model struc-
tural differences compare with the uncertainties inherent in
discharge observations.

Based on the 5th to 95th percentile range of observed
flow, our results highlight the substantial influence of dis-
charge observation uncertainty on interpreting model perfor-
mance differences. Specifically, when comparing model per-
formance before and after additional calibration, we find that,
in 98 out of 299 instances, the simulation differences fall
within the bounds of discharge observation uncertainty. This
underscores the inadequacy of neglecting discharge observa-
tion uncertainty during calibration and subsequent evaluation
processes. Furthermore, in the model comparison use case,

we identify numerous instances where observation uncer-
tainty masks discernible differences in model performance,
underscoring the necessity of accounting for this uncertainty
in model selection procedures. While our assessment of
model structural uncertainty generally indicates that struc-
tural differences often exceed observation uncertainty esti-
mates, a few exceptions exist. The comparison of individual
conceptual hydrological models suggests no clear trends be-
tween model complexity and subsequent model simulations
falling within the uncertainty bounds of discharge observa-
tions.

Based on these findings, we advocate integrating discharge
observation uncertainty into the calibration process and the
reporting of hydrological model performance, as has been
done in this study. This integration ensures more accurate,
robust, and insightful assessments of model performance,
thereby improving the reliability and applicability of hydro-
logical modelling outcomes for model users.

1 Introduction

Many fields in geoscience rely on uncertain data to ac-
curately estimate states and fluxes that support decision-
making. Uncertain hydrology data encompass multiple
sources, including direct measurements, proxy-based mea-
surements, interpolation techniques, scaling processes, and
data management practices (McMillan et al., 2018). A large
amount of literature has been devoted to discussing the effect
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of data quality limitations on hydrological modelling (e.g.
Yew Gan et al., 1997; Kirchner, 2006; Beven et al., 2011;
Kauffeldt et al., 2013; Huang and Bardossy, 2020; Beven
et al., 2011; Beven and Smith, 2015; Beven, 2016; Beven
and Lane, 2022; Beven et al., 2022). Data uncertainty can
be distinguished into input data uncertainty (e.g. Kavetski
et al., 2006a, b) and evaluation data uncertainty (e.g. McMil-
lan et al., 2010).

Input data primarily comprise meteorological variables
such as precipitation and temperature. Other input data
sources include static data, such as soil and topographic
properties used to estimate model parameters. The inherent
uncertainties in input datasets influence a model’s simula-
tion of states and fluxes (e.g. Balin et al., 2010; Bárdossy
and Das, 2008; Bárdossy et al., 2022; Bárdossy and Anwar,
2023; McMillan et al., 2011; Beven, 2021). The uncertainty
propagation from input to model output is also closely in-
fluenced by the model structure (Butts et al., 2004; Liu and
Gupta, 2007; Zhou et al., 2022; Montanari and Di Baldas-
sarre, 2013). The effects of uncertainty propagation have
been a focal point in the literature, (e.g. Beven, 2006; Mon-
tanari and Toth, 2007; Gupta and Govindaraju, 2019).

Evaluation of data uncertainty, the focus of this study,
plays a pivotal role in determining hydrological models’ po-
tential accuracy and robustness. This is the case for model
calibration, a process that involves fine-tuning model param-
eters to ensure that the model accurately and consistently
reflects the observed historical behaviour of the hydrolog-
ical system. Typically, this is based on discharge. When a
model aims to replicate discharge values without including
discharge observation uncertainty, the results are constrained
to match a precise but potentially inaccurate representation of
the hydrological response (Vrugt et al., 2005). Consequently,
accurately calibrating the model becomes more challenging
due to the demand of incorporating evaluation data uncer-
tainty into the calibration process to minimize bias in model
parameters (McMillan et al., 2010).

Multiple studies have demonstrated the importance of ac-
counting for uncertainties in discharge observations. These
mainly focus on hydrological model calibration (e.g. Beven
and Binley, 1992; Beven and Freer, 2001; Beven and Smith,
2015; McMillan et al., 2018; Beven and Lane, 2019; Wester-
berg et al., 2020, 2022; McMillan et al., 2010; Coxon et al.,
2015; Liu et al., 2009; Blazkova and Beven, 2009). In these
studies multiple methodologies are used to quantify uncer-
tainty estimates of discharge observations that are subse-
quently used for model calibration (overview in McMillan
et al., 2012).

Combined, all the uncertainty sources (input data, eval-
uation data, model structure, model parameters, and initial
conditions) add to a concept in hydrological modelling com-
monly referred to as the equifinality concept (Beven and
Freer, 2001; Beven, 2006; Montanari and Grossi, 2008; Clark
et al., 2008; Beven et al., 2011). The concept is characterized
by the circumstance of various model configurations yield-

ing similar behavioural or acceptable results. Therefore, the
recommendation is to account for all uncertainty sources si-
multaneously. An example of a method that includes all un-
certainty sources during the parameter estimation process is
the general likelihood uncertainty estimation (GLUE; Beven
and Freer, 2001) method. In practice, such methods are not
always applied by model users, although the difficulty of
implementation can be dispelled (Pappenberger and Beven,
2006).

Hydrological model evaluation by model users is often
solely based on discharge observations. The inherent uncer-
tainties in this single source of observational data might ob-
scure the model’s ability to simulate actual discharge. There-
fore, omitting data uncertainty during model evaluation neg-
atively affects the interpretation of relative model simulation
differences, as these might fall within the uncertainty bounds
of the observations.

Another challenging aspect of hydrological modelling is
the hydrological system’s high spatial and temporal variabil-
ity. The large variety in landscape and hydrological hetero-
geneity can be captured when evaluating or comparing hy-
drological models using so-called large-sample catchment
hydrology datasets. These large-sample catchment datasets
contain hydro-meteorological time series, catchment bound-
aries, and catchment attributes for a large set of catchments.
The dataset is complemented with discharge observations at
the catchment outlets and meteorological forcing datasets
that include precipitation, temperature, and reference evap-
oration. The large-sample catchment datasets are collected
using a consistent methodology across all the catchments.

Recent large-sample datasets followed the structure intro-
duced by Addor et al. (2017) in the form of the CAMELS(-
US) dataset. More recently, Coxon et al. (2020) released
the Catchment Attributes and MEteorology for Large-sample
Studies Great Britain (CAMELS-GB) dataset, which in-
cludes estimates of quantified discharge observation uncer-
tainty. This dataset describes 671 catchments in the United
Kingdom, of which 503 (gauging stations) are complemented
with quantified discharge observation uncertainty estimates
(Coxon et al., 2015). A recent effort by Kratzert et al. (2023)
combined all available national CAMELS datasets in the
overarching CARAVAN dataset for global consistency and
to boost accessibility through data access via Google Earth
Engine.

The access to large-sample catchment data has prompted
a substantial body of research, as detailed in Addor et al.
(2020). This includes applications in hydrological model
testing and comparative analysis (e.g. Mizukami et al., 2017;
Rakovec et al., 2019; Lane et al., 2019; Feng et al., 2023).
One of the benefits of these datasets is that large samples
of catchments allow for the evaluation of the robustness of
model performance (Andréassian et al., 2006; Gupta et al.,
2014). Identifying this robustness provides model users with
valuable information on the presence or absence of consis-
tency in the model results.
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This study assesses the effect of omitting discharge ob-
servation uncertainty while interpreting model performance
differences. Specifically, we focus on how this uncertainty in-
fluences model selection from the perspective of model users.
We highlight the importance of incorporating discharge ob-
servation uncertainty during model calibration and model
evaluation efforts. To achieve this, we developed a generic
method applicable to any geoscience field where model re-
sults are compared to uncertain observations. This method
determines, based on the 5th to 95th percentile range of
flow, whether model simulation differences are significant
in the context of discharge observation uncertainties. In this
study, we highlight three use cases based on eight hydrolog-
ical models that encompass model refinement efforts, con-
ventional model comparisons, and the influence of model
structure uncertainty in light of discharge observation un-
certainty. Furthermore, we assess the spatial consistency of
model performance results using a large-sample catchment
dataset, and we evaluate the temporal consistency of model
performance metrics by sub-sampling the observation and
simulation pairs, as demonstrated by Clark et al. (2021). By
doing so, more informed conclusions can be drawn about
model performance based on individual or large samples of
catchments.

2 Methodology

A generic tool is designed for assessing model simulations
while considering the uncertainties inherent in evaluation
data. First, the three use cases are presented. This is followed
by the input data description, the evaluation data description,
and the discharge observation uncertainty estimates used to
conduct the analyses. Next, we describe the hydrological
models and model runs employed for calibration and eval-
uation. The methodology concludes with an explanation of
the uncertainty-based analyses.

In Fig. 1, a graphical workflow provides an overview of
the methodology. Figure 1a shows a typical model run with
inputs and outputs, Fig. 1b shows a conventional comparison
of objective functions based on discharge observations and
simulations, and Fig. 1c describes the uncertainty analysis
introduced in this study.

2.1 Use cases

We devised three use cases based on eight hydrological mod-
els that exemplify how users of models, who themselves are
not the model developers, can interpret differences between
model simulations in the context of discharge observation
data uncertainty. The use cases are the following:

1. Model refinement in practice. This use case concerns
additional model refinement by fine-tuning an effec-
tive model parameter based on discharge observation
after initial calibration. It highlights the value of rela-

tive gains in model performance when not considering
discharge observation uncertainty in the calibration pro-
cess.

2. Model comparison for model selection. Here, two dis-
tributed hydrological models are compared against the
backdrop of uncertainties in discharge observations.
This analysis aims to pinpoint scenarios where the dis-
parities between model results are within the margin of
error of the discharge observations.

3. Model selection under model structural uncertainty.
This use case involves contrasting the uncertainty in-
herent in the model’s structure, as seen across various
hydrological models, with the uncertainty in discharge
observations.

An additional analysis quantifies uncertainty in the model
performance objective functions due to temporal sampling of
the discharge simulation and observation pairs. This tempo-
ral sampling uncertainty is detailed in Sect. 2.5.3.

2.2 Data

2.2.1 Case study and catchment selection procedure

The CAMELS-GB large-sample catchment dataset (Coxon
et al., 2020, ?) serves as the case study area of the use cases
and contains data (hydro-meteorological time series, catch-
ment boundaries, and catchment attributes) describing 671
catchments located across the United Kingdom. The under-
lying data used to create CAMELS-GB are publicly available
and, therefore, are suitable for evaluating hydrological mod-
els as the dataset can be easily extended. A unique feature of
the dataset is the availability of quantified discharge obser-
vation uncertainty estimates for the flow percentiles of 503
catchments (see Coxon et al., 2015).

The use cases in this study employ hydrological models
with a daily time step. This can cause temporal discretiza-
tion errors in small catchments due to peak precipitation and
peak discharge occurring at the same time step. Therefore,
these catchments are excluded through a selection procedure.
This procedure calculates the cross-correlation between ob-
served discharge and precipitation for a range of lag times.
Catchments that predominantly show less than 1 d of lag be-
tween observed discharge and precipitation are excluded. Of
the 503 catchments with uncertainty estimates, 299 are se-
lected as the case study.

2.2.2 Meteorological forcing and pre-processing

In this study, we use the same meteorological forcing for cre-
ating the CAMELS-GB meteorological time series and cli-
mate indices as input to the hydrological models. This input
consists of gridded 1 km2 daily meteorological datasets. The
meteorological variables used in this study are precipitation
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Figure 1. Graphical workflow of the model experiments and analyses. The model experiment inputs are shown in green, the models in red,
and the analysis components in grey. (a) The model runs of two models with inputs and outputs that result in simulation time series. (b) The
conventional model comparison that compares objective functions based on simulation and observation time series. (c) The workflow of the
proposed analysis that compares relative model simulation differences to discharge observation uncertainty estimates.

(CEH-GEAR; Keller et al., 2015; Tanguy et al., 2021), refer-
ence evaporation (CHESS-PE; Robinson et al., 2020a), and
temperature (CHESSmet; Robinson et al., 2020b). The dis-
tributed hydrological models use gridded inputs, and the con-
ceptual hydrological models aggregate time series of meteo-
rological variables that are readily available in the CAMELS-
GB dataset.

2.2.3 Discharge observations and quantified
uncertainty estimates

The discharge observations in the CAMELS-GB dataset
were obtained from the UK National River Flow Archive
and have daily values in cubic metres per second (m3 s−1).
As is common with large-sample catchment datasets, sev-
eral catchments contain missing flow data in the time series.
These missing values are not considered in this study’s anal-
yses.

A unique aspect of the CAMELS-GB dataset is the in-
clusion of quantified discharge observation uncertainty es-
timates created by Coxon et al. (2015). The uncertainty is

quantified using a large dataset of quality-assessed rating
curves and stage–discharge measurements. The mean and
variance at each stage point are calculated and fitted in an
iterative process using a locally weighted scatterplot smooth-
ing (LOWESS) regression method that defines the rating
curve and discharge uncertainty. Combining the LOWESS
curves and variance in a Gaussian mixture model based on a
random draw from the measurement error distribution gives
an estimate of discharge uncertainty; see Coxon et al. (2015)
for more information.

2.3 Hydrological models

A mixture of distributed physical-process-based and lumped
conceptual hydrological models is selected for the use
cases, thereby showcasing the versatility of the analysis.
The model refinement and model comparison use cases
employ two physical-process-based hydrological models:
wflow_sbm (van Verseveld et al., 2024) and PCR-GLOBWB
(Sutanudjaja et al., 2018; Hoch et al., 2023). The ratio-
nale behind selecting these models lies in their differing ap-
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Table 1. Overview of the six selected conceptual hydrological models showing the model name, number of stores, number of parameters,
and key references (adapted from Knoben et al., 2020).

Original model Number of stores Number of parameters Key references

IHACRES 1 7 Ye et al. (1997); Croke and Jakeman (2004)
GR4J 2 4 Perrin et al. (2003); Santos et al. (2018)
VIC 3 10 Liang et al. (1994)
XINANJIANG 4 12 Jayawardena and Zhou (2000)
HBV-96 5 15 Lindström et al. (1997)
SMAR 6 8 Tan and O’Connor (1996)

proaches to conceptualizing hydrological processes and their
respective optimization routines. Despite these differences,
both models are suitable for comparison to a certain degree.
This comparability stems from their shared classification that
includes distributed hydrological models, similar complex-
ity, parameterization, and applicability at a spatial resolution
of 1 km2.

For the model structure use case, six conceptual hydro-
logical models are sourced from the Modular Assessment
of Rainfall-Runoff Models Toolbox (MARRMoT: Knoben
et al., 2019; Trotter et al., 2022). These specific models are
selected to encompass a wide array of model structures. The
selection is based on the number of model stores, the number
of parameters, and differing process representations.

2.3.1 Distributed hydrological models

The wflow_sbm physically based distributed hydrological
model (van Verseveld et al., 2024) originated from the To-
pog_SBM model concept (Vertessy and Elsenbeer, 1999).
This concept was developed for small-scale hydrologi-
cal simulations. The wflow_sbm model deviates from To-
pog_SBM through the addition of capillary rise, evapotran-
spiration, and interception losses (Gash model; Gash, 1979),
a root water uptake reduction function (Feddes and Zaradny,
1978), glacier and snow processes, and D8 river routing that
uses the kinematic wave approximation in this study. The pa-
rameters (40 in total) are derived from open-source datasets
and use pedotransfer functions to estimate soil properties (see
the hydroMT software package; Eilander and Boisgontier,
2022).

The 1 km2 model version was aggregated from the finest
available data scale (90 m). The hydraulic parameters related
to the river network are upscaled using the method presented
in Eilander et al. (2021). The parameter upscaling of the
wflow_sbm model is based on the work by Imhoff et al.
(2020) that uses point-scale (pedo)transfer functions. This is
similar to the multi-scale parameter regionalization method
(Samaniego et al., 2010). Parameters are aggregated from the
original data resolution with upscaling operators determined
by a constant mean and standard deviation across various
scales. Fluxes and states are checked for consistency during

this process. See van Verseveld et al. (2024) for further infor-
mation.

The PCR-GLOBWB physically based distributed hydro-
logical model was initially developed for global hydrology
and water resource assessments (Sutanudjaja et al., 2018).
The PCR-GLOBWB model calculates the water storage in
two soil layers, one groundwater layer, and the exchange be-
tween the top layer and the atmosphere. The model accounts
for water use determined by water demand. We employ the
1 km2 version introduced in Hoch et al. (2023). The model
configuration in this study applies the accumulated travel
time approximation for river routing.

2.3.2 Conceptual hydrological models

MARRMoT is a flexible modelling framework that houses
an array of conceptual hydrological models (Knoben et al.,
2019; Trotter et al., 2022). It is particularly valued in re-
search for assessing model structure uncertainty, as high-
lighted in Knoben et al. (2020). One of the key advantages
of MARRMoT is that the conceptual models share a uniform
numerical implementation. To achieve this, alterations were
made to the original model codes. These alterations ensure
a consistent basis for model structure comparisons, allow-
ing for a precise evaluation of differences in hydrological
simulations due to varying model structures. The hydrolog-
ical models IHACRES, GR4J, VIC, XINANJIANG, HBV-
96, and SMAR are selected in this study. Table 1 presents an
overview of the number of stores, parameters, and key refer-
ences.

2.4 Model runs

The model runs that form the basis of the three use cases
are performed as intended by the model developers. This
means that this study employs calibration and/or optimiza-
tion methodologies as recommended by the model develop-
ers for model users. The calibrated parameters for the dis-
tributed hydrological models were obtained from the model
developers. Regarding the conceptual hydrological models,
we follow the model run configuration of Knoben et al.
(2020).
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2.4.1 PCR-GLOBWB model runs

The PCR-GLOBWB model does not require additional re-
gional parameter optimization after deriving the parameter
set, as this is typically not conducted by the model develop-
ers. However, this does not imply that the model would not
benefit from additional optimization. The model does require
a spin-up period at the start of the model run. The model is
spun up 30 years back to back using a single water year’s
climatology that is based on the average values of each cal-
endar day between 1 October 2000 and 30 September 2007.
The following water year, 2008, is discarded from the anal-
yses to avoid overfitting at the start of the evaluation period,
and the model is evaluated for the water years 2009–2015.

2.4.2 Default and optimized wflow_sbm model runs

The wflow_sbm model is spun up using the water year 2000
and is additionally calibrated using discharge observations
for the water years 2001–2007. Additional calibration is per-
formed by optimizing a single parameter using the Kling–
Gupta efficiency non-parametric (KGE-NP) objective func-
tion (Pool et al., 2018) based on discharge observations and
simulation differences at the catchment outlet. This results in
a single optimized parameter set per catchment. Imhoff et al.
(2020) identified the horizontal conductivity fraction param-
eter (KsatHorFrac) as effective for single-parameter value
optimization. KsatHorFrac is an amplification factor of the
vertical saturated conductivity that controls the lateral flow
in the subsurface.

After calibration, the water year 2008 is discarded from
the analyses, and the model is evaluated for the water years
2009–2015. For more information on the effects of calibra-
tion, the reader is referred to Aerts et al. (2022), Sect. 3.1, and
Fig. 3. The default wflow_sbm model run sets the KsatHor-
Frac parameter value to the default value of 100. The cali-
bration results of the wflow_sbm model are presented in Ap-
pendix A1.

2.4.3 Conceptual hydrological model runs

Similarly to the other model runs, the conceptual hydrolog-
ical model runs are spun up using the water year 2000 and
calibrated using the water years 2001–2007. The calibration
method uses the covariance matrix adaptation evolution strat-
egy (CMA-ES; Hansen et al., 2003; Hansen, 2006; Hansen
and Ostermeier, 2001). This method optimizes a single-
objective function to find global parameter optima based on
non-separable data problems. A demonstration of the sensi-
tivity of the calibration parameters is shown in Knoben et al.
(2020). Following calibration based on the KGE-NP objec-
tive function, the water year 2008 is discarded. The models
are evaluated based on the water years 2009–2015 using the
same KGE-NP objective function.

2.4.4 eWaterCycle

This study is conducted using the eWaterCycle platform (Hut
et al., 2022). eWaterCycle is a community-driven platform
for running hydrological model experiments. All the com-
ponents that are required to run the hydrological models
are findable, accessible, interoperable, and reusable (FAIR)
by design (Wilkinson et al., 2018). This is achieved by
versioning models and datasets and creating reproducible
workflows. Therefore, the platform is suitable for conduct-
ing model performance experiments. The model simulations
were conducted on the Dutch supercomputer Snellius to en-
sure faster model run times. We created example notebooks
that use the eWaterCycle platform on cloud computing in-
frastructures (https://doi.org/10.5281/zenodo.7956488).

2.5 Analyses

2.5.1 Model evaluation

The hydrological model runs (calibration and evaluation) are
evaluated using the KGE-NP (Pool et al., 2018) objective
function. This efficiency metric deviates from the more com-
monly used KGE (Gupta et al., 2009) by calculating the
Spearman rank correlation and the normalized-flow-duration
curve instead of the Pearson correlation and variability bias.
The values range from −∞ to 1 (perfect score). In addition
to the KGE-NP metric, we consider the Nash–Sutcliffe ef-
ficiency (NSE, Nash and Sutcliffe, 1970) to demonstrate the
sensitivity of the results to the selection of the objective func-
tion. We include the KGE-NP, KGE, modified KGE (Kling
et al., 2012), and NSE objective functions in the data reposi-
tory for completeness and future reference.

2.5.2 Discharge observation uncertainty

The ad hoc discharge observation uncertainty-based analysis
of model performance differences consists of three parts. The
first part divides the observation and simulation pairs into
three flow categories, similarly to Coxon et al. (2015): low
flow, average flow, and high flow. The low-flow category is
based on the observed discharge values at the catchment out-
let in the 5th to 25th percentile range, average flow is in the
25th to 75th percentile range, and high flow is in the 75th to
95th percentile range. Not all percentiles are included in the
low- and high-flow categories due to the limited data avail-
ability of quantified discharge observation uncertainty.

In the second part of the method, shown in Fig. 1c, the
first step is to calculate the absolute error between calibrated
model simulations for each flow category and each catch-
ment. This step is visualized as a hydrograph in Fig. 2a (blue
line) and is referred to as the model difference. Next, the
discharge observations’ upper and lower uncertainty bounds
are taken from the CAMELS-GB dataset. For example, the
upper uncertainty percentages of the flow category bound-
ary percentiles correspond to 25 % and 15 %, respectively.

Hydrol. Earth Syst. Sci., 28, 5011–5030, 2024 https://doi.org/10.5194/hess-28-5011-2024
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Figure 2. Example hydrographs of the discharge observation un-
certainty analysis method. (a) Calculation of the absolute differ-
ence (blue) between calibrated model simulations (red and purple).
(b) Calculation of streamflow observation uncertainty (m3 s−1),
shown in green. The orange and dark-red lines indicate the upper
and lower bounds of observation uncertainty percentages that are
averaged and multiplied by the observations in black. (c) Resulting
time series, with, in blue, the absolute difference between calibrated
model simulations and, in green, the averaged discharge observation
uncertainty (m3 s−1).

These values are then averaged to obtain the upper uncer-
tainty bound at 20 % discharge observation uncertainty, as
shown by the orange line in Fig. 2b. Similarly, the red line in
Fig. 2b is the calculated lower uncertainty bound. The obser-
vation uncertainty percentage is then calculated by taking the
absolute average of both uncertainty bounds (17.5 %). This
percentage is applied to the observations to quantify the por-
tion of the observed discharge attributed to uncertainty (ob-
servation uncertainty) in cubic metres per second (m3 s−1),
as illustrated by the green line in Fig. 2b and c.

The third part of the method applies a dependent t test
using the time series in Fig. 2c with a 0.05 significance level

to determine whether the observation uncertainty time series
is greater than the model simulation difference time series.

This method is subject to certain limitations, particularly
regarding using the discharge observation uncertainty esti-
mates. Due to the absence of data, the upper and lower
5th percentiles of flow could not be included, while these
data points can be most important for users to determine the
fitness of purpose of a model. In addition, using the rating
curve uncertainty rather than the uncertainty bounds of flow
percentiles is preferred. We accept these limitations as we
promote the use of existing datasets to ensure community
participation in implementing the suggested evaluation pro-
cedure in other studies.

2.5.3 Temporal sampling uncertainty

Another aspect of model performance evaluations that might
misinform model users is the sensitivity of objective func-
tions to the temporal sampling of time series. Temporal sam-
pling uncertainty determines whether the error distribution
of simulation and observation pairs is heavily skewed. A few
data pairs might have a disproportionate effect on the cal-
culated objective functions that are used to determine model
performance. The inclusion or exclusion of these data pairs
due to the selection of the calibration and evaluation periods
alters the consistency of the model performance over time.

To quantify the temporal sampling uncertainty of the
KGE-NP objective function, we applied the methodology of
Clark et al. (2021). This method sub-samples the simula-
tion and observation time series through the bootstrapping
(Efron, 1979) and jackknife-after-bootstrap (Efron and Tib-
shirani, 1986) methods. The change in objective function due
to the shuffling of the sub-samples allows for calculation of
the standard error and its tolerance interval. The tolerance
intervals corresponding to each model instance are averaged
and referred to as the temporal sampling uncertainty. We ex-
tended the GUMBOOT software package (Clark et al., 2021)
by adding the KGE-NP metric for this study.

3 Results

In this section, we first present an overview of the discharge-
based model performance results for each of the three use
cases. Next, we detail the spatial distributions of the
maximum model performance difference. This is followed
by presenting uncertainty estimates for discharge observa-
tions categorized by flow. Next, the discharge observation
uncertainty-based relative model performance analyses are
presented. The section ends with the temporal sampling un-
certainty analysis results.

Appendix A1 contains the calibration results of the
wflow_sbm model and Appendix A2 the NSE-based model
performance results of all the considered models.
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Figure 3. Cumulative distribution function (CDF) plots of the Kling–Gupta efficiency non-parametric (KGE-NP) objective function, derived
from discharge estimates and observations at 299 catchment outlets. Panel (a) shows the CDF for the model refinement use case, optimizing
the wflow_sbm hydrological model with a single parameter. Panel (b) shows the CDF for the model comparison use case, comparing
the optimized wflow_sbm and PCR-GLOBWB hydrological models. Panel (c) demonstrates the CDF for the model structure use case,
showcasing results from six conceptual hydrological models.

3.1 Discharge-based model performance

Model performance is assessed using discharge observation
and simulations at 299 catchment outlets. The results are
shown in Fig. 3 as cumulative distribution functions (CDFs)
of the KGE-NP objective function. These results offer insight
into the model’s accuracy in simulating observed discharge.

The CDF of the model refinement use case in Fig. 3a estab-
lishes that optimizing a single effective parameter improves
approximately 65 % of the catchment simulations. The im-
provements remain modest, as indicated by the median val-
ues of 0.64 KGE-NP for the default wflow_sbm model and
0.74 KGE-NP for the optimized wflow_sbm model. Larger
model performance differences are found for the model com-
parison use case in Fig. 3b. Here, the optimized wflow_sbm
model performs better in 75 % of the catchments than the
PCR-GLOBWB model. Both models demonstrate poor re-
sults for between approximately 18 % and 24 % of the evalu-
ated catchments (< 0.40 KGE-NP).

The model structure use case results are based on six con-
ceptual hydrological models that only deviate in model struc-
ture (Fig. 3c). The spread in the model results shows that the
VIC model lags behind in performance compared to the other
models. The IHACRES and SMAR models yield very simi-
lar results despite large structural differences. The XINAN-
JIANG and HBV-96 models produce comparable outcomes
and share a more similar model structure. The GR4J model
consistently outperforms the other models. The total model
structure uncertainty, as expressed by the difference between
the worst- and best-performing model CDFs, is substantial,
while the differences between the models can be subtle. The
median KGE-NP values for the models are as follows: VIC
at 0.65, IHACRES at 0.80, SMAR at 0.82, XINANJIANG
at 0.84, HBV-96 at 0.85, and GR4J at 0.88 KGE-NP.

Next, we consider the spatial distribution of the results
as shown in Fig. 4, which depicts the maximum KGE-NP
difference between the models for each use case. Figure 4a
indicates improvements after model refinement, with posi-
tive KGE-NP difference values in various parts of the United
Kingdom. However, there are no discernible spatial trends
in these improvements. Figure 4b compares the wflow_sbm
and PCR-GLOBWB distributed hydrological models, reveal-
ing high spatial variability with no consistent patterns. Sim-
ilarly, Fig. 4c highlights differences for the model structure
use case, where the largest differences are again observed in
various regions without a clear spatial trend. While the spa-
tial distribution is provided for completeness, no significant
spatial trends are evident from the data.

3.2 Discharge observation uncertainty estimates

The discharge observation uncertainty estimates consider the
5th to 95th percentile range of flow. These estimates are
categorized into three flow conditions and are presented in
Fig. 5. In the boxplot for the low-flow category, we observe
a wide interquartile range shown by the spread of the box.
This indicates a higher variability in discharge observation
uncertainty percentages. The median value, represented by
the line within the box, is at the 20 % uncertainty mark. The
many outliers above the box indicate occasional large devi-
ations from the median value. The range of values for the
average-flow category is narrower than for the low-flow cat-
egory, with a median value of 15 %. The lowest median value
for the high-flow category is found at 12 %. It is important to
mention that the uncertainty is expected to be considerably
higher if the underlying data contain the upper 5th percentiles
of flow for this category.
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Figure 4. Spatial distribution of the absolute KGE-NP objective function difference between the worst and best model performances per
catchment and use case. (a) The model refinement use case is based on the default and optimized wflow_sbm hydrological models. (b) The
model comparison results are based on the optimized wflow_sbm and PCR-GLOBWB hydrological models. (c) The model structure use case
results are based on the worst and best model performances of the six conceptual hydrological models.

Table 2. Overview of the number of instances per flow category where discharge observation uncertainty exceeds the simulation differences
based on 299 catchments. Results are based on dependent t tests with a significance level of 0.05.

Use case Models Flow category Discharge observation uncertainty >

model simulation difference

Model refinement Default and optimized Low 98
wflow_sbm Average 98

High 115

Model comparison Optimized wflow_sbm Low 5
and PCR-GLOBWB Average 4

High 3

Model structure Six conceptual hydrological Low 1
models Average 0

High 0

3.3 Use cases

The discharge simulation difference time series of two mod-
els is expressed in cubic metres per second and compared
to the discharge observation uncertainty time series in cu-
bic metres per second. This is done using a t test to deter-
mine whether the simulation differences are larger than the
discharge observation uncertainty estimates. The instances
where this is the case are reported in Table 2 for the three use
cases.

3.3.1 Model refinement

The model refinement use case results in Table 2 show
that approximately one-third of the considered catchments
contain instances of simulation differences between the de-
fault and optimized wflow_sbm models that are statisti-
cally smaller than the discharge observation uncertainty es-
timates. This demonstrates the importance of incorporating
(discharge) observation uncertainty when performing model
refinement, especially based on a large-sample catchment
dataset. This consideration should be part of the calibration
and subsequent evaluation process. In addition, the results
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Figure 5. Discharge observation uncertainty estimates of 299 catch-
ment outlets based on the work of Coxon et al. (2015) and expressed
as uncertainty percentages per flow category. (a) The low-flow cat-
egory’s uncertainty estimates are based on the 5th to 25th flow per-
centiles. Panel (b) presents the 25th to 75th percentile average-flow
category. (c) The high-flow discharge observation uncertainty esti-
mates of the 75th to 95th flow percentiles are shown.

indicate that it is difficult to conclude whether the model
performs better after refinement, when discharge observa-
tion uncertainty is not considered. Overall, the results affirm
the importance of incorporating discharge observation uncer-
tainty into the optimization routine of the wflow_sbm model.

3.3.2 Model comparison

For the model comparison use case (Table 2), there is a
lower frequency of instances where discharge observation
uncertainty surpasses differences in discharge simulations.
The comparison between the optimized wflow_sbm model
and the PCR-GLOBWB model reveals that simulation dif-
ferences exceed discharge uncertainty estimates in five catch-
ments for low flow, four for average flow, and three for high
flow. These findings suggest that the interpretation of model
performance is not significantly affected by the ad hoc ad-
dition of discharge observation uncertainty. However, catch-
ments demonstrating the impact of observation uncertainty
warrant careful examination.

3.3.3 Model structure

The analysis of model structure uncertainty in the context
of discharge observation uncertainty reveals that only a sin-
gle instance of the low-flow category contains discharge ob-
servation uncertainty that exceeds the simulation difference
between all six conceptual hydrological models (Table 2).
This shows that, based on the selected models, the model
structure uncertainty, expressed as the difference in discharge
simulations, is larger than this dataset’s discharge observa-
tion uncertainty estimates. However, the investigation into

Figure 6. Heat map of the six conceptual hydrological models,
showing for each model combination the number of instances (n=
299) where discharge observation uncertainty exceeds simulation
differences. (a) Number of instances for the low-flow category, with
low values shown in white and high values in red. (b) Number of
instances for the average-flow category. (c) Number of instances for
the high-flow category.

the differences between the individual models yields several
insights based on the results in Fig. 6.

The VIC model results, characterized by their relatively
lower performance, contain only a few instances where dis-
charge observation uncertainty exceeds simulation differ-
ences, making it identifiable as the lesser-performing model.
In contrast, the IHACRES and SMAR models exhibit a high
level of simulation agreement, as demonstrated by a large
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number of instances in Fig. 6c. This is despite significant
differences in their complexity and structural design. That is,
IHACRES is a single-store hydrological model and SMAR
is a six-store hydrological model that accounts for soil mois-
ture in a separate store. This alignment of simulation results
between models with varying complexities highlights the nu-
anced influence of structural differences on simulation out-
comes. The HBV-96 and XINANJIANG models most resem-
ble each other regarding the number of stores and parameters;
the parameters themselves and the process descriptions dif-
fer. Both models contain a low number of instances, allowing
identification of the better-performing model.

Next, we examine the results across the individual flow
categories. The low-flow category (Fig. 6a) and the average-
flow category (Fig. 6b) show similar trends, though with
a lower number of instances for the average-flow category.
The high-flow category (Fig. 6c) is characterized by a more
frequent discharge observation uncertainty surpassing sim-
ulation differences. This is especially evident between the
IHACRES and SMAR models. The variability in the struc-
tural design and parameterization of the different hydrolog-
ical models leads to notable output differences. This under-
scores the importance of selecting the appropriate model by
including discharge observation uncertainty in the calibration
and evaluation process.

3.4 Temporal sampling uncertainty

The temporal sampling uncertainty of the KGE-NP objec-
tive function is defined as the tolerance interval of the stan-
dard error of the objective function due to the sub-sampling
of the simulation and observation pairs. This analysis pro-
vides insights into hydrological model performances’ tempo-
ral reliability and interpretability. Analysis of results from the
six conceptual hydrological models, as shown in Fig. 7b, re-
veals a pattern that is consistent with the model performance
depicted in Fig. 3c. More precisely, the VIC model dis-
plays the highest KGE-NP uncertainty across all the catch-
ments, indicating its variability and the challenges in using
this model’s current setup for accurate predictions in differ-
ent hydrological contexts.

The IHACRES and SMAR models and the GR4J, XI-
NANJIANG, and HBV-96 model groups show similar KGE-
NP-based temporal sampling uncertainty levels. This consis-
tency across models with varying complexities suggests that
KGE-NP uncertainty is influenced by not only the model de-
sign, but also by the hydrological conditions and data quality.
Uncertainty values range widely, from about 0.1 KGE-NP
to over 0.6 KGE-NP, indicating significant variability in the
temporal robustness of the results (Fig. 7b).

When comparing the average KGE-NP objective function
uncertainty with the KGE-NP differences between the indi-
vidual models, it becomes clear that uncertainty often over-
shadows the differences between the models. This is par-
ticularly the case in comparisons between GR4J and HBV-

96, XINANJIANG and HBV-96, and SMAR and IHACRES.
These findings imply that the inherent uncertainty in the
objective functions may limit the ability to distinguish be-
tween model performances, complicating efforts to identify
the most fit-for-purpose model based on this metric alone.
This underscores the need for a more nuanced approach to
model evaluation that considers objective function metrics,
other contextual factors, and additional performance mea-
sures, ensuring more robust and reliable model selection pro-
cesses.

4 Discussion

We introduced an ad hoc method highlighting the importance
of including discharge observation uncertainty when evaluat-
ing hydrological models. Discharge observation uncertainty
is frequently overlooked by model users, leading to potential
misinterpretations of relative model performance. Our find-
ings emphasize the significant impact of discharge observa-
tion uncertainty on model performance interpretation.

We acknowledge that observation uncertainty is not the
only source of uncertainty, as there are uncertainties in model
inputs, model structures, parameter sets, and initial or bound-
ary conditions (e.g. Renard et al., 2010; Dobler et al., 2012;
Hattermann et al., 2018; Moges et al., 2021). Therefore, the
proposed generic tool does not replace a complete uncer-
tainty analysis of modelling chains that also accounts for the
impact of input uncertainties (Beven and Freer, 2001; Pap-
penberger and Beven, 2006; Beven, 2006). Instead, it assists
model users in interpreting relative model performance and
highlights the importance of conducting a complete uncer-
tainty analysis. Therefore, our study only constitutes a frac-
tion of a broader challenge in which input uncertainty plays
a substantial role, as demonstrated in Bárdossy and Anwar
(2023).

4.1 Performance interpretation under discharge
observation uncertainty

Our analysis demonstrates that regionally optimizing the
wflow_sbm hydrological model often results in only
marginal improvements in model performance (Fig. 3a). Al-
though any improvement is beneficial, the findings suggest
that discerning the superior model variant becomes challeng-
ing without factoring in the uncertainty of discharge obser-
vations during calibration. This is evident in 98 instances
of low and average categories of flow and 118 cases of the
high-flow category (Table 2). The number of instances is ex-
pected to increase further when flows of the lower and up-
per 5th percentiles of flow are included. Adopting an ad hoc
measure, as introduced in this study, provides a practical but
limited method for improving the interpretability of relative
model results. Therefore, we recommend the integration of
discharge observation uncertainty into the model calibration
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Figure 7. (a) Temporal objective function sampling uncertainty based on six conceptual hydrological models expressed as the average
tolerance interval of the standard error due to sub-sampling. The sorted values per catchment are on the horizontal axis, and the KGE-NP
objective function uncertainty is on the vertical axis. (b) Heat map of the six conceptual hydrological models showing for each model
combination the number of instances (n= 299) where the average objective function uncertainty exceeds the objective function differences
of model combinations. Low values in white and high values in red indicate the number of instances.

and evaluation procedures, aligning with the consensus in the
literature.

When comparing different hydrological models, we find
that the uncertainty of the discharge observations slightly
masks the differences in relative model performance as
shown by the three to five instances per flow category in
Fig. 3b and Table 2. Similarly to the model comparison use
case, the model structure use case indicates that structural un-
certainties overshadow the effects of discharge observation
uncertainty. However, the comparison of individual models
in Fig. 6 shows many instances of discharge observation un-
certainty exceeding model performance differences. For ex-
ample, despite their structural differences, the IHACRES and
SMAR models demonstrate a high level of simulation agree-
ment (Fig. 3c) and subsequent difficulty in discerning model
performance differences in light of discharge observation un-
certainty. In contrast, the VIC and XINANJIANG models,
which have similar structures, exhibit two-thirds of the catch-
ment simulation differences within the uncertainty bounds
of the discharge observations. This underlines the complex
interplay between model structures and subsequent perfor-
mance, especially when contrasted with the uncertainty of
discharge observation.

4.2 Temporal robustness of model performance

Model performance can be heavily influenced by a few data
points in the time series on which model performance is
based (Clark et al., 2021). This can result in biased model
performance interpretations, depending on the selected time
period for calibration and evaluation. When models are sen-
sitive to specific data points, this can be due to inadequate
process descriptions for the considered models. In addition,
this might indicate the presence of misinforming events and
model invalidation sites where the runoff coefficient exceeds
a value of 1 (Beven and Smith, 2015; Beven, 2023; Beven
and Lane, 2022; Beven et al., 2022) or the presence of atypi-
cal data (e.g. Thébault et al., 2023).

Models ought to demonstrate adequate performance
across the entire time series, which should be accurately
represented in the performance outcomes. The assessment
of temporal sampling uncertainty does not imply that this
should not be the case; it instead points towards the model
simulation and observation pairs that are worth investigat-
ing. These instances can serve as indicators that suggest ar-
eas where models may require further scrutiny and improve-
ments. Knowing the temporal sampling uncertainty is rele-
vant for model users as it provides information on the con-
sistency of the model performance over time, which is neces-
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sary for determining the fitness of purpose of a model. There-
fore, we recommend including alternative estimators better
suited for skewed performance data in the reporting of model
performance (e.g. Lamontagne et al., 2020; Shabestanipour
et al., 2023; Towler et al., 2023).

4.3 Practical implications for model users

The method introduced in this study is purposely designed to
be as generic and straightforward as possible to increase the
potential for adoption in future studies. It can be applied to
any hydrological state or flux where observation time series
include uncertainty estimates. In addition, we recommend
routine reporting of evaluation data uncertainties and tempo-
ral sampling uncertainty of objective functions. This would
yield a clearer understanding of the relevance of differences
between model outcomes and aid in identifying samples that
require cautious interpretation. This reporting, however, does
not replace model benchmarks that include complete uncer-
tainty analyses (e.g. Lane et al., 2019) but enhances the in-
terpretability of model performance in its absence.

For model users, this approach offers a pragmatic way of
understanding the implications of uncertainty in their model
selection processes. While our method facilitates a clearer
understanding of where and how uncertainties affect rela-
tive model performance differences, it should be viewed as
a complementary step rather than a replacement for a thor-
ough uncertainty analysis.

4.4 Limitations and outlook

The presented study has several practical limitations. First,
excluding the lower and upper 5th percentiles of flow from
the analysis introduces a constraint on the uncertainty as-
sessment, overlooking critical flow conditions that are often
of significant interest in hydrological studies. This exclusion
limits the ability to fully understand model performance un-
der a complete range of hydrological conditions. Second, the
reliance on uncertainty bounds rather than direct uncertainty
estimates from rating curves, due to their absence in the
CAMELS-GB dataset, poses another limitation. Using broad
uncertainty bounds instead of precise estimates derived from
rating curves, the analysis may not capture the variability and
uncertainty inherent in the discharge observations. Addition-
ally, displaying discharge observation uncertainty as relative
values in the form of uncertainty percentages in Fig. 5 might
imply that the categories are affected at the same rate by the
same physical phenomena. For instance, the largest changes
in the rating curve for high flows are caused by changes in
the river width, while low flow is most sensitive to sedimen-
tation. Therefore, small changes in flow volume might have
a larger effect on low-flow conditions than high-flow condi-
tions. Expressing the values as absolute values, as used in the
methodology of this study, is not feasible due to large differ-
ences in flow volumes between catchments, which is a com-

mon problem for large-sample catchment studies. Last, the
study focuses solely on evaluating model performance pri-
marily through discharge simulations, without delving into
the reasons behind good or poor model performance, as this
is outside the study’s scope.

Looking forward, addressing discharge uncertainty on a
global scale is of paramount importance. Accurate global as-
sessments of discharge uncertainty are critical for inform-
ing water management strategies, policy decisions, and cli-
mate impact studies. Understanding and mitigating these un-
certainties can develop more reliable hydrological models
and enhance resource management worldwide. Although this
study only provides a glimpse of what this might imply, it
highlights the necessity for such global assessments by incor-
porating discharge observation and temporal sampling uncer-
tainties into hydrological evaluations.

5 Conclusions

This study assesses the importance of including discharge
observation uncertainty and temporal sampling uncertainty
of objective functions in hydrological model performance
evaluations based on a large-sample catchment dataset. This
is done through statistical testing that determines whether the
difference in discharge simulations between two hydrologi-
cal models is larger or smaller than the discharge observation
uncertainty estimates. Flow categories are created in the 5th
to 95th percentile range of the observed flow to support this
analysis, and three use cases are devised.

In the model refinement use case, 100 out of the 299 catch-
ment instances showed discharge simulation differences be-
tween the default and optimized wflow_sbm models within
the uncertainty bounds of discharge observations. This em-
phasizes the integration of discharge observation uncertainty
into the calibration process for model refinement. As a result,
it is difficult to discern whether the optimization of the model
leads to improved simulations of actual discharge. For the
model comparison use case, we found that, depending on the
model combinations, a large fraction of catchments showed
discharge observation uncertainty exceeding simulation dif-
ferences. This suggests careful consideration of this uncer-
tainty in model performance evaluations. The model struc-
ture uncertainty use case based on six conceptual hydrolog-
ical models indicated only a few instances of discharge ob-
servation uncertainty exceeding simulation differences. This
indicated that the model structure uncertainty, expressed as
discharge simulation differences, often exceeds the discharge
observation uncertainty. A comparison of the six individ-
ual hydrological models showed no clear relation between
model complexity and model performance. Our study under-
scores the necessity of integrating discharge observation un-
certainty and temporal sampling uncertainty into hydrologi-
cal model evaluations to ensure accurate, reliable, and mean-
ingful assessments of model performance. Implementing our
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proposed methodology in reporting practices is expected to
improve the robustness of hydrological model result interpre-
tation, aiding in more informed model selection and refine-
ment decisions by model users.

Furthermore, addressing uncertainty on a global scale is of
paramount importance. Accurate global assessments of dis-
charge uncertainty are critical for informing water manage-
ment strategies, policy decisions, and climate impact studies.
Understanding and mitigating these uncertainties can lead to
more reliable hydrological models and better resource man-
agement worldwide. This study provides a foundation for
such global assessments by demonstrating the necessity of
incorporating both discharge observation and temporal sam-
pling uncertainties into hydrological evaluations.
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Appendix A

A1 wflow_sbm calibration

Figure A1. (a) Spatial distribution of the best-performing KsatHorFrac calibration parameter of the wflow_sbm model based on additional
calibration of discharge observations. (b) Spatial distribution of the KGE-NP objective function based on the calibration period of the
wflow_sbm model.

A2 NSE-based model performance results

Figure A2. CDF plots of the NSE objective function, derived from discharge estimates and observations at 299 catchment outlets.
Panel (a) shows the CDF for the model refinement use case, optimizing the wflow_sbm hydrological model with a single parameter.
Panel (b) shows the CDF for the model comparison use case, comparing the optimized wflow_sbm and PCR-GLOBWB hydrological models.
Panel (c) demonstrates the CDF for the model structure use case, showcasing results from six conceptual hydrological models.
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