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Abstract. The US–German GRACE (Gravity Recovery and
Climate Experiment, 2002–2017) and GRACE-FO (GRACE
Follow-On, since 2018) satellite missions observe terrestrial
water storage (TWS) variations. Over 20 years of data al-
low for investigating interannual variations beyond linear
trends and seasonal signals. However, the origin of observed
TWS changes cannot be determined solely with GRACE and
GRACE-FO observations. This study focuses on the north-
ern part of the East African Rift around the lakes of Turkana,
Victoria, and Tanganyika. It aims to characterise and analyse
the interannual TWS variations compared to meteorological
and geodetic observations of the water storage compartments
(surface water, soil moisture, and groundwater).

We apply the STL (Seasonal-Trend decomposition using
LOESS) method to decompose the signal into a seasonal sig-
nal, an interannual signal, and residuals. By clustering the
interannual TWS dynamics for the African continent, we de-
fine the exact outline of the study region.

We observe a TWS decrease until 2006, followed by a
steady rise until 2016, and then the most significant TWS
gain in Africa in 2019 and 2020. Besides meteorological
variability, surface water storage variations in the lakes ex-
plain large parts of the TWS decrease before 2006. The stor-
age dynamics of Lake Victoria alone contribute up to 50 %
of these TWS changes. On the other hand, the significant
TWS increase around 2020 can be attributed to nearly equal
rises in groundwater and surface water storage, which coin-
cide with a substantial precipitation surplus. Soil moisture
explains most of the seasonal variability but does not influ-
ence the interannual variations.

As Lake Victoria dominates the surface water storage vari-
ations in the region, we further investigate the lake and the
downstream Nile River. The Nalubaale Dam regulates Lake
Victoria’s outflow. Water level observations from satellite al-
timetry reveal the impact of dam operations on downstream
discharge and on TWS decreases in the drought years before
2006. On the other hand, we do not find evidence for an im-
pact of the Nalubaale Dam regulations on the strong TWS
increase after 2019.

1 Introduction

Satellite gravimetry, as realised with the Gravity Recov-
ery And Climate Experiment (GRACE, 2002–2017) satellite
mission and its successor GRACE Follow-On (GRACE-FO,
since 2018), is the only remote sensing technique available
today that provides quantitative estimates of water storage
changes on regional to global scales. These observations rep-
resent changes in all hydrological storages, including all sur-
face waterbodies, soil moisture, snow, ice, and groundwater.
That makes the GRACE and GRACE-FO data a unique ob-
servation type for hydrology.

The GRACE and GRACE-FO (hereafter only GRACE)
satellite missions measure changes in the distance between
the two twin satellites, one following the other in a polar orbit
at very low (500 km) altitudes (Tapley et al., 2004; Landerer
et al., 2020). A global gravity field can be derived from col-
lecting these inter-satellite range variations along the satellite
orbits over a certain period, usually a month. The underlying
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Figure 1. Linear trends of terrestrial water storage (TWS) from GRACE satellite gravimetry (COST-G/GravIS data set; see Sect. 3.1).
(a) Monthly area-averaged TWS variations and long-term trends for all continents. (b) TWS trends for the period from 2002 to 2023 in
Africa.

mass deviations can be inferred from the spatial and temporal
changes in the monthly gravity fields.

The applications of GRACE data in hydrology are
manifold and include, for instance, assessing water bal-
ance closure at regional to global scales (Lehmann et al.,
2022), groundwater storage changes (Frappart and Ramil-
lien, 2018), water storage capacity and flood potential (Rea-
ger and Famiglietti, 2009), or drought effects (Gerdener
et al., 2020). Tapley et al. (2019) give a comprehensive sum-
mary of state-of-the-art applications of GRACE data for cli-
mate and hydrological research.

Quantifying large-scale terrestrial water storage (TWS)
variations across the continents has been one of the primary
fields of application of GRACE data. Several publications
investigated TWS in Africa at regional to continental scales.
For example, Frappart (2020) analysed the groundwater stor-
age in the Sahara aquifer systems, while Ferreira et al. (2018)
combined TWS and surface water storage in the Volta basin
in West Africa. Scanlon et al. (2022) investigated hydrolog-
ical extremes in Africa by considering climatic teleconnec-
tions. Of all the continents, only Africa had an overall posi-
tive linear TWS trend of about 2 mm yr−1 (corresponding to
62 Gt yr−1) over the last 21 years (Fig. 1a). Thus, the region
has been gaining water over the last 2 decades, although the
magnitude of the signal is smaller than for most other conti-
nents. However, the spatial trend patterns are heterogeneous
(Fig. 1b). Two regions stand out with positive TWS trends
for the GRACE period: the Niger River basin and the East

African Rift. This study focuses on the northern part of the
East African Rift, which exhibits the most distinct trend.

The East African Rift is characterised by large lakes, in-
cluding Lake Victoria, the second largest freshwater lake in
the world (by area); Lake Tanganyika; and Lake Turkana.
The lakes of the region have been named in the Global 200
ecoregions for conservation by the World Wide Fund for Na-
ture (WWF), emphasising their importance in hydrology and
ecosystems (Olson and Dinerstein, 2002). The shores are one
of the most populous regions in the world (Salvatore et al.,
2005; Center For International Earth Science Information
Network-CIESIN-Columbia University, 2018). Local soci-
eties rely intensely on their water for industrial and domestic
use (Juma et al., 2014).

Earlier studies on TWS changes in the East African Rift
include Becker et al. (2010), who used GRACE data to-
gether with altimetric water level observations and found that
TWS is influenced by the Indian Ocean Dipole via the re-
gional precipitation regime and by surface water dynamics
via the lake retention effects. Anyah et al. (2018) confirmed
the former result by investigating connections between cli-
mate indices and TWS, finding a strong influence of the In-
dian Ocean Dipole too. Kvas et al. (2023) analysed the wa-
ter mass gain in Lake Victoria with a spatial high-resolution
long-term TWS trend product compared to water mass esti-
mations from satellite altimetry. Due to the high spatial res-
olution of the data, they could restrict the study area only to
Lake Victoria and found a very high agreement between the
GRACE and altimetry-observed water mass gain.
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Monsoon precipitation governs the hydrology of the re-
gion (Palmer et al., 2023). To investigate long-term in-
terannual variations in precipitation and evapotranspira-
tion, especially in the context of drought monitoring, well-
known indices such as the Standardised Precipitation Index
(SPI) (McKee et al., 1993) and Standardised Precipitation–
Evapotranspiration Index (SPEI) (Vicente Serrano et al.,
2010) have been used extensively. Both indices have been ap-
plied in regional studies in East Africa. For example, Ayugi
et al. (2020) employed the SPEI to examine droughts and
floods in Kenya, and Uwimbabazi et al. (2022) used both SPI
and SPEI for their investigation of changes in droughts over
Rwanda.

Due to the large lakes, surface water storage is an essential
contributor to TWS in the regions. Altimetry operationally
measures the water levels of lakes, rivers, or wetlands (e.g.
Schwatke et al., 2015), while surface waterbody extent can
be monitored by optical remote sensing satellites (e.g. Pekel
et al., 2016; Schwatke et al., 2019). With these two observa-
tions, storage variations can be estimated. Tong et al. (2016)
combined altimetric water levels and surface area extent to
investigate surface water storage in East Africa, while Her-
rnegger et al. (2021) employed water level data of smaller
lakes in Kenya to analyse the hydroclimatic conditions of the
region. The large lakes of the East African Rift have been the
subject of earlier research, with multiple sensors and a partic-
ular focus on Lake Victoria (e.g. Swenson and Wahr, 2009;
Velpuri et al., 2012; Hassan and Jin, 2014).

Besides surface water storage, TWS contains storage
changes in soil moisture and groundwater. Soil moisture is
now operationally monitored from space by the ESA CCI
Soil Moisture product (Dorigo et al., 2017; Pasik et al.,
2023). Liu et al. (2022) used this data set to investigate
droughts in East Africa. They identified the 2005–2006
drought, also visible in TWS data.

Unfortunately, in situ groundwater data in East Africa
are scarce (see data sets available at https://ggis.un-igrac.
org/view/ggmn/, last access: 24 October 2024). Thus, only
satellite-based observations could cover this data gap. How-
ever, groundwater storage cannot be measured individually
from space; it can only be measured as part of the TWS mea-
sured with satellite gravimetry. To this end, groundwater stor-
age estimations can be gained from TWS by subtracting all
other water storage compartments observed by satellites or
provided by hydrological models. Werth et al. (2017) esti-
mated groundwater variations from TWS together with hy-
drological models in the Niger River basin and found that
groundwater increase plays an essential role in TWS there.
Nanteza et al. (2016) investigated GRACE-based ground-
water storage changes in East Africa with satellite obser-
vations and found high agreements with in situ data. The
Horizon2020 EU project Global Gravity-Based Groundwa-
ter Product (G3P) led to the development of a global ground-
water data set based on satellite data (Güntner et al., 2024).

The dense population of the study region influences the
hydrology and, thus, TWS through human interventions such
as the construction of large dams along the major rivers (Ge-
tirana et al., 2020). Most notably, Lake Victoria, which has
exhibited strong fluctuations in its water levels in the last
decades, has been regulated since the 1950s by the Nalubaale
Dam (formerly known as Owen Falls Dam). In the years
between 2003 and 2006, the region experienced a drought,
which naturally lowered the water levels of Lake Victoria,
while, at the same time, the water extraction at the dam was
increased, which caused a further decline in the water lev-
els (Sutcliffe and Petersen, 2007; Kull, 2006; Awange et al.,
2008). The disproportional water release was also made pub-
lic by an independent hydrologic engineer, after which the
dam operators returned to the previously agreed discharge
curve. Intense rainfall events in 2019 and 2020 led to a rapid
rise in water levels, causing massive floods along the shores
(Khaki and Awange, 2021).

Vishwakarma et al. (2021) assessed global TWS trends
and found the signal around Lake Victoria to be an “ex-
treme gain”. Rodell et al. (2018) globally investigated and
categorised TWS trends as well and labelled the observa-
tion around Lake Victoria as “probable natural variability”.
In contrast, Zhong et al. (2023) found the TWS gain of the
region to be non-precipitation-driven, indicating that it is
presumably caused by anthropogenic actions. Several recent
studies found with hydrological modelling that a large part
of the observed storage variation in Lake Victoria is due to
human intervention and is not naturally occurring (Vanderke-
len et al., 2018; Getirana et al., 2020). Whether the observed
TWS trends in the region are natural or anthropogenic, and
to which extent, is still under debate.

In this study, we investigate TWS signals in the north-
ern part of the East African Rift. The variations show a dis-
tinct and significant interannual variability but no substantial
changes in the seasonal component. Accordingly, we focus
on interannual signals in this study. A clustering algorithm
identifies the exact region outline in Sect. 5.1. We also com-
pare these interannual TWS variations not only against me-
teorological data (Sect. 5.2) but also to observations of all
other relevant water storage compartments (surface water,
soil moisture, and groundwater) in Sect. 5.3. This allows a
more comprehensive view of the different drivers of storage
changes in the regions. This study closes with a more de-
tailed investigation of Lake Victoria and the Nile River basin
and their storages as we strive to give additional evidence of
whether the observed TWS trends are of climatic–natural or
anthropogenic origin (Sect. 5.4).

2 Study region

We focus on the northern part of the East African Rift, as out-
lined in Fig. 2. It encompasses the high plateau of the African
Rift system between the eastern (Gregory Rift) and western
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Figure 2. The northern East African Rift (NEAR) region: study area
and major lakes. The red outline delineates the study area consid-
ered here. For lakes labelled in red, we analyse SWS variability
individually; lakes labelled in green are summarised later as small
lakes (see Fig. 10).

(Albertine Rift) branches of the rift. The Ethiopian highlands
and Lake Malawi mark the northern and southern ends of the
region. We will abbreviate the study region as NEAR (north-
ern East African Rift).

The climate of NEAR is mainly tropical, with both an an-
nual and semiannual precipitation signal in different parts
(Palmer et al., 2023). The primary rainy season is from
March to May (both annual and semiannual precipitation
signal), and the secondary rainy season is from October to
December (only semiannual) (Yang et al., 2015). Still, sub-
stantial interannual variability in precipitation and evapotran-
spiration has been observed in the past (Ummenhofer et al.,
2018). However, the study region also includes arid regions
in the north around Lake Turkana.

Some of the largest freshwater lakes of the world dominate
the hydrology of the region. Namely, Lake Victoria is the sec-
ond largest (by area, ninth by volume) freshwater lake, and
Lake Tanganyika is the sixth largest (by area, second by vol-
ume) freshwater lake. Lake Turkana, located at the northern
end of the study region, is one of the largest endorheic lakes

and the largest permanent desert lake in the world. All lakes
that are accessible with satellite altimetry are included in this
study. They account for 94 % of the surface waterbodies (by
area) of the region according to the Global Lake and Wetland
Database (GLWD, World Wildlife Fund, 2024).

Most importantly, Lake Victoria cannot be regarded as a
natural lake anymore. Uganda’s Nalubaale Dam has regu-
lated the water level and outflow of the lake since 1954. The
reservoir on top of Lake Victoria was filled in the 1960s. This
enlarged the lake volume by about 200 km3 and raised the
water level by about 2 m (Okungu et al., 2005). It was agreed
between the operators of the dam and the downstream ripari-
ans of the Nile River that the outflow should mimic a natural
discharge curve (after the water level increase in the 1960s).

The agreed rating curve follows the following equation:

Q= 66.6(WL− 7.96)2.01, (1)

where Q (m3 d−1) is the water discharge, and WL (m) is the
water level at the gauge in Jinja (near the outflow) (Sene,
2000; Vanderkelen et al., 2018). However, the gauge datum is
not publicly defined relative to metres above sea level. Thus,
we cannot use the agreed rating curve with water level obser-
vations by satellite altimetry to estimate discharge directly.

In 2006, a second hydroelectric power plant named Ki-
ira Power Station was inaugurated 1 km downstream of the
Nalubaale Dam.

Lake Victoria’s outflow strongly governs the water levels
of the downstream lakes in the Nile River basin. Sutcliffe and
Parks (1999, Sect. 4) showed, with historic discharge obser-
vations, that the outflow of Lake Victoria almost completely
determines the inflow and water level of Lake Kyoga. Lake
Kyoga’s outflow, in turn, almost completely determines the
water levels of Lake Albert.

3 Data

3.1 Terrestrial water storage data

We use 221 monthly gravity fields from the COST-G RL01
(GRACE) and RL02 (GRACE-FO) data sets (Jäggi et al.,
2020; Meyer et al., 2023). They result from the IAG (In-
ternational Association of Geodesy) International Combina-
tion Service for Time-variable Gravity Fields (COST-G), in
which seven different Level-2 solutions of GRACE data pro-
cessing centres are combined.

These monthly gravity fields are filtered with the time-
variable anisotropic VDK filter (Horvath et al., 2018) and
are subsequently synthesised to a global 1° TWS grid.
More processing steps are detailed in Dobslaw and Boergens
(2023). The grids are freely and publicly available from the
GravIS portal (https://gravis.gfz-potsdam.de/home, last ac-
cess: 24 October 2024, TWS V.0005, Boergens et al., 2020a).
The de facto spatial resolution of the TWS data is roughly
300 km.
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To assess the uncertainties, we employ the covariance
model developed by Boergens et al. (2020b, 2022). With this
model, we compute the standard deviations of the regional
mean TWS time series and uncertainties for each grid cell.

3.2 Precipitation data and precipitation indices

This study analyses precipitation and a Standardised Meteo-
rological Drought Index. We use the monthly Global Precip-
itation Climatology Centre (GPCC) Full Data Monthly prod-
uct, given on a 1° grid until the end of 2019 (Schneider et al.,
2022). After January 2020, we use the GPCC First Guess
Monthly product, given in the same spatial resolution (Ziese
et al., 2014). As the latter contains data from 2004, we verify
the consistency between the two in the overlapping period.
Instead of monthly precipitation, we consider time series of
accumulated precipitation. To this end, the accumulated pre-
cipitation value for each month is the sum over the preceding
n months, with n taking integer values between 1 and 48.

Considering only precipitation omits another essential
hydro-meteorological flux component in humid tropical cli-
mates: evapotranspiration. For precipitation minus (poten-
tial) evapotranspiration (P −ET), we do not use direct ob-
servations but rather use the Standardised Precipitation–
Evapotranspiration Index (SPEI) (Vicente Serrano et al.,
2010). This index relates current P −ET observations to
the long-term mean since 1955. For the index, P −ET at
time step t , accumulated over a fixed period of n months
P −ETn, is compared to the statistical distribution of this
quantity in the same month j over the whole time series.
From this distribution, which is not necessarily Gaussian, the
mean value µj and the standard deviation σj are calculated.
The index SPEI(t,j) is then computed with

SPEI(t,j)=
P −ETn(t,j)−µj

σj
. (2)

SPEI values between −1 and 1 imply near-normal condi-
tions, while values below −1 indicate drier conditions, and
values above 1 indicate wetter conditions than usual.

The Instituto Pirenaico de Ecología, Zaragoza, Spain
(https://spei.csic.es/database.html, last access: 24 Octo-
ber 2024), provides two different pre-computed SPEI data
sets. The first, the SPEI Global Drought Monitor, is based on
the GPCC First Guess precipitation data. The potential evap-
otranspiration is computed via the Thornthwaite equation,
for which the mean temperature is taken from the NOAA
NCEP CPC_GHCN CAMS data set (Fan and van den Dool,
2008). This SPEI realisation is recommended for near-real-
time applications. The second, the Global SPEI database
(SPEIbase, v2.9), uses the CRU TS 4.03 precipitation data
and the FAO-56 Penman–Monteith estimation for potential
evapotranspiration (Vicente Serrano et al., 2010; Beguería
et al., 2010, 2014). This SPEI realisation offers more long-
term, robust information. In this study, we employ both SPEI

variants (called SPEI (GPCC-based) and SPEI (CRU-based)
hereafter).

3.3 Surface water storage data

In order to analyse surface water storage (SWS) variations,
we employ altimetry data for water level (WL) time series
together with water occurrence maps. Figure 2 shows the lo-
cation of the lakes and the Victoria Nile River observed with
altimetry in this study.

The WL time series are based on multi-mission satel-
lite altimetry. They are freely available from the Database
for Hydrological Time Series of Inland Waters web por-
tal (DAHITI, https://dahiti.dgfi.tum.de, last access: 24 Oc-
tober 2024). WL time series are based on a Kalman filtering
approach and an extended outlier rejection, described in de-
tail in Schwatke et al. (2015). All applied geophysical cor-
rections and models are identical for all altimeter missions,
including a multi-mission cross-over analysis to derive ho-
mogeneous WL time series from various satellites. The time
series length varies and falls between September 1992 and
September 2023, depending on the available data. The tem-
poral resolution depends on the number of altimeter cross-
ings and the repeat cycle of the used mission and can vary
between a few days and about a month.

To assess the water surface area (WSA) of the lakes, we
analysed the Global Surface Water Occurrence maps pro-
vided by Pekel et al. (2016) via the Global Surface Water
Explorer (https://global-surface-water.appspot.com/, last ac-
cess: 24 October 2024). The data set is based on 36 years
(1984–2020) of global remote sensing observations of water
surfaces classified to a water occurrence probability for each
pixel. Permanent waterbodies have a water occurrence proba-
bility of 100 %, while lake shores have a probability between
0 % and 100 % due to varying water levels. However, as a
result of cloud cover or similar effects in the remote sensing
data, some permanent water pixels do not reach 100 % (see
Fig. A1 in the Appendix for Lake Albert as an example).
Further, the histogram of values inside Lake Victoria within
a 20 km margin (see Fig. A2) showed that all values above
95 % should be considered to be permanent water.

We can assess the summed pixel area for each water oc-
currence probability using these maps. As the lake outlines
provided by GLWD do not perfectly coincide with the maps
(see again Fig. A1), we collect the data inside the lake poly-
gon plus a buffer of 20 km. We then estimate an empirical
cumulative distribution function (ECDF) of WSA.

Similarly to the ECDF of WSA, we derive the ECDF of the
water levels of each lake. Assuming a monotone and continu-
ous relationship between WL and WSA, the two ECDFs can
map a WSA for each WL observation. Figure 3 illustrates the
procedure with the example of Lake Tanganyika. For a given
WL, its ECDF quantile is read (step 1), i.e. the percentage
of observed WL equal to or lower than this WL. The same
quantile is looked up in the WSA ECDF (step 2); thus, the
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corresponding WSA can be determined (step 3). With this
procedure, we get an associated WSA for every WL value.

Here, we assume a monotonic but non-parametric relation-
ship between WL and WSA. Thus, the ECDF method is more
flexible for complicated terrains than methods fitting a para-
metric curve through the WL–WSA relationship (e.g. Wang
et al., 2011). However, the ECDF approach expects that the
WL–WSA relationship does not show a hysteresis; i.e. the
relationship does not depend on rising or falling water lev-
els (Zhang and Werner, 2015). This assumption holds in this
study as we do not investigate lakes with extensive wetlands.

From the time series of WL and WSA, the water volume
change 1Vi between the time steps ti−1 and ti can be calcu-
lated with a truncated pyramid formula (Abileah et al., 2011):

1Vi =
1
3
(WLi −WLi−1)(WSAi +WSAi−1

+
√

WSAiWSAi−1

)
. (3)

To get the time series of lake volume V relative to the first
time step, all 1Vi values are cumulated. Following this, the
lake volume (in m3) is converted to lake storage (in Gt).

The pyramid formula is based on linear lake profiles be-
tween the two WL observations. In most cases, the differ-
ences between consecutive height observations are as small
as a few centimetres, where this simplified profile is reason-
able. Nevertheless, the differences can be as large as 1 m
due to data gaps or rapid changes in the water levels ob-
served with temporally sparse altimetry. Thus, we tested the
assumption by artificially removing WL observations. We
found only very minor differences in the resulting volume
time series with and without data gaps. Especially given the
uncertainties of the WSA and WL data (see below), these are
negligible.

In order to compare the lake storage variations to TWS,
we linearly interpolate each time series to the GRACE time
steps and distribute the mass uniformly over the lake surface,
yielding equivalent water heights. Next, we employ a spa-
tial Gaussian filter with a half-width of 250 km to mimic the
resolution of TWS. The half-width has been found by com-
paring the empirical spatial correlation function of TWS and
other water storage compartments smoothed with different
Gaussian filters (Güntner et al., 2023).

No direct uncertainty estimates are available for WL and
WSA and, thus, SWS. Although the DAHITI WL time series
are provided with a field labelled “errors”, these estimates
only describe the internal error of the Kalman filter. They
should only be used to compare different time series against
each other. Thus, we rely on literature data, where altimetric
WL time series have been externally validated against in situ
gauge data. Schwatke et al. (2015) found RMSE values of
around 5 cm for lakes, which we take as the WL uncertainty
in our study.

We employ the value of 5 % misclassification for the water
occurrence maps to estimate the uncertainty of WSA (Pekel
et al., 2016). The uncertainties of WSA and WL are variance-
propagated to the volume time series and SWS. We know our
uncertainty assumptions are conservative, probably leading
to an overestimation of uncertainties. However, the resulting
uncertainties are of the same order of magnitude as the TWS
uncertainties.

3.4 Soil moisture and groundwater storage data

We evaluate root zone soil moisture storage (RZSM) varia-
tions based on the data product available in Güntner et al.
(2024) until September 2023. The data set is based on the
ESA CCI soil moisture product (Pasik et al., 2023) but is
spatially smoothed with a Gaussian filter, with a half-width
of 250 km. An uncertainty assessment in the form of gridded
standard deviations accompanies the data set.

While the RZSM values of the Güntner et al. (2024) data
are satellite-based, SWS is based on simulation results of the
hydrological model LISFLOOD (van der Knijff et al., 2010).
Unfortunately, these SWS values have to be considered to be
unreliable in the study region according to Prudhomme et al.
(2024) as the modelled runoff does not agree with in situ ob-
servations. Thus, the groundwater storage (GWS) data em-
ployed in this study are estimated from TWS, RZSM, and the
altimetry-based SWS (see Sect.3.3). The SWS estimations
do not contain river mass variations. However, we assume
that river water storage does not exhibit significant interan-
nual variability, only seasonal variability. The uncertainty of
GWS is variance-propagated from the uncertainties of TWS,
SWS, and RZSM.

4 Methods

4.1 Time series analysis

A time series decomposition into deterministic periodic
(e.g. annual and semiannual) signals and a linear trend is
not well suited to characterise the temporal variations of
TWS in Africa over the available 21 years. It cannot describe
the substantial interannual variability and possible change
in the seasonal amplitude due to climate change. Thus, we
employed the loss-free Seasonal-Trend decomposition using
LOESS (STL) method to separate the TWS signals into an
annual, trend, and a residual signal (Cleveland et al., 1990).
The so-called trend component of the STL contains not only
a linear trend but all interannual variations. In order to avoid
confusion, we will continue to call the STL trend the “inter-
annual signal”. The second advantage of the STL compared
to a conventional parametric decomposition is its ability to
capture changing seasonal amplitudes over the time series.
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Figure 3. Example of WL and WSA empirical cumulative distribution function (ECDF) for Lake Tanganyika. Procedure to get surface area
from a given WL: step 1 – for WL, read the quantile of ECDF; step 2 – look up the same quantile in WSA ECDF; step 3 – get WSA in
relation to this quantile.

The results of the STL decomposition depend on several
parameters that govern the smoothness of the interannual and
the annual signals. Cleveland et al. (1990) provide guidelines
for choosing them, which we used together with empirical
testing and visual inspection. This results in the following
parameter values: np, which is the length of the annual sig-
nal (12 in our case); ni and no, which are the number of
passes through the inner and outer loops, set to 1 and 10,
respectively; nl, which is the width of the low-pass filter, to
be set to the least odd integer larger than np and thus being
set to 13; and nt and ns, which are the trend and seasonal sig-
nal smoothing parameters, both set to 35. While the former
four parameters are straightforward, ns requires more con-
siderations. We chose the value ns = 35 in such a way that
we consider the interannual variability of the seasonal signal
to be no longer governed by noise. nt depends on the value
of ns. However, we found that the value provided by the ra-
tionale given in Cleveland et al. (1990) (nt = 19) produced
a trend component still containing too many short-term vari-
ations. Finding the value nt = 35 was done with empirical
testing and visual inspection.

The STL struggles to determine the interannual signal
component around data gaps, such as the period after the end
of GRACE and the launch of GRACE-FO in 2017–2018. The
standard STL approach linearly interpolates across missing
data, which is inappropriate here due to the seasonality. Fig-
ure 4 displays the problem based on a synthetic gap (Decem-
ber 2006 to February 2008). In blue, the resulting separated
signals of the original signal are displayed, and red shows the
results in the presence of a data gap. While the annual signal
is barely affected, the interannual signal exhibits unexpected
behaviour before and after the missing months.

To overcome this problem, we implemented a more so-
phisticated gap-filling approach. We took the STL described
above in the first step to identify the annual signal, which

was then removed from the original time series. Across the
missing months, the resulting residual time series is linearly
interpolated, and, subsequently, the annual signal is added
back. This time series is then, in turn, used as input to the
STL decomposition. Finally, the time steps of the data gaps
were masked out again for further analysis and presentation.
Returning to the example above, Fig. 4 shows in green the
resulting separated signals after we filled the synthetic gap
in 2007. The interannual signal is significantly closer to the
original interannual signal, and the unexpected peaks have
vanished.

As the data sets are provided with uncertainties, these must
be propagated to the STL decomposed time series. Instead
of analytical uncertainty propagation through the iterative
process, we employ a Monte Carlo simulation. To this end,
we added Gaussian-distributed noise to the input time series
prior to the STL decomposition. By realising 100 differently
noisy decompositions, we gained an estimate of the spread
of the seasonal and interannual signals.

We applied the STL decomposition with gap filling and
uncertainty estimation to the TWS, SWS, RZSM, and GWS
data sets.

4.2 Clustering algorithm

The visual inspection of the interannual TWS signals re-
vealed similar temporal patterns in regions often incongru-
ent with river basins or climate zones. Thus, we employed a
cluster analysis to identify regions of similar temporal TWS
dynamics.

Clustering aims to group data items into subsets such that
the elements within each set have a high degree of similarity
among themselves and are relatively distinct from elements
assigned to other clusters (see, e.g. Hastie et al., 2009, for
an overview of cluster analysis algorithms). We applied a hi-
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Figure 4. STL decomposition results of TWS time series (GRACE only) at grid point 5.5° S, 31.5° E without a data gap, with a synthetically
added data gap, and with a filled data gap. (a) Original TWS time series (blue) with a data gap in 2007 (red), (b) annual seasonal signal,
(c) interannual signal, (d) residual. Blue lines: without data gap; red lines: standard STL gap filling; green lines: adjusted gap filling including
seasonality.

erarchical approach (Ward, 1963) for which no assumptions
are needed. Hierarchical approaches produce a tree of clus-
ters, where subsets at higher levels are created by merging
two clusters from the next lower level. Here, we measure the
similarity of two grid points with the pairwise Euclidean dis-
tances of their time series. We also considered the connec-
tivity graph, which represents the k nearest neighbours, to
avoid a disjunct distribution of the resulting regions across
the continent.

4.3 Validation and assessment metrics

This study uses different validation and assessment metrics
to compare different observations.

We employ two correlation coefficients, which evaluate
temporal similarities of time series regardless of amplitude
difference. The first one is the well-known Pearson’s corre-
lation coefficient ρ, which is defined as

ρ =
1
n

n∑
i=1
(xi − x)(yi − y)

SD(x)SD(y)
, (4)

with x and y being the two time series with the length n and
their standard deviations SD(.).

The Pearson correlation coefficient measures a linear re-
lationship between the two time series, whereas Spearman’s
rank correlation coefficient ρs only assumes an (unknown)
monotonic relationship. It is defined as

ρs =
1
n

n∑
i=1
R(xi)R (yi)

SD(R(x))SD(R(y))
, (5)

where R(x) is the rank variable of x. Thus, Spearman’s rank
correlation is the Pearson’s correlation coefficient applied to
the rank variables. Both correlation coefficients range be-
tween −1 and 1, with 1 indicating a perfect linear (or mono-
tonic) relationship.

Further, we employ the percentage of explained vari-
ance (PEV) to evaluate the relationship of the amplitudes.
PEV is defined as

PEV=
(

1−
var(x− y)

var(x)

)
100%. (6)

Here, var(.) denotes the variance of the time series.

5 Results and discussion

5.1 Clustering of interannual TWS variations

We applied the clustering method described in Sect. 4.2 to
the interannual TWS signals of Africa. This resulted in eight
regions with similar interannual TWS dynamics (see Fig. 5
for the spatial distribution and the mean TWS time series
for each cluster). Cluster 7 contains the whole of the island
of Madagascar. Cluster 2 encompasses most of the Sahara
Desert and lacks significant TWS signals. Cluster 6 covers
most of the Niger River basin and is one of the two African
regions with a strong positive trend. Large parts of the tropi-
cal rain forest (climate A according to Köppen–Geiger clas-
sification) are in cluster 3, which does not show a positive
trend, unlike the other central African regions (clusters 0, 4,
6). The western part of southern subtropical Africa is sub-
sumed into cluster 5, which was wetting until 2012 and sub-
sequently drying again. Clusters 1 and 4 encompass large

Hydrol. Earth Syst. Sci., 28, 4733–4754, 2024 https://doi.org/10.5194/hess-28-4733-2024



E. Boergens et al.: TWS trends in East Africa 4741

Figure 5. Cluster results for interannual TWS variability over Africa (centre). The mean TWS time series (blue) and the interannual trend
component (red) from the STL analysis are shown for all clusters. Cluster 0 is the region of interest in the East African Rift.

parts of Africa and summarise regions with and without
trends, respectively. Cluster 0, the NEAR region, shows a
distinct temporal dynamic compared to the other African re-
gions, with substantial non-linear interannual variability, i.e.
a TWS decline until 2006 and an overall increase afterwards,
culminating in a steep TWS rise in 2019 and 2020 and, again,
a subsequent decline.

The numbering of the clusters does not have any further
meaning. However, by step-wisely increasing the number of
regions m, the dissimilarity of a found cluster in relation to
all others can be investigated. If we assume only two clusters
(m= 2), the algorithm first separates the island of Madagas-
car from mainland Africa due to its spatial disconnection.
With m= 3, cluster 0 is already separated from all other re-
gions in mainland Africa, indicating that, here, the TWS sig-
nals are most distinct. The separation between the clusters
can be measured by the Euclidean distance, on which the al-

gorithm is based, between the mean time series. We found
that cluster 0 has the largest Euclidean distance in relation to
all other clusters.

The following two regions to be split off are cluster 5 and
cluster 6, which both have distinct interannual variations too.
Asm further increases, the split-off clusters become less dis-
tinct and have a larger signal spread within.

We decided on the final value for m based on the results,
especially the size and shape of the regions. We sought the
largest number of clusters while keeping them reasonable for
GRACE data interpretation. Here, we found m= 8 to be the
optimal number. The ninth cluster would be ring-shaped and
only about 100 km across in the narrowest place. Thus, such a
region is no longer meaningfully interpretable with GRACE
data.
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Figure 6. Comparison between SPEI (GPCC-based), SPEI (CRU-based), accumulated precipitation (accumulation period of 36 months),
and TWS. Please note the different y axes.

5.2 Comparison between TWS signals and
precipitation

In this section, we compare the interannual TWS variations
with the GPCC precipitation data set and the meteorological
drought index SPEI. TWS and precipitation are not directly
comparable but are linked to each other via the following
water budget equation: d(TWS)

dt = P −ET−R, with R being
the runoff. We decided against differentiating TWS for the
comparison but rather decided to temporally integrate P and
P −ET to evaluate similarities. We call the temporally in-
tegrated precipitation “accumulated precipitation”. The tem-
porally integrated P −ET is investigated with the SPEI. To
this end, we employ the two SPEI variants introduced above.

As we only investigate the interannual variability of TWS,
the accumulation period for both precipitation and SPEI
should be an integer multiple of 12 months to remove the
seasonality. Following the rationale of the STL parameter
choices (see Sect. 4.1), we chose an accumulation period of
36 months.

Figure 6 presents the interannual time series of TWS,
the accumulated precipitation, and the two variants of SPEI.
The relative shortage of precipitation from 2003 until 2006
matches the decline of TWS in these years. In the early years
before 2008, TWS fit well with both SPEIs. However, after
2008, TWS continuously rose, while the accumulated precip-
itation stayed nearly constant until its rapid increase follow-
ing 2020.

SPEI (CRU-based) shows a positive trend from 2008 to
2016 but does not display a step around 2020. On the other
hand, SPEI (GPCC-based) does not show the intermediate
increase but only the distinct increase in 2020.

Overall, both SPEI indices strongly correspond with TWS,
with correlation coefficients of ρ = 0.88 (CRU-based) and
ρ = 0.79 (GPCC-based). TWS and precipitation correlate

with ρ = 0.87. However, the values of ρ are governed by the
two extreme points of the time series in 2006 and 2020. This
explains the fact that, despite SPEI (CRU-based) being bet-
ter able to describe the changes between the two extremes,
precipitation and SPEI (GPCC-based) have a similarly high
correlation in relation to TWS.

To further investigate the differences between the two vari-
ants of SPEI, we looked into their input precipitation. The
comparison of these two data sets revealed significant dif-
ferences in the overall volumes of accumulated precipita-
tion but similar interannual dynamics (see Fig. B1). Increas-
ing rainfall trends since 2008 are slightly larger for CRU
(4.3 mm yr−1) than for GPCC (4.0 mm yr−1), which may
partly explain the diverging patterns of the two SPEI data
sets after 2008. Nevertheless, differences in the (potential)
ET data used may also contribute to the differences, but the
(potential) ET data were not available to us.

Before 2006, the shortage of accumulated precipitation
can at least partly describe the TWS drought in these years.
Similarly, the excess thereof can account for the TWS in-
crease in 2020–2022. However, meteorological data alone
cannot explain the TWS gain between 2008 and 2016. Thus,
precipitation and/or precipitation minus evapotranspiration
are essential drivers of TWS but are insufficient to justify
all variations observed. Further, the discussed differences be-
tween the two SPEI data sets and their input precipitation
data sets limit the explanatory power of the comparison be-
tween SPEI and TWS. Hence, we will investigate the dif-
ferent storage compartments of TWS in the next section to
identify further drivers.
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5.3 Comparison between TWS signals and water
storage compartments

We analyse the contributions of the water storage compart-
ments (WSCs) of soil moisture, surface water storage, and
groundwater storage to the interannual TWS variations in the
following. Water storage in snow and ice can be neglected for
the present study.

Figure 7a shows the regional mean time series of the
WSCs and TWS and their uncertainties, the interannual sig-
nals are displayed in Fig. 7b, and the seasonal signals are
presented in Fig. 7c. RZSM has the largest uncertainties
that propagate into GWS. The annual variability observed by
TWS originates mainly from RZSM, while the interannual
variability originates from both SWS and GWS.

To look into the temporal agreement of the WSCs and
TWS dynamics, we show the percentage of explained vari-
ance (PEV) and Pearson’s correlation coefficient (ρ) in
Fig. 8. For these analyses, we used the full time series. PEV
helps to evaluate to which extent the amplitudes of one WSC
can explain the variations of TWS. On the other hand, ρ de-
scribes the temporal similarities between the respective time
series and is insensitive to amplitude differences. In the cen-
tre of the region around Lake Victoria, about 60 % of TWS
can be explained by SWS (Fig. 8a). We observe high tempo-
ral correlations between TWS and SWS throughout the study
region, with the highest values being close to 1 again around
Lake Victoria (Fig. 8d). In the centre part of the region, only
around 20 % of the variations of TWS can be explained by
RZSM, and the temporal correlations are only around 0.5
(Fig. 8b and e). GWS is the dominant compartment accord-
ing to PEV in the northern part of the region and to the east
and west of Lake Victoria (Fig. 8c). There, GWS also shows
a high temporal similarity to TWS (Fig. 8f).

In Fig. 7, we found two periods of significant change in
TWS: before 2008 and after 2018. Thus, we look closer at the
PEV for these shorter time spans. The results are shown in
Fig. C1. Here, the influence of RZSM significantly increases
due to the higher influence of the annual variability. In 2002–
2008, GWS has only minor contributions to the interannual
variability of TWS according to PEV, while the SWS influ-
ence is even more focused around Lake Victoria. The TWS
changes after 2018 are more evenly distributed across the
three different WSCs.

Next, we investigate the yearly storage change contribu-
tions of the different WSCs compared to TWS. To this end,
we employ the annual storage change of each WSC and TWS
computed from the interannual signal. The results are shown
in Fig. 9. Please be aware that the storage change of 2002
only comprised the months of April to December, the stor-
age change of 2017 comprised January to July, and the stor-
age change of 2018 comprised May to December. Due to us-
ing the interannual signal, the WSCs do not always sum up
to TWS.

Again, we observe that RZSM contributes comparably lit-
tle to the interannual variability. Especially in years with
small storage changes (2008, 2009, 2010, 2011, 2013, 2014,
2017, 2018), the uncertainty of the RZSM change is larger
than the overall TWS signal. During the early years of 2002–
2005, the loss of storage is governed by the negative storage
change in SWS. On the other hand, the TWS deficit in 2021
and 2022 is instead governed by GWS depletion. The signifi-
cant TWS increases in 2019 and 2020 originate equally from
SWS and GWS. Similarly, in 2012, SWS and GWS experi-
ence nearly equal storage increases. In 2006 and 2007, GWS
contribute more strongly to the TWS changes than SWS. In
the median, both SWS and GWS can explain ∼ 35 % of the
annual change of TWS.

The change in TWS in 2016 is close to zero, while the
WSCs experience significant changes. Looking into the time
series in Fig. 7, this might be caused by persisting problems
in the STL gap filling.

To further investigate the SWS contributions of the dif-
ferent lakes, we examine the annual changes per lake com-
pared to TWS, as above. Here, we do not employ the spa-
tially filtered SWS data set but rather the individual lake mass
changes. We only consider the mass change of a lake if fewer
than 2 months are missing at the beginning or end of the year.
In order to account for these months, the mass change is up-
scaled in these years. This is the case for Lake Albert in 2013,
Lake Kivu in 2010 and 2013, Lake Mweru Matipa in 2010
and 2016, and Lake Edward in 2010 and 2013.

Figure 10 compares the annual TWS and lake mass
changes; for the sake of readability, we refrained from show-
ing uncertainties here. The lakes Mweru, Mweru Matipa,
Kivu, and Edward (see Fig. 2 – green labelled lakes) are sum-
marised as small lakes as their signals are too small to be
distinguishable from each other in the figure. In years with a
substantial TWS change, the lake masses usually agree with
the direction of change. In particular, Lake Victoria exhibits
the same direction as TWS, except in 2008 and 2014, which
are years with minor signals. The median contribution of
Lake Victoria to SWS is 63 %, but no clear pattern emerged
here concerning wetting or drying years. It is notable that,
prior to 2006, the influence of Lake Victoria on SWS is con-
siderably higher compared to Lake Turkana and Lake Tan-
ganyika than in the years after 2019 considering their differ-
ent sizes.

These results show that, during periods covered by the in-
vestigated time series, different WSCs have a governing in-
fluence over TWS changes. In the drought years before 2006,
SWS has the most significant influence, which, in turn, is
governed by the changes in water storage in Lake Victoria.
We found that SWS determines TWS in the central region
around Lake Victoria. This is also in line with earlier studies
focusing on Lake Victoria alone, which found that the SWS
of Lake Victoria can clearly explain the majority of TWS
(e.g. Kvas et al., 2023; Getirana et al., 2020). When look-
ing into the two periods of large change in TWS (2002–2008
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Figure 7. Time series of the mean water storage compartments with their uncertainties. (a) Full signal, (b) interannual signal, (c) seasonal
signal.

and 2018–2023), we see significant differences in the contri-
bution of the individual WSCs. During the drought and sub-
sequent recharge before 2008, the SWS around Lake Victoria
contributed most strongly, while, during the floods occurring
after in 2019 and 2020, all WSCs account similarly for TWS.
We assume that the anthropogenic influence of Lake Victo-
ria through the Nalubaale Dam can explain the pre-2008 be-
haviour. Thus, in the next section, we will further investigate
Lake Victoria and the lakes of the Nile River basin.

5.4 Dynamics of Lake Victoria and of downstream
waterbodies in the Nile River basin

Here, we investigate the relationship between the dynamics
of Lake Victoria and the Victoria Nile River, Lake Kyoga,
and Lake Albert, located downstream in the Nile River basin.

While we do not have access to the Victoria Nile River
discharge data downstream of the Nalubaale Dam, we use al-
timetric water level observations as a proxy (Fig. 11). Com-
pared to the WL of the lakes, the quality of the time se-
ries of the Victoria Nile River is poorer due to the compara-
tively small size and the challenging topography of the river
for satellite altimetry. Literature values for the uncertainty
of altimetric WL for lakes are widely available, but the un-

certainty values for rivers show a significant larger spread.
Thus, we do not provide an uncertainty estimate for the WL
of the Victoria Nile River. As the outflow of Lake Victoria
strongly governs the WL of Lake Kyoga, we use these ad-
ditionally to direct observations at the Victoria Nile River.
We include Lake Albert to illustrate the natural flow between
Lake Kyoga and Lake Albert.

The WL dynamics of Lake Victoria versus the Victoria
Nile River and Lake Kyoga are evident between 2006 and
2020 (Fig. 11). While the former experienced a relatively
steady rise in WL during the period, the WL of the latter
remained stable. In 2020, the WL of all lakes quickly rose.
The WL of the lakes Kyoga and Albert show high similari-
ties, not only between each other but also in relation to the
temporal pattern of the Victoria Nile River.

The change in the relation between the WLs over time is
further illustrated in Fig. 12, where the WLs of Lake Vic-
toria are plotted against the WLs of the Victoria Nile River
and Lake Kyoga. For this purpose, we interpolate the time
series to common time steps, usually the coarser temporal
resolution. Under natural conditions, the WL time series of
the three lakes should have a close, albeit not necessarily lin-
ear, relationship. We thus employ Spearman’s rank correla-
tion coefficient ρs to quantify the similarity. Only a weak re-
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Figure 8. Upper row (a–c): percentage of explained variance (PEV) between spatially filtered WSC and TWS. Lower row (d–f): Pearson’s
correlation coefficient ρ between spatially filtered WSC and TWS.

Figure 9. Annual changes in the storages of TWS and the WSCs.
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Figure 10. Annual TWS and lake water storage change.

lationship between the WL dynamics was found, with ρs in
the range of 0.37 to 0.41 (Fig. 12). The poor data quality
of the Victoria Nile River time series can partly explain the
weaker Spearman’s correlation between Lake Victoria and
the Victoria Nile River compared to the Lake Kyoga correla-
tion. In contrast, with ρs equal to 0.88, the WL dynamics of
Lake Kyoga and Lake Albert are much more similar.

If the outflow of Lake Victoria were mainly governed by
its WL, hardly any temporal variation in the relationship be-
tween the WL of Lake Victoria on the one hand and Lake
Kyoga and the Victoria Nile River on the other hand would
be visible. However, according to Fig. 12, the relationships
changed: before 2006, more water was released at the dam,
as expected from the WL, as shown in previous studies. The
dam operators discharged a surplus of water to help inaugu-
rate Kiira Power Station (Sutcliffe and Petersen, 2007; Kull,
2006; Awange et al., 2008). Between 2006 and 2019, the
WL of Lake Victoria was rising, while the WL of both Lake
Kyoga and the Victoria Nile River stayed rather constant.
This might indicate that less water was released from the
dam than what was supposed to be according to the agreed
rating curve. The high amounts of precipitation can explain
the sharp increase in all lakes in 2020.

All these observations agree with the modelled results of
Vanderkelen et al. (2018) and Getirana et al. (2020), who
found that the storage variations of Lake Victoria are influ-
enced both naturally and anthropogenically.

Strictly speaking, we should consider the travel time of
water between the lakes in the correlation analysis above.
The Victoria Nile River between Lake Victoria and Lake
Kyoga is about 120 km long (estimated on a map along the
river path) and has an elevation difference of 100 m (mea-
sured by altimetry). We roughly estimate the flow veloc-

ity with the Gauckler–Manning–Strickler equation (Strick-
ler, 1981) to be 4.5 m s−1 (assumption of constant river depth
of 10 m, river width of 500 m, and literature value for large
rivers for the Strickler coefficient of 35 m1/3 s−1. Therefore,
the travel time is only about 7.5 h, which is too fast for al-
timetry to observe a time shift.

Instead of employing WL to assess the lake discharge, we
could also investigate volume changes as a proxy for the flow
estimation. Investigations into volumes instead of water lev-
els revealed no new information, and so we refrained from
presenting them here. Further, with volume change, we could
only investigate the lakes and not the Victoria Nile River.

6 Conclusions

Unlike other world regions with clearly positive TWS trends
over the last 20 years (e.g. the Caspian Sea region), the north-
ern East African Rift (NEAR), as well as most of Africa,
shows a complex interannual behaviour.

A linear trend and annual and semiannual seasonal sig-
nals describe the temporal patterns insufficiently. To better
investigate the interannual variations of TWS in Africa, the
TWS signal was separated into an annual component and an
interannual component with the help of the Seasonal-Trend
decomposition using LOESS (STL) method. To further anal-
yse the spatial patterns, a geographical clustering algorithm
was applied to the interannual TWS signals to identify simi-
lar regions. The method is based on hierarchic trees but with
the extension of ensuring geographically connected regions.
With this method, the NEAR region was identified. It encom-
passes the East African highlands, from Lake Turkana in the
north to Lake Tanganyika in the south, including Lake Vic-
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Figure 11. Water levels above sea level (a.s.l.) of Lakes Victoria, Victoria Nile River, Lake Kyoga, and Lake Albert.

toria. The mean TWS signal of the study region shows a de-
cline in water storage prior to 2006, linked to a documented
natural drought period. Afterwards, TWS steadily increased
until 2019. An even more substantial TWS rise occurred in
2019 and 2020 due to excess precipitation.

The first investigation focused on the comparison between
the interannual TWS signal and GPCC precipitation data and
the drought index SPEI, provided in two variants based on
GPCC and CRU precipitation data, respectively. All three
meteorological data sets detect a meteorological drought
prior to 2006. However, only SPEI (CRU-based) could ex-
plain the steady increase in TWS between 2008 and 2018,
while the precipitation data set and SPEI (GPCC-based) were
better able to explain the substantial TWS gain in 2020. Nev-
ertheless, the two precipitation data sets based on interpo-
lated in situ observations could not explain sufficiently well
the observed TWS changes.

In a second step, the TWS compartments of surface water
storage (SWS), groundwater storage (GWS), and soil mois-
ture (root zone soil moisture – RZSM) were analysed. RZSM
is the driving storage of the seasonal TWS variability but
contributes only slightly to the interannual variations. During
the meteorological drought years prior to 2006, SWS had the
most significant influence on TWS. However, in the excep-
tionally precipitation-rich years after 2019, SWS and GWS
contributed similarly to TWS. Between 2008 and 2016, no
clear driver for the steady TWS increase could be identified.

Further research into the impact of the lakes making up
SWS revealed differences between the periods before 2006
and after 2019. Prior to 2006, SWS was strongly influenced
by the mass variations of Lake Victoria, with only smaller
contributions from Lake Tanganyika and Lake Turkana (the
second and third largest lakes in the region). On the other
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Figure 12. Relationships between the water levels a.s.l. of Lake Victoria and the Victoria Nile River (a) and Lake Victoria and Lake
Kyoga (b).

hand, in 2019 and 2020, the storage changes of these three
lakes were more balanced considering their different sizes.

Finally, Lake Victoria, which is regulated by the Nalubaale
Dam, and the downstream Nile River basin, with Lake Kyoga
and Lake Albert, were further studied. The water levels of
these lakes are controlled by the dam’s outflow. Satellite al-
timetry provided evidence that, prior to 2006, the discharge
was significantly higher than the agreed rating curve. Com-
bining these results with the previous findings from meteo-
rological, SWS, and GWS data sets, it can be concluded that
the natural drought before 2006 was exacerbated in TWS by
human decisions at the Nalubaale Dam. However, no clear
evidence could be found that the natural precipitation sur-
plus after 2019, leading to a storage surplus, was amplified
by human activities.

Returning to the ongoing scientific debate on whether the
TWS trend in the East African Rift is anthropogenic or natu-
ral, we conclude that it is a combination of both. Our research
provides evidence that the interannual TWS variations of the
African Rift region are influenced by a blend of natural pre-
cipitation and evapotranspiration variability, along with hu-
man interventions.
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Appendix A: Water occurrence maps

Figure A1. Water occurrence map of Lake Albert as an example of the below-100 % occurrence probability in the middle of the permanent
lake. Further, the mismatch between lake outlines by the GLWD and the water occurrence maps are visible.

Figure A2. Histogram of the water occurrences inside a 20 km margin of Lake Victoria.
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Appendix B: Comparison of GPCC and CRU
precipitation data sets

Figure B1. Comparison between accumulated precipitation (36 months) based on the GPCC and CRU data sets.

Appendix C: Percentage of explained variance for time
periods 2002–2008 and 2018–2023

Figure C1. PEV for the time periods 2002–2008 and 2018–2023.
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Code and data availability. The TWS data of COST-G used in this
study have been published by Boergens et al. (2020a) and are avail-
able at https://doi.org/10.5880/COST-G.GRAVIS_01_L3_TWS.
The data are published under the CC BY 4.0 licence.

The water occurrence map is available at https:
//global-surface-water.appspot.com/ (Pekel et al., 2024) and
is documented by Pekel et al. (2016). It is produced under the
Copernicus Programme and is provided free of charge, without
restriction of use.

The surface water storage and ground water storage data sets, in-
cluding water levels, water surface extent, volume change, and fil-
tered maps, have been published by Boergens and Schwatke (2024)
(https://doi.org/10.5880/GFZ.1.3.2024.001) and are licensed under
CC BY 4.0.

The root zone soil moisture data are part of the data
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https://doi.org/10.5880/G3P.2024.001. The data are published un-
der the CC BY 4.0 licence.

Both SPEI data sets have been documented by Vicente Serrano
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2024a); SPEI Global drought monitor can be downloaded at https:
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lished under the ODbL 1.0 license.

The Python code used for the clustering is published under the
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