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Abstract. Deep learning (DL) rainfall–runoff models outper-
form conceptual, process-based models in a range of appli-
cations. However, it remains unclear whether DL models can
produce physically plausible projections of streamflow under
climate change. We investigate this question through a sen-
sitivity analysis of modeled responses to increases in tem-
perature and potential evapotranspiration (PET), with other
meteorological variables left unchanged. Previous research
has shown that temperature-based PET methods overesti-
mate evaporative water loss under warming compared with
energy budget-based PET methods. We therefore assume
that reliable streamflow responses to warming should ex-
hibit less evaporative water loss when forced with smaller,
energy-budget-based PET compared with temperature-based
PET. We conduct this assessment using three conceptual,
process-based rainfall–runoff models and three DL models,
trained and tested across 212 watersheds in the Great Lakes
basin. The DL models include a Long Short-Term Memory
network (LSTM), a mass-conserving LSTM (MC-LSTM),
and a novel variant of the MC-LSTM that also respects
the relationship between PET and evaporative water loss
(MC-LSTM-PET). After validating models against historical
streamflow and actual evapotranspiration, we force all mod-
els with scenarios of warming, historical precipitation, and
both temperature-based (Hamon) and energy-budget-based
(Priestley–Taylor) PET, and compare their responses in long-
term mean daily flow, low flows, high flows, and seasonal
streamflow timing. We also explore similar responses using a
national LSTM fit to 531 watersheds across the United States
to assess how the inclusion of a larger and more diverse set
of basins influences signals of hydrological response under
warming. The main results of this study are as follows:

1. The three Great Lakes DL models substantially out-
perform all process-based models in streamflow es-
timation. The MC-LSTM-PET also matches the best
process-based models and outperforms the MC-LSTM
in estimating actual evapotranspiration.

2. All process-based models show a downward shift in
long-term mean daily flows under warming, but median
shifts are considerably larger under temperature-based
PET (−17 % to −25 %) than energy-budget-based PET
(−6 % to −9 %). The MC-LSTM-PET model exhibits
similar differences in water loss across the different PET
forcings. Conversely, the LSTM exhibits unrealisti-
cally large water losses under warming using Priestley–
Taylor PET (−20 %), while the MC-LSTM is relatively
insensitive to the PET method.

3. DL models exhibit smaller changes in high flows and
seasonal timing of flows as compared with the process-
based models, while DL estimates of low flows are
within the range estimated by the process-based mod-
els.

4. Like the Great Lakes LSTM, the national LSTM also
shows unrealistically large water losses under warming
(−25 %), but it is more stable when many inputs are
changed under warming and better aligns with process-
based model responses for seasonal timing of flows.

Ultimately, the results of this sensitivity analysis suggest
that physical considerations regarding model architecture
and input variables may be necessary to promote the phys-
ical realism of deep-learning-based hydrological projections
under climate change.
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1 Introduction

Rainfall–runoff models are used throughout hydrology in a
range of applications, including retrospective streamflow es-
timation (Hansen et al., 2019), streamflow forecasting (De-
margne et al., 2014), and prediction in ungauged basins
(Hrachowitz et al., 2013). Work over the past few years
has demonstrated that deep learning (DL) rainfall–runoff
models (e.g., Long Short-Term Memory networks (LSTMs);
Hochreiter and Schmidhuber, 1997) outperform conventional
process-based models in each of these applications, espe-
cially when those DL models are trained with large datasets
collected across watersheds with diverse climates and land-
scapes (Kratzert et al., 2019a, b; Feng et al., 2020; Ma et al.,
2021; Gauch et al., 2021a, b; Nearing et al., 2021). For exam-
ple, in one extensive benchmarking study, Mai et al. (2022a)
found that a regionally trained LSTM outperformed 12 other
lumped and distributed process-based models of varying
complexity in rivers and streams throughout the Great Lakes
basin. These and similar results have led some to argue that
DL models represent the most accurate and spatially ex-
trapolatable rainfall–runoff models available (Nearing et al.,
2022).

However, there remains one use case of rainfall–runoff
models where the superiority of DL is unclear: long-term
projections of streamflow under climate change. Past stud-
ies using DL rainfall–runoff models for hydrological pro-
jections under climate change are rare (Lee et al., 2020; Li
et al., 2022), and few have evaluated their physical plausibil-
ity (Razavi, 2021; Reichert et al., 2023; Zhong et al., 2023).
A reasonable concern is whether DL rainfall–runoff models
can extrapolate hydrological response under unprecedented
climate conditions, given that they are entirely data driven
and do not explicitly represent the physics of the system. It
is not clear a priori whether this concern has merit, because
DL models fit to a large and diverse set of basins have the
benefit of learning hydrological response across climate and
landscape gradients. In so doing, the model can, for example,
learn hydrological responses to climate in warmer regions
and then transfer this knowledge to projections of streamflow
in cooler regions subject to climate change induced warming.
In addition, past work has shown that LSTMs trained only to
predict streamflow have memory cells that strongly correlate
with independent measures of soil moisture and snowpack
(Lees et al., 2022), suggesting that DL hydrological mod-
els can learn fundamental hydrological processes. A poten-
tial implication of this finding might be that these models
can produce physically plausible streamflow predictions un-
der new climate conditions.

It is challenging to assess the physical plausibility of DL-
based hydrological projections under substantially different
climate conditions, because there are no future observations
against which to compare. This challenge is exacerbated by
significant uncertainty in process-based model projections
under alternative climates, which makes establishing reli-

able benchmarks difficult. Future process-based model pro-
jections can vary widely due to both parametric and struc-
tural uncertainty (Bastola et al., 2011; Clark et al., 2016;
Melsen et al., 2018), and even for models that exhibit similar
performance under historical conditions (Krysanova et al.,
2018). Assumptions around stationary model parameters are
not always valid (Merz et al., 2011; Wallner and Haberlandt,
2015), and added complexity for improved process represen-
tation is not always well supported by data (Clark et al., 2017;
Towler et al., 2023; Yan et al., 2023). Together, these chal-
lenges highlight the difficulty in establishing good bench-
marks of hydrological response under alternative climates
against which to compare and evaluate DL-based hydrologi-
cal projections under climate change.

Recently, Wi and Steinschneider (2022) (hereafter WS22)
forwarded an experimental design to evaluate the physical
plausibility of DL hydrological responses to new climates,
in which DL hydrological models were forced with histori-
cal precipitation and temperature, but with temperatures ad-
justed by up to 4 ◦C. Based on past literature, WS22 posited
that in non-glaciated regions, physically plausible hydrolog-
ical responses should show an increase in water loss, de-
fined as water that enters the watershed via precipitation
but never contributes to streamflow because it is “lost” to
a terminal sink. Specifically, WS22 assumed that evapora-
tive water loss should increase and annual average stream-
flow should decline compared with a baseline simulation
due to increases in potential evapotranspiration (PET) with
warming (and no changes in precipitation). Results showed
that an LSTM trained to 15 watersheds in California often
led to misleading increases in annual runoff under warming,
while this phenomenon was less likely (though still present)
in a DL model trained to 531 catchments across the United
States. WS22 also conducted their experiment with physics-
informed machine learning (PIML) models (Karpatne et al.,
2017; Karniadakis et al., 2021), using process-based model
output directly as input to the LSTM (similar to Konapala
et al., 2020; Lu et al., 2021; Frame et al., 2021a) or as ad-
ditional target variables in a multi-output architecture. The
former approach had some success in removing instances of
increasing runoff ratio with warming, although this was de-
pendent on the process-based model used.

Other PIML approaches that more directly adjust the
architecture of DL rainfall–runoff models may be better
suited for improving long-term streamflow projections un-
der climate change without requiring an accurate process-
based model. For instance, Hoedt et al. (2021) introduced
a mass conserving LSTM (MC-LSTM) that ensures cumu-
lative streamflow predictions do not exceed precipitation in-
puts. Hybrid models present a related approach, where DL
modules are combined with process-based model structures
(Jiang et al., 2020; Feng et al., 2022, 2023a; Hoge et al.,
2022). In some cases, these architectural changes can de-
grade performance compared with a standard LSTM (Frame
et al., 2022b, 2002a; Feng et al., 2023b), but other times
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such changes can be beneficial (Feng et al., 2023a). To date,
the benefits of mass conserving architectures have not been
tested when employed under previously unobserved climate
change.

For all models considered in WS22, a major focus was
evaluating the direction of annual total runoff change in the
presence of warming and no change in precipitation. How-
ever, that study did not consider the magnitude of runoff
change and how it relates to projected changes in PET. As
we argue below, this comparison provides a unique way to
assess the physical plausibility of future hydrological projec-
tions. Several studies have investigated the effects of differ-
ent PET estimation methods on the magnitude of PET and
runoff change in a warming climate (Lofgren et al., 2011;
Shaw and Riha, 2011; Lofgren and Rouhana, 2016; Milly
and Dunne, 2017; Lemaitre-Basset et al., 2022). Broadly,
these studies have shown that temperature-based PET esti-
mation methods (e.g., Hamon, Thornthwaite) substantially
overestimate increases in PET under warming as compared
with energy-budget-based PET estimation methods (e.g.,
Penman–Monteith, Priestley–Taylor) and consequently lead
to unrealistic declines in streamflow under climate change.
This is because the actual drying power of the atmosphere
is driven by the availability of energy at the surface from
net radiation, the current moisture content of the air, tem-
perature (and its effect on the water holding capacity of the
air and vapor pressure deficit), and wind speeds. Energy-
budget-based methods, while imperfect and at times empiri-
cal (Greve et al., 2019; Liu et al., 2022), account for some or
all of these factors in ways that are generally consistent with
their causal impact on PET, while temperature-based meth-
ods estimate PET using strictly empirical relationships based
largely or entirely on temperature. The latter approach works
sufficiently well for rainfall–runoff modeling under histor-
ical conditions because of the strong correlation between
temperature, net radiation, and PET on seasonal timescales,
even though this correlation weakens considerably at shorter
timescales (Lofgren et al., 2011). Under climate change, con-
sistent and prominent increases are projected for tempera-
ture, but projected changes are less prominent or more uncer-
tain for other factors affecting PET (Lin et al., 2018; Pryor
et al., 2020, Liu et al., 2020). Consequently, temperature-
based PET methods substantially overestimate future projec-
tions of PET compared with energy-budget-based methods
(Lofgren et al., 2011; Shaw and Riha, 2011; Lofgren and
Rouhana, 2016; Milly and Dunne, 2017; Lemaitre-Basset
et al., 2022).

As argued by Lofgren and Rouhana (2016), the bias in
PET and runoff that results from different PET estimation
methods under warming provides a unique opportunity to as-
sess the physical plausibility of hydrological projections un-
der climate change. In this study, we adopt this strategy for
DL rainfall–runoff models through a sensitivity analysis in
which both conceptual, process-based and DL hydrological
models are trained with either temperature-based or energy-

budget-based estimates of PET, along with other meteoro-
logical data (precipitation, temperature). These models are
then forced with the historical precipitation and temperature
series but with the temperatures warmed by an additive fac-
tor and PET calculated from the warmed temperatures us-
ing both PET estimation methods. We show that the process-
based models (1) exhibit similar performance in historical
training and testing periods when using either temperature-
based or energy-budget-based PET estimates but (2) ex-
hibit substantially larger long-term mean streamflow declines
under warming when using future PET estimated with a
temperature-based method. If the DL rainfall–runoff models
follow the same pattern, this would suggest that these models
are able to learn the role of PET on evaporative water loss.
However, if DL-based models estimate similarly large long-
term mean streamflow declines regardless of the method used
to estimate and project PET, this would suggest that the DL
models did not learn a mapping between PET and evapora-
tive water loss. Rather, the DL models learned the historical
(but non-causal) correlation between temperature and evapo-
rative water loss, and then incorrectly extrapolated that effect
into the future with warmer temperatures. We show this latter
outcome to be the case, which indicates that we either need
to build models on large data sets that comprise similar con-
ditions to the ones under climate change, or we need to guide
the model selection using theory (e.g., see Karpatne et al.,
2017).

We conduct the experiment above in a case study on 212
watersheds across the Great Lakes basin, using both stan-
dard and PIML-based LSTMs. We show that a standard
LSTM produces unrealistic hydrological responses to warm-
ing because it relies on historical and geographically perva-
sive correlations between temperature and PET to estimate
streamflow losses. We also show that PIML-based DL mod-
els are better able to relate changes in temperature and PET
to streamflow change, especially those PIML approaches that
directly map PET to evaporative water loss in their architec-
ture.

The Great Lakes provide an important case study for this
work, given their importance to the culture, ecosystems, and
economy of North America (Campbell et al., 2015; Steinman
et al., 2017). Projections of future water supplies and water
levels in the Great Lakes are highly uncertain (Gronewold
and Rood, 2019), in part because of uncertainty in future
runoff draining into the lakes from a large contributing area
(Kayastha et al., 2022), much of which is ungauged (Fry
et al., 2013). Improved rainfall–runoff models that can re-
gionalize across the entire Great Lakes basin are necessary
to help address this challenge, and therefore an auxiliary goal
of this work is to contribute PIML rainfall–runoff models to
the Great Lakes Runoff Intercomparison Project Phase 4 pre-
sented in Mai et al. (2022a). This study currently provides
one of the most robust benchmarks comparing DL rainfall–
runoff models to a range of process-based models, and there-
fore we design our experiment to be consistent with the data
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and model development rules outlined in that intercompari-
son project.

2 Data

This study focuses on 212 watersheds draining into the
Great Lakes and Ottawa River, which are all located in the
St. Lawrence River basin (Fig. 1). For direct comparability
to previous results from the Great Lakes Runoff Intercom-
parison Project, all data for these watersheds are taken di-
rectly from the work in Mai et al. (2022a) and include daily
streamflow time series, meteorological forcings, geophysi-
cal attributes for each watershed, and auxiliary hydrologi-
cal fluxes. Daily streamflow were gathered from the U.S.
Geological Survey and Water Survey Canada between Jan-
uary 2000 and December 2017. All streamflow gauging sta-
tions have a drainage area greater than or equal to 200 km2

and less than 5 % missing data in the study period. The wa-
tersheds are evenly distributed across the five lake basins and
the Ottawa River basin, and they represent a range of land use
and land cover types and degrees of hydrological alteration
from human activity. In the experiments described further be-
low, 141 of the watersheds are designated as training sites
and the remaining 71 watersheds are used for testing (see
Fig. 1). In addition, the period between January 2000 to De-
cember 2010 is reserved for model training (termed the train-
ing period) and the period between January 2011–December
2017 is used for model testing (termed the testing period).

Meteorological forcings are taken from the Regional De-
terministic Reanalysis System v2, which is an hourly, 10 km
dataset available across North America (Gasset et al., 2021).
Hourly precipitation, net incoming shortwave radiation (Rs),
and temperature are aggregated into a basin-wide daily pre-
cipitation average, daily Rs average, and daily minimum and
maximum temperature. We note that the precipitation data
from the Regional Deterministic Reanalysis System v2 are
produced from the Canadian Precipitation Analysis, which
combines available surface observations of precipitation with
a short-term reforecast provided by the 10 km Regional De-
terministic Reforecast System, that is, the precipitation data
are not model based but rather is based on gauged data and
spatially interpolated using information from modeled out-
put.

Geophysical attributes for each watershed were collected
from a variety of sources. Basin-average statistics of eleva-
tion and slope were derived from the HydroSHEDS dataset
(Lehner et al., 2008), which provides a digital elevation
model with 3 arcsec resolution. Soil properties (e.g., soil tex-
ture and classes) were gathered from the Global Soil Dataset
for Earth System Models (Shangguan et al., 2014), which is
available at a 30 arcsec resolution. Land cover data at a 30 m
resolution and based on Landsat imagery from 2010–2011
were derived from the North American Land Change Moni-
toring System (NALCMS, 2017). These geophysical datasets

were used to derive basin-averaged attributes for each water-
shed listed in Table 1.

Finally, we also collect daily actual evapotranspiration
(AET) for each watershed in millimeters per day, which
was originally taken from the Global Land Evaporation Am-
sterdam Model (GLEAM) v3.5b dataset (Martens et al.,
2017). GLEAM couples remotely sensed observations of mi-
crowave vegetation optical depth, a multi-layer soil mois-
ture model driven by observed precipitation and assimilat-
ing satellite surface soil moisture observations, and Priestly–
Taylor-based estimates of PET to derive an estimate of AET
for each day. The daily data were originally available over
the entire study domain at a 0.25◦ resolution between 2003
and 2017, and were aggregated to basin-wide totals for each
watershed. While AET from GLEAM is still uncertain, it
provides a useful, independent, remote-sensing-based bench-
mark against which to compare rainfall–runoff model esti-
mates of AET.

3 Methods

We design an experiment to test the two primary hypothe-
ses of this study, namely that a standard LSTM will over-
estimate evaporative water losses under warming because of
an overreliance on historical correlations between tempera-
ture and PET, while this effect will be lower in PIML-based
rainfall–runoff models designed to better account for evapo-
rative water loss in the system. To conduct this experiment,
we develop three different DL rainfall–runoff models to pre-
dict daily streamflow across the Great Lakes region, as well
as three conceptual, process-based models as benchmarks,
each of which is trained twice with either an energy-budget-
based or temperature-based estimate of PET. The DL mod-
els include a regional LSTM very similar to the model in
Mai et al. (2022a), an MC-LSTM that conserves mass, and
a new variant of the MC-LSTM that also respects the re-
lationship between PET and evaporative water loss (termed
MC-LSTM-PET). After comparing historical model perfor-
mance, we conduct a sensitivity analysis on all models in
which historical temperatures are warmed by 4 ◦C, PET is
updated based on those warmed temperatures, and all other
meteorological variable time series are left unchanged from
historical values. This is a similar approach to that taken in
WS22, but in contrast to that study, this work (1) focuses
on the magnitude of streamflow response to warming un-
der two different PET formulations, (2) considers a different
set of physics-informed DL models in which the architecture
(rather than the inputs or targets) of the model are changed to
better preserve physical plausibility under shifts in climate,
and (3) evaluates an expanded set of hydrological metrics to
better understand both the plausibility and the variability of
responses across the different models. Finally, in a subset of
the analysis, we also utilize a fourth DL model, the LSTM
used in WS22 that was previously fit to 531 basins across the
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Figure 1. Great Lakes domain with training and testing streamflow gauges used throughout this study. A subset of 17 of these gauges that
are also in the CAMELS database are highlighted, as are six sites used to present select results in Sect. 4.

Table 1. Watershed attributes used in the deep learning models developed in this work (adapted from Mai et al., 2022a).

Attribute Description

p_mean Mean daily precipitation
pet_mean Mean daily potential evapotranspiration
aridity Ratio of mean PET to mean precipitation
t_mean Mean of daily maximum and daily minimum temperature
frac_snow Fraction of precipitation falling on days with mean daily temperatures below 0 ◦C
high_prec_freq Fraction of high-precipitation days (= 5 times mean daily precipitation)
high_prec_dur Average duration of high-precipitation events (number of consecutive days

with= 5 times mean daily precipitation)
low_prec_freq Fraction of dry days (< 1 mmd−1 daily precipitation)
low_prec_dur Average duration of dry periods (number of consecutive days with daily precipitation

< 1 mmd−1)
mean_elev Catchment mean elevation
std_elev Standard deviation of catchment elevation
mean_slope Catchment mean slope
std_slope Standard deviation of catchment slope
area_km2 Catchment area
Temperate-or-sub-polar-needleleaf-forest Fraction of land covered by “Temperate-or-sub-polar-needleleaf-forest”
Temperate-or-sub-polar-grassland Fraction of land covered by “Temperate-or-sub-polar-grassland”
Temperate-or-sub-polar-shrubland Fraction of land covered by “Temperate-or-sub-polar-shrubland”
Temperate-or-sub-polar-grassland Fraction of land covered by “Temperate-or-sub-polar-grassland”
Mixed-Forest Fraction of land covered by “Mixed-Forest”
Wetland Fraction of land covered by “Wetland”
Cropland Fraction of land covered by “Cropland”
Barren-Lands Fraction of land covered by “Barren-Lands”
Urban-and-Built-up Fraction of land covered by “Urban-and-Built-up”
Water Fraction of land covered by “Water”
BD Soil bulk density (gcm−3)
CLAY Soil clay content (% of weight)
GRAV Soil gravel content (% of volume)
OC Soil organic carbon (% of weight)
SAND Soil sand content (% of weight)
SILT Soil silt content (% of weight)
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Figure 2. Overview of experiment design. Three deep learning rainfall–runoff models (LSTM, MC-LSTM, and MC-LSTM-PET) and three
conceptual, process-based models (HBV, SAC-SMA, and HYMOD) are trained and tested across 212 watersheds throughout the Great
Lakes basin. Models are validated by comparing predictions to streamflow (Q) and actual evapotranspiration (AET). All models are then
forced with historical meteorology, but with historical temperatures warmed by 4 ◦C and potential evapotranspiration (PET) updated based
on those warmed temperatures using either the Hamon or Priestley–Taylor method. Hydrological model responses across all models are then
compared in terms of long-term mean daily flows, low flows, high flows, and streamflow seasonal timing statistics. The experiment is also
repeated with an LSTM fit to 531 basins across the contiguous United States, except that model uses a different set of inputs, does not use
PET as an input, and vapor pressure is also adjusted along with temperature.

CONUS (Kratzert et al., 2021), which uses daily precipita-
tion, maximum and minimum temperature, radiation, and va-
por pressure as input but not PET. This model is used to eval-
uate whether a DL model fit to many more watersheds that
span a more diverse gradient of climate conditions behaves
differently under warming than an LSTM fit only to loca-
tions in the Great Lakes basin. Figure 2 presents an overview
of our experimental design.

3.1 Models

3.1.1 Benchmark conceptual models

We calibrate three conceptual, process-based hydrological
models as benchmarks, including the Hydrologiska Byråns
Vattenbalansavdelning (HBV) model (Bergström and Fors-
man, 1973), HYMOD (Boyle, 2001), and the Sacramento
Soil Moisture Accounting (SAC-SMA) model (Burnash,
1995) coupled with SNOW-17 (Anderson, 1976). These

models are developed as lumped, conceptual models for each
watershed and were selected for several reasons. First, in the
Great Lakes Intercomparison Project (Mai et al., 2022a), HY-
MOD was one of the best performing process-based mod-
els for both streamflow and AET estimation. SAC-SMA is
widely used in the United States, forming the core hydro-
logical model in NOAA’s Hydrologic Ensemble Forecasting
System (Demargne et al., 2014). This model was also shown
to outperform the National Water Model across hundreds of
catchments in the United States (Nearing et al., 2021). We
also found in WS22 that AET from SAC-SMA matched the
seasonal pattern of MODIS-derived AET well across Cali-
fornia. HBV is also used for operational forecasting in mul-
tiple countries (Olsson and Lindstrom, 2008; Krøgli et al.,
2018) and performs very well in hydrological model inter-
comparison projects (Breuer et al., 2009; Plesca et al., 2012;
Beck et al., 2016, 2017; Seibert and Bergström, 2022). Im-
portantly, the HYMOD, SAC-SMA, and HBV models can
exhibit significant intermodel differences in behavior, domi-
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nant processes, and performance controls through time, even
in situations where they share similar process formulations
(Herman et al., 2013).

We calibrate the process-based models with the genetic al-
gorithm from Wang (1991) to minimize the mean-squared
error (MSE), using a population size equal to 100 times the
number of parameters, evolved over 100 generations, and
with a spin-up period of 1 year. Each benchmark model is
calibrated separately to each of the 141 training sites using
the temporal train/test split described in Sect. 2, and train-
ing is repeated 10 separate times with different random ini-
tializations to account for uncertainty in the training process
and to estimate parametric uncertainty. Benchmark models
are calibrated for the 71 testing sites in two ways: (1) sepa-
rate models are trained for the testing sites during the train-
ing period; and (2) each testing site is assigned a donor from
among the 141 training sites, and the calibrated parameters
from that donor site are transferred to the testing site. The
first of these approaches enables a comparison between DL
models fit only to the training sites to benchmark models de-
veloped for the testing sites, i.e., a spatial out-of-sample ver-
sus in-sample comparison. The second of these approaches
enables a more direct spatial out-of-sample comparison be-
tween DL and benchmark models. We note that donor sites
were used to assign model parameters to testing sites in the
benchmarking study of Mai et al. (2022a), and to retain di-
rect comparability to the results of that work we use the same
donor sites for each testing site. Donor sites were selected
based on spatial proximity while also prioritizing donor sites
that were nested within the watershed of the testing site.

3.1.2 LSTM

We develop a single, regional LSTM for predicting daily
streamflow across the Great Lakes region. In the LSTM,
nodes within hidden layers feature gates and cell states that
address the vanishing gradient problem of classic recurrent
neural networks and help capture long-term dependencies
between input and output time series. The model defines a
D-dimensional vector of recurrent cell states c[t] that is up-
dated over a sequence of t = 1, . . .s, T time steps based on a
sequence of inputs x = x[1], . . .,x[T ], where each input x[t]

is a K-dimensional vector of features. Information stored in
the cell states is then used to update a D-dimensional vector
of hidden states h[t], which form the output of the hidden
layer in the model. The structure of the LSTM is given as
follows:

i[t] = σWix[t] +Uih[t − 1] + bi) (1a)
f [t] = σWf x[t] +Ufh[t − 1] + bf ) (1b)
g[t] = tanh Wgx[t] +Ugh[t − 1] + bg) (1c)
o[t] = σWox[t] +Uoh[t − 1] + bo) (1d)
c[t] = f [t]� c[t − 1] + i[t]�g[t] (1e)
h[t] = o[t]� tanh c[t]) (1f)

y[T ] = ReLU(Wyh[T ] + by). (1g)

Here, the input gate (i[t]) controls how candidate infor-
mation (g[t]) from inputs and previous hidden states flows
to the current cell state (c[t]), the forget gate (f [t]) enables
removal of information within the cell state over time, and
the output gate (o[t]) controls information flow from the cur-
rent cell state to the hidden layer output. All bolded terms
are vectors and � denotes element-wise multiplication. To
produce streamflow predictions, h[T ] at the last time step
in the sequence is passed through a fully connected layer
to a single-node output layer (i.e., a many-to-one formula-
tion). We ensure non-negative streamflow predictions using
the rectified linear unit (ReLU) activation function for the
output neuron, expressed as ReLU(x)=max(0,x). Impor-
tantly, there are no constraints requiring the mass of water
entering as precipitation to be conserved within this architec-
ture.

The LSTM takes K = 39 input features: 9 dynamic and
30 static. The dynamic input features are basin-averaged cli-
mate, including daily precipitation, maximum temperature,
minimum temperature, net incoming shortwave radiation,
specific humidity, surface air pressure, zonal and meridional
components of wind, and PET. The static features represent
catchment attributes (see Table 1) and are repeated for all
time steps in the input sequences x. All input features are
standardized before training (by subtracting the mean and di-
viding by the standard deviation for data across all training
sites in the training period). Note that we do not standardize
the observed streamflow besides dividing by drainage area to
represent streamflow in units of millimeters.

We train the LSTM by minimizing the mean-squared error
averaged over the 141 training watersheds during the training
period:

MSE=
1
N

∑N

n=1

1
Tn

∑Tn

t=1

(
Q̂n,t −Qn,t

)2
, (2)

where N is the number of training watersheds and Tn is the
number samples in the nth watershed. Q̂n,t and Qn,t are,
respectively, the streamflow prediction and observation for
basin n and day t . To estimate Q̂n,t , we feed into the network
an input sequence for the past T = 365 d. The model was de-
veloped with 1 hidden layer composed of D= 256 nodes,
a mini-batch size of 256, a learning rate of 0.0005, and a
drop-out rate of 0.4, and it was trained across 30 epochs. All
hyperparameters (number of hidden layer nodes, mini-batch
size, learning rate, dropout rate, and number of epochs) were
selected in a 5-fold cross-validation on the training sites (see
Table S2 in the Supplement for details on grid search). Net-
work weights are tuned using the ADAM optimizer (Kingma
and Ba, 2015). The model is trained 10 separate times with
different random initializations to account for uncertainty in
the training process.

For the evaluation of streamflow responses to warming,
we also use an LSTM taken from Kratzert et al. (2021)
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and employed in WS22, which was fit to 531 basins across
the contiguous United States (hereafter called the “national
LSTM”). This model was trained using a different set of
data compared with our Great Lakes LSTM but also used a
mix of dynamic and static features, all of which were drawn
from the Catchment Attributes and Meteorology for Large-
Sample Studies (CAMELS) dataset (Newman et al., 2015).
This model uses daily precipitation, maximum and minimum
temperature, shortwave downward radiation, and vapor pres-
sure as input but not PET. However, we note that temperature,
radiation, and vapor pressure are the three major inputs (be-
sides wind speeds) needed to calculate energy-budget-based
PET. There are 29 CAMELS watersheds located within the
Great Lakes basin, and 17 of those 29 watersheds were also
used in the training and testing sets for the Great Lakes
LSTM (see Fig. 1).

3.1.3 MC-LSTM

Following Hoedt et al. (2021) and Frame et al. (2021b), we
adapt the architecture of the LSTM into a mass conserv-
ing MC-LSTM that preserves the water balance within the
model, i.e., the total quantity of precipitation entering the
model is tracked and redistributed to streamflow and losses
from the watershed. Using similar notation as for the LSTM
above, the model structure is given as follows:

i[t] = σ̂ (Wix[t] +Uic[t − 1] +Via[t] + bi) (3a)
o[t] = σ(Wox[t] +Uoc[t − 1] +Voa[t] + bo) (3b)
R[t] = σ̂ (WRx[t] +URc[t − 1] +VRa[t] + bR) (3c)
m[t] = R[t]c[t − 1] + i[t]x[t] (3d)
c[t] = (1− o[t])�m[t] (3e)
h[t] = o[t]�m[t]. (3f)

Here, the inputs to the model are split between quan-
tities x[t] to be conserved (i.e., precipitation), and non-
conservative inputs a[t] (i.e., temperature, wind speeds, PET,
catchment properties, etc.). Water in the system is stored in
the D-dimensional vector m[t] and is updated at each time
step based on water left over from the previous time step
(c[t − 1]) and water entering the system at the current time
step (x[t]). The input gate i[t] and a redistribution matrix
R[t] are designed to ensure water is conserved from c[t − 1]
and x[t] to m[t], by basing these quantities on a normalized
sigmoid activation function:

σ̂ (zj )=
σ(zj )∑
jσ(zj )

. (4)

Here, σ(·) is the sigmoid activation function, while σ̂ (·)
is a normalized sigmoid activation that produces a vector of
fractions that sum to unity. The normalized sigmoid activa-
tion function is applied column-wise to the matrix R[t].

The mass in m[t], which is stored acrossD elements in the
vector, is then distributed to the output of the hidden layer,

h[t], or the next cell state, c[t]. To account for water losses
from evapotranspiration or other sinks, one element of the
D-dimensional vector h[t] is considered a “trash cell” and
the output of this cell is ignored when calculating the final
streamflow prediction, which at time T is given by the sum
of outgoing water mass:

y[T ] =
∑D−1

d=1
hd [T ]. (5)

Here, the Dth cell of h (hD)T is set as the trash cell, and
water allocated to this cell at each time step t = 1, . . .,T is
lost from the system. We note that the MC-LSTM was trained
in the same way as the LSTM (i.e., same inputs, loss func-
tion, training and test sets, hyperparameter selection process,
and number of ensemble members with random initializa-
tion).

3.1.4 MC-LSTM-PET

We also propose a novel variant of the MC-LSTM that re-
quires water lost from the system to not exceed PET (here-
after referred to as the MC-LSTM-PET). In the original MC-
LSTM, any amount of water can be delegated to the trash cell
hD . Therefore, while water is conserved in the MC-LSTM,
the model has the freedom to transfer any amount of wa-
ter from m[t] to the trash cell (and out of the hydrological
system) as it seeks to improve the loss function during train-
ing. This has the benefit of handling biased data, e.g., cases
where the precipitation input to the system is systematically
too high compared with the measured outflow. However, this
structure also has the drawback of potentially removing more
water from the system than is physically plausible. To ad-
dress this issue, we propose a small change to the architec-
ture of the MC-LSTM, where any water relegated to the trash
cell that exceeds PET at time t is directed back to the stream:

y[t] =
∑D−1

d=1
hd [t] +ReLU(hD[t] −PET[t]). (6)

Here, the ReLU activation ensures that any water in the
trash cell (hD) which exceeds PET at time t is added to the
streamflow prediction y[t], but the streamflow prediction is
the same as the original MC-LSTM (Eq. 5) if water in the
trash cell is less than PET. This approach assumes that the
maximum allowable water lost from the system cannot ex-
ceed PET and therefore ignores other potential terminal sinks
(e.g., interbasin lateral groundwater flows, human diversions,
and interbasin transfers). This assumption is more strongly
supported in moderately sized (> 200 km2), low-gradient,
non-arid watersheds where interbasin groundwater flows are
less impactful (Fan, 2019; Gordon et al., 2022), such as the
Great Lakes basins examined in this work. However, we dis-
cuss the potential to relax the assumptions of the MC-LSTM-
PET model in Sect. 5. The MC-LSTM-PET was trained in
the same way as the LSTM (i.e., same inputs, loss function,
training and test sets, hyperparameter selection process, and
number of ensemble members with random initialization).
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3.2 Model performance evaluation

As noted previously, 141 of the watersheds are designated as
training sites and the remaining 71 watersheds are used for
testing. In addition, the training and testing periods were re-
stricted to January 2000–December 2010 and January 2011–
December 2017, respectively. This provides three separate
ways to evaluate model performance:

– Temporal validation. Performance across models is
evaluated at training sites during the testing period.

– Spatial validation. Performance across models is evalu-
ated at testing sites during the training period.

– Spatiotemporal validation. Performance across models
is evaluated at testing sites during the testing period.

All three evaluation strategies are utilized. For benchmark
process-based models that are calibrated locally on a site-by-
site basis, we consider model versions that are transferred
to testing sites from training sites, as well as models that
are trained to the testing sites directly (see Sect. 3.1.1). The
former can be used for all three evaluation strategies above,
while the latter can only be used for temporal validation at
the testing sites.

Following other intercomparison studies (Frame et al.,
2022a; Gauch et al., 2021a; Klotz et al., 2022; Kratzert
et al., 2021), several metrics are considered for model eval-
uation, including percent bias (PBIAS), the Nash–Sutcliffe
efficiency (NSE; Nash and Sutcliffe, 1970), the Kling–Gupta
efficiency (KGE; Gupta et al., 2009), top 2 % peak flow bias
(FHV; Yilmaz et al., 2008), and bottom 30 % low flow bias
(FLV; Yilmaz et al., 2008). Each metric is calculated sepa-
rately for training and testing periods for each site. For all
models, all results are estimated from the ensemble mean
from 10 separate training trials.

For the process-based models, the MC-LSTM, and the
MC-LSTM-PET, we also compare simulations of AET to
AET from the GLEAM database. We note that AET data
were not used to train any of the models. For the process-
based models, AET is a direct output of the model and there-
fore can immediately be extracted for comparison, but AET
is not directly simulated by the MC-LSTM or MC-LSTM-
PET. Instead, we assume that water delegated to the trash cell
permanently leaves the system because of evapotranspira-
tion. Several metrics are used to compare model-based AET
to GLEAM AET, including KGE, correlation, and PBIAS,
and the comparison is conducted for training sites during the
training period and under temporal, spatial, and spatiotem-
poral validation (as described above). Similar to streamflow,
all AET results are based on the ensemble mean from the 10
separate training trials.

3.3 Evaluating hydrological response under warming

All Great Lakes models in this study are trained twice
with different PET estimates as input, including the Hamon
method (a temperature-based approach; Hamon, 1963) and
the Priestley–Taylor method (an energy-budget-based ap-
proach; Priestley and Taylor, 1972). We select the Hamon
method because of its stronger dependence on temperature
compared with other temperature-based approaches that also
depend on radiation (e.g., Hargreaves and Samani, 1985;
Oudin et al., 2005). We select the Priestley–Taylor method
based on its widespread use in the literature (Wu et al., 2021;
Su and Singh, 2023) and its approximation of the more phys-
ically based Penman–Monteith approach (Allen et al., 1998).
Together, these two approaches lie towards the lower and up-
per bounds of temperature sensitivity across multiple PET
approaches (see Shaw and Riha, 2011).

PET (in mmd−1) under the Hamon method is calculated
as follows (Shaw and Riha, 2011):

PETH = αH× 29.8×Hrday
esat

Ta+ 273.2
, (7)

esat = 0.611× exp
(

17.27× Ta

237.3+ Ta

)
, (8)

where Hrday is the number of daylight hours, Ta is the average
daily temperature (◦C) calculated from daily minimum and
maximum temperature, esat is the saturation vapor pressure
(kPa), and αH is a calibration coefficient set to 1.2 for all
models in this study (similar to Lu et al., 2005).

PET under the Priestley–Taylor method is calculated as
follows:

PETPT = αPT

(
1(Ta)× (Rn−G)

λ(1(Ta)+ γ )

)
× 1000. (9)

Here, 1(Ta) is the slope of the saturation vapor pressure
temperature curve (kPa ◦C−1) and is a function of Ta, γ is
the psychrometric constant (kPa ◦C−1), λ is the volumetric
latent heat of vaporization (MJm−3), Rn is the net radiation
(MJm−2 d−1) equal to the difference between net incoming
shortwave (Rns) and net outgoing longwave (Rnl) radiation,
G is the heat flux to the ground (MJm−2 d−1), and αPT is
a dimensionless coefficient set to 1.1 for all models in this
study (similar to Szilagyi et al., 2017). Details on how to cal-
culate γ , 1(Ta), and Rnl are available in Allen et al. (1998),
and we assume G= 0. Net shortwave radiation is given by
Rns = (1− ζ )Rs, with ζ = 0.23 the assumed albedo and Rs
the incoming shortwave radiation. We note that net outgoing
longwave radiation Rnl is a function of maximum and mini-
mum temperature, actual vapor pressure, and Rs (see Eq. 39
in Allen et al., 1998). All exogenous meteorological inputs
for the two methods are derived from the Regional Determin-
istic Reanalysis System v2 (see Sect. 2). We note that using
αH= 1.2 and αPT= 1.1 leads to very similar long-term aver-
age PET estimates between the Hamon and Priestley–Taylor
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methods under baseline climate conditions, helping to ensure
their comparability. We also note that both PET series are
highly correlated with daily average temperatures (average
Pearson correlations across sites of 0.94 and 0.83 for Hamon
and Priestley–Taylor PET, respectively).

We then conduct a sensitivity analysis of model response
in which the historical minimum and maximum temperature
time series are increased uniformly by 4 ◦C, and the two PET
estimates are updated using these warmed temperatures. We
focus the assessment on training period data at the training
sites, so that any differences in responses that emerge be-
tween the DL and process-based models are due to model
structural differences and not the effects of spatiotemporal
regionalization. In the Priestly–Taylor method, we maintain
historical values forRs to isolate how changes in temperature
and its effect on1(Ta) andRnl influence changes in PET. The
use of historical Rs is supported by the results from CMIP5
projections presented in Lai et al. (2022), but this assumption
is discussed further in Sect. 5.

We also conduct a similar sensitivity analysis on the na-
tional LSTM, which uses five dynamic input features from
the CAMELS dataset (daily precipitation, maximum temper-
ature, minimum temperature, Rs, and water vapor pressure).
Here, temperatures are increased by 4 ◦C, while precipitation
and Rs are held at historical values. There is a strong cor-
relation between vapor pressure and minimum temperature
in the CAMELS dataset, since minimum temperature is used
to estimate the water vapor pressure (Newman et al., 2015).
Thus, to run the national LSTM under warming, we also ad-
just the vapor pressure input based on the change imposed to
minimum temperature. This procedure is detailed in WS22.

For both the Great Lakes DL models and the national
LSTM, the dynamic inputs are adjusted based on the warm-
ing scenarios above. We also consider changes to the static
input features that depend on temperature and PET in their
calculation (e.g., pet_mean, aridity, and t_mean, frac_snow;
see Table 1 for feature descriptions and Supporting Informa-
tion S1 and Table S1 for details on adjustments to these fea-
tures), and then run all models using two settings: (1) with
changes only to the dynamic features and (2) with changes
to both dynamic features and to static features that depend
on those dynamic features. In total, there are six scenarios
run in this work, which are shown in Table 2.

Ultimately, for each model we compare hydrological re-
sponses under the warmed scenario to their values under the
baseline scenario with no warming. For the national LSTM,
we only consider basins in the CAMELS dataset within the
Great Lakes Basin. For the process-based models, we also
evaluate the uncertainty in hydrological response based on
the range predicted across the 10 different training trials, as
a simple means to evaluate how parametric uncertainty influ-
ences the predictions. We examine four different metrics for
this comparison, including

– AVG.Q: the long-term mean of daily streamflow across
the entire series;

– FHV: the average of the top 2 % peak flows;

– FLV: the average of the bottom 30 % low flows;

– COM: the median center of mass across all water years,
where the center of mass is defined as the day of the
water year by which half of the total annual flow has
passed.

If our hypothesis is correct that the LSTM cannot distin-
guish evaporative water loss differences with different PET
series but similar warming, whereas process-based and PIML
models can, we would expect that under the LSTM using
both PET series, long-term mean flow will decline substan-
tially and with similar magnitude to the process-based mod-
els using the temperature-based PET method but not the
energy-budget-based PET method. We would also expect the
national LSTM to exhibit similar behavior, even though it
was able to learn from a larger set of watersheds across a
more diverse range of climate conditions. Finally, if our hy-
pothesis is correct, we would expect the PIML models (MC-
LSTM and MC-LSTM-PET) to follow the process-based
model responses more closely across the two different PET
series, at least in terms of the difference in magnitude of
long-term mean streamflow declines. To facilitate a broader
intermodel comparison of DL and process-based models un-
der warming (which is largely absent from the literature),
we also explore the differences in low flow (FLV), high flow
(FHV), and seasonal timing (COM) metrics across all model
versions, where we have less reason to anticipate how DL
and process-based models will differ in their responses and
across PET formulations. However, for responses like sea-
sonal streamflow timing (COM), we do anticipate that real-
istic responses should show a shift towards more streamflow
earlier in the year, as warmer temperatures lead to more pre-
cipitation falling as rain rather than snow and drive snowmelt
earlier in the spring.

4 Results

4.1 Model performance evaluation

Figure 3 shows the distribution of KGE values across sites for
streamflow from the LSTM, MC-LSTM, MC-LSTM-PET,
and the three process-based models for both the training and
testing sites during both the training and testing periods. All
results here and elsewhere in Sect. 4.1 are shown for the
models fit with Priestley–Taylor PET, but there is little dif-
ference in performance for the models fit with Hamon PET
(see Fig. S1 in the Supplement). For the process-based mod-
els, we show results for models fit to the training sites and
then used as donors at the testing sites, as well as models
fit to the testing sites directly. We denote the latter with the
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Table 2. Overview of the setup for the different scenarios run in this analysis. All models are driven with temperatures warmed by 4 ◦C. The
Great Lakes models include the HBV, SAC-SMA, HYMOD, LSTM, MC-LSTM, and MC-LSTM-PET models that are trained and tested to
the 212 sites across the Great Lakes basin.

Scenario Model PET method adjusted with
warmer temperatures

Are static features also changed
along with dynamic features?

1 Great Lakes models Hamon Yes
2 Great Lakes models Priestley–Taylor Yes
3 Great Lakes models Hamon No
4 Great Lakes models Priestley–Taylor No
5 National LSTM NA Yes
6 National LSTM NA No

Figure 3. Distribution of the Kling–Gupta efficiency (KGE) for streamflow estimates across sites from each model at the (a) 141 training
sites and (b) 71 testing sites for the training period. Similar results for the testing period are shown in (c) and (d), respectively. For the
process-based models fit to the testing sites (denoted “-test”), no performance results are available at the training sites. All models are trained
using Priestley–Taylor PET.

suffix “-test” and note that performance metrics at the train-
ing sites are not available for process-based models fit to the
testing sites.

Several insights emerge from Fig. 3. First, for the training
sites during the training period, all models perform very well
(Fig. 3a). Across the three process-based models, the median

KGE is 0.79, 0.78, and 0.77 for HBV, SAC-SMA, and HY-
MOD, respectively. However, unsurprisingly, the DL mod-
els perform better for the training data, with median KGE
values all equal or above 0.88. The LSTM performs best in
this case. Under temporal validation (training sites during
the testing period), performance degrades somewhat across
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Table 3. The median KGE, NSE, PBIAS, FHV, and FLV for streamflow across testing sites for the training and testing periods for all models
(excluding the process-based models fit to the testing sites). The metric from the best performing model in each period is bolded. All models
are trained using Priestley–Taylor PET.

Model Testing sites: training period Testing sites: testing period

KGE NSE PBIAS FHV FLV KGE NSE PBIAS FHV FLV

LSTM 0.76 0.77 9.66 17.58 30.98 0.72 0.68 12.15 26.01 27.32
MC-LSTM 0.74 0.72 9.48 15.52 41.46 0.72 0.65 12.13 22.82 35.80
MC-LSTM-PET 0.73 0.72 8.63 18.80 48.10 0.71 0.66 10.22 22.49 44.43
HBV 0.58 0.50 9.99 32.22 63.96 0.55 0.50 12.68 34.76 57.20
SAC-SMA 0.57 0.48 11.74 34.72 45.17 0.54 0.47 12.24 40.45 46.78
HYMOD 0.58 0.48 10.07 33.68 58.06 0.54 0.48 12.52 36.07 60.32

all models, and the differences in KGE between all process-
based models and between all DL models shrink consider-
ably (Fig. 3c). Larger performance declines are seen at the
testing sites during the training period (Fig. 3b) and testing
period (Fig. 3d). Here, the median KGE for all process-based
models falls to between 0.54 and 0.58 when streamflow at
the testing sites is estimated with donor models from nearby
gauged watersheds. In contrast, process-based models fit to
the testing sites (denoted “-test”) exhibit performance simi-
lar to that seen in Fig. 3a and c. All three DL models per-
form quite well for the testing sites, with median KGE values
above 0.71 in both time periods. This is only modestly below
the median KGE for the process-based models fit to the test-
ing sites, which is quite impressive given that this represents
the spatial out-of-sample performance of the DL models. We
even see that for approximately 20 % of testing sites during
the training period, the DL models outperform the process-
based models fit to those locations in that period.

Table 3 shows the median KGE, NSE, PBIAS, FHV,
and FLV across testing sites for all models, excluding the
process-based models fit to the testing sites. Similar to Fig. 3,
all three DL models outperform the donor-based process-
based models at the testing sites for all metrics. The perfor-
mance across the three different DL models is similar, al-
though there are some notable differences. In particular, the
LSTM outperforms the MC-LSTM and MC-LSTM-PET for
NSE and FLV (as well as KGE in the training period), the
MC-LSTM-PET outperforms the LSTM and MC-LSTM for
PBIAS, and either the MC-LSTM or MC-LSTM-PET are the
best performers for FHV. The fact that the MC-LSTM-PET
performs best for PBIAS of all models suggests that the PET
constraint imposed in that model improves the overall ac-
counting of water entering and existing the watershed on a
long-term basis. We also note that percent biases for FLV are
high because the absolute magnitude of low flows is small,
so small absolute biases still lead to large percent biases.

Figure 4 shows similar results as Fig. 3, but for the KGE
based on estimates of AET. Also, only donor process-based
models are shown for the testing sites. Results for correla-
tion and PBIAS are available in Figs. S2 and S3. Here, the

LSTM is not included because estimates of AET are unavail-
able, while AET from the MC-LSTM and MC-LSTM-PET
is based on water relegated to the trash cell. Note that none
of the models were trained for AET, and therefore results at
training sites during the training period also provide a form of
model validation. Figure 4 shows that SAC-SMA and HBV
predict AET with relatively high degrees of accuracy for both
training and testing sites in both periods (median KGE be-
tween 0.79 and 0.80). Performance is slightly worse for HY-
MOD. Notably, the MC-LSTM-PET exhibits very similar,
strong performance for all sites and periods as compared with
SAC-SMA and HBV, except for one testing site. In contrast,
the MC-LSTM performs the worst of all models, with me-
dian KGE values ranging between 0.53 and 0.57.

Further investigation reveals that the differences in KGE
between the MC-LSTM and MC-LSTM-PET models for
AET are largely driven by differences in correlation (see
Fig. S2). We examine this difference in more detail in Fig. 5,
which presents scatterplots of GLEAM AET versus water al-
locations to the trash cell for the two models from five ran-
domly sampled testing sites across both training and testing
periods (see Fig. 1; also see Table S3). Trash cell water from
the MC-LSTM is not only more scattered around GLEAM
AET compared with the MC-LSTM-PET, but it also exhibits
many outlier values that are two to five times larger than
GLEAM AET. The MC-LSTM-PET follows the variability
of GLEAM AET much more closely, with virtually no out-
liers that exceed GLEAM AET by large margins. This sug-
gests that the PET constraint on the trash cell in the MC-
LSTM-PET helps water allocated to that cell more faithfully
represent evaporative water loss in the DL model.
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Figure 4. The Kling–Gupta efficiency (KGE) for AET estimated from each model at the (a) 141 training sites and (b) 71 testing sites for the
training period. Similar results for the testing period are shown in (c) and (d), respectively. The LSTM is not included in this comparison.
All models are trained using Priestley–Taylor PET.

Figure 5. Scatterplots of daily AET versus trash cell water for the (top) MC-LSTM and (bottom) MC-LSTM-PET at five randomly selected
testing sites across both training and testing periods. All models are trained using Priestley–Taylor PET.
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Figure 6. Panel (a) shows daily PET estimated using the Hamon and Priestley–Taylor methods for one sample watershed, under historical
climate conditions in the training period. Panel (b) is the same as (a) but under the scenario with 4 ◦C of warming. Panel (c) shows the
percentage of change in average PET with 4 ◦C of warming across all training sites using the Hamon and Priestley–Taylor methods.

4.2 Evaluating hydrologic response under warming

Next, we evaluate streamflow responses under a 4 ◦C warm-
ing scenario. We focus on training sites during the training
period, so that any differences that emerge between DL and
process-based models are only related to model structure and
not spatiotemporal regionalization. However, our results are
largely unchanged if based on responses for testing sites in
the testing period (see Fig. S4). First, we show the differences
in historical and warming-adjusted PET when using the Ha-
mon and Priestley–Taylor methods (Fig. 6). For the training
period without any temperature change, PET estimated from
the two methods is very similar (Fig. 6a; shown at one sample
location for demonstration, see Fig. 1 and Table S3). How-
ever, under the scenario with 4 ◦C of warming, Hamon-based
PET is substantially larger than Priestley–Taylor-based PET
(Fig. 6b). On average, this difference reaches ∼ 16 % across
all training sites and exhibits very little variability across lo-
cations (Fig. 6c). The primary reason for the difference in
the estimated change in PET is that the Hamon method at-

tributes PET entirely to temperature, while only a portion of
PET is based on temperature in the Priestley–Taylor method,
with the rest based on Rn. It is noteworthy that Rn does in-
crease with temperature through its effects on net outgoing
longwave radiation, but these changes are generally less than
5 % across all sites (Allen et al., 1998).

Figure 7 shows how these differences in PET under warm-
ing propagate into changes in different attributes of stream-
flow across training sites in the training period. The left and
right columns of Fig. 7 show streamflow responses using Ha-
mon and Priestley–Taylor PET, respectively, while the rows
of Fig. 7 show the distribution of changes in different stream-
flow attributes (AVG.Q, FLV, FHV, and COM) across mod-
els. Figure 7 shows results for DL models where only the
dynamic inputs are changed under warming.

Starting with changes in AVG.Q, Fig. 7a and b shows
that under the Hamon method for PET, the DL models ex-
hibit similar changes in long-term mean streamflow to the
process-based models, with the median 1AVG.Q across
sites ranging between −17 % and −25 % across all mod-
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Figure 7. The distribution of change in (a, b) long-term mean daily flow (AVG.Q), (c, d) low flows (FLV), (e, f) high flows (FHV), and
(g, h) seasonal streamflow timing (COM) across the 141 training sites and all models under a scenario of 4 ◦C warming using (a, c, e, g) Ha-
mon PET and (b, d, f, h) Priestley–Taylor PET. For the deep learning models, changes were only made to the dynamic inputs (i.e., no changes
to static inputs).
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els. However, when using Priestley–Taylor PET, larger dif-
ferences in the distribution of 1AVG.Q emerge. Across all
three process-based models, the median1AVG.Q is between
−6 % and −9 %, and very few locations exhibit 1AVG.Q
less than−20 %. Conversely, the LSTM shows a median wa-
ter loss of −20 % under Priestley–Taylor PET and a very
similar distribution of water losses regardless of whether
Hamon or Priestley–Taylor PET was used. The MC-LSTM
is also relatively insensitive to PET, and as compared with
the process-based models, the MC-LSTM tends to predict
smaller absolute changes to AVG.Q for Hamon PET and
larger changes under Priestley–Taylor PET. Only the MC-
LSTM-PET model achieves water loss that is considerably
smaller under Priestley–Taylor PET than Hamon PET and
closely follows the process-based models in both cases.

The overall pattern of change in low flows (FLV) is very
similar across all three DL models, with median declines be-
tween −15 % and −25 % and little variability across sites
(Fig. 7c and d). The process-based models disagree on the
sign of change for FLV and also bound the changes pre-
dicted by the DL models. HBV and HYMOD show mostly
increases to FLV under warming and Priestley–Taylor PET,
and a mix of increases and decreases across sites for Ha-
mon PET. SAC-SMA exhibits large declines in FLV under
warming and Hamon PET, and shows a median change that
is similar to the DL models under Priestley–Taylor PET. The
percent changes in FLV across models tend to be large be-
cause the absolute magnitude of FLV is small, and thus small
changes in millimeters of flow lead to large percent changes.
This can be seen in sample daily hydrographs for two sites
(see Fig. S5), where visually the changes in low flows are
difficult to discern because they are all near zero for all mod-
els.

The differences between process-based and DL simulated
changes for high flows (FHV; Fig. 7e and f) and seasonal tim-
ing (COM; Fig. 7g and h) are relatively consistent, with the
process-based models exhibiting more substantial declines
in high flows and earlier shifts in seasonal timing compared
with the DL models. The choice of PET method has an im-
pact on process-model-based changes in FHV, with larger de-
clines under Hamon PET. A similar signal is also seen for the
MC-LSTM-PET but not the MC-LSTM or LSTM, although
the LSTM predicts changes in FHV closest to the process-
based models.

For COM, the process-based models show a wide range of
variability in projected change across sites, from no change
to 60 d earlier. For the DL models the range of change
is much narrower, and the median change in COM is ap-
proximately a week less than the median change across the
process-based models. The earlier shift in COM across all
models is consistent with anticipated changes to snow ac-
cumulation and melt dynamics under warming, with more
water entering the stream during the winter and early spring
as precipitation shifts more towards rainfall and snowpack
melts off earlier in the year (Byun and Hamlet, 2018; Mote

et al., 2018; Kayastha et al., 2022). However, this effect
is seen more dramatically in the process-based models, as
evidenced by more prominent changes to their daily and
monthly hydrographs under warming during the winter and
early spring as compared with the DL models (see Figs. S5
and S6). The method of PET estimation has relatively little
impact on both process-based model and DL-based estimates
of change in COM.

We note that the results above do not change even when
considering the parametric uncertainty in the process-based
models, although for some metrics (FLV), uncertainty in
process-based model estimated changes due to paramet-
ric uncertainty is large (see Fig. S7). We also note that if
the static watershed properties (pet_mean, aridity, t_mean,
frac_snow; see Table 1) are changed to reflect warmer tem-
peratures and higher PET, all three DL models exhibit un-
realistic water gains for 15 %–40 % of locations depending
on the model and PET method, with the most water gains
occurring under the LSTM (Fig. S8). These results suggest
that changing the static watershed properties associated with
long-term climate characteristics can degrade the quality of
the estimated responses, at least when the temperature shifts
are large and the range of average temperature and PET in
the training set is limited.

One reason why the Great Lakes LSTM exhibits exces-
sive water losses under warming could be that the model
was trained using sites that are confined to a limited range of
temperature and PET values found in the Great Lakes basin
(spanning approximately 40.5◦−50◦ N), and therefore it is
ill-suited to extrapolate hydrological response under warm-
ing conditions that extend beyond this temperature and PET
range. To evaluate this hypothesis, we examine changes to
AVG.Q, FLV, FHV, and COM under 4 ◦C warming at the
29 CAMELS watersheds within the Great Lakes basin us-
ing the national LSTM (Fig. 8). For comparison, we also
examine similar changes under all six Great Lakes DL and
process-based models at 17 of those 29 CAMELS basins that
were used in the training and testing sets for the Great Lakes
models. We also highlight the national LSTM predictions for
those 17 sites. Note that in Fig. 8, the national LSTM pre-
dictions do not differ between Hamon and Priestley–Taylor
PET, because PET is not an input to that model.

The national LSTM was trained to watersheds across the
CONUS (spanning approximately 26–49◦ N) and thus was
exposed to watersheds with much warmer conditions and
higher PET during training. However, we find that the na-
tional LSTM still predicts very large declines in AVG.Q. For
the 29 CAMELS watersheds in the Great Lakes basin, the
median decline in AVG.Q under the national LSTM is ap-
proximately 25 %, which is only 0 %–6 % larger than the me-
dian predictions of loss under the process-based models us-
ing Hamon PET but 16 %–19 % larger than the process-based
model losses under Priestley–Taylor PET (Fig. 8a and b). We
also see larger declines in FLV under the national LSTM as
compared with the other Great Lakes DL models (Fig. 8c
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Figure 8. The distribution of change in (a, b) long-term mean daily flow (AVG.Q), (c, d) low flows (FLV), (e, f) high flows (FHV), and
(g, h) seasonal streamflow timing (COM) across 29 CAMELS sites within the Great Lakes basin under the national LSTM (solid pink), as
well as for 17 of those 29 sites from the Great Lakes deep learning and process-based models, under a scenario of 4 ◦C warming. Results
from the national LSTM for those 17 sites are also highlighted (dashed pink). For the Great Lakes models only, results differ when using (a,
c, e, f) Hamon PET and (b, d, f, h) Priestley–Taylor PET. For the national LSTM, changes were made only to the dynamic inputs.
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Figure 9. The percent difference in long-term (1980–2014) mean (a) streamflow, (b) Priestley–Taylor-based PET, and (c) downward short-
wave radiation (Rs) for all pairs of CAMELS basins with average precipitation within 1 % of each other, plotted against differences in
average temperature for each pair. A loess smooth is provided for each scatter (blue), along with the changes in variable estimated at a 4 ◦C
temperature difference between pairs of sites (red). Panel (d) shows the projected change in Priestley–Taylor-based PET (as a percentage)
for each CAMELS basin under 4 ◦C warming, assuming no change in Rs.

and d). The national LSTM predicts changes in FHV (Fig. 8e
and f) and COM (Fig. 8g and h) that are relatively simi-
lar to the process-based models. For COM, the predictions
of change are still smaller than the process-based models
but closer to the process-based models than any Great Lakes
DL model, suggesting that the national LSTM predicts shift-
ing snow accumulation and melt dynamics more consistently
with the process-based models than regionally fit DL models.
In addition, the hydrological predictions are stable under the
national LSTM regardless of whether only dynamic inputs
or both dynamic and static inputs are changed under warm-
ing (see Fig. S9), in contrast to the Great Lakes DL models.
Therefore, the use of more watersheds in training that span
a more diverse set of climate conditions likely benefits the
model when inputs are shifted to reflect new climate condi-
tions. However, as shown in Fig. 8a and b, this benefit does
not mitigate the tendency for the national LSTM to overesti-
mate water loss under warming.

To better understand why the national LSTM predicts
large water losses under warming, it is instructive to exam-
ine how long-term mean streamflow, (Priestly–Taylor esti-

mated) PET, and Rs vary across all 531 CAMELS water-
sheds of different average temperatures, and compare this
variability to predicted changes in PET at each site under
warming. Specifically, we calculate the difference in long-
term (1980–2014) mean streamflow (Fig. 9a), PET (Fig. 9b),
and Rs (Fig. 9c) across all pairs of basins in the CAMELS
dataset with average long-term precipitation within 1 % of
each other (i.e., we only examine pairs of basins with very
similar long-term mean precipitation). Then, for each basin
pair, we plot the difference in long-term mean streamflow,
PET, and Rs against the difference in long-term average tem-
perature for that pair. The results show that the difference in
long-term mean streamflow across watersheds with similar
precipitation becomes negative when the difference in tem-
perature is positive (i.e., warmer watersheds have less flow
on average), and that when the difference in average tem-
perature reaches 4 ◦C, flows differ by about 20 % on average
(Fig. 9a). This is very similar to the predicted median decline
in long-term mean streamflow seen for the national LSTM in
Fig. 8. We also note that average PET increases by approxi-
mately 20 % between watersheds that differ in average tem-
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perature by 4 ◦C (Fig. 9b). However, higher PET in warmer
watersheds is related both to the direct effect of temperature
on vapor pressure deficit as well as to the fact that higher in-
coming solar radiation co-occurs in warmer watersheds (Rs
is approximately 9 % higher across watershed pairs that dif-
fer by 4 ◦C; Fig. 9c). Using the Priestley–Taylor method, we
estimate that average PET would only increase by 9 %–14 %
(median of 11.5 %) if temperatures warm by 4 ◦C and Rs is
held at historical values, while Rn is increased slightly due
to declines in net outgoing longwave radiation with warming
(Fig. 9d). However, the national LSTM appears to convolute
the effects of temperature and Rs and cannot separate out
their effects on evaporative water loss, leading to larger pre-
dicted streamflow losses under 4 ◦C warming than changes
in PET would warrant. This is possibly because of the very
strong correlation between at-site daily temperature and Rs
historically (median correlation of 0.85 across all CAMELS
watersheds).

5 Discussion and conclusion

In this study, we contribute a sensitivity analysis that eval-
uates the physical plausibility of streamflow responses un-
der warming using DL rainfall–runoff models. The basis for
this evaluation is anchored to the assumption that differences
in estimated streamflow responses should emerge under very
different scenarios of PET under warming, and that realistic
predictions of PET and water loss under warming tend to be
much lower than those estimated by temperature-based PET
methods. Accordingly, we assume that physically plausible
streamflow predictions should be able to respond to lower
energy-budget-based PET projections under warming and,
all else being equal, estimate smaller streamflow losses.

The results of this study show that a standard LSTM did
not predict physically realistic differences in streamflow re-
sponse across substantially different estimates of PET under
warming. This discrepancy emerged despite the fact that the
standard LSTM was a far better model for streamflow es-
timation in ungauged basins compared with three process-
based models under historical climate conditions. In addi-
tion, the national LSTM trained to a much larger set of
watersheds (531 basins across 23◦ of latitude) using tem-
perature, vapor pressure, and Rs directly (rather than PET)
also estimated water loss under warming that far exceeded
the losses estimated with process-based models forced with
energy-budget-based PET. Since water losses estimated us-
ing energy-budget-based PET are generally considered more
realistic (Lofgren et al., 2011; Shaw and Riha, 2011; Lof-
gren and Rouhana, 2016; Milly and Dunne, 2017; Lemaitre-
Basset et al., 2022), this result casts doubt over the physical
plausibility of the LSTM predictions produced in this work.

Results from this work also suggest that PIML-based
DL models can capture physically plausible streamflow re-
sponses under warming while still maintaining superior pre-

diction skill compared with process-based models, at least in
some cases. In particular, a mass conserving LSTM that also
respected the limits of water loss due to evapotranspiration
(the MC-LSTM-PET) was able to predict changes in long-
term mean streamflow that much more closely aligned with
process-model-based estimates while also providing com-
petitive out-of-sample performance across all models con-
sidered (including the other DL models). A more conven-
tional MC-LSTM that did not limit water losses by PET
was less consistent with process-based estimates of change
in long-term mean streamflow. These results highlight the
potential for PIML-based DL models to help achieve sim-
ilar performance improvements over process-based models
as documented in recent work on DL rainfall–runoff mod-
els (Kratzert et al., 2019a, b; Feng et al., 2020; Nearing et al.,
2021) while also producing projections under climate change
that are more consistent with theory than non-PIML DL
models.

An interesting result from this study was the disagreement
in the change in high flows and seasonal streamflow tim-
ing between all Great Lakes DL models and process-based
models, the latter of which estimated greater reductions in
high flows and larger shifts of water towards earlier in the
year. Predictions from the Great Lakes DL models were also
unstable if static climate properties of each watershed were
changed under warming. In contrast, the national LSTM was
more stable if static properties were changed, and it pre-
dicted changes to high flows and seasonal timing that were
more like the process-based models than predictions from
the Great Lakes DL models. The results for COM in par-
ticular suggest that the national LSTM may be more con-
sistent with the process-based models in terms of its repre-
sentation of warming effects on snow accumulation and melt
processes and the resulting shifts in the seasonal hydrograph,
although differences with the process-based model predic-
tions were still notable. Still, these results are consistent with
past work showing that large-sample LSTMs can learn to
represent snow processes internally from meteorological and
streamflow data (Lees et al., 2022). While it is challenging to
know which set of predictions are correct for these stream-
flow properties, these results overall favor predictions from
the national LSTM over the regional LSTMs and highlight
the benefits of DL rainfall–runoff models trained to a larger
set of diverse watersheds for climate change analysis.

To properly interpret the results of this work, there are
several limitations of this study that require discussion. First
there were differences in the inputs and data sources between
the national LSTM and all other Great Lakes models, includ-
ing the source of meteorological data and the lack of PET as
an input into the national LSTM. While the national LSTM
was provided meteorological inputs that together completely
determine Hamon and Priestley–Taylor PET, the difference
in meteorological data across the two sets of models is a sub-
stantial source of uncertainty and could lead to non-trivial
differences in hydrological response estimation, complicat-
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ing a direct comparison of the national LSTM to the other
models. Future work for the Great Lakes Intercomparison
Project should consider developing consistent datasets with
other (and larger) benchmark datasets like CAMELS to ad-
dress this issue.

Another important limitation is how we constructed the
warming scenarios, with 4 ◦C warming and shifts to PET
but no changes to other meteorological variables (net incom-
ing shortwave radiation, precipitation, humidity, air pressure,
and wind speeds). These scenarios and associated sensitiv-
ity analyses were constructed in the style of other metamor-
phic tests for hydrological models (Yang and Chui, 2021;
Razavi, 2021; Reichert et al., 2023), where we define input
changes with expected responses and test whether model be-
havior is consistent with these expectations. However, for DL
and other machine learning models, the results of such sensi-
tivity analyses may be unreliable because of distributional
shifts between the training and testing data and poor out-
of-distribution generalization (see Shen et al., 2021, Wang
et al., 2023, and references therein). When trained, conven-
tional machine learning models try to leverage all of the cor-
relations within the training set to minimize training errors,
which is effective in out-of-sample performance only if those
same patterns of correlation persist into the testing data (Liu
et al., 2021). In our experimental design, we impose a dis-
tinct shift in the joint distribution of the inputs (i.e., a co-
variate shift) by increasing temperatures and PET but leaving
unchanged other meteorological inputs, thereby altering the
correlation among inputs. Therefore, one might expect some
degradation in the DL-model-based predictions of stream-
flow under these scenarios.

The challenge of out-of-distribution generalization and its
application to DL rainfall–runoff model testing under climate
change highlights several important avenues for future work.
First, additional efforts are needed to evaluate the physical
plausibility of DL-based hydrological projections under cli-
mate change while ensuring that the joint distribution of all
meteorological inputs used in future scenarios is realistic. For
example, there are physical relationships between changes
in temperature and net radiation (Nordling et al., 2021), as
well as temperature, humidity, and extreme precipitation (Ali
et al., 2018; Najibi et al., 2022), that should all be preserved
in future climate scenarios. The use of climate model output
may be well suited for such tests, although care is needed to
avoid statistical bias correction and downscaling (i.e., post-
processing) of multiple climate fields that could cause shifts
in the joint distribution across inputs (Maraun, 2016). High-
resolution convective-permitting models may be helpful in
this regard, given their improved accuracy for key climate
fields like precipitation (Kendon et al., 2017).

There are also several emerging techniques in machine
learning to address out-of-distribution generalization di-
rectly. One set of promising methods is causal learning, de-
fined broadly as methods aimed at identifying input variables
that have a causal relationship with the target variable and

to leverage those inputs for prediction (Shen et al., 2021).
PIML approaches, such as the MC-LSTM-PET model pro-
posed in this work, fall into this category (Vasudevan et al.,
2021). Here, prior scientific knowledge on causal structures
can be embedded into the DL model through tailored loss
functions or, as in the case of the MC-LSTM-PET model,
through architectural adjustments or constraints. (For other
examples outside of hydrology, see Lin et al., 2017; Ma
et al., 2018.) The MC-LSTM-PET model can be viewed as
a specific, limited case of a broader class of learnable, dif-
ferentiable, process-based models (also referred to as hy-
brid differentiable models; Jiang et al., 2020; Feng et al.,
2022, 2023a). These models use process-based model archi-
tectures as a backbone for model structure, which is then
enhanced through flexible, data-driven learning for a subset
of processes. Recent work has shown that these models can
achieve similar performance to LSTMs but can also repre-
sent and output different internal hydrological fluxes (Feng
et al., 2022, 2023a).

However, challenges can arise when imposing architec-
tural constraints in PIML models. For example, the MC-
LSTM-PET model makes the assumption that all water loss
in the system is due to evapotranspiration and therefore can-
not exceed PET. However, other terminal sinks are possi-
ble, such as human water extractions and interbasin trans-
fers (Siddik et al., 2023) or water lost to aquifer recharge and
interbasin groundwater fluxes (Safeeq et al., 2021; Jasechko
et al., 2021). It is difficult to know the magnitude of these al-
ternative sinks given unknown systematic errors in other in-
puts (e.g., underestimation of precipitation from under-catch)
that confound water balance closure analyses. Still, recent
techniques and datasets to help quantify these sinks (Gor-
don et al., 2022; Siddik et al., 2023) provide an avenue to
integrate them into the MC-LSTM-PET constraints. Yet as
constraints are added to the model architecture, the potential
grows for inductive bias that negatively impacts generaliz-
ability. For instance, a recent evaluation of hybrid differen-
tiable models showed that they underperformed relative to a
standard LSTM due to structural deficiencies in cold regions,
arid regions, and basins with considerable anthropogenic im-
pacts (Feng et al., 2023b). Some of these challenges may be
difficult to address because only differentiable process-based
models can be considered in this hybrid framework, limit-
ing the process-based model structures that could be adapted
with this approach. Additional work is needed to evaluate the
benefits and drawbacks of these different PIML-based ap-
proaches, preferably on large benchmarking datasets such as
CAMELS or CAVARAN (Kratzert et al., 2023).

Given some of the potential challenges above, other DL
methods that make use of causal concepts while making
fewer assumptions on watershed-scale process controls are
also worth pursuing. For example, a series of techniques have
emerged that embed the concept and constraints of directed
acyclic graphs within deep neural networks in such a way
that the architecture of the neural network is inferred from
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the data to encode causality among variables (see Luo et al.,
2020, and references therein), that is, frameworks to opti-
mize the architecture of the model can be designed not only
to maximize out-of-sample predictive performance but also
to promote causality. Alternatively, domain-invariant learn-
ing attempts to promote the identification of features that are
domain specific versus domain invariant by separating and
labeling training data from different “domains” or “environ-
ments” (Ilse et al., 2021). In the case of DL rainfall–runoff
models, this strategy could be implemented, for instance, by
pairing observed climate and streamflow (one domain) with
land-surface-model-based streamflow estimated using future
projected climate model output (another domain), with the
goal of learning invariant relationships between key climate
inputs (e.g., net radiation or PET) and streamflow across the
two domains. Here, there may be a benefit of including data
from the land surface and climate models, where the corre-
lation between temperature, net radiation, and PET may be
weaker under projected climate change. These techniques of-
fer an intriguing alternative for the next generation of DL
hydrological models that can generalize well under climate
change and should be the focus of further exploration.
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