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Abstract. The gravity-driven flow in an unsaturated porous
medium remains one of the most important unsolved prob-
lems in multiphase flow. Sometimes a diffusion-like flow
with a uniform wetting front, known as stable flow, is ob-
served, but, at other times, the flow is unstable with distinct
preferential pathways. The formation of an unstable wetting
front in a porous medium depends on many factors, includ-
ing the type of porous medium, the initial saturation, and the
applied infiltration rate. As the infiltration rate increases, the
wetting front first transitions from stable to unstable at low
infiltration rates and then from unstable to stable at high in-
filtration rates. We propose a governing equation and its dis-
cretized form, the semi-continuum model, to describe this
significant non-monotonic transition. We show that the semi-
continuum model is able to capture the influx dependence
together with the correct finger width and spacing. More-
over, we demonstrate that the instability of the wetting front
is closely related to the saturation overshoot in one dimen-
sion. Finally, we show that the flow can still be preferential
even when the porous medium is completely wetted.

1 Introduction

In the field of hydrology, the gravity-driven multiphase flow
in porous media, typically involving the flow of water into
soil, remains a long-standing and unsolved problem. In the
early 1980s, a series of seminal papers provided important
insights into this phenomenon (Diment et al., 1982; Diment
and Watson, 1983, 1985). A decade later, the influence of soil

matrix hydrophobicity on water movement was described
(Dekker and Ritsema, 1994). A detailed overview of the re-
search on porous-media flow up to the year 2000 is presented
in de Rooij (2000).

The infiltration of water into soil is an extremely compli-
cated physical phenomenon that exhibits two kinds of flow
behavior: diffusion-like flow and finger-like flow (de Rooij,
2000; DiCarlo, 2013; Xiong, 2014). In the case of diffusion-
like flow, a stable wetting front is observed; this kind of flow
behavior is referred to as stable flow. Conversely, finger-like
flow, characterized by an unstable wetting front, is called un-
stable flow. The lack of a physically based and experimen-
tally verified model of soil water movement is a major ob-
stacle to the development of rainfall–runoff models at the
hydrological scale. This issue has received consistent atten-
tion for many years, as evidenced by the recommendation
that rainfall–runoff models should include a robust model
of soil water movement (Kutílek and Nielsen, 1994). Tradi-
tionally, the standard concept of diffusion-like flow based on
Richards’ equation (Richards, 1931) has been used for mod-
eling water movement in soil. However, this concept is inad-
equate for modeling finger-like flow (DiCarlo, 2013). Con-
sequently, there is an ongoing search for a concept that can
describe both types of flow, given its substantial application
potential in soil science (Lake et al., 2014; Bundt et al., 2000;
DiCarlo, 2013; Xiong, 2014) and other fields (Sutherland and
Chase, 2008; Vafai, 2010). This paper is devoted to the de-
scription of such a model.

The instability of the wetting front is accompanied by pref-
erential flow, where most of the water moves through the
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preferential pathways, leaving much of the porous medium
dry even after hours of uniform infiltration. This type of flow
is characterized by the formation of fingers (DiCarlo, 2013).
A finger consists of two parts, namely an undersaturated tail
and an oversaturated tip, and this non-monotonicity of satu-
ration is known as saturation overshoot. Therefore, wetting-
front instability and associated saturation overshoot have
been at the center of attention for several decades (Saffman
and Taylor, 1958; Chuoke et al., 1959; Smith, 1967; Hill and
Parlange, 1972). Since then, a huge number of laboratory and
field experimental works have become available. Some of
the works concern 3D experiments (Glass et al., 1990; Yao
and Hendrickx, 1996), but most are performed in 1D (long
vertical tubes) (DiCarlo, 2004, 2007, 2010; Aminzadeh and
DiCarlo, 2010) and in 2D (Hele–Shaw cells) (Smith, 1967;
Glass et al., 1988, 1989a, b, c; Liu et al., 1994; DiCarlo et al.,
1999; Glass et al., 2000; Bauters et al., 2000; Sililo and Tel-
lam, 2005; Rezanezhad et al., 2006; Wei et al., 2014; Cremer
et al., 2017; Pales et al., 2018; Chen et al., 2022; Liu et al.,
2023) due to simpler realization.

It turns out that flow in an unsaturated porous medium has
many unexpected features. For example, a non-monotonic
dependence of the wetting-front velocity and finger width
on the initial saturation is observed (Bauters et al., 2000).
At lower initial saturation, the wetting front is unstable with
slow and wide fingers. With increasing initial saturation, the
fingers first narrow and speed up and then slow and widen
again until a stable wetting front is observed. Another non-
intuitive behavior is the dependence on applied influx (Glass
et al., 1989c; Yao and Hendrickx, 1996; DiCarlo, 2013),
which is crucial for understanding the precipitation–runoff
relationship in hydrology. Glass et al. (1989c) built a two-
dimensional chamber with a thickness of 1 cm filled with a
homogeneous porous medium. Water was uniformly applied
at a constant flux qtop at the top boundary. They observed
a stable wetting front when the flux was close to the sat-
urated conductivity, but with decreasing applied influx, the
flow tended to become significantly preferential. Yao and
Hendrickx (1996) performed similar experiments, but they
infiltrated water into large three-dimensional columns with
diameters of 30 and 100 cm, and the applied flux was much
lower. They demonstrated that, as the flux decreases, the
finger-like flow disappears, and a stable wetting front reap-
pears. This behavior was maintained regardless of the type
of homogeneous sand used. Therefore, preferential flow is
observed only within a certain range of infiltration flux. Note
that, while homogeneous soil does not actually exist, as there
is always some level of heterogeneity, this term commonly
refers to soils, such as sands, where the characteristics of
soil hydraulic properties appear to be uniform from a macro-
scopic perspective.

Approaches to modeling unsaturated porous-media flow
can be divided into two categories: (1) microscale mod-
els, which are developed for small scales where the Darcy–
Buckingham law (Buckingham, 1907) can be applied, and

(2) macroscale models, which focus directly on large
scales where the Darcy–Buckingham law is not applicable.
Macroscale models, such as the ARM model (Liu et al.,
2005; Liu, 2022), cannot capture individual fingers because
the computational grid is too coarse, and so multiple fingers
are included within each computational element. In contrast,
microscale models do not have this limitation but are very
computationally intensive. A typical example of a microscale
model is Richards’ equation, which combines the mass bal-
ance law and the Darcy–Buckingham law. Richards’ equa-
tion is diffusive in nature as it is unable to model a non-
monotonic saturation profile in the case of a uniform infiltra-
tion rate with a smooth and non-decreasing retention curve
(Fürst et al., 2009). Therefore, many extensions of Richards’
equation, known as continuum models, have been proposed
(Hassanizadeh et al., 2002; Eliassi and Glass, 2002; Brindt
and Wallach, 2020; Cueto-Felgueroso et al., 2020; Beljadid
et al., 2020; Roche et al., 2021; Ommi et al., 2022a, b). Other
approaches include discrete (pore-scale) models (Lenormand
et al., 1988; Primkulov et al., 2018; Wei et al., 2022) and
combinations of discrete and continuum approaches (Glass
and Yarrington, 1996, 2003; Vodák et al., 2022).

Any microscale model designed primarily for small-scale
processes should first be thoroughly validated using small-
scale experiments. The opposite approach, i.e., validating
with in-field experiments without proper small-scale valida-
tion, can lead to fundamentally incorrect conclusions. For
instance, Tesař et al. (2004) developed a model based on
upscaling Richards’ equation. The model was validated us-
ing outflow data from the Liz catchment, covering an area of
1 km2 during the vegetation season of 1999. However, subse-
quent simulations showed that water always flowed through
the entire porous medium regardless of initial and bound-
ary conditions, revealing the model’s inaccuracies. There-
fore, the validation of microscale models should be focused
on small-scale experiments, such as those performed in the
laboratory, which provide a detailed analysis of flow behav-
ior. Well-defined boundary and initial conditions in labora-
tory experiments enable a thorough examination of simula-
tion details, allowing one to determine whether the model ac-
curately captures preferential and diffusion flow. This makes
the validation of the model more thorough and reliable. Fol-
lowing rigorous validation, one can then transition to more
complex in-field experiments.

A validation procedure on a small scale through detailed
laboratory experiments was proposed by DiCarlo (2013).
Specifically, the author suggested criteria for evaluating
which model is the “most appropriate” (see Sect. 6.6 in Di-
Carlo, 2013). According to the author, the model should have
a minimum in terms of adjustable parameters; should be ca-
pable of producing the diffusive character of the flow as seen
in Richards’ equation; should match observed 1D profiles
well; and, finally, should be able to predict 2D and 3D prefer-
ential flow in terms of finger widths and finger spacings. Our
aim is to demonstrate that the semi-continuum model pro-
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posed by Vodák et al. (2022) succeeds in this type of evalu-
ation. The authors developed the semi-continuum model and
its formal limit in the form of a partial differential equa-
tion with a Prandtl-type hysteresis operator (Visintin, 1993)
under the derivative. It was shown that the semi-continuum
model was able to correctly reproduce experiments of flow
in a long vertical tube (Kmec et al., 2019). In Kmec et al.
(2021), the model was used to replicate the transition be-
tween unstable and stable wetting fronts for increasing ini-
tial saturation. Along with this, the model was shown to
correctly capture the finger persistence and the flow across
a heterogeneous porous medium. Finally, the strong non-
monotonic dependence of the wetting front on the initial
saturation for a point source infiltration was captured well
(Kmec et al., 2023). According to the suggested model evalu-
ation, the semi-continuum model has successfully addressed
all aspects except for predictions of 2D and 3D preferential
flow. The model has already reproduced the dependency on
initial saturation in 2D (Kmec et al., 2021, 2023). However,
the final aspect required for full validation is to accurately
capture the dependence on the infiltration rate in 2D and/or
3D.

There are a few models that are able to capture the transi-
tion between diffusion- and finger-like flow for various infil-
tration rates in 1D, but analyzing the 2D case is much more
complex. Although the 2D experiments are over 30 years old
(Glass et al., 1989c; Yao and Hendrickx, 1996), they have
not yet been successfully reproduced by any model. Find-
ing a model capable of simulating this complex transition
thus remains a major challenge (DiCarlo, 2013). One of the
most promising and recent attempts to simulate the depen-
dence on applied influx in 2D was proposed by Beljadid et
al. (2020), who introduced a nonlocal model endowed with
an entropy function. This model extends Richards’ equation
by incorporating a fourth-order spatial derivative of satura-
tion. The authors demonstrated the transition from finger-
like to diffusion-like flow under high applied fluxes. More-
over, the model showed good agreement with experimentally
measured finger widths for large fluxes (Glass et al., 1989c).
However, inconsistencies arise at very low fluxes, where the
wetting front does not stabilize as expected from experiments
(Yao and Hendrickx, 1996). In contrast, decreasing the infil-
tration rate results in thinner fingers, maintaining the prefer-
ential character of the flow. Therefore, matching experiments
in 1D does not guarantee a match in 2D and 3D (Cueto-
Felgueroso and Juanes, 2009; Beljadid et al., 2020).

In this paper, we aim to demonstrate the ability of the
semi-continuum model to accurately capture the 2D transi-
tion from stable to unstable flow for low infiltration fluxes
(Yao and Hendrickx, 1996) and the transition from unstable
to stable flow for high infiltration fluxes (Glass et al., 1989c),
along with making correct predictions of preferential flow
in terms of experimentally measured finger widths and spac-
ings. In addition, we will investigate the relationship between
the saturation overshoot in 1D and the wetting-front instabil-

ity in 2D to demonstrate further agreement with experimental
observations.

2 Retention curve and its sample size dependence

In soil physics, the relationship between saturation S and
pressure P exhibits strong hysteresis and is known as
the retention curve. The retention curve consists of two
main branches: the wetting and draining branches. Var-
ious approaches have been proposed to model the hys-
teresis, including those by Mualem (1976), Lenhard and
Parker (1987), Parker and Lenhard (1987), Beliaev and Has-
sanizadeh (2001), McNamara (2014), Schweizer (2017), and
Abreu et al. (2019).

The shape of the retention curve strongly depends on the
size of the sample on which the measurement is performed
(Larson and Morrow, 1981; Mishra and Sharma, 1988; Zhou
and Stenby, 1993; Perfect et al., 2004; Hunt et al., 2013;
Ghanbarian et al., 2015; Silva et al., 2018). As the sample
size decreases, the pore size variability within the sample
also decreases, and the retention curve becomes flatter (Silva
et al., 2018). Therefore, it is useful to examine the influence
of pore size variability on the shape of the retention curve.
This influence has been studied by Pražák et al. (1999). They
demonstrated that the main draining branch becomes flatter
as the pore size variability decreases, which is consistent with
the flattening of the retention curve as sample size decreases.

Although it is well known that the retention curve is de-
pendent on the sample size of the porous medium (Ghanbar-
ian et al., 2015), the implementation of this dependence is
not common in flow modeling. Moreover, other characteris-
tics of the porous medium, such as permeability and porosity,
are also dependent on the sample size (Mishra and Sharma,
1988; Ewing et al., 2010; Ghanbarian et al., 2017, 2021; Es-
maeilpour et al., 2021). This sample size dependence can be
integrated into models by transferring this dependency to the
individual elements or volumes of the discretization mesh.
This means that these elements or volumes represent a real
sample of the porous medium and carry information about
its physical characteristics. This approach fundamentally dif-
fers from standard numerical schemes for partial differen-
tial equations, where the mesh serves only a mathematical
role and ignores the fact that individual elements or volumes
represent the real domain. However, some authors have al-
ready considered this aspect in modeling porous media. For
instance, White et al. (2006) estimated a lower limit of finite
elements and then used this size in their model. They argue
that the use of smaller elements would not be appropriate be-
cause it would lead to a violation of the continuum assump-
tions. Note that, in the semi-continuum model, the sample
size dependence of the retention curve is not neglected as it
is a crucial feature of the model. This is further discussed in
Sect. 3.4.
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3 Methods

In this section, we first introduce the Prandtl-type hystere-
sis operator and the resulting governing partial differential
equation, which was derived as a formal limit of the semi-
continuum model (Vodák et al., 2022). We then present a
proper discretization of the governing equation along with
the discretization of the Prandtl-type hysteresis operator to
provide a detailed description of the semi-continuum model.
This model describes the movement of the wetting liquid in
a porous medium; specifically, it is a multiphase flow model
used for modeling unsaturated porous-media flow.

3.1 Prandtl-type hysteresis operator

The Prandtl-type hysteresis operator PH (Pa) is the pressure
operator defined by the following differential inequality (Vis-
intin, 1993):(
KPS∂tS− ∂tPH

)
(PH− v)≥ 0,

∀v ∈ [C2,C1], PH ∈ [C2,C1],
(1)

where S (−) denotes the saturation of the wetting phase, and
KPS (Pa), C1 (Pa), and C2 (Pa) are constants. A detailed
description of this operator’s characteristics can be found in
Visintin (1993), specifically on p. 16.

Figure 1 illustrates the form of the Prandtl-type hysteresis
operator for KPS = 105 Pa. Hysteresis implies that the pres-
sure value P depends not only on the current saturation S but
also on its history. The Prandtl operator, described by Eq. (1),
defines how the pressure value is assigned as a function of
saturation. Assume that the initial pressure value isC1. When
the saturation is non-decreasing over time, the pressure value
remains at C1. Otherwise, the pressure value “jumps” from
C1 to C2 over time, with the rate of this transition deter-
mined by KPS . The same principle applies when the pres-
sure value is C2. The value remains at C2 when saturation
is non-increasing; otherwise, it jumps from C2 to C1. These
transitions, represented by non-vertical scanning curves, are
marked in black in Fig. 1. The value KPS indicates a large
gradient of these scanning curves, causing the pressure to
change significantly between values C1 and C2 with a negli-
gible change in saturation.

Although the behavior of the Prandtl operator is relatively
straightforward, its mathematical description is not trivial as
the community is usually not familiar with differential in-
equalities. For more details, we refer to Vodák et al. (2022),
specifically its Supplement, where we have demonstrated
that the mathematical description follows the explanation of
the Prandtl operator provided above. We have also shown that
the Prandtl operator can be generalized using non-decreasing
functions instead of constants C1 and C2.

Figure 1. Prandtl-type hysteresis operator PH. Blue lines denote
constants C1 and C2, and black lines are non-vertical scanning
curves with a large gradient of KPS = 105 Pa.

3.2 Governing equation

The governing equation is given by Eq. (2). It is a partial
differential equation containing the Prandtl-type hysteresis
operator PH (Fig. 1) under the spatial derivative:

θ∂tS+ div
[
κ

µ

√
k(S−)

√
k(S+)

(
ρg−∇PH

)]
= 0,

S±(x0, t)= lim
x→x±0

S(x, t).
(2)

In this equation, the porous medium is characterized by its
porosity θ (−), intrinsic permeability κ (m2), and relative
permeability k(S) (−). The wetting phase (liquid) is charac-
terized by its saturation S (−), density ρ (kgm−3), dynamic
viscosity µ (Pa s), and pressure P (Pa) defined by operator
PH. In a porous material that is not completely filled with liq-
uid, the pressure P represents the capillary pressure, which
is the tensile stress by which the liquid is held in pores. This
pressure P in the liquid phase is lower than the pressure
in the non-wetting phase (gas), which serves as the refer-
ence for expressing the liquid pressure. As a result, the pres-
sure P becomes negative. The vector g = (0,0,g), where
g (ms−2) denotes the acceleration due to gravity; thus, the
gravity acts only in the third dimension. Note that k(S−) and
k(S+) denote the left and right limits of relative permeability
in the spatial variable. The discontinuity in saturation arises
from the use of a geometric mean conductivity (Vodák et al.,
2022). In the case of continuous saturation, S− = S+, which
results in

√
k(S−)

√
k(S+)= k(S).

The Prandtl-type hysteresis operator causes Eq. (2) to
switch between parabolic and hyperbolic types in the case
of an unsaturated porous medium. When the pressure value
is defined by values C1 or C2 (blue lines in Fig. 1), the
pressure–saturation relation is constant, resulting in ∇PH =

0. Thus, the equation becomes a hyperbolic differential equa-
tion. Otherwise, when the pressure is given by the scanning
curves (black lines in Fig. 1), the equation is a parabolic dif-
ferential equation.

It is well known that different types of flow, saturated
and unsaturated, can occur in parallel in the porous medium
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(Brandhorst et al., 2021). In a fully saturated medium, the
pressure–saturation relation is no longer defined by the
Prandtl-type hysteresis operator PH. In this case, the pres-
sure becomes hydrostatic pressure and takes on positive val-
ues. Using the hydrostatic pressure in Eq. (2) instead of PH,
we obtain Laplace’s equation as k(S)= 1 and ∂tS = 0. Since
we focus on unsaturated flow, hydrostatic pressure is not im-
plemented, and the case of a fully saturated medium is not
studied further.

3.3 Discretization of the porous medium

We want to simulate experiments in a two dimensional Hele–
Shaw cell of a porous medium; hence, a 2D discretization
is used. The porous medium is a rectangle of size A×B,
where A and B denote the horizontal and vertical widths of
the porous medium, respectively. The porous medium is rep-
resented by a square mesh consisting ofN×M blocks (finite
volumes) of size1x×1x. These blocks retain the character
of the porous medium.

3.4 Discretization of the Prandtl-type hysteresis
operator

The discretization of the Prandtl-type hysteresis operator
given by Eq. (1) has already been described in Kmec et al.
(2023). Its discretized version is the capillary pressure oper-
ator P(S), which satisfies P(S)→ PH(S) as 1x→ 0. The
well-known fact that the shape of the retention curve de-
pends on the sample size (Ghanbarian et al., 2015; Silva et
al., 2018) is incorporated into our model so that the reten-
tion curve depends on the block size 1x. We refer to this
discretization as the scaling of the retention curve. The pro-
posed scaling is explained below; however, for a detailed
mathematical and physical justification, we refer to Vodák
et al. (2022). For the reference block size 1x0, the refer-
ence retention curve is given by the van Genuchten equation
(van Genuchten, 1980):

Pw
0 (S)=−

1
αw

(
S

nw
1−nw − 1

) 1
nw
,

P d
0 (S)=−

1
αd

(
S

nd
1−nd − 1

) 1
nd
,

(3)

where Pw
0 is the main wetting branch, P d

0 is the main drain-
ing branch, αw and nw are parameters of the main wetting
branch, and αd and nd are parameters of the main draining
branch. For a block size 1x <1x0, the main wetting and
draining branches are scaled as follows:

Pw(S,1x)=
1x

1x0
Pw

0 (S)+P
w
0 (0.5)

(
1−

1x

1x0

)
,

P d(S,1x)=
1x

1x0
P d

0 (S)+P
d
0 (0.5)

(
1−

1x

1x0

)
.

(4)

Figure 2. The scaling of the retention curve for different block
sizes 1x. The solid lines denote the main wetting branches, and
the dashed lines denote the main draining branches. The parameters
αw, nw, αd, and nd are given in Table 1. For 1x→ 0, the retention
curve converges to the Prandtl-type hysteresis operator PH as both
main branches take the form of horizontal lines C1 and C2.

Obviously, for 1x =1x0, the retention curve is given by
Eq. (3). For 1x→ 0, the retention curve converges to the
Prandtl-type hysteresis operator PH so that C1 = P

w
0 (0.5)

and C2 = P
d
0 (0.5). Constants C1 and C2 in the semi-

continuum model represent the water entry and air entry val-
ues, respectively (Vodák et al., 2022). Instead of the midpoint
S = 0.5 in Eq. (4), it is possible to choose, for example, an
inflection point of the main branches. However, the effect on
the results is negligible because the flux is calculated relative
to the pressure gradient. Note that the reference block size
1x0 is a parameter of the semi-continuum model, and its de-
termination can be obtained, for example, through calibration
experiments.

Figure 2 shows the capillary pressure operator P(S) for
different block sizes. It can be clearly seen that, for1x→ 0,
the operator P(S) converges to the Prandtl-type hysteresis
operator PH shown in Fig. 1. For non-zero but very small1x
(see black lines in Fig. 2), both main branches take the form
of step-like functions that are almost constant for S ∈ (0,1).
Since decreasing the block size reduces pore size variabil-
ity, the proposed linear scaling defined by Eq. (4) perfectly
aligns with the findings of Pražák et al. (1999), where the
authors demonstrated a step-like form of the main draining
branch for a hypothetical porous medium without pore size
variability.

Note that all scanning curves are non-vertical straight
lines, as illustrated in Fig. 1. This approach is similar to the
play-type hysteresis (Schweizer, 2017). Various approaches
to modeling the hysteresis between saturation and pressure
could potentially be implemented in our model. However, us-
ing a more complex hysteresis model is not beneficial as we
have achieved good agreement with experiments using the
simpler model.
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3.5 Discretization of the governing equation – the
semi-continuum model

Each block of the discretized porous medium is denoted by
indices (i,j) representing the corresponding row and col-
umn. St (i,j) (−) and Pt (i,j) (Pa) represent, respectively, the
saturation and pressure of the wetting phase (liquid) within
block (i,j) at time t . These values are assumed to be con-
stant within each block. Moreover, q(i1,j1)

t (i2,j2)
(ms−1) denotes

the flux of the wetting phase from block (i1,j1) to block
(i2,j2) at time t .

The semi-continuum model, which is the discretization of
the governing Eq. (2), consists of three consecutive steps:
saturation update, pressure update, and flux update. First,
the saturation in each block is updated according to the dis-
cretized mass balance law for a given time step 1t and the
block size 1x:

St+1t (i,j)= St (i,j)

+
1t

θ

1
1x

(
q
(i−1,j)
t (i,j) − q

(i,j)

t (i+1,j)+ q
(i,j−1)
t (i,j) − q

(i,j)

t (i,j+1)

)
.

(5)

The second step is to update the pressure in each block to
obtain the pressure at time t +1t , i.e., Pt+1t . The pressure
is updated according to the hysteretic capillary pressure op-
erator P(S), whose main wetting and draining branches are
given by Eq. (4) and whose scanning curves are illustrated in
Fig. 1.

The third and final step is the flux update. We adopt the
following form of the relative permeability function k(S)

(van Genuchten, 1980):

k(S)= Sλ
[

1−
(

1− S
n
n−1

) n−1
n

]2

, (6)

where λ (−) is a free parameter, and n (−) is a parameter
of the retention curve given by Eq. (3). To simplify the no-
tation, we introduce the so-called effective permeability as
γ (S)= κk(S). The flux between blocks is updated using the
discretized version of Darcy–Buckingham law (Bear, 1972):

q
(i1,j1)
t+1t(i2,j2)

=

1
µ

√
γ (St+1t (i1,j1))γ (St+1t (i2,j2))

×

(
ρg−

Pt+1t (i2,j2)−Pt+1t (i1,j1)
1x

)
for j1 = j2, i2 = i1+ 1,

1
µ

√
γ (St+1t (i1,j1))γ (St+1t (i2,j2))

×

(
0− Pt+1t (i2,j2)−Pt+1t (i1,j1)

1x

)
for i1 = i2, j2 = j1+ 1,

0 otherwise

. (7)

The acceleration due to gravity is included only for the
vertical fluxes. Unsurprisingly, the fluxes between non-
neighboring blocks are set to zero. The geometric mean is

used to average the effective permeability between blocks.
This aligns with the approach utilized in governing Eq. (2),
where the geometric mean is also used. Moreover, this type
of averaging is also consistent with the findings of Jang et
al. (2011). After updating the fluxes between neighboring
blocks, we update the time t = t +1t and return to the satu-
ration update given by Eq. (5).

If the fluxes between blocks are too large, especially if the
flux is close to the saturated conductivityKS = κ

µ
ρg, the sat-

uration may exceed 1. This occurs due to the inherent na-
ture of the semi-continuum model and is often the case for
other models as well. For example, in Cueto-Felgueroso and
Juanes (2009), a “compressibility term” is used for the capil-
lary energy saturation dependence. This term becomes dom-
inant near saturation close to 1, and so it prevents the satura-
tion from increasing any further. We use a different approach;
the magnitude of the flux to the block can be, at most, so large
that the saturation does not exceed 1. This straightforward
approach is only possible because of the simple numerical
scheme used.

According to Eqs. (5) and (7), if a standard retention curve
without scaling is used (i.e., it does not converge to a Prandtl-
type hysteresis operator PH), the semi-continuum model de-
generates into a numerical scheme for solving the classical
Richards’ equation. The crucial difference in our model is
that the shape of the retention curve depends on the block
size1x. From a mathematical point of view, in the case of an
unsaturated porous medium, Richards’ equation is diffusive
in nature as it is a parabolic differential equation (DiCarlo,
2013). This is not the case for the governing Eq. (2), which
is a hyperbolic–parabolic differential equation.

4 Results

4.1 Numerical setup

The parameters used for simulations of the infiltration depen-
dence experiments are given in Table 1. The porous medium
used for simulations is 20/30 sand. The parameter λ= 0.8,
which is consistent with measurements (Schaap and Leij,
2000). It is important to emphasize that we use the same pa-
rameters as in Kmec et al. (2023), where the semi-continuum
model accurately reproduced the experiments reported in
Bauters et al. (2000). This includes a parameter of the semi-
continuum model, the reference block size 1x0 =

10
12 , which

was calibrated for 20/30 sand in Kmec et al. (2023) using the
experiments of Bauters et al. (2000). This decision was made
to demonstrate that the semi-continuum model can simulate
different flow phenomena without additional parameter ad-
justments. Hence, our aim is not to optimize the parameters
to achieve the best agreement with experiments. Let us note
that the slope of the scanning curves KPS does not affect the
results if it is chosen to be large enough. The differences be-
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Figure 3. (a) The scheme of the numerical setup. (b) The distribution of spatially correlated intrinsic permeability. The average value of κ
equals approximately 2.294× 10−10 m2, and the distribution satisfies κmax/κmin ≈ 4. The values are colored according to the color bar on
the right.

Table 1. Parameters used for reproducing the flow dependence on
different infiltration rates. Parameters for 20/30 sand were adopted
from Schroth et al. (1996) and DiCarlo (2004).

Parameter Symbol Value

Horizontal width of the chamber A 50 cm
Vertical width of the chamber B 50 cm
Reference block size 1x0

10
12 cm

Block size 1x 0.25 cm
Porosity θ 0.35
Density of water ρ 1000 kgm−3

Dynamic viscosity of water µ 9× 10−4 Pas
Intrinsic permeability κ 2.294× 10−10 m2

Relative permeability exponent λ 0.8
Acceleration due to gravity g 9.81 ms−2

Wetting-curve parameter αw 0.177 cm−1

Wetting-curve parameter nw 6.23
Draining-curve parameter αd 0.0744 cm−1

Draining-curve parameter nd 8.47
Slope of scanning curves KPS 105 Pa
Initial saturation Sin 0.01
Residual saturation Srs 0.05

tween solutions are negligible for KPS ≥ 105 Pa; hence, we
set KPS to this value.

The scheme of the numerical setup is shown in the left
panel of Fig. 3. Initial and boundary conditions are set to
be consistent with the experiments we aim to reproduce
(Yao and Hendrickx, 1996; Glass et al., 1989c). The porous
medium is initially dry with an initial saturation Sin = 0.01,
and all the blocks begin on the main wetting branch. A con-
stant infiltration rate qtop is applied to the entire top bound-
ary. A total of 18 different infiltration rates qtop are used,
with the lowest influx being equal to 0.001 cmmin−1 and

the highest influx being equal to the saturated conductiv-
ity KS = 15 cmmin−1. The lateral boundaries of the porous
medium are impenetrable, and so the lateral fluxes are set to
zero. For the bottom boundary flux qbot, the outflow of wa-
ter into the air is prescribed. The following implementation
is applied so that it does not affect the flow above the bottom
boundary. This allows us to isolate the behavior of the model
from the influence of the bottom boundary condition.

qbot := q
(N,j)
t (out) =

0 for St ≤ Srs
1
µ
γ (St (N,j))

(
ρg+

Pt (N,j)
1x

)
, j = 1, . . .,M,

for St > Srs

(8)

In the above, N denotes the bottom-row index. Thus, the flux
from the bottom boundary is set to zero if the saturation of
the corresponding block does not exceed the residual satura-
tion Srs; otherwise, it is non-zero. Residual saturation refers
to the maximum amount of water that the porous medium can
retain against the force of the gravity. The value of Srs = 0.05
corresponds to the experimentally measured residual satura-
tion for 20/30 sand in Bauters et al. (2000). This implemen-
tation of bottom boundary flux is similar to a free discharge
(Šimůnek and Suarez, 1994) and has already been used for
the semi-continuum model in Kmec et al. (2021).

The measurement of the macroscopic properties of a ho-
mogeneous porous medium, such as permeability or poros-
ity, is typically performed by averaging microscopic quanti-
ties over the domain (White et al., 2006; Ghanbarian et al.,
2021). Therefore, to obtain a more realistic description of a
porous medium, such as 20/30 sand, it is convenient to per-
turb its characteristics slightly. In this study, we employ a
slightly distributed and spatially correlated intrinsic perme-
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ability (see the right panel of Fig. 3). To achieve this, we
first generate a normally distributed array for larger blocks
(2.5 cm). This array is then zoomed-in to smaller blocks of
size 1x using linear interpolation, which ensures a spatially
correlated distribution. The resulting values represent a mul-
tiplication factor for the intrinsic permeability, adjusted so
that the probability of being n times smaller is the same as
that of being n times larger. The specific implementation can
be found in Kmec (2023a). A similar distribution has been
used in Cueto-Felgueroso and Juanes (2009); Gomez et al.
(2013); Kmec et al. (2023). The effect of intrinsic permeabil-
ity distribution is further discussed in Sect. 5.4.

4.2 Evolution of the saturation profile

Figure 4 shows the evolution of the saturation profile at
six different times for qtop = 0.05 cmmin−1. Times are dis-
played in the upper-left corner for each frame. Initially, a sta-
ble wetting front with small frontal perturbations develops
at t = 300 s. These perturbations then grow into long persis-
tent fingers. Finally, when the fingers reach the bottom of the
chamber, the water flows out of the chamber through prefer-
ential pathways so that most of the porous medium remains
dry. This evolution of the wetting-front instability is consis-
tent with the experimental observation (DiCarlo, 2013).

4.3 Dependence of flow on infiltration rate

A total of 18 simulations for infiltration rates in the range
qtop = 0.001–15 cm min−1 are performed. Saturation profiles
for nine infiltration rates are shown in Fig. 5. For clarity, sat-
uration profiles for all infiltration rates are provided in Ap-
pendix A1 (Figs. A1 and A2). The time for each flux is se-
lected so that the saturation reaches 40 cm from the upper
boundary. The flux and corresponding time are displayed in
the upper-left corner for each frame. At low fluxes, the tran-
sition from a stable wetting front to finger-like flow is clearly
observed. As the flux approaches the hydraulic conductiv-
ity, the fingers widen, and a stable wetting front develops. To
the best of our knowledge, this is the first model capable of
simulating this non-trivial transition. More detailed views are
available in the videos of transient simulations corresponding
to each applied influx (Kmec, 2023b).

The saturation overshoot is evident for fluxes between
0.075–5 cmmin−1. Even at lower fluxes, for which unstable
behavior persists, the saturation overshoot is observed. How-
ever, its magnitude (i.e., the saturation difference between
finger tip and tail) is very small and thus is not visible in
Fig. 5. This phenomenon is further discussed in Sect. 4.6.
Additionally, a saturated wetting front emerges for infiltra-
tion rates lower than the saturated conductivityKS , as shown
in Fig. A2 in the Appendix. This is a direct consequence of
the developed saturation overshoot.

In cases of unstable flow, two fingers can merge, or one
finger can split into two (Glass et al., 1989b, c; Rezanezhad

et al., 2006). Both scenarios are reproduced here, but for
detailed observation, we recommend viewing the videos of
transient simulations (Kmec, 2023b). Merging can be ob-
served at qtop = 5 cmmin−1, where two wide fingers merge.
However, finger merging is also noticeable at lower fluxes.
Splitting can be seen at qtop = 2.5 cmmin−1. Although these
are minor details, such experimental consistency is benefi-
cial.

4.4 Finger width as a function of influx

DiCarlo (2013) plotted experimentally measured finger
widths as a function of influx in a single graph, incorporat-
ing data for both low (Yao and Hendrickx, 1996) and high
(Glass et al., 1989c) infiltration rates. The measured finger
widths are shown in Fig. 2 in DiCarlo (2013) along with the
predicted finger widths using standard theory (Chuoke et al.,
1959; Parlange and Hill, 1976). The observed results can be
summarized as follows:

– A stable wetting front is observed at very low fluxes,
where the finger width is equal to the chamber width.
This is not predicted by standard theory (Chuoke et al.,
1959; Parlange and Hill, 1976).

– As the influx increases, a rapid decrease in finger width
is observed, followed by a long flat valley of almost con-
stant finger widths for different fluxes – specifically, the
finger width first decreases slightly and then increases.

– As the influx approaches the saturated conductivity, the
finger widths increase again, followed by stable flow.

– Fingers in contact with the edge of the chamber are
narrower and thinner and are not included in the anal-
ysis of DiCarlo (2013). Simulations performed by the
semi-continuum model are consistent with this observa-
tion; thus, these fingers are not included in the following
analysis as well.

To calculate the finger width for a specific applied influx,
we use the saturation profile at the time of the simulation
when the water reaches the bottom of the chamber. This en-
sures that the bottom boundary condition does not influence
the obtained results. For each saturation profile, all fingers
are segmented, as shown in Fig. A3 in Appendix A2. For
preferential flow, this segmentation is straightforward be-
cause all the fingers are fully developed. It is worth noting
that the fully developed fingers are persistent over time, and
so segmented fingers are not influenced by a longer simula-
tion time. In the case of stable flow, the approach used by
DiCarlo (2013) is followed, where the entire saturation pro-
file is assumed to be one “finger”. However, the so-called in-
termediate flow – the transition between stable and unstable
flow – is more complicated because some fingers are nar-
row while others are diffusively expanding. Therefore, com-
pletely objective segmentation is not possible in this case.
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Figure 4. Evolution of saturation profile for qtop = 0.05 cmmin−1 at six different times. Times are displayed in the upper-left corner for
each frame. Saturation is colored according to the color bar on the right.

After segmenting the fingers, the average finger width is cal-
culated for each applied influx.

Figure 6 shows calculated finger widths for 18 infiltration
rates. Red, green, and blue dots indicate fluxes for which
we observe stable, intermediate, and unstable flows, respec-
tively. The results are consistent with experimentally ob-
served behavior – a nearly constant finger width is observed
for fluxes between 0.01–2.5 cmmin−1, followed by stable
flow for very low and very high applied fluxes. Even a slight
increase in the finger width for fluxes above 0.01 cmmin−1

is in perfect agreement with experiments (see Fig. 2 in Glass
et al., 1989c). The special case is at qtop = 5 cmmin−1 (see
Fig. 5), where two fingers are first developed, and then both
fingers merge at a depth of approximately 30 cm. In this case,
the average width is calculated from one merged finger.

According to the evaluation suggested by DiCarlo (2013),
the model should be able to predict preferential flow in terms
of finger widths and finger spacings. It has already been
demonstrated that finger widths are captured well. To demon-
strate the model’s capability in terms of finger spacings, the
number of fingers can be investigated. Glass et al. (1989c)
calculated the number of fingers, including those in contact
with the edge of the chamber. They reported that, in the case
of preferential flow, the number of fingers does not change

significantly with different fluxes, varying between four and
six. Given the size of the chamber used in their experiments
(30 cm), the expected number of fingers for the 50 cm used
in our simulations is approximately between 7 and 10. This
corresponds well to the number of fingers developed in the
simulations, which ranges from 6 to 10 for preferential flow.
Hence, the spacing between the fingers is also well captured.

4.5 Preferential flow as a function of influx

To calculate the degree of preferential water flow, the by-
pass ratio approach is used, which is defined as the ratio of
the preferential flow rate to the total flow rate (Kneale and
White, 1984). First, the inflow is calculated for each block
corresponding to the horizontal section at a depth of 30 cm.
These inflow values are then divided by the top boundary flux
qtop to normalize them to 1. The normalized values represent
the bypass ratio. The simulation time is always chosen to be
sufficiently long to ensure that extending the simulation time
period further does not affect the calculated values. Note that,
if the flow is uniform throughout the porous medium, the by-
pass ratio is equal to 1 everywhere.

The left panel of Fig. 7 shows the bypass ratio in the hori-
zontal section at a depth of 30 cm for three different influxes.
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Figure 5. Saturation profiles for nine infiltration rates. For each frame, the influx is displayed together with the simulation time in the upper-
left corner. The transition from stable to unstable flow and then back to stable flow is clearly observed. Saturation is colored according to the
color bar on the right.

The color indicates the type of flow: red, green, and blue de-
note examples of stable, intermediate, and unstable flow, re-
spectively. The bypass ratio for stable flow equals 1 almost
everywhere, with no significant flow preferences. For unsta-
ble flow, the bypass ratio corresponds to the developed fin-
gers. Water flows only through the fingers, whereas the flow
is zero outside the fingers. The intermediate case is quite
surprising: water flows through the entire porous medium,
but the flow is still highly preferential. This is counterintu-
itive since the porous medium is fully wetted in this case,

yet preferential pathways are formed, through which most of
the water flows. The origin of these pathways can be seen
in Fig. 5 for qtop = 0.005 cmmin−1, where they appear as a
slight increase in saturation. For a better illustration, the right
panel of Fig. 7 shows the saturation profile at a longer simula-
tion time (t = 24000 s), with the maximum value of the color
bar adjusted to make the pathways more visible. Developed
pathways are well observed and do not disappear even when
the porous medium is completely wetted. Comparing the by-
pass ratio for qtop = 0.005 cmmin−1 (the left panel of Fig. 7)
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Figure 6. Finger width as a function of the applied influx. A stable
wetting front is observed at either very low or very high applied
fluxes – in this case, the finger width is approximately equal to the
horizontal width of the chamber. The color of the dots indicates the
type of flow: stable, intermediate, and unstable flow.

and the corresponding saturation profile (the right panel of
Fig. 7), we can clearly see that the highest bypass ratio cor-
responds to the most saturated parts of the porous medium.

We conjecture that this is a very important observation
about the problem of preferential flow in unsaturated porous
media because experimental measurements are highly lim-
ited for this case. Using the semi-continuum model, more
details can be observed, making it easier to understand the
origin of the preferential pathways for different boundary
conditions. For completeness, bypass ratios for all performed
simulations are depicted in Fig. A4. It is evident that a sim-
ilar scenario, as for qtop = 0.005 cmmin−1, holds for an-
other two intermediate cases, i.e., for qtop = 0.0075 and
0.01 cmmin−1.

To compare the degree of preferential water flow for dif-
ferent boundary fluxes, it is convenient to represent it with a
single value. Again, the horizontal section at a depth of 30 cm
is used. We calculate the smallest number of blocks through
which at least 50 % of the total amount of water flows at this
horizontal section. For each influx, the length is then calcu-
lated as 1x× nB, where nB denotes the calculated number
of blocks. In the case of uniform flow, the length is equal to
half the horizontal width of the porous medium, i.e., 25 cm.
The smaller the length is, the more the preferential flow dom-
inates.

Figure 8 shows the length of the porous medium through
which 50 % of the water flows, depending on influx. For sta-
ble flow, half of the total water flows through almost 25 cm,
while, for unstable flow, it ranges between 5.50–8.75 cm.
An exception is at qtop = 2.5 cmmin−1, where the length
is 12.50 cm due to significantly wider fingers compared to
lower fluxes. For qtop = 0.005–0.01 cmmin−1 (intermediate
case), the length is similar to the values of unstable flow, in-

dicating significant preferential flow. This aligns with the by-
pass ratio analysis.

4.6 Wetting-front instability

The cause of preferential flow is the saturation and pressure
overshoot (Eliassi and Glass, 2001; Egorov et al., 2003; Di-
Carlo, 2013). The flux range for the saturation overshoot in
1D (DiCarlo, 2004) experimentally corresponds to the flux
range for preferential flow in higher dimensions (Yao and
Hendrickx, 1996; Glass et al., 1989c). The same applies to
different initial saturation levels (DiCarlo, 2004; Bauters et
al., 2000). This simplifies the analysis of wetting-front insta-
bility as we can switch to 1D. To analyze whether this exper-
imentally confirmed dependence is replicated by the semi-
continuum model, 1D simulations are performed using the
same parameters as for 2D simulations. However, the distri-
bution of the intrinsic permeability is not included to avoid
influencing the results.

The left panel of Fig. 9 shows saturation profiles for six
different applied fluxes qtop. The range for which the sat-
uration overshoot occurs is the same for 1D and 2D sim-
ulations. For the lowest influx, qtop = 0.001 cmmin−1, the
profile is stable without saturation overshoot. For qtop =

0.010 cmmin−1, the saturation overshoot is formed and be-
comes more pronounced with increasing influx up to qtop =

1.000 cmmin−1. The saturation overshoot then becomes
less pronounced until it disappears completely, and a sta-
ble profile is observed again for the highest influx qtop =

15.00 cmmin−1. This is in good agreement with 1D exper-
iments (DiCarlo, 2010).

The right panel of Fig. 9 shows the saturation of fin-
ger tips and tails for 18 different infiltration rates. The re-
sults are, again, in agreement with 1D experiments (Di-
Carlo, 2010). Moreover, the flux range connection between
1D overshoot and 2D preferential flow is well captured by
the semi-continuum model. When preferential flow is ob-
served in 2D, significant saturation overshoot is developed
in 1D. Conversely, for diffusion-like flow in 2D, no over-
shoot occurs in 1D. The most interesting results are found
for intermediate cases for the flux range between qtop =

0.005–0.010 cmmin−1, where very small saturation over-
shoots are formed, with magnitudes between 0.007 and 0.02.
Even a small saturation overshoot with a magnitude be-
low 0.02 indicates that the flow is preferential in 2D. For
qtop = 0.005 cmmin−1, the magnitude of the saturation over-
shoot equals only 0.007, yet the flow remains preferential.
This close relationship is quite surprising.
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Figure 7. (a) The bypass ratio, defined as the ratio of the preferential flow rate to the total flow rate, is shown for stable (red), intermediate
(green), and unstable flow (blue) at a depth of 30 cm in the porous medium. There are no significant preferences for stable flow, while
pronounced preferential pathways develop for unstable flow. Such behavior is expected for both cases. A surprise, however, is the intermediate
case, where water still flows preferentially even when the porous medium is fully wetted. (b) Saturation profile for qtop = 0.005 cmmin−1

at time t = 24000 s. The simulation corresponds to the intermediate case in the left panel (a) of this figure. Saturation is colored according
to the color bar on the right. The pathways of saturation are clearly visible and correspond to the highest bypass ratio values.

Figure 8. The length of the porous medium in the horizontal sec-
tion at a depth of 30 cm, through which 50 % of the water flows,
is plotted against the influx. For each influx, the simulation times
are chosen such that the flow through the porous medium does not
change any further. The dashed line denotes the case of uniform
flow, i.e., 25 cm. The color of the dots indicates the type of flow:
stable, intermediate, and unstable flow.

5 Discussion

5.1 Preferential flow in the case of a fully wetted
porous medium

The semi-continuum model is the first to correctly predict
both diffusion-like and finger-like flow for various applied
fluxes, as well as being the first to accurately predict exper-
imentally measured finger widths and spacings. The well-

captured connection between saturation overshoot in 1D and
preferential flow in 2D has also been demonstrated. In addi-
tion to these results, we have observed that flow can be highly
preferential even when the porous medium is fully wetted
and when water flows through the entire medium. This sur-
prising behavior is illustrated for qtop = 0.005 cmmin−1 in
Fig. 7. The flow remains preferential because pathways with
slightly increased saturation develop during infiltration into
a dry porous medium and persist over time. This slight in-
crease in saturation is enough to make the flow preferential,
causing water to flow faster through these pathways. This is
due to the power-law nature of the relative permeability func-
tion. The left panel of Fig. 10 shows the bypass ratio along
with the saturation and relative permeability at a depth of
30 cm. Clearly, the highest bypass ratio values correspond to
the highest relative permeability values. A slight difference
is caused by the distribution of the intrinsic permeability, as
demonstrated in the right panel of Fig. 10, where the effective
permeability closely follows the bypass ratio.

5.2 Formation of saturation overshoot and stabilization
of wetting front

Borrowing the term “hold-back pile-up effect” from Eliassi
and Glass (2001), saturation overshoot occurs when water
cannot enter the dry porous medium, causing water to be held
back. This hold-back effect subsequently leads to water pil-
ing up above the interface between the wet and dry porous
medium. As the amount of water increases, the pressure gra-
dient between the wet and dry parts of the porous medium
also increases, allowing water to advance. The same princi-
ple applies to the semi-continuum model, where the hold-
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Figure 9. (a) Saturation profiles for various applied fluxes. The saturation overshoot is not developed for the lowest flux (qtop =

0.001 cmmin−1) and the highest flux (qtop = 15.00 cmmin−1). (b) Finger tip and tail saturations for 18 different infiltration rates. The
occurrence of the saturation overshoot is consistent with 2D preferential flow.

Figure 10. (a) The bypass ratio at a depth of 30 cm of the porous medium is plotted for qtop = 0.005 cmmin−1 at time t = 24000 s, together
with the saturation and the corresponding relative permeability. Bypass ratio values are plotted on the left y axis, and values of saturation and
relative permeability are plotted on the right y axis. Relative permeability values are multiplied by 100 since these values are much smaller
compared to the saturation. It can be clearly seen that the bypass ratio correlates with relative permeability. (b) The bypass ratio at a depth of
30 cm of the porous medium is plotted for qtop = 0.005 cmmin−1 at time t = 24000 s, together with the effective permeability. Bypass ratio
values are plotted on the left y axis, and values of the effective permeability are plotted on the right y axis. Effective permeability closely
follows the bypass ratio in this case.

back effect is caused by appropriate averaging of conduc-
tivity. However, it is not the only factor governing the for-
mation of the saturation overshoot in the model. The satu-
ration overshoot is formed by two factors: (1) the geometric
mean for averaging the permeability and (2) the scaling of the
retention curve. The geometric mean plays a crucial role in
creating the hold-back effect, which consequently forms the
saturation overshoot. This effect occurs due to the very low
relative permeability between blocks, which is a direct con-
sequence of the applied geometric mean. However, without
the scaling of the retention curve, the overshoot would disap-

pear as the block size1x→ 0 (Vodák et al., 2022). Note that
the geometric mean can be replaced by any type of averaging
that produces a small value if one of the averaged numbers
is small, such as the harmonic mean. The geometric mean is
used in the model because it is more appropriate in the case
of a random stratified medium, while the harmonic mean is
more suitable for a medium which is stratified perpendicu-
larly to the flow direction (Jang et al., 2011).

A crucial question arises: why does the wetting front sta-
bilize at low or high infiltration rates in the semi-continuum
model? It is known that the stability of the 2D wetting
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front correlates with the saturation overshoot in 1D (DiCarlo,
2013). Since the semi-continuum model implies the same
conclusions, as demonstrated in Sect. 4.6, it is sufficient to
study the origin of the saturation overshoot in 1D. This sig-
nificantly simplifies the analysis as we do not have to con-
sider the spatial variability of flow in 2D or 3D. When a small
amount of water flows into a dry porous medium, the con-
ductivity of this part increases rapidly due to the power-law
nature of the relative permeability function. Using the param-
eters in Table 1, when the saturation increases from 0.01 to
0.05, the relative permeability increases approximately 170
times. At very low infiltration rates, water has enough time
to proceed downwards so that the conductivity of the dry part
of the porous medium increases significantly, which subse-
quently allows more water to flow downwards. In principle,
this means that water does not have sufficient time to pile
up at low infiltration rates. On the other hand, at very high
infiltration rates, the porous medium is fully saturated, and,
hence, the saturation overshoot cannot occur. This is well ob-
served in Fig. 9 for qtop = 15 cmmin−1, where the satura-
tion is equal to 1 everywhere. As the applied flux decreases,
the porous medium is not fully saturated, and there is room
for the saturation overshoot to arise. This can be seen for
qtop = 5 cmmin−1; the saturation at the finger tip is still equal
to 1, but the influx is not high enough to fully saturate the en-
tire porous medium, and the saturation overshoot develops.
This observation is in agreement with the experiments of Di-
Carlo (2010). The author showed that the saturation of the
finger tip approaches unity at very high infiltration fluxes for
which a stable flow is observed (see Fig. 3 in DiCarlo, 2010,
for details).

According to the comprehensive experimental works of
DiCarlo (2004, 2010), saturation and pressure are constant at
the finger tail under uniform top boundary conditions. How-
ever, some studies, such as Cho et al. (2005), have shown
the opposite. Assuming constant saturation and pressure in
the finger tail, the flux between the blocks is stabilized and
is given by the value of the top boundary flux qtop. Using the
Darcy–Buckingham law given by Eq. (7), we can calculate
the saturation in the finger tail:

k(Stail)=
qtop

KS
, (9)

where Stail denotes the saturation in the finger tail within the
relative permeability function. Therefore, Stail is independent
of the initial saturation, which is in agreement with experi-
mental measurements (Zhuang et al., 2019). A necessary and
sufficient condition for saturation overshoot to form is an in-
crease in the saturation of the block above the value Stail. The
saturation overshoot will then develop as the saturation of
this block drops to Stail over time. Moreover, for qtop =KS ,
it follows from Eq. (9) that Stail equals 1. Consequently, the
flow will always be stable in the semi-continuum model as
long as the influx qtop ≥KS because the porous medium is
fully saturated in this case, and, thus, saturation overshoot

cannot arise. This has been demonstrated in both 1D (Fig. 9)
and 2D simulations (Fig. 5). Note that this is consistent with
the stability condition (Saffman and Taylor, 1958; Parlange
and Hill, 1976; DiCarlo, 2013), which predicts stable flow
for qtop ≥KS .

5.3 Importance of the geometric mean in terms of
water entry value

The porous medium comprises many pores, each charac-
terized by a specific water entry value determined by the
Young–Laplace equation based on its principal radii. The
shape of the main wetting branch of the retention curve re-
sults from the combination of various pore water entry val-
ues. The pores with the smallest radii determine the low-
est pressure Plow and the corresponding lowest saturation
Slow, marking the beginning of the main wetting branch.
Although this is a necessary physical characteristic of the
porous medium, it has not been implemented into the reten-
tion curve used for simulations. This implies that water can
enter a dry porous medium at a pressure equal to −∞. In
this case, the Young–Laplace equation gives r−1

1 +r
−1
2 =∞,

where r1 and r2 are the principal radii of the curvature of the
pore. This relationship is valid only if at least one of these
radii equals zero. Such a hypothetical pore is obviously un-
able to conduct water. The same reasoning applies to the air
entry value and the corresponding main draining branch.

The initial saturation used in simulations is higher than
Slow; thus, excluding the beginning of the main wetting
branch does not affect the obtained results. One might ar-
gue that, even if the chosen initial saturation is above Slow,
it would still be reasonable to define the value Slow in the
retention curve, ensuring the model’s validity for a lower ini-
tial saturation. This is clearly not implemented in our model,
and the retention curve satisfies P →−∞ for S→ 0. How-
ever, the calculated flux in the semi-continuum model equals
zero in this case, which aligns with a hypothetical pore with
zero radii. This applies due to the application of the geomet-
ric mean of the relative permeability and is not valid for the
more common arithmetic mean. To illustrate, consider two
blocks denoted by indices 1,2, with the first block being fully
saturated (S1 = 1) and with the second block’s saturation de-
creasing towards zero, i.e., S2→ 0. Assume that κ , µ, and
1x are equal to 1 as these values are independent of satu-
ration and thus do not affect the limiting process. Note that
a fully saturated block satisfies k(S1)= 1 and Pw(S1)= 0.
The horizontal flux q between blocks, given by Eq. (7), can
then be simplified to

lim
S2→0

q = lim
S2→0

[
−

√
k(S2)P

w(S2)
]
= 0. (10)

If the arithmetic mean is used instead of the geometric mean,
the limit satisfies

lim
S2→0

q = lim
S2→0
−

1+ k(S2)

2
Pw(S2)=+∞. (11)
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Figure 11. Calculated horizontal flux between a fully saturated
block (S1 = 1) and a block with saturation decreasing towards zero
(S2→ 0). The flux equals zero for S2→ 0 using the geometric
mean, while it approaches infinity using the arithmetic mean.

For completeness, the numerical limiting process for both
means is depicted in Fig. 11 using the parameters specified
in Table 1. For the geometric mean, the limit approaches
zero, confirming that the flux indeed equals zero for S2→ 0,
while, for the arithmetic mean, the flux approaches infin-
ity. In the case of the geometric mean, the block with zero
saturation thus cannot conduct water and represents a hy-
pothetical pore with zero radii. This is consistent with the
Young–Laplace equation that yields a pore with zero radii
for P =−∞. On the other hand, with the application of
the arithmetic mean, unrealistic behavior would occur: the
flux would rapidly increase as saturation decreases, which is
clearly not physically correct. Using the arithmetic mean, it
is necessary to cut off the retention curve (e.g., by using a wa-
ter entry value) for low saturation values to avoid an increase
in flux when saturation decreases. However, the increase in
flux in Fig. 11 occurs already for saturation S2 < 0.57. We
conjecture that the geometric mean or the harmonic mean is
thus a more reasonable type of averaging (Jang et al., 2011).

Incorporating the point [Slow,Plow] into the main wetting
branch results in a non-smooth retention curve. However,
Richards’ equation remains unconditionally stable for satura-
tion values above Slow, where the retention curve is smooth.
Therefore, to develop saturation overshoot with Richards’
equation, it is necessary to violate one of the assumptions of
the stability proof derived in Fürst et al. (2009). It is possible
to define a bottleneck (zero flux) using a water or air entry
pressure (Tesař et al., 2004), which causes non-smoothness
of the retention curve. Alternatively, using a non-monotonic
influx at the upper boundary can also lead to the formation
of saturation overshoot (Steinle and Hilfer, 2017). We con-
jecture that the model should ideally generate the overshoot
without the need for a threshold being incorporated into the
model. Forming the saturation overshoot should be a result-
ing property of the model.

5.4 Effect of intrinsic permeability distribution

One may wonder whether the formation of the saturation
overshoot depends on the intrinsic permeability distribution
used. As evidenced by 1D simulations in Fig. 9, the satura-
tion overshoot is not caused by the distribution of intrinsic
permeability. This corresponds with experimental findings
(DiCarlo, 2013), where the formation of saturation overshoot
is not determined by heterogeneity. Moreover, Kmec et al.
(2023) demonstrated that the distribution has no significant
effect on the flow because the nature of the flow remains the
same even for eight different intrinsic permeability distribu-
tions.

Hence, the questions arise: why use the distribution of in-
trinsic permeability and how does this distribution affect the
development of preferential pathways? Even a slight distri-
bution of intrinsic permeability can cause water not to flow
uniformly through the entire porous medium in 2D and 3D.
This is expected because no heterogeneity is introduced in
the governing equation; hence, water will always flow uni-
formly unless some additional heterogeneity is introduced.
This is demonstrated for 2D simulations in Fig. 12, where
saturation profiles for four different infiltration rates without
a distribution of intrinsic permeability are shown. The over-
shoot is observed at qtop = 0.05 and 0.25 cmmin−1 but not at
very low and very high infiltration rates, which is consistent
with the previous simulations. Therefore, it is evident that
the intrinsic permeability distribution is not the cause of the
formation of the saturation overshoot in 2D but rather causes
water to flow preferentially. To summarize, (1) when using
only the distribution of intrinsic permeability without incor-
porating the geometric mean and the scaling of the reten-
tion curve, the overshoot will not be formed. Consequently,
the flow is diffusive in this scenario, and water always flows
throughout the entire porous medium. (2) When using only
the geometric mean and the scaling of the retention curve, the
overshoot can be formed depending on initial and boundary
conditions. However, the flow remains uniform throughout
the entire porous medium. By combining (1) and (2), the sat-
uration overshoot can be formed, and then water does not
flow uniformly.

Moreover, when the distribution is employed in the semi-
continuum model but the saturation overshoot does not oc-
cur (e.g., in the case of low influx), water tends to flow dif-
fusively. This aligns well with experimental observations.
Other similar models fail in this case as water flows pref-
erentially even when the saturation overshoot is not formed.
In our case, if the overshoot is formed, preferential flow is
observed. If there is no overshoot, preferential flow disap-
pears. The distribution of intrinsic permeability is included
to make water flow non-uniformly (preferentially) through-
out the entire porous medium, but this non-uniformity occurs
only when the physics of the semi-continuum model allows
it, i.e., when the overshoot is formed.
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Figure 12. Saturation profiles for four different infiltration rates qtop = 0.001, 0.05, 0.25, 15 cmmin−1. The distribution of intrinsic perme-
ability is not used. Each frame displays the influx and simulation time. Saturation is colored according to the color bar on the right.

5.5 Model validation and future plans

The semi-continuum model has been shown to be consis-
tent with well-known experiments in 1D (Kmec et al., 2019)
and 2D (Kmec et al., 2021, 2023). Based on the results pre-
sented in this paper, we conjecture that the model has been
validated by core experiments performed in unsaturated ho-
mogeneous porous media (Glass et al., 1988, 1989b, c, a;
Selker et al., 1992; Liu et al., 1994; Yao and Hendrickx,
1996; Bauters et al., 2000; DiCarlo, 2004, 2007, 2010; Sililo
and Tellam, 2005; Rezanezhad et al., 2006). For a heteroge-
neous porous medium, the model has been applied (Kmec et
al., 2021) to simulate water infiltration experiments in a lay-
ered porous medium (Rezanezhad et al., 2006). Therefore,
the semi-continuum model is successfully validated accord-
ing to DiCarlo’s approach (DiCarlo, 2013).

A crucial aspect of the model is to account for the retention
curve sensitivity to the dimension of the laboratory sample
(Ghanbarian et al., 2015). This sensitivity is addressed by in-
corporating a single parameter, the reference block size1x0,
into the semi-continuum model. This makes the simulations
sensitive to this parameter, but once 1x0 is appropriately set
through calibration, the simulations become independent of
the block size 1x. Therefore, the results are consistent re-
gardless of the computational mesh size used. The conver-
gence of moisture profiles in 1D and 2D for1x varying over
2 orders of magnitude is demonstrated in Vodák et al. (2022).

The semi-continuum model can be adapted for more com-
plex natural conditions by incorporating different initial and
boundary conditions. This adaptability makes the model ap-
plicable to large-scale in-field experiments, which is highly
desirable for hydrological applications. A complete valida-
tion of the semi-continuum model ensures the accuracy and
reliability of its results on a large scale. However, the semi-
continuum model is computationally intensive; thus, the de-
velopment of a method to speed up its numerical scheme
is necessary. Our future plan is to develop a new numerical
scheme based on the lattice Boltzmann method as it has been
successfully applied to Richards’ equation (Ginzburg et al.,

2004). This will allow us to simulate large-scale experiments
effectively.

6 Conclusions

It has long been known that the behavior of the wetting front
in an initially dry and homogeneous porous medium strongly
depends on the applied infiltration flux. The wetting front
remains stable at both low and high infiltration fluxes but
becomes unstable within a certain intermediate flux range.
The instability is characterized by the formation of fingers
that vary in terms of width, velocity, and spacing. Despite
decades of experimental observations, no model has yet been
developed to reliably capture this dependence. In this paper,
we introduced a partial differential equation that includes
a Prandtl-type hysteresis operator under the spatial deriva-
tive. This equation represents a formal limit of the semi-
continuum model of liquid transport in a porous medium.
The semi-continuum model accurately captures the complex
behavior of infiltration flux dependence. This includes the
transition from diffusion-like to finger-like flow and then
back to diffusion-like flow as the infiltration flux increases.
It also correctly predicts finger widths and spacings. In addi-
tion, the model helps explain preferential flow and provides
insight into the formation of an unstable wetting front.

Appendix A

A1 Dependence of flow on infiltration rate

A total of 18 simulations for infiltration rates ranging from
qtop = 0.001 to qtop = 15 cmmin−1 are presented here. Fig-
ures A1 and A2 show a snapshot of the saturation profiles
for all applied fluxes. The time for each influx is chosen so
that the saturation reaches 40 cm from the upper boundary.
The applied influx and simulation time are displayed in the
upper-left corner of each frame. The transition between sta-
ble and unstable flow is clearly observed.
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Figure A1. Saturation profiles for nine different infiltration rates ranging from qtop = 0.001 to 0.1 cmmin−1. Each frame displays the influx
and simulation time. Saturation is colored according to the color bar on the right.
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Figure A2. Saturation profiles for nine different infiltration rates ranging from qtop = 0.25 to 15 cmmin−1. Each frame displays the influx
and simulation time. Saturation is colored according to the color bar on the right.
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A2 Finger segmentations

Figure A3. Finger segmentations for 18 different infiltration rates ranging from qtop = 0.001 to qtop = 15 cmmin−1. The segmentations are
marked in red. The time for each influx is chosen so that the saturation reaches the bottom of the chamber. The applied influx and simulation
time are displayed in the upper-left corner of each frame.

A3 Bypass ratio

Figure A4 shows the bypass ratio at a depth of 30 cm for
18 different infiltration rates ranging from qtop = 0.001 to
qtop = 15 cmmin−1. The bypass ratio is marked in red and
is plotted along with the saturation (in blue) across the same
horizontal section. The highest values of the bypass ratio
correlate with the locations of the highest saturation values.
However, this correlation decreases if the saturation is high
enough, as seen for qtop ≥ 7.5 cmmin−1. In such cases, the
slight change in saturation does not significantly affect the
relative permeability values, and, therefore, the bypass ratio
remains also unaffected. Instead, the dominant factor influ-
encing the flow is the intrinsic permeability of the porous
medium.

Note that the porous medium is first fully saturated for
qtop = 7.5 and qtop = 10 cmmin−1 (see Fig. A2). However,
the saturation then decreases because the bottom boundary
flux qbot approximately equals KS = 15 cmmin−1, which is
larger than qtop. In this scenario, the saturation should corre-
spond to the calculated value Stail given by Eq. (9). Consider-
ing the distribution of the intrinsic permeability, the average
value of the calculated Stail at a depth of 30 cm is 0.8540 and
0.9218 for qtop = 7.5 and qtop = 10 cmmin−1, respectively.

The average values from simulations at a depth of 30 cm are
0.8552 and 0.9225, showing that the saturation indeed cor-
responds to the calculated values Stail. Therefore, the satura-
tion at the finger tail always tends to decrease to the value
obtained by Eq. (9). Moreover, for qtop = 15 cmmin−1, the
porous medium remains fully saturated even when water
flows from the bottom boundary as Stail = 1 in this case.
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Figure A4. The bypass ratio at a depth of 30 cm of the porous medium for 18 different infiltration rates ranging from qtop = 0.001 to
qtop = 15 cmmin−1. The bypass ratio is marked in red and is plotted along with the saturation (in blue) across the same horizontal section.
Bypass ratio values are plotted on the left y axis, and values of saturation are plotted on the right y axis. The corresponding influx is displayed
at the top of each frame.

Code and data availability. The software code used to produce the
simulations is written in Python and can be downloaded from Kmec
(2023a) (https://doi.org/10.5281/zenodo.10117915). The code sup-
ports 1D, 2D, and 3D simulations. The simulation data required to
create the plots included in the paper can be downloaded from Kmec
and Šír (2024a) (https://doi.org/10.5281/zenodo.13768956) and
Kmec and Šír (2024b) (https://doi.org/10.5281/zenodo.13769113).
Please do not hesitate to contact us if you encounter any problems
while downloading the software code and simulation data.

Video supplement. Videos of the transient simulations for
all 2D cases can be downloaded from Kmec (2023b)
(https://doi.org/10.5281/zenodo.10090841).
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Pražák, J., Šir, M., and Tesař, M.: Retention cruve of simple capil-
lary networks, J. Hydrol. Hydromech., 47, 117–131, 1999.

Primkulov, B. K., Talman, S., Khaleghi, K., Shokri, A. R., Cha-
laturnyk, R., Zhao, B., MacMinn, C. W., and Juanes, R.:
Quasistatic fluid-fluid displacement in porous media: Invasion-
percolation through a wetting transition, Phys. Rev. Fluids, 3,
104001, https://doi.org/10.1103/PhysRevFluids.3.104001, 2018.

Rezanezhad, F., Vogel, H.-J., and Roth, K.: Experimental study of
fingered flow through initially dry sand, Hydrol. Earth Syst. Sci.
Discuss., 3, 2595–2620, https://doi.org/10.5194/hessd-3-2595-
2006, 2006.

Richards, L. A.: Capillary conduction of liquid through porous
media, Physics, 1, 318–333, https://doi.org/10.1063/1.1745010,
1931.

Roche, W. J., Murphy, K., and Flynn, D. P.: Modelling preferen-
tial flow through unsaturated porous media with the Preisach
model and an extended Richards Equation to capture hystere-
sis and relaxation behaviour, J. Phys. Conf. Ser., 1730, 012002,
https://doi.org/10.1088/1742-6596/1730/1/012002, 2021.

Saffman, P. G. and Taylor, G. I.: The penetration of a fluid
into a porous medium or Hele-Shaw cell containing a more
viscous liquid, P. Roy. Soc. Lond. A Mat., 245, 312–329,
https://doi.org/10.1098/rspa.1958.0085, 1958.

Schaap, M. and Leij, F.: Improved Prediction of Unsat-
urated Hydraulic Conductivity with the Mualem-van
Genuchten Model, Soil Sci. Soc. Am. J., 64, 843–851,
https://doi.org/10.2136/sssaj2000.643843x, 2000.

Schroth, M., Ahearn, S., Selker, J., and Istok, J.: Charac-
terization of Miller-similar silica sands for laboratory hy-
drologic studies, Soil Sci. Soc. Am. J., 60, 1331–1339,
https://doi.org/10.2136/sssaj1996.03615995006000050007x,
1996.

Schweizer, B.: Hysteresis in porous media: Modelling
and analysis, Interface. Free Bound., 19, 417–447,
https://doi.org/10.4171/IFB/388, 2017.

Selker, J., Parlange, J.-Y., and Steenhuis, T.: Fingered flow in two
dimensions: 2. Predicting finger moisture profile, Water Re-
sour. Res., 28, 2523–2528, https://doi.org/10.1029/92WR00962,
1992.

Sililo, O. T. N. and Tellam, J. H.: Fingering in Unsaturated
Zone Flow: A Qualitative Review with Laboratory Experi-
ments on Heterogeneous Systems, Ground Water, 38, 864–871,
https://doi.org/10.1111/j.1745-6584.2000.tb00685.x, 2005.

Silva, M. L. N., Libardi, P. L., and Gimenes, F. H.
S.: Soil water retention curve as affected by sam-
ple height, Rev. Bras. Cienc. Solo, 42, e0180058,
https://doi.org/10.1590/18069657rbcs20180058, 2018.
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