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Abstract. High-resolution, spatially distributed process-
based (PB) simulators are widely employed in the study of
complex catchment processes and their responses to a chang-
ing climate. However, calibrating these PB simulators using
observed data remains a significant challenge due to several
persistent issues, including the following: (1) intractability
stemming from the computational demands and complex re-
sponses of simulators, which renders infeasible calculation
of the conditional probability of parameters and data, and
(2) uncertainty stemming from the choice of simplified rep-
resentations of complex natural hydrologic processes. Here,
we demonstrate how simulation-based inference (SBI) can
help address both of these challenges with respect to param-
eter estimation. SBI uses a learned mapping between the pa-
rameter space and observed data to estimate parameters for
the generation of calibrated simulations. To demonstrate the
potential of SBI in hydrologic modeling, we conduct a set
of synthetic experiments to infer two common physical pa-
rameters – Manning’s coefficient and hydraulic conductivity
– using a representation of a snowmelt-dominated catchment
in Colorado, USA. We introduce novel deep-learning (DL)
components to the SBI approach, including an “emulator” as
a surrogate for the PB simulator to rapidly explore parameter
responses. We also employ a density-based neural network to
represent the joint probability of parameters and data without

strong assumptions about its functional form. While address-
ing intractability, we also show that, if the simulator does not
represent the system under study well enough, SBI can yield
unreliable parameter estimates. Approaches to adopting the
SBI framework for cases in which multiple simulator(s) may
be adequate are introduced using a performance-weighting
approach. The synthetic experiments presented here test the
performance of SBI, using the relationship between the sur-
rogate and PB simulators as a proxy for the real case.

1 Introduction

Robust hydrologic tools are necessary to understand and
predict watershed (catchment) behavior in a changing cli-
mate (Condon, 2022). This need is underscored by long-term
drought in the American West (Williams et al., 2022), which
has led to the withering of water supplies from the Col-
orado River (Santos and Patno, 2022), increased groundwa-
ter pumping (Castle et al., 2014), and uncertainty about what
is next (Tenney, 2022). Hydrologic simulators that represent
physical processes and connections within the hydrologic cy-
cle (Paniconi and Putti, 2015) are very commonly used tools
to address these needs. These process-based (PB) simulators
explicitly represent hydrologic states and fluxes at multiple
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scales based upon the physics first principles (Fatichi et al.,
2016). Catchment scientists often use PB simulators to an-
swer “what if” questions about the behavior of the catchment
snowpack, soil moisture, and streamflow in a changed future,
as they encode fundamental processes, not just historical data
(Maxwell et al., 2021).

The behavior and skill of these PB catchment simulators
(henceforth referred to as PB simulators) strongly depend on
spatially varying parameters (Tsai et al., 2021). Parameters
represent the structure and physical properties of the hydro-
logic system, such as the roughness of the land surface (i.e.,
Manning’s coefficient, M) or the water-transmitting proper-
ties of the subsurface (i.e., hydraulic conductivity, K). There
are many approaches to determine parameters in hydrology
(Beven and Binley, 1992; Gupta et al., 1998; Bastidas et al.,
1999; Hunt et al., 2007; Vrugt and Sadegh, 2013; White et
al., 2020; Tsai et al., 2021). The variety of approaches and
long history of research in this area underscores that there
is “no obvious formulation [of parameter determination] that
previous generations of modelers have overlooked” (Hunt et
al., 2007). However, the question of how best to infer param-
eters for PB simulators remains unsettled.

Parameter determination remains a challenge with respect
to catchment PB simulators, thereby resulting in an imped-
iment to robust, physics-informed hydrologic predictions.
There are two related and ongoing difficulties that make pa-
rameter determination a very challenging problem. The first
is the problem of intractability. For a dynamical catchment
simulator with a range of possible configurations, many com-
binations of parameters may be plausible given observed data
(Beven, 2012; Nearing et al., 2016). Therefore, many have
argued that it may be preferable to simulate distributions
of hydrologic variables and the underlying parameters that
give rise to them (e.g., Vrugt and Sadegh, 2013). Intractabil-
ity arises when these distributions cannot be approximated
for theoretical or computational reasons. For example, large-
scale, high-resolution PB simulations can require massively
parallel, high-performance computing (e.g., Maxwell et al.,
2015), limiting the number of exploratory simulations due
to computational demands. A solution to the problem of in-
tractability needs to efficiently approximate complex distri-
butions of probable parameters given observations with a suf-
ficient level of accuracy and precision.

Deep learning (DL) may provide new opportunities vis-
à-vis the intractability problem in parameter determination.
In DL, behaviors are learned from data, as opposed to PB
approaches, which derive behavior from established theory.
The Earth sciences have recently seen greater adoption of DL
approaches (Wilkinson et al., 2016), for example, in stream-
flow prediction (Kratzert et al., 2018). However, DL methods
are not widely used in the prediction of distributed catchment
variables due to the “inadequacy of available data in repre-
senting the complex spaces of hypotheses” (Karpatne et al.,
2017), such as catchment observations. Recently, there has
been a push for methods that can incorporate process under-

standing into DL approaches (e.g., Zhao et al., 2019; Jiang et
al., 2020). Still, studies that employ DL to improve PB simu-
lator performance by aiding in the hunt for better parameters
are rare1. Tsai et al. (2021) used a neural network to learn
the mapping between observable attributes and unobserved
physical parameters, for a set of catchment rainfall–runoff
simulators optimized to a regional loss function. This “dif-
ferentiable learning” approach can effectively find param-
eter sets that yield continuity across neighboring domains.
While the approach is strong for the spatial generalization of
lumped catchment simulators, it does not explicitly address
the case in which many parameter sets may be plausible (the
equifinality problem), nor does it provide a mechanism to
constrain the role of deficiencies in the simulator on parame-
ter estimates.

Simulation-based inference (SBI) is a DL-informed ap-
proach to PB parameter determination that has shown
promise in particle physics (Cranmer et al., 2020), cosmol-
ogy (Alsing et al., 2019), and neural dynamics (Lueckmann
et al., 2017). In SBI, a neural network is employed to ap-
proximate the conditional density of parameters and simu-
lated outputs from the behavior of a simulator. The learned
conditional relationship can then be evaluated using obser-
vations to estimate a set of probable parameters. Surrogate
simulators are neural networks that emulate the complex in-
terdependence of variables, inputs, and parameters encoded
in PB simulators, such as catchment simulators (Maxwell et
al., 2021; Tran et al., 2021). Once trained, surrogate simu-
lators can closely mimic the PB simulator, run at a fraction
of the cost, and speed up the exploration of parameter space.
Restated, this approach uses one neural network (the “sur-
rogate”) to quickly generate thousands of simulations that
are utilized to train another neural network (via conditional
density estimation) to develop a statistical representation of
the relationship between parameters and simulated data. Via
SBI, this statistical representation can be used to infer dis-
tributions of PB parameter values based on observed data.
Assuming that the model is correctly specified, the inferred
set of parameters accurately and precisely reflects the uncer-
tainty in the parameter estimate (Cranmer et al., 2020). To
our knowledge, applications of SBI in hydrology have been
limited (e.g., Maxwell et al., 2021). A brief introduction to
SBI is presented in Sect. 2.

A second challenge to parameter determination is the
problem of epistemic uncertainty arising from limited knowl-
edge, data, and understanding of complex hydrologic pro-
cesses. The sources of epistemic uncertainty in the modeling
process are various and include the following: uncertainties

1We make a distinction between the parameters of PB simula-
tors and the parameters embedded in neural networks, which are
optimized during training by backpropagation. In this report, we al-
most exclusively refer to the parameters of PB simulators, even as
we discuss the capacity of neural networks to learn and represent
them.
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in data (for example, in simulator inputs and misleading in-
formation in observed data used to train and assess simula-
tors); uncertainties derived from performance measures and
information to omit; and uncertainty about what the structure
of the simulator should be, which arises from the inherent
challenge of choosing simplified representations of complex
processes (Leamer, 1978; Beven and Binley, 1992; Draper,
1995; Gupta et al., 2012; Nearing et al., 2016). For exam-
ple, the structure of PB catchment simulators is defined by
the mathematical description of hydrologic flows, state vari-
ables, and parameters. This description may or may not be
able to represent catchment behavior without error. DL sur-
rogate simulators trained to mimic PB behavior inherit this
assumed structure, in addition to error from imperfect train-
ing. In other words, uncertainty about structure arises from
both the relationship between the PB simulator and the catch-
ment under study and the relationship between the surrogate
and the PB simulators. In this work, we focus on a subclass
of epistemic uncertainty in the appropriate simulator (both
PB and surrogate) structure(s) known as “misspecification”,
in which a unique and optimal description of the catchment is
assumed to exist but is unknown. Discounting the role of un-
certainty about the appropriate simulator structure can have
profound consequences regarding the insights that we draw
from inference tasks like parameter determination.

A common challenge is the potential underrepresentation
of uncertainty stemming from the choice of simulator struc-
ture. This issue becomes evident when inference yields pa-
rameter estimates that are overly confident, which can be
problematic when a more conservative estimate that accounts
for the inherent uncertainties about simulator structure is pre-
ferred (Beven, 2012; Cranmer et al., 2020; Hermans, 2022).
One potential remedy is to perform inference using multi-
ple simulators, with different underlying structures and fit
quality. Once a set of competing simulator structures is as-
sembled, the challenge then becomes deciding how to com-
bine them. Generalized likelihood uncertainty estimation, or
GLUE (Beven and Binley, 1992, 2014), associates a mea-
sure of belief with each selected simulator structure and pa-
rameter configuration, forming a conceptually simple way of
weighting ensembles of predictions to estimate uncertainty
stemming from various sources. A similar principle underlies
Bayesian model averaging, or BMA (Leamer, 1978; Hoeting
et al., 1999; Raftery et al., 2005; Duan et al., 2007). While
GLUE and BMA differ with respect to their implementa-
tions, they both adhere to the principle that simulator struc-
tures capable of generating simulation results closely aligned
with observations should hold stronger credibility and carry
greater significance within an ensemble, whereas simula-
tor structures less capable of producing behavioral simula-
tions should be assigned a low probability or rejected. In the
case of GLUE, this measure of credibility is derived from a
modeler’s choice of metric, or informal likelihood function
(e.g., Smith et al., 2008). GLUE and BMA are further de-
scribed in Sect. 2.

The primary objective of this work is to demonstrate an
approach to generating accurate and precise estimates of the
spatially distributed parameters of a PB hydrologic simulator
where conventional methods might struggle due to the in-
tractability problem. A secondary goal is to explore how this
workflow could be extended to yield meaningful parameter
estimates considering uncertainty about the appropriate sim-
ulator (surrogate or PB) structure. Surrogate-derived SBI is
utilized to address the problem of intractability in complex
parameter spaces using a statistical, deep-learning approach.
The problem of simulator misspecification is confronted us-
ing a quasi-BMA approach that utilizes an informal likeli-
hood to weight the credibility of parameter estimates from
SBI.

We use synthetic test cases with diagnosable degrees of er-
ror to test the performance of the inference workflow. Here,
we determine the physical parameters of a headwater sub-
catchment of the upper Colorado River basin by calibrating
a PB simulator to streamflow observations. We utilize SBI
in tandem with a long short-term memory (LSTM) surrogate
(henceforth referred to as the surrogate simulator) for the PB
simulator ParFlow (Jones and Woodward, 2001; Maxwell
and Kollet, 2006; Maxwell et al., 2015a) to rapidly gener-
ate probable configurations of the hydraulic conductivity (K)
and Manning’s coefficient (M). Furthermore, we use the in-
ferred distribution of parameters to generate streamflow pre-
dictions. The experiments presented use the relationship be-
tween the surrogate and PB simulators as a proxy for the real
case. We explore the influence of synthetic observations on
parameter inference with a set of experiments that systemati-
cally vary the degree of error in the simulator (i.e., misspeci-
fication). In the latter experiments, a form of BMA is utilized
to improve the robustness of the parameter estimates to mis-
specification; in the extreme case, this is done by assigning
zero probability to all models in the set. The experiments are
outlined in Sect. 3.1.

Novel aspects of the present analysis that bear noting in-
clude the following: (1) the usage of DL in conjunction with a
PB catchment simulator to improve its performance; (2) the
novel application of density-based SBI to the scientific do-
main of hydrology; and (3) the usage of informal likelihood
measures to directly assign model probabilities to parame-
ter estimates made by SBI in a manner similar to BMA.
The significance of this work is to develop a framework to
tackle harder inference problems in catchment modeling and
in other domains of the Earth sciences where complex PB
simulators are used.

2 Background of inference-based approaches to
hydrologic parameter determination

This section provides a brief background of methods used
for parameter determination in catchment simulation. Con-
text is provided relevant to understanding the “point of con-

https://doi.org/10.5194/hess-28-4685-2024 Hydrol. Earth Syst. Sci., 28, 4685–4713, 2024



4688 R. Hull et al.: Simulation-based inference for parameter estimation of complex watershed simulators

vergence” (Cranmer et al., 2020), which we call simulation-
based inference (SBI), and how it is similar to and differ-
ent from some other approaches to inference. We start with
a general overview of inference. Next, we discuss the tra-
ditional formulation of the inference of parameters using
Bayes’ theorem (Sect. 2.1). We then introduce what sets SBI
apart from these traditional approaches (Sect. 2.2). Next, we
discuss the role of machine learning in SBI (Sect. 2.3). Fi-
nally, we introduce some approaches to parameter estimation
under epistemic uncertainty that have been applied in hydrol-
ogy (Sect. 2.4). In this section, “simulator” generically refers
to a computer program that requires some number of param-
eters and produces output data; this term encompasses most
PB simulators (as well as their surrogates) used in hydrol-
ogy and other research domains. The term “model” refers
to the statistical relationship between parameters and out-
puts, which is defined implicitly by a simulator (PB or surro-
gate). We define “inference” as using observations (data) and
the statistical model defined by a simulator to describe un-
observed characteristics (parameters) of the system that we
are interested in (Cranmer et al., 2020; Wikle and Berliner,
2007).

2.1 Bayesian inference

Bayesian inference is a common method to extract informa-
tion from observations. The essence of this formulation of
inference unfolds in three steps (Wikle and Berliner, 2007):
(1) formulation of a “full probability model”, which emerges
from the joint probability distribution of observable and un-
observable parameters; (2) inference of the conditional distri-
bution of the parameters given observed data; (3) evaluation
of the fit of the simulator (given parameters inferred in step
2) and its ability to adequately characterize the process(es) of
interest.

Traditionally, we apply Bayes’ theorem to tackle inference
problems. For illustration, let θ denote unobserved param-
eters of interest (such as hydraulic conductivity) and let Y
represent simulated or observed data of the variable of inter-
est (such as streamflow). The joint probability p(θ,Y ) can
be factored into the conditional and marginal distribution by
applying Bayes’ rule, such that we obtain

p(θ |Y ) =
p(Y |θ)p(θ)

p(Y )
. (1)

The terms in this expression are as follows:

– The data distribution, p(Y |θ), is the distribution of data
given unobservable parameters. This distribution is re-
ferred to as the likelihood when viewed as a function
of θ for a fixed Y . The likelihood function of “implicit”
simulators (such as those used in catchment hydrology)
is often regarded as “intractable”; i.e., its form cannot be
evaluated (integrated), at least not in a computationally
feasible way (Cranmer et al., 2020).

– The prior distribution, p(θ), is our a priori understand-
ing of unobservable parameters. The prior often results
from a choice made by the domain expert. For example,
in catchment simulation, the prior distribution arises
from a belief about the possible structures and magni-
tudes of parameters (for example, hydraulic conductiv-
ity) in a study domain as well as the probability that they
could be observed.

– The marginal distribution, p(Y ), can be thought of as
a normalizing constant or “evidence”. In practice, this
distribution is rarely computed, as it contains no infor-
mation about the parameters. As such, we do not include
P(Y ) and instead work with the unnormalized density
provided by

p(θ |Y ) ∝ p(Y |θ)p(θ). (2)

– The posterior distribution, p(θ |Y ), which is the distri-
bution of unobservable parameters given the data. The
posterior is the primary goal of Bayesian inference; it
is proportional to the product of our prior knowledge of
parameters and the information provided in our obser-
vations.

Inference conducted using a Bayesian paradigm has a
long history in computational hydrology (Vrugt and Sadegh,
2013). However, applications have been somewhat limited
due to challenges centered on the intractability of the data
distribution, p(Y |θ), for catchment simulators with many pa-
rameters.

2.2 Simulation-based inference

SBI is a set of methods that attempt to overcome the in-
tractability of the data distribution by learning the form of the
posterior distribution directly from the behavior of the sim-
ulator itself (Tejero-Cantero et al., 2020). There are a range
of SBI approaches, some of which include deep learning, al-
though deep learning has traditionally not been part of SBI
workflows. The classic approach is approximate Bayesian
computation (ABC), which compares observed and simu-
lated data, rejecting and accepting simulation results based
on some distance measure (Fenicia et al., 2018; Vrugt and
Sadegh, 2013; Weiss and von Haeseler, 1998). While this
approach has been widely used, it suffers from a range of
issues, including poor scaling to high-dimensional problems
(resulting in the need for summary statistics) and uncertainty
arising from the selection of a distance threshold (Alsing et
al., 2019). Additionally, in traditional ABC, it is necessary
to restart the inference process as new data become avail-
able (Papamakarios and Murray, 2016), making it inefficient
to evaluate large numbers of observations (Cranmer et al.,
2020).

SBI methods predicated on density estimation enable an
alternative that does not suffer from the same shortcomings
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as ABC. The density estimation approach aims to train a flex-
ible density estimator of the posterior parameter distribution
from a set of simulated data–parameter pairs (Alsing et al.,
2019). Some of the key advantages of a density estimation
approach over ABC are as follows: (a) it parametrically (as
a trained neural network) represents the posterior2 distribu-
tion that can be reused to evaluate new data as they become
available; (b) it drops the need for a distance threshold by
targeting an “exact” approximation of the posterior; (c) it
more efficiently uses simulations by adaptively focusing on
the plausible parameter region (Papamakarios and Murray,
2016).

One general-purpose workflow that we employ in this pa-
per uses a neural density estimator to learn the distribution of
streamflow data as a function of the physical parameters of
the simulator and employs active learning to run simulations
in the most relevant regions of parameter space (Alsing et al.,
2019; Lueckmann et al., 2017). The SBI workflow is further
described in Sect. 3.5, while the neural density estimator is
described in Sect. 3.6.

2.3 The role of machine learning in SBI

Due to advances in the capacity of neural networks to learn
complex relationships, we can learn high-dimensional prob-
ability distributions from data in a way that was previously
not really possible (Cranmer et al., 2020). This has led to
strong claims in other fields, including cosmology and com-
putational neuroscience, regarding the potential of SBI to
“shift the way observational [science] is done in practice”
(Alsing et al., 2019). While our implementation is described
in more detail in Sect. 3, we direct readers to the literature for
a broader (Cranmer et al., 2020) and deeper (Papamakarios
and Murray, 2016) understanding of density-based SBI.

Learning the full conditional density p(θ |Y ) requires
many simulated parameter–data pairs: thousands (or hun-
dreds of thousands) of forward simulations. This presents a
challenge with some high-resolution PB simulators, as each
forward simulation can take hours of computer time to run.
Many have noted that surrogate simulators trained using deep
learning can help; after an initial simulation and training
phase, these simulators can be run forward very efficiently.
“Surrogate-derived approaches benefit from imposing suit-
able inductive bias for a given problem” (Cranmer et al.,
2020). In our case, this “inductive bias” is applied by learn-
ing the rainfall–runoff response of our PB domain using a
long short-term memory (LSTM) simulator, a type of neural
network that is suited for learning temporal patterns in data
(Kratzert et al., 2018). The surrogate simulator is described
in more detail in Sect. 3.3. Surrogate simulators can be used

2We share the literature’s tendency to use “conditional”
and “posterior” density interchangeably; denotations of p(θ |Y =
YTrue), for the posterior density evaluated at an observation YObs,
and p(θ |Y ), for conditional density representative of a large set of
simulated {θ,Y }, are used when possible to reduce ambiguity.

directly in the construction of viable posterior distributions
of physical parameters and run at a low cost relative to the
PB simulator.

It should be noted that inference is always done within the
context of a simulator (Cranmer, 2022). As such, if the sim-
ulator structure is not adequate, it will affect inference in un-
desirable ways. Simulator structural inadequacy arises when
a simulator does not capture the behavior of the dynamical
system, giving rise to a mismatch between the simulated and
observed data (Cranmer et al., 2020). SBI conducted with
structurally inadequate simulators can result in overly precise
and otherwise erroneous inference. Similar concerns about
the quality of inference arise from other potential sources of
epistemic uncertainty in the modeling process, such as undi-
agnosed error in the data used to condition the model.

2.4 Model combination and parameter determination
in hydrology

As simulator structural adequacy is not guaranteed, basing
inference on one simulator structure alone is risky (Hoeting
et al., 1999). Bayesian model averaging (BMA) is an ap-
proach developed in the statistical literature (Madigan and
Raftery, 1994) to address this problem. BMA creates an up-
dated statistical model by combining two or more competing
ones (Roberts, 1965); in the case of dynamical systems, the
competing models are defined implicitly by simulators with
differing underlying structures. For example, BMA has been
adopted to create weighted averages of climate forecasts de-
rived from multiple simulators, each with a different quality
of fit to observed data (i.e., Raftery et al., 2005). Similarly,
BMA has been used to generate streamflow forecasts taken
from several structurally distinct rainfall–runoff simulators
(Duan et al., 2006). Results from these analyses show that
the weighted combination yields more accurate inference and
descriptions of uncertainty than those derived from any one
simulator.

BMA is introduced here generically and extended to the
current analysis at the end of the section. Consider YObs to be
observed data, such as a streamflow time series; a quantity of
interest 1 to be inferred, such as a prediction or underlying
set of parameters θ ; and the set of competing modelsM1, . . .,
MK . Each model Mk is defined by a simulator with a unique
underlying structure, which encodes the simulated data Y for
possible values of θ . The probability of 1 in the presence of
YObs can be represented as a weighted average, such that

p(1|YObs)=
∑K

k=1
p(1|Mk,YObs)wk. (3)

The terms in this expression are as follows:

– p(1|Mk, YObs) is the posterior distribution of 1 given
the model under consideration Mk and YObs, which can
be interpreted as the conditional probability of 1 given
thatMk is the best model in the set (Raftery et al., 2005);
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– wk is the posterior model probability, or the model
weight. This can be interpreted as the posterior prob-
ability that model Mk is the best one (Raftery et al.,
2005).

Even in relatively simple test cases (i.e., Raftery et al.,
1997), the calculation of p(1|YObs) is difficult due to the
large number of possible models and the computational and
conceptual challenges related towk; therefore, defensible ap-
proximation methods are required (Hoeting, 1999). In dy-
namical systems simulation (i.e., Raftery et al., 2005; Duan
et al., 2007), this problem has typically been solved itera-
tively as an expectation-maximization problem that simul-
taneously maximizes the likelihood of both p(1|Mk, YObs)

and wk , although other approaches have been employed in
other domains (i.e., Liu and Ker, 2020).

Generalized likelihood uncertainty estimation (GLUE) is
an approach to uncertainty estimation with wide use in hy-
drology (Beven and Binley, 2014). GLUE recognizes that
discrepancies between observed and simulated data often
exhibit nonrandom patterns, reflecting the presence of het-
eroscedasticity and autocorrelation resulting from errors in
simulator structure, inputs, and data (Beven, 2012). To ac-
count for these uncertainties, GLUE assigns a “measure of
belief” to each simulation result, reflecting confidence in its
validity. This measure of belief, or likelihood function, may
not be formal in the statistical sense, but it serves to express
the practitioner’s subjective judgment (Beven, 2012). The se-
lection of an appropriate likelihood is crucial, often relying
on performance metrics such as the Nash–Sutcliffe efficiency
(NSE) coefficient , but its choice depends on the study ob-
jective (Smith et al., 2008). Likelihoods are used to develop
acceptability limits, weight a set of simulation results, and
approximate the uncertainty associated with the inference of
parameters. By allowing consideration of multiple simulator
structures and developing a clear metric by which to evalu-
ate them, GLUE provides a holistic and flexible framework
for parameter estimation in the presence of error related to
simulator structure and other epistemic uncertainties (Beven,
2012).

The current analysis adopts a strategy that combines SBI
with informal likelihood weighting to address the error re-
lated to the simulator structure. This approach involves gen-
erating weighted averages of estimated parameter distribu-
tions from a set of simulators with different underlying struc-
tures using a form of BMA (Eq. 3). Specifically, we take
the weighted average of the conditional estimates of p(θ |Y )
(Eq. 2) obtained through SBI for a set of surrogate rainfall–
runoff simulators. As in GLUE, weights are calculated from
a selected performance metric, reflecting the suitability of
simulated values given the observed data; simulation results
below a predefined limit of acceptability are not considered.
The claim is that this method of combination mitigates over-
confident inference due to simulator structural inadequacy
without diluting the valuable information in the parameter

estimates made by SBI. The broader implication is an ap-
proach to extend the usage of SBI to situations in which
some structural error related to the simulator is inevitable,
as is often the case for real systems. We believe that being
able to extend SBI in this way could, broadly speaking, be
part of a strategy to build a more comprehensive understand-
ing of the inherent uncertainties associated with hydrological
modeling approaches. Experiment 4 evaluates whether BMA
produces more accurate parameter estimates and realistic pa-
rameter spreads compared with standalone SBI. The reader
is referred to Sect. 3.8 for implementation details.

3 Materials and methods

This section describes our implementation of surrogate-
derived SBI and the four experiments undertaken to test it.
We first introduce those experiments and the goals associated
with them (Sect. 3.1). Then, we describe the domain of inter-
est, the Taylor River catchment (Sect. 3.2). The rest of the
methods subsections describe the components, implementa-
tion, and validation of SBI, as outlined in Table 1.

Figure 1 shows how the components of surrogate-derived
SBI are interrelated. In Fig. 1a, a small set of process-based
simulations are generated by ParFlow. A LSTM neural net-
work learns from these simulations to mimic the behav-
ior of ParFlow, interpolating the relationship between cli-
mate forcings, catchment parameters M and K , and output
streamflow time series. The LSTM network can be used as
a ParFlow surrogate to quickly explore the streamflow re-
sponse to different parameter configurations and forcing sce-
narios. Throughout the rest of the paper, we will refer to
ParFlow as the PB simulator and the LSTM network as the
surrogate simulator or the LSTM.

We leverage the efficiency of the surrogate to conduct SBI
on parameters, as depicted in Fig. 1b. Our goal with SBI is
to estimate probable values for the catchment parameters M
andK given the occurrence of a particular streamflow obser-
vation. To that end, we randomly sample many (n= 5000)
parameter configurations from a prior distribution p(θ) and,
from the LSTM, simulate an equivalent number of stream-
flow time series Y . This set of simulated parameter–data pairs
is used to train a neural density estimator qφ(θ |Y ), which is
a deep learning model of the full conditional density of pa-
rameters given data p(θ |Y ). Once trained, the neural den-
sity estimator is evaluated with a given observation to pro-
duce a distribution of parameters, the posterior distribution
p(θ |Y = YObs), which represents our “best guess” of what
the parameters should be. The prior distribution and other
details of the density estimation approach are described in
Table C1 and Sect. 3.5.

Finally, a predictive check (Fig. 1c) ensures that the pa-
rameter estimates generate a calibrated surrogate simulator.
The simplest version of this check is to put the estimates
of parameters from the previous step back into the LSTM,

Hydrol. Earth Syst. Sci., 28, 4685–4713, 2024 https://doi.org/10.5194/hess-28-4685-2024



R. Hull et al.: Simulation-based inference for parameter estimation of complex watershed simulators 4691

Table 1. Outline of the components described in Sect. 3.

Section Name Description

3.1 Experiments
3.2 Taylor River catchment Domain of study
3.3 ParFlow Process-based simulator
3.4 Long short-term memory (LSTM) network Surrogate simulator
3.5 Simulation-based inference (SBI) Method for parameter inference
3.6 Conditional density estimator, qφ(θ |Y ) Learns distribution of parameters
3.7 Posterior predictive check Making predictions from inferred parameters
3.8 Calculation of weights Method for considering multiple simulator structures
3.9 Evaluation metrics Assess performance of SBI

Figure 1. An illustration of surrogate-derived simulation-based inference (SBI). In subplot (a), a long short-term memory (LSTM) neural
network learns catchment behavior from ParFlow, a process-based simulator. The implementation of SBI is shown in subplot (b), where
the objective is to estimate catchment parameters θ given an observation YObs. This parameter estimate is formally known as the posterior
parameter distribution p(θ |Y = YObs). We randomly sample many parameter configurations from a prior distribution p(θ) and, from the
LSTM, simulate an equivalent number of streamflow time series Y . This set of simulated parameter–data pairs is used to train a neural
density estimator qφ(θ |Y ). Subplot (c) shows the posterior predictive check, which involves using the parameter estimate to (ideally) generate
a calibrated set of simulations.

which generates a new ensemble of streamflow simulations.
The simulations should resemble the observation closely if
the simulator captures the behavior of the dynamical system
well and if the parameter inference was done correctly. Op-
tionally, the parameter estimates may be weighted using a
performance evaluation of the predictive check.

3.1 Experiments

We explore the performance of SBI using four experiments.
The subject of interest is the ability of SBI to accurately and
precisely estimate parameters given observations under vary-
ing conditions of uncertainty. The uncertainty comes from
error related to the structure of the surrogate simulator. Syn-
thetic observations with known parameters are used to con-
duct the experiments, as they are easier to benchmark; for
completeness, the analysis is extended to actual catchment
data in Appendix E. To test SBI, we first draw the synthetic
observations from the surrogate simulator and then from the

harder-to-match PB simulator. Strategies to address uncer-
tainty regarding the simulator structure and the effect on pa-
rameter estimates are presented in the final experiments. The
experiments are further described in Table 2 and below, while
the results are explored in Sect. 4.

Briefly, the four experimental cases are as follows:

1. “Best” case – find p(θ |Y = YObs_LSTM). We use the
streamflow generated by a surrogate simulator (e.g.,
with a given combination of parameters) as the obser-
vation and employ SBI to infer the parameters. Because
we are treating the simulator as observations in this case
(i.e., we assume that the simulator can generate data
identical to the observation), no uncertainty exists about
the structural adequacy of the simulator. This experi-
ment serves as a baseline check for our SBI workflow.

2. “Tough” case – find p(θ |Y = YObs_ParFlow). We use a
ParFlow simulation as the observation and employ SBI
to infer the values of the parameters. As there is a slight
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mismatch between observed (in this case ParFlow sim-
ulation) and simulated (i.e., the surrogate simulator)
data, there is some uncertainty about the structural ade-
quacy of the surrogate simulator. This experiment tests
whether the proposed framework, where SBI is carried
out with the surrogate simulator, can be successful given
misspecification of the surrogate.

3. “Boosted” case – find more accurate p(θ |Y =

YObs_ParFlow). Building from the Tough case, we again
use a ParFlow simulation as the observation but, instead,
employ an ensemble (“boosted”) surrogate simulator to
infer the known parameters. Unlike in the Tough case,
multiple forms of the surrogate simulator are considered
to represent uncertainty about the appropriate structure.
In this case, we are testing whether the proposed frame-
work can be made more robust to surrogate misspecifi-
cation if multiple surrogate structures are combined in
an unweighted way.

4. “Weighted” case – find the Bayesian-model-averaged
p(θ |Y = YObs_ParFlow, w). Building from the Boosted
case, we add a performance measure (e.g., informal
likelihood) to emphasize (“weight”) credible and re-
ject implausible forms of the surrogate simulator that
have been identified by SBI. Unlike in the Boosted case,
uncertainty regarding the adequacy of surrogate sim-
ulator structures and configurations is explicitly eval-
uated using the likelihood weighting. This experiment
tests whether the proposed framework is more robust to
surrogate misspecification if competing surrogate struc-
tures are weighted based on the fit between simulated
and observed data.

3.2 Taylor River – the domain

The physical area of study is the Taylor River headwater
catchment located in the upper Colorado River catchment
(Fig. 2). The Taylor is an important mountain headwater sys-
tem for flood control and water supply in the upper Col-
orado River catchment (Leonarduzzi et al., 2022). This catch-
ment is at an elevation of between 2451 and 3958 m above
mean sea level and has a surface area of around 1144 km2.
This catchment is a snowmelt-dominated regime in summer.
The geographical extent of the catchment is defined by the
United States Geological Survey (USGS) streamflow gage
in Almont (ID 09110000), Colorado, at the catchment out-
let. Over the full period of record (1910–2022), the lowest
average monthly discharges were recorded in January and
February, with values of approximately 100 cfs (cubic feet
per second; equal to approximately 3 m3 s−1), after which
there was a steady increase in discharge and general wetness
in the catchment up until June, when an average discharge of
approximately 900 cfs (25 m3 s−1) was recorded. Synthetic
data corresponding to the Almont gage (ID 09110000) loca-

tion are used for experiments 1–4, as described in Sect. 3.1.
Observed streamflow data from water year 1995 are revisited
in Sect. 5 and Appendix E.

3.3 The process-based simulations (ParFlow)

We use the integrated hydrologic simulator ParFlow-CLM to
simulate groundwater and surface water flow in our domain.
ParFlow-CLM is designed to capture dynamically evolving
interactions among groundwater, surface water, and land sur-
face fluxes (Jones and Woodward, 2001; Maxwell and Kol-
let, 2006; Maxwell et al., 2015a). In the subsurface, variably
saturated flow is solved using the mixed form of Richards
equation. Overland flow is solved by the kinematic wave
approximation and Manning’s equation. ParFlow is coupled
to the Common Land Model (CLM). The CLM is a land
surface model that handles the surface water–energy bal-
ance (Maxwell and Miller, 2005; Kollet and Maxwell, 2008).
Thus, it is well-suited to examine evolving catchment dy-
namics at the large scales (e.g., Maxwell et al., 2015b), as
in the Taylor River catchment in Colorado, USA.

The Taylor catchment is represented by ParFlow at a 1 km
resolution, comprising five vertical layers with a total depth
of 102 m (Leonarduzzi et al., 2022). As in Leonarduzzi et
al. (2022), all of the required input files – including soil prop-
erties, land cover, and meteorological forcings – are subset
from upper Colorado River catchment ParFlow-CLM sim-
ulations of Tran et al. (2022). The subsurface contains 23
separate soil and geological units.

We explore the sensitivity of streamflow to an ensemble of
different configurations of Manning’s roughness coefficient
(M) and the hydraulic conductivity (K). For the baseline
configuration of the simulator, K ranges between 6.2×10−3

and 2.7×10−1 (m h−1) across the 23 spatial units;M is con-
stant across the domain surface at 2.4×10−6 (h m−(1/3)). An
ensemble of 183 simulations is generated by systematically
varyingM andK . ForM , as the values are spatially constant,
it is easy to adjust this single value. K is spatially variable;
therefore, we apply a single scaling factor to all three dimen-
sions (Table A1). To make the distinction clear, we call these
“single” scalar representations Ks and Ms, respectively. The
values Ks and Ms used in this study are shown in Table A2.
A sensitivity analysis of streamflow to parameter configura-
tions is shown in Fig. A1.

All simulations are run for a 1-year period (8760 h) using
forcings from water year 1995 taken from Tran et al. (2020).
Surface pressure outputs are converted to runoff using the
overland flow utility built into ParFlow. This study focuses
on runoff at the cell closest to USGS gage ID 09110000.
We convert to cubic feet per second for direct comparison to
gaged data and rescale from zero to one. Streamflow simula-
tions from ParFlow are relatively more sensitive to changes
in K compared with changes in M , as shown in Fig. A1.
The relatively small size of the ensemble is due, in part, to
the computational demand of ParFlow. The time for each
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Table 2. The four experiments explore how the observation and simulator type affect the quality of parameter inference.

Experiment no. Name Goal

1 Best case Infer parameters given no mismatch between observed
and simulated data

2 Tough case Infer parameters given some mismatch between ob-
served and simulated data

3 Boosted case Infer parameters given some mismatch between ob-
served and simulated data if multiple surrogate struc-
tures are combined in an unweighted way.

4 Weighted case Infer parameters given some mismatch between ob-
served and simulated data from multiple surrogate
structures weighted by their goodness of fit.

Figure 2. Map showing the Taylor River catchment study domain near Almont, Colorado.

ParFlow simulation was 28 min. As there are 183 simula-
tions in the ensemble, the total simulation time was about
85 h. All simulations were undertaken in the Princeton Hy-
drologic Data Center (PHDC) on NVIDIA A100 GPUs. The
purpose of generating this ParFlow ensemble is not to create
the most diverse set of system realizations; rather, we seek to
provide a foundation from which to train the surrogate simu-
lator and test performance of the simulation-based inference
approach.

3.4 The surrogate simulator (LSTM)

We employ a long short-term memory (LSTM) network to
learn from our process-based simulator ParFlow. LSTM net-
works are neural networks that are designed to learn tem-
poral relationships (Rumelhart et al., 1986; Hochreiter and
Schmidhuber, 1997). These networks are widely used for
predictive tasks in hydrology, for example, to relate mete-
orological forcing sequences (Kratzert et al., 2018) to catch-
ment streamflow. In our study, an LSTM network learns the
response of streamflow at gaged location ID 09110000 to
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forcings and parameters in the Taylor River catchment, as
defined by the ensemble of ParFlow simulations described in
Sect. 3.3.

Throughout our experiments, we used an LSTM network
with 10 input features, containing forcings X and parame-
ters θ , and one output class, containing streamflow Y . As in
Kratzert et al. (2018), we employ a “look-back” approach.
For each sample, the LSTM network ingests a sequence
length of “l”= 14 d of previous forcings weighted by scalar
representations of ParFlow parameters (Ks and Ms) and re-
turns streamflow the next day. More explicitly,

Yt+1 = LSTM(Xt→(t−1),Ks,Ms), (4)

where Yt+1 is the streamflow the next day; l is the look back,
which controls the length of the input sequence used for pre-
diction; Xt→(t−1) are vectors containing sequences of forc-
ing data from today (i.e., day t) back to day t minus l for each
of the eight forcing variables; and Ks and Ms are scalar rep-
resentations of the ParFlow parameters’ hydraulic conductiv-
ity (K) and Manning’s roughness (M), respectively. As these
values do not vary over time, each is ingested as a vector
repeated l times by the LSTM model.

The relevant hyperparameters used to fit the LSTM sur-
rogate are further defined in Tables A1 and B1. The com-
putational cost of the LSTM is much less than the cost of
ParFlow. The time for training the LSTM is around 15 min in
the PHDC. Once trained, simulation from the LSTM is low
cost (less than 6×10−5 s). Figure B1a shows the distribution
of training–validation and test sets across parameter space,
and the performance of the LSTM relative to ParFlow on
a streamflow time series generated by a randomly selected
test parameter set, θA, is used throughout the results sec-
tion for benchmarking. Hyperparameters were determined by
trial and error. The LSTM captures the general streamflow
behavior quite well, although not quite perfectly (Fig. B1b).
The Kling–Gupta efficiency (KGE) exceeds 0.7 for test data
reserved from ParFlow. We emphasize that the goal here is
to produce a surrogate simulator adequate for the simulation-
based inference of parameters Ks and Ms.

3.5 Implementation of simulation-based inference

The goal of SBI is to infer appropriate values flexibly and
efficiently for simulator parameters, given a particular obser-
vation. SBI is illustrated in Fig. 1b. Take θ to be a vector
of parameters that control a simulator, and let Y be a vec-
tor of simulated data. The simulator implicitly defines a con-
ditional probability p(Y |θ), which may be analytically in-
tractable. p(θ) encodes our prior beliefs about parameters.
We are interested in inferring the parameter θ given an obser-
vation YObs, i.e., we would like to know the posterior prob-
ability density p(θ |Y = YObs), following Papamakarios and
Murray (2016):

p(θ |Y = YObs) ∝ p(Y = YObs|θ)p(θ), (5)

where θ containsKs andMs, and YObs is an observed stream-
flow time series. Y is a set of simulated outputs that are for-
mally equivalent but not identical to the observation YObs.
Here, parameter–data pairs are simulated by a surrogate
(Sect. 3.4) of ParFlow. Simulations are drawn from the same
forcing scenario to limit the degrees of freedom of parameter
inference.

A conditional density estimator qφ(θ |Y ) learns the poste-
rior density directly from simulations generated by the sur-
rogate. qφ is a learnable model – often a neural network
– that fits to p(θ |Y ) and can be evaluated to approximate
p(θ |Y = YObs); the reader is referred to Sect. 3.6 for details
about qφ . The procedure can be summarized as follows, after
Papamakarios and Murray (2016):

1. Propose a prior set of parameter vectors {θ}, sampled
from p(θ).

2. For each θ , run the simulator to obtain the correspond-
ing data vector, Y .

3. Train the neural density estimator qφ(θ |Y ) on the simu-
lated set from {θ,Y }.

4. Evaluate qφ at observed data vector YObs to generate a
posterior set of parameter vectors {θ} proportional to
p(θ |Y = YObs).

The SBI workflow and architectures used in this study are
derived from a Python toolbox for simulation-based infer-
ence (Tejero-Cantero et al., 2020). We direct the reader to
Papamakarios and Murray (2016) for a detailed description
of the structure, training, and evaluation of a neural condi-
tional density estimator for simulation-based inference. Oth-
ers (Lueckmann et al., 2017; Greenberg et al., 2019) have
built on this idea to introduce Markov chain Monte Carlo
(MCMC)-like approaches to sequential learning of the pos-
terior at observations to make inference more efficient. We
employ a sequential learning procedure in our workflow, as
described in Appendix C2. The hyperparameters and archi-
tectures used in SBI are shown in Table C1.

3.6 Neural conditional density estimators for SBI

The conditional density estimator qφ(θ |Y ) is an essential in-
gredient of SBI. The neural conditional density estimator dif-
fers from conventional neural networks (such as the LSTM)
in two important ways: first, it learns a conditional proba-
bility distribution, as opposed to a function; second, it rep-
resents the inverse model – the probability of parameters
given data p(θ |Y ) – as opposed to the dependency of data
on parameters, which is encoded in “forward” simulators like
ParFlow and its surrogate, the LSTM. Once trained, the neu-
ral conditional density estimator is evaluated with an obser-
vation to infer a distribution of plausible parameters, the pos-
terior distribution p(θ |Y = YObs) (Fig. 1b).
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Conditional density estimators create a model for “a flexi-
ble family of conditional densities”, parameterized by a vec-
tor of parameters (φ) (Papamakarios and Murray, 2016).
Density estimator parameters are not to be confused with
the parameters of PB simulators, θ . The latter are the target
of inference, whereas the former parameterize the density-
estimated posterior probability and must be learned or de-
rived to conduct inference of simulation parameters. Deep
neural networks provide new opportunities to learn φ for
complex classes of densities, which gives rise to the term
neural conditional density estimator.

Mixture density networks (MDNs) are an intuitive class of
conditional density estimators capable of modeling any arbi-
trary conditional density (Bishop, 1994). They take the form
of a mixture of k (not hydraulic conductivity, K) Gaussian
components, as shown below.

qφ(θ |Y )=
∑

k
αkN(θ |mk,Sk), (6)

where the mixing coefficients (α), means (m), and covariance
matrices (S) comprise the neural density parameterization, φ.
They can be computed by a feedforward neural network.

Training an MDN is a maximum likelihood optimization
problem (Bishop, 1994). Given a training set ofN simulation
parameters and data pairs, {θ,Y }, the objective is to maxi-
mize the average log probability (or minimize the negative
log probability) with respect to the parameters, φ.

argmaxφ
1
N

∑
n

logqφ(θn|Yn) (7)

For a fuller description of the parameterization and training
of neural density estimators, the reader is referred to the sup-
plementary material in Papamakarios and Murray (2016) or
the original write-up in Bishop (1994). This study uses a spe-
cialization of this family of neural networks called a masked
autoencoder for density estimation (further described in Ap-
pendix C1).

3.7 Posterior predictive check

A crucial diagnostic step in the SBI workflow is to check
the ability of the simulator to characterize process(es) of in-
terest after inference has been conducted (Cranmer et al.,
2020). To be more explicit, this step checks that parame-
ters from the inferred posterior p(θ |Y = YObs) can simulate
streamflow data (Y ) consistent with the observation (YObs)
when plugged back into the simulator. The simulated data
should “look similar” to the observation (Tejero-Cantero et
al., 2020). Gabry et al. (2019) describe this type of evalua-
tion as a posterior predictive check. This predictive check is
represented by Fig. 1c.

Here, we conduct posterior predictive checks by drawing
a small number of parameter sets from our inferred parame-
ter posterior density. In our workflow, the inferred posterior
parameter density is represented by an array containing thou-
sands (n= 5000) of plausible parameter sets. The frequency

of their occurrence is probability weighted, in the sense that
there are very few occurrences of parameter sets in the tails of
the distribution and many occurrences close to the mean, and
improbable parameter sets do not exist at all. For our poste-
rior predictive check, we randomly sample (n= 50) param-
eter sets from this frequency-weighted parameter posterior
array. We use these parameter samples to generate an ensem-
ble of predicted streamflow time series using the LSTM.

3.8 Calculation of weights

Bayesian model averaging (BMA) is a method of combining
different simulator structures to reduce the risk of overfit-
ting on prediction or inference (Madigan and Raftery, 1994).
The implementation explored here uses an informal like-
lihood measure to assign probabilities, or weights, to the
SBI-derived parameter estimates of some number of simu-
lators. Note that the simulators could be PB or surrogates.
The structure of each simulator may be unique, in that the
mathematical description of the relationship between stream-
flow and the parameters θ differs. Specifically, the sets of
parameters estimated by SBI are resampled using weights
based on the fit of observed and simulated streamflow to es-
timate a new probability density. Given a set of K models
(M1,Mk, . . .,MK) defined implicitly by the simulators con-
sidered, this weighted estimated density p(θ |YObs, wk) is as
follows:

p(θ |YObs,wk)=
∑K

k=1
p(θ |Mk,YObs)wk, (8)

where p(θ |Mk,YObs) is equivalent to the posterior parame-
ter density, p(θ |Y = YObs) from SBI (Eq. 5), and wk is the
model probability or weight, which is based on the goodness
of fit of simulated data from the posterior predictive check.
All probabilities are implicitly conditional on the set of all
models considered.

In the current application, weights are calculated using the
informal likelihood Lik for simulations drawn from the pos-
terior predictive check. Simulations are defined as values for
the parameters θ and resulting simulated data Y . The infor-
mal likelihood is a measure of acceptability for each simula-
tion result based on its error relative to observed data. Simu-
lations with likelihood measures below a predefined limit of
acceptability are rejected; the set of remaining simulations is
assumed to be equally probable prior to weighting. Weights
for each simulator in the set K of structures, each composed
of a set of I simulations, is equal to

wk =
Lik∑K

k=1
∑I
i=1Lik

. (9)

The informed reader will recognize disagreement and incon-
sistent usage in the literature about the likelihood function
(Beven, 2012; Nearing et al., 2016). We acknowledge legit-
imacy in all camps, but we adopt a subjective, or informal,
likelihood here, as sometimes used in generalized likelihood
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uncertainty estimation (GLUE). We choose to use the Kling–
Gupta efficiency (KGE; Gupta et al., 2009) as the likelihood
metric due to its utility and history with respect to rainfall–
runoff simulation. Furthermore, we note that the method is
not dependent on a specific metric, and others could apply
this approach using a different metric if they choose. The
KGE metric is computed using the following equation:

KGE= 1−
√
(1−α)2+ (1−β)2+ (1− ρ)2, (10)

where α is the ratio of the standard deviation of simulated
and observed streamflow data, respectively; β is the ratio of
their means; and ρ is the correlation coefficient in time.

The weighted probability density p(θ |YObs,wk) is esti-
mated using a distribution-sampling algorithm, where the
distribution represents the weights of each simulation i under
each simulator k. Simulation indices are sampled by map-
ping a random target probability between zero and one to
the cumulative distribution of simulation weights. This ap-
proach can be used to sample sets of parameters from the
SBI-inferred posterior parameter density weighted to high-
likelihood simulations identified by the posterior predictive
check.

3.9 Evaluation metrics

The performance of simulation-based inference is evaluated
in terms of accuracy and precision. First, we evaluate perfor-
mance with respect to the parameter posterior (the inferred
parameters). Following this, we evaluate it with respect to
the posterior predictive check (the ability to generate realis-
tic data using the inferred parameters).

3.9.1 Evaluating the posterior parameter density

Accuracy of parameter inference is evaluated using the Ma-
halanobis distance, DM(θTrue). The Mahalanobis distance
measures the distance between a point and a distribution of
values, following Maesschalck et al. (2000), such that

DM (θTrue)=

√(
θTrue− θµ

)T
6−1

(
θTrue− θµ

)
, (11)

where θTrue is the set of observed or “true” parameters, θµ
is the mean of the posterior distribution p(θ |Y = YObs), and
6 is the covariance matrix of p(θ |Y = YObs). In essence, the
Mahalanobis distance measures how far off our parameter
estimate is from the “truth”. For this study, values less than
2 are defined as acceptable (within ∼ 2 standard deviations);
this threshold was identified via trial and error.

The precision of parameter inference is evaluated in terms
of the determinant of the covariance matrix of the inferred
parameter posterior, |6|. The determinant can be interpreted
geometrically as the “volume” contained by the covariance
matrix (and, by extension, the inferred parameter poste-
rior distribution). Larger determinant values are less precise,
whereas smaller values more precise (Margalit and Rabinoff,

2017). In this study, we define values of less than 10−6 as
acceptable; this threshold was identified via trial and error.

3.9.2 Evaluating the posterior predictive check

We evaluate the ability of the simulated ensemble of stream-
flow to adequately characterize the observed streamflow us-
ing the root-mean-square error (RMSE) between each (n=
50) simulated streamflow time series (Y ) and the observed
streamflow time series (YObs). The RMSE is calculated for
each predication as the square root of the mean-squared er-
ror, such that

RMSE(Y )=

√∑T
t=1
(
Yt −YObst

)2
T

, (12)

where Ypredt is the simulator-predicted streamflow at time t ,
taken from Ypred; YObst is the observed or true streamflow at
time t , taken from YObs; and T is the number of times (days)
in the streamflow time series.

Accuracy of the simulator characterization of streamflow
is assessed as the mean of the RMSE calculated for all
(n=50) Y relative to YObs (RMSEAve). Precision of the sim-
ulator characterization of streamflow is assessed as the stan-
dard deviation of the RMSE calculated for all (n= 50) Ypred
relative to YObs (RMSESD). For both the mean and variance,
RMSE values of less than 0.01 (scaled streamflow units),
identified via trial and error, are acceptable. The RMSE was
selected to evaluate the posterior prediction out of conve-
nience. Other metrics, such as the KGE, could also be used.

4 Results

Here, we present the outcomes of the three experiments de-
scribed in Sect. 3.1. The first two experiments showcase in-
ference problems that increase in difficulty from the easy
Best case (Sect. 4.1) to the hard Tough case (Sect. 4.2). The
final experiments offer workarounds by way of the Boosted
case (Sect. 4.3) and Weighted case (Sect. 4.4). The perfor-
mance of the methods explored in the three experiments is
first discussed in terms of one shared benchmark scenario.
Then, we show the results of the three experiments on a larger
shared set (n= 18) of benchmark scenarios (Sect. 4.5).

4.1 Experiment 1 – Best case

For the Best scenario, we attempt to infer the parameters
of synthetic observation(s) taken from the trained surrogate
simulator, such that p(θ |Y = YObs_LSTM). We first infer the
parameters of just one randomly selected streamflow ob-
servation, denoted with an “A” (YObs_LSTM_A). The set of
benchmark parameters (θA) used to generate the underly-
ing simulation are approximately 0.60 for Ks and 0.85 for
Ms. θA is also our benchmark in parameter space for experi-
ments 2 and 3.
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Figure 3. The posterior parameter estimate for observation YObs_LSTM_A closely matches the true parameter values in the Best case.
Subplots (a), (b), and (c) comprise a pair plot of posterior densities across the full possible parameter space; subplot (d) is zoomed in for
detail. The posterior density of (a) MS and (b) Ks are shown individually; they are also shown together in subplot (c). Axes are expressed in
both the scale/transformed and unscaled units of the parameters. The “true” parameters are denoted by the red line or circle.

We accurately and precisely estimate parameters for our
benchmark case (Fig. 3). The pair plot approximates the pos-
terior parameter density evaluated by the neural density esti-
mator at the observation. In individual parameter space, nar-
rower peaks (in blue) correspond to more confident and pre-
cise parameter estimates. In shared parameter space (Fig. 3c),
zones of deep purple are effectively zones of no probability;
zones of blue–green–yellow are zones of high probability.
The benchmark parameters (i.e., the parameters used to gen-
erate the simulation) are denoted by the red line or circle.
Accuracy is evaluated by the Mahalanobis distance, which is
3× 10−1; thus, the true parameter set can be thought of as
less than 1 standard deviation from the central tendency of
the inferred distribution. Precision is estimated by taking the
determinant of the covariance matrix. The determinant of the
covariance matrix is 9×10−8. This is well below our thresh-
old of 1× 10−6 for sufficiently precise parameter inference.

Taking this one step further, we can use the inferred pa-
rameter distributions to generate an ensemble of streamflow
simulations using the LSTM and compare this to the ob-
served streamflow (referred to as our posterior predictive
check). As show in Fig. 4a, the inferred parameters gener-
ate simulation results that characterize the observed stream-
flow observation reasonably well. Greater uncertainty exists
around higher streamflow values over the course of the wa-
ter year, as shown by the increasing width of the uncertainty
envelope after day 200 (Fig. 4b). Note that this is the time of
year during which snowmelt occurs in the Taylor River catch-

Figure 4. Results of the posterior predictive check on synthetic ob-
servation YObs_LSTM_A in Experiment 1 (Best case). Subplot (a)
shows streamflow simulations resulting from inference of p(θ |Y =
YObs_LSTM_A). The ensemble of predictions is bounded by blue,
whereas observations are shown in red. Blue lines represent time
series of upper and lower streamflow values in this ensemble, and
the red line represents the observation YObs_LSTM_A. In subplot (b),
we zoom into the area of greatest uncertainty between days 200 and
300, corresponding to the spring snowmelt.
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ment. The mean and standard deviation of streamflow error
are approximately 6×10−3 and 4×10−3 (scaled streamflow
units), respectively.

Inference for many observations

In addition to conducting this analysis for one observation (as
described), an advantage of SBI is the low computational ex-
pense of evaluating new observations. Process-based simula-
tions (i.e., ParFlow) are slow and scale linearly with the num-
ber of simulations. It takes ∼ 105 times longer to generate a
ParFlow simulation (1680 s) than to evaluate one observation
YObs using a trained neural density estimator (0.045 s) on a
high-performance computer system allocation of one CPU
node with 4 GB of working memory. Put another way, after
an upfront sunk cost to learn the distributions, we can evalu-
ate new observations, YObs, practically for free. Many other
parameter determination techniques are not “amortized” in
this way (Cranmer et al., 2020). For example, approximate
Bayesian computation (ABC) requires restarting most steps
in the inference process when new data become available
(Vrugt and Sadegh, 2013). This property of SBI can be handy
in domains where the system structure (parameters) stays the
same but new observations become available all the time –
as can be the case in catchment hydrology. In Appendix D,
we extend Experiment 1 to evaluate the posterior parameter
density for many synthetic observations (YObs_LSTM_i).

4.2 Experiment 2 – Tough case

Experiment 2 is our Tough case. We attempt to infer the pa-
rameters of synthetic observations from ParFlow, such that
p(θ |Y = YObs_ParFlow). We do this using the same realization
of the neural density estimator from Experiment 1 (the Best
case). The Tough case is a realistic test of the robustness of
parameter inference. Specifically, it tests our ability to evalu-
ate data from a different source. In contrast to the Best case,
we must deal with uncertainties related to the goodness of fit
between the simulator (the LSTM surrogate) and observation
(the underlying ParFlow simulator). We generate the pos-
terior parameter and predictive densities for the benchmark
case (θA) explored in Experiment 1. The only difference is
that YObs_ParFlow_A is a simulation generated by ParFlow, not
by the surrogate.

Figure 5 plots the results of Experiment 2. Here, we see
that the quality of inference is somewhat degraded for the
Tough case compared with the Best case. Parameter infer-
ence here is overconfident; it is precise but biased, as indi-
cated by the tight probability distributions and the difference
between the peak probability and the observation (indicted
by the red line in Fig. 7a). The true parameter value does
not plot in the area corresponding to highest probability. The
determinant is 6× 10−8, which is within the same order of
magnitude as the Best case. However, the Mahalanobis dis-
tance is much higher, at 7. Thus, the true parameter set can

Figure 5. Results of the parameter inference and posterior predic-
tive check on synthetic observation YObs_ParFlow_A in Experiment 2
(Tough case). Subplots (a) and (b) show an overconfident parameter
inference that still results in a well-constrained posterior predictive
check.

be thought of heuristically as approximately 7 “standard de-
viations” from the central tendency of the inferred distribu-
tion. Visual inspection of Fig. 7b shows that streamflow sim-
ulations yielded by inferred parameters still characterize the
synthetic streamflow observation well. However, average er-
ror is roughly twice as high for the Tough case compared
with the Best case (1×10−2 compared to 6×10−3), which is
approximately equal to the acceptability criterion described
in Sect. 3.7.

Overconfident posterior estimates are a result of the misfit
between our LSTM surrogate and ParFlow (Fig. B1b). One
interpretation of overconfident parameter inference is that the
relationship between data (streamflow) and parameters (Ms,
Ks) in the LSTM surrogate does not quite represent their re-
lationship as it exists in ParFlow. These differences are not
unexpected, because ParFlow has parameters that vary across
a 3D domain but are lumped together in the LSTM (see also
Appendix A). This bias in the surrogate simulator increases
the possibility of overconfidence in the conditional density
learned by the neural density estimator. We consider this sub-
optimal performance in parameter inference a consequence
of surrogate misspecification, as described further in Sect. 6.
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4.3 Experiment 3 – Boosted case

To prevent overfitting by the neural density estimator and
circumvent overconfident parameter posteriors, we may
use multiple “weak” LSTM surrogates as opposed to one
“strong” surrogate. We utilize an ensemble of surrogate
LSTM simulators with distinct bias stemming from surrogate
misspecification subject to the initialization and selection of
training data. That ensemble is then used to generate the set
of simulated pairs {θ,Y } to train a new neural density esti-
mator. The underlying principle is that the overall behavior
of an ensemble of surrogate simulators in aggregate may not
be biased, even if each individual simulator has its own bias.

Experiment 3 is our Boosted case. As in Experiment 2, we
attempt to infer the parameters of synthetic observation(s)
reserved from ParFlow, p(θ |Y = YObs_ParFlow). As opposed
to experiments 1 and 2, we learn the conditional probability
from an ensemble of 10 surrogate LSTM simulators instead
of just 1. We refer to the LSTM ensemble as a boosted sur-
rogate. Compared with the LSTM used in experiments 1 and
2, these LSTM networks are trained for fewer epochs (100
compared with 300) and on a smaller random split of the
data (0.7 compared with 0.6). The reserved test data are the
same across the LSTM networks for experiments 1, 2, and
3. Note that we do not use an adaptive learning algorithm
such as AdaBoost (Freund and Schapire, 1997); instead, we
equally weight each weak LSTM simulator. The neural con-
ditional density estimator is trained by taking a random draw
from the ensemble of LSTM networks and using the selected
LSTM network to generate a forward simulation of stream-
flow from a randomized parameter combination. Thousands
of such draws are repeated until the conditional density has
been sufficiently learned (see Appendix B for details), at
which point it can be utilized for parameter inference.

Results of the Boosted case in Experiment 3 show that
we may be able to work around the issue of overconfident
posteriors encountered in the Tough case in Experiment 2.
Figure 6a shows precise and accurate parameter inference
for our benchmark case in Experiment 3. The benchmark
parameter values are in the area identified by the highest
probability, as opposed to in Experiment 2. We note that
the area of highest density is somewhat larger than in Ex-
periment 2. The determinant is 5× 10−7, which is about an
order of magnitude higher than the Tough case (6× 10−8).
The Mahalanobis distance is 1. For comparison, the Maha-
lanobis distance in the previous “overconfident” experiment
was 7. The inferred parameters generate streamflow simula-
tions that characterize the synthetic streamflow observation
well, as shown by the posterior predictive check (Fig. 6b). We
note that, compared with Experiment 2 (Fig. 5b), our simula-
tions are somewhat more variable, as shown by the larger dis-
tance between the minimum and maximum simulated data.
The average streamflow error is about twice as high for the
Boosted case compared with the Tough case (2× 10−2 com-
pared with 1× 10−2). The standard deviation of the error is

Figure 6. Results of the parameter inference and posterior predic-
tive check on synthetic observation YObs_ParFlow_A in Experiment 3
(Boosted case). Subplots (a) and (b) show an accurate parameter in-
ference that is somewhat less precise, resulting in a wider, although
still well-constrained, posterior predictive check.

also greater (5×10−3 compared with 2×10−3). The sacrifice
of precision with respect to both parameter inference and the
posterior prediction is a consequence of using an ensemble
of surrogates to simulate each parameter set.

4.4 Experiment 4 – Weighted case

In the preceding experiment, we aimed to rectify overcon-
fident parameter estimates arising from SBI due to surro-
gate misspecification. Adding an informal likelihood mea-
sure to the inferential paradigm may help to address the is-
sue of overconfident parameter estimates by decreasing the
importance of low-credibility simulator structures. Experi-
ment 4 demonstrates our Weighted case. As in experiments
2 and 3, we attempt to infer the parameters of synthetic ob-
servation(s) reserved from ParFlow, p(θ |Y = YObs_ParFlow).
We extend the competing set of surrogate simulators from
Experiment 3, each with distinct misspecification relative to
ParFlow, to train a set of neural density estimators. These are
evaluated with the synthetic observations to generate poste-
rior parameter estimates and the associated posterior predic-
tive check for each simulator considered. As opposed to ex-
periments 1, 2, and 3, we use the KGE of the simulated data
drawn from the posterior predictive check to weight the im-
portance of each set of inferred parameters. The added met-
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ric, the informal likelihood, emphasizes credible simulator
structures and simulations (values for parameters θ and re-
sulting simulated data Y ) and safeguards against those that
deviate significantly from observations. Simulations scoring
less than persistence (defined by setting next week’s pre-
dicted data equal to today’s observed data) are considered
not to be credible and are assigned a weight of zero. The
weights, w, are used to condition sampling from p(θ |Y =

YObs_ParFlow). Weighted sampling yields a new set of inferred
parameters p(θ |Y = YObs_ParFlow, w). We term this quantity
the weighted posterior parameter density, an output of the
methodology described in Sect. 3.8.

Table 3 characterizes the parameter estimates from the set
of competing surrogate simulators and posterior density esti-
mates for the benchmark scenario, YObs_ParFlow and θA. Each
simulator is a separate row, with the resultant weighted out-
come last. Some surrogate simulators are more credible than
others, where credibility is represented by the average KGE
of simulated data taken from the posterior predictive check
for each surrogate. The average KGE (second column in Ta-
ble 3) for most simulators clusters above 0.90, and this value
is near a perfect match (value of 1) for simulators 7 and 9.
Simulators 3 and 6, with average KGE values below 0.80,
are generally less credible. The weighted KGE of 0.94 (bot-
tom row in Table 3) indicates that the performance of the
weighted outcome most closely resembles the most-credible
simulators, but it also incorporates information from less-
credible ones.

The simulator weights, which are calculated from individ-
ual simulation KGE values, are presented in the third column
of Table 3. The simulators that produce many credible simu-
lations have a higher weight. Because predictive checks from
simulators 8, 4, 5, 7, and 9 contain an equivalent number of
credible simulations, they are nearly equally weighted. Sur-
rogates 1, 3, and 6 have many rejected simulations, which
are assigned a weight of zero. The percentage of simulations
drawn from the posterior predictive check for each simulator
with a KGE value less than the limit of acceptability (0.81)
is shown in the fourth column.

The relative accuracy of parameter estimates is presented
in the fifth column of Table 3 as the Mahalanobis distance,
DM, of the posterior parameter density for each surrogate.
The parameter estimates derived from the weighted poste-
rior density are more accurate than those drawn from all but
Simulator 7. This increase in accuracy reflects, in part, that
more highly weighted members are associated with more-
accurate parameter estimates compared with those with
lower weights. Note that the weighted parameter estimate is
also less precise compared with that of the individual surro-
gates, as represented by the determinant |6| in column six of
Table 3.

Results of the Weighted case in Experiment 4 demon-
strate that it is a viable approach to the issue of overcon-
fident posteriors encountered in the Tough case in Experi-
ment 2. Figure 7a shows accurate parameter inference for

Figure 7. Results of the parameter inference and posterior pre-
dictive check on synthetic observation in Experiment 4 (Weighted
case). Subplot (a) shows an accurate parameter inference that is
somewhat less precise and discontinuous, focused on simulator
structures that are associated with a higher informal likelihood. The
result is a narrow, well-constrained posterior predictive check in
subplot (b).

our benchmark case in Experiment 4. As in Experiment 3,
the benchmark parameter values are in the area identified
by the highest probability. The Mahalanobis distance, 1.1,
is like that of Experiment 3. The geometry of the area of the
highest density differs from Experiment 3, covering a larger
area due to differences in the unweighted parameter esti-
mates associated with each surrogate. As a result, the param-
eter estimate is less precise: the determinant |6| is 3×10−6,
which is about an order of magnitude higher than the Boosted
case (5× 10−7). The inferred parameters generate stream-
flow simulations that characterize the synthetic streamflow
observation well, as shown by the posterior predictive check
(Fig. 7b). We note that, compared to Experiment 3 (Fig. 6b),
our simulations are about as variable. The average stream-
flow RMSE is similar for the Boosted case and the Weighted
case (2× 10−2). The standard deviation of the error is also
very similar (5× 10−3 compared to 6× 10−3).

4.5 Summary of experiments 1–4

Previously, we compared the performance of simulation-
based inference in experiments 1 (Best case), 2 (Tough case),
3 (Boosted case), and 4 (Weighted case) on only one bench-
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Table 3. Calculation of the weighted posterior density from a set of competing surrogates for baseline synthetic observation YObs_ParFlow_A.

Simulator1 KGE2 Cumulative weight (%)3 Rejections (%)4 D5
M |6|5

9 0.97 13.5 % < 0.200 % 3.8 2.9× 10−7

7 0.97 13.4 % < 0.200 % 0.3 7.2× 10−8

5 0.96 13.3 % < 0.200 % 2.3 1.4× 10−7

4 0.96 13.2 % < 0.200 % 5.4 1.2× 10−7

8 0.95 13.1 % < 0.200 % 4.6 1.2× 10−7

2 0.90 12.4 % < 0.200 % 3.8 1.3× 10−7

0 0.86 11.7 % 2.20 % 1.7 1.2× 10−7

1 0.85 9.34 % 23.0 % 7.0 7.5× 10−7

3 0.78 0.045 % 99.6 % 4.5 1.7× 10−7

6 0.77 < 0.00100 % 100.0 % 6.6 1.8× 10−7

Weighted 6 0.94 – – 1.1 3.0× 10−6

1 Competing surrogate simulators and the probability densities that they implicitly define (n= 10). 2 Average
Kling–Gupta efficiency (KGE) calculated from unweighted posterior predictions. 3 Each posterior predictive simulation
is weighted by the associated KGE; simulation weights are zero if values are poorer than persistence (KGE< 0.81). The
value in this column is the sum of the individual weights of 5000 predictive simulations taken for each surrogate.
4 Count of rejected (zero-weight) simulations divided by the total number of simulations for each surrogate. 5 The
Mahalanobis distance, DM, and determinant, |6|, calculated by comparing θ , Ms = 0.85, and θAKs = 0.60 to the
unweighted parameter posterior p(θ |Y = YObs_ParFlow_A) for each surrogate 6 The weighted posterior parameter
density p(θ |Y = YObs_ParFlow,w), derived by resampling the posterior densities using individual weights. The use of
italics indicates a summary value for each column of the other rows.

mark parameter set. In this section, we expand the com-
parison of SBI across the experiments to a larger number
(n= 18) of parameter sets and corresponding observations.
In the case of experiments 1 and 2, the same neural den-
sity estimator was utilized to conduct inference. For Ex-
periment 3, an ensemble approach was used to create one
new neural density estimator. For Experiment 4, likelihood-
weighted parameter estimates from an ensemble of neural
density estimators was used. In the case of experiments 2,
3, and 4, the mock data are the same benchmark streamflow
simulations from ParFlow; for Experiment 1, the observa-
tions are taken from the surrogate. All four experiments uti-
lize mock data corresponding to the same test parameter sets,
to make an apples-to-apples comparison. For reference, those
test parameter sets are plotted relative to parameter space in
Fig. B1a. The results of the analysis of multiple (n= 18) pa-
rameter sets are shown by the box plots in Fig. 8.

4.5.1 The precision and accuracy of parameter
inference

In general, the parameter estimates from the four experi-
ments are accurate and precise, as shown in Fig. 8a and b.
The Best case (Experiment 1) tends to be both precise and
accurate. Compared with Experiment 1, the Tough case (Ex-
periment 2) tends to be just as precise but less accurate. This
is to be expected, as we made the problem harder for ex-
periments 2, 3, and 4 by not assuming a perfect surrogate.
Experiment 3 tends to be less precise but more accurate than
Experiment 2. Compared with Experiment 3, the Weighted
case (Experiment 4) tends to be even less precise and more

accurate. A couple of second-order discussion points arise
from Fig. 8a and b.

The resulting box plots of the determinant, a metric for the
precision of inference, are shown in Fig. 8b. Here, we see that
the training of the conditional density estimator – and not the
source of the observations – seems to define the precision
of inference. The box plots show that parameter inference is
more precise (i.e., the determinant smaller) for experiments
1 and 2, compared with experiments 3 and 4. Experiments 1
and 2 use synthetic observations from different sources (the
LSTM surrogate and ParFlow, respectively); however, they
are both evaluated using the same neural conditional den-
sity estimator: note the similar behavior of the determinant
in the first two experiments. On the other hand, the deter-
minant behaves quite differently in Experiment 2 compared
with experiments 3 and 4; all three experiments use synthetic
observations from ParFlow but use different configurations
of the neural conditional density estimator. In the case of
Experiment 3 (the Boosted case), differences within an en-
semble of LSTM surrogates are lumped into the training of
one neural density estimator; in the case of Experiment 4
(the Weighted case), those differences are incorporated in the
training of separate neural density estimators. Results show
that Experiment 3 is associated with greater precision in pa-
rameter inference (i.e., smaller determinant) compared with
Experiment 4, as shown by the expanded volume of the pa-
rameter estimates in Figs. 7a compared with 6a. The lump-
ing approach in the Boosted case may smooth differences
between the surrogates, de-emphasizing parameter combina-
tions in the tails of the separated posterior densities used in
the Weighted case. The likelihood-weighting and limits of
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Figure 8. Comparative plots showing the performance of the
simulation-based inference of parameters and predicted quantities
across a set of n= 18 test data. We compare the results of ex-
periments 1 (Best case), 2 (Tough case), 3 (Boosted case), and 4
(Weighted case). Subplots (a) and (b) show the respective accu-
racy and precision of parameter inference: accuracy is shown in
subplot (a) via the Mahalanobis distance of the posterior parameter
density; precision is shown in subplot (b) via the determinant, |6|.
Subplots (c) and (d) show the respective accuracy and precision of
the posterior predictive check: subplot (c) shows the average of the
error, RMSEAve, of streamflow ensembles relative to “truth”, which
can be thought of as a measure of accuracy; subplot (d) shows the
standard deviation of the error, RMSESD, of streamflow ensembles,
which can be thought of as a measure of precision. Values closer to
the x axis are more desirable.

acceptability also influence the distribution of the parame-
ter estimate, although not in a manner that significantly de-
creases its precision. More fundamentally, the precision of
parameter inference for those methods seems to reflect the
simulator(s) (i.e., the variety in simulated responses, Y , to
parameter configurations, θ ) and not contain much, if any,
information about the goodness of fit between observations,
YObs, and simulated data, Y .3

Box plots of the Mahalanobis distance4, a metric of the
accuracy of inference, are shown in Fig. 8a. The box plots
show that parameter inference in experiments 2 and 3 de-
grades with respect to accuracy compared with Experi-
ment 1, whereas parameter inference from Experiment 4 is
nearly as accurate. The box plots also demonstrate that pa-

3This behavior is also observed in Fig. D1a, which shows that
the determinant exhibits a fixed pattern across parameter space.

4Note that the Mahalanobis distance is a precision-weighted
metric of distance, unlike Euclidean distance. These numbers
should not be considered raw distance.

rameter inference is generally more accurate for the Boosted
case (Experiment 3) compared with the Tough case (Exper-
iment 2). However, the Mahalanobis distance is greater at
some outlier points in the Boosted case (Fig. 7b). This means
is that, although it yields more accurate inference in some
parts of parameter space (for example, the benchmark param-
eter set θA explored throughout the earlier results sections),
the Boosted case implementation is no silver bullet for avert-
ing overconfident parameter estimates. On the other hand, the
Weighted case introduced in Experiment 4 is consistently as-
sociated with much smaller Mahalanobis distances compared
with either the Tough or Boosted cases. The apparent accu-
racy of the Weighted case can be attributed to the likelihood-
based weighting and limits of acceptability methodology as
well as to the decrease in precision due to drawing from a set
of competing density estimates.

4.5.2 The precision and accuracy of posterior
predictions

Taking this one step further, we can use the inferred parame-
ter distributions to generate an ensemble of streamflow sim-
ulations using the LSTM and compare this to the observed
streamflow (referred to as our posterior predictive check). As
shown in Fig. 8c and d, the posterior predictions are precise,
and generally fairly accurate. Figure 8c shows the average of
the error (RMSEAve) between the simulated streamflow time
series and the observed time series, with lower average er-
ror corresponding to greater accuracy. Streamflow prediction
accuracy decreases between experiments 1, 2, and 3. This is
represented by the fact that the RMSEAVE increases nearly
3-fold across each of our experiments (median of ∼ 0.005
in the Best case, ∼ 0.010 in the Tough case, and ∼ 0.015 in
Boosted case, in scaled streamflow units). The degradation
of the posterior predictive accuracy is related to the degra-
dation of the accuracy of parameter inference (Fig. 8a). Fig-
ure 8d shows the variability in the error (RMSESTD) between
the simulated streamflow time series and the observed time
series, with lower error variability corresponding to greater
precision. We see that the central tendency of the RMSESTD
of streamflow simulations for the Best, Tough, and Boosted
cases are all similar. Streamflow posterior predictions across
all three experiments remained precise, in spite of the break-
down in the accuracy.

In Experiment 4 (the Weighted case), the posterior pre-
dictive accuracy (RMSEAVE) and the average variability
(RMSESTD) is improved compared with Experiment 3. Im-
provement is seen in the outliers, where simulator configu-
rations with a poor fit relative to observed data are assigned
low or no weight in Experiment 4 based on the informal like-
lihood. Importantly, the KGE was used in the calculation of
the informal likelihood. Therefore, conclusions about the ac-
curacy and precision of posterior predictions associated with
the four experiments may differ as measured by the KGE as
opposed to the RMSE.
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The multi-observation comparison helps us to generalize
some insights. Briefly, these are as follows:

1. Inference results are often desirable; in particular, SBI
seems to result in precise parameter inference across all
conditions.

2. Parameter inference with a well-trained surrogate simu-
lator is precise, but it is not always suited to conducting
inference on observations with an uncertain relationship
to simulated data (as in Experiment 2).

3. The performance of posterior predictive checks is de-
pendent on both the performance of the simulator and
the neural density estimator. As such, it can be a valu-
able tool in assessing the performance of parameter in-
ference.

4. Although a density estimate derived from an ensemble
of simulators (as in Experiment 3) may yield more accu-
rate parameter inference, overconfident parameter esti-
mates are a recalcitrant problem for some observed data.

5. In Experiment 4, an approach to likelihood-weighting
parameter estimates from SBI was demonstrated to
overcome the problem of overconfidence in these con-
trolled experiments.

5 Discussion

As users of hydrologic tools such as high-fidelity, process-
based simulators, we are often interested in finding simu-
lator configuration(s) most consistent with catchment ob-
servations and established physical theory. In practice, this
gives rise to uncertainty about whether a simulator is “ad-
equate”, as measured by its predictive ability and structural
interpretability (Gupta et al., 2012). In the special case where
a correct simulator structure exists, the practitioner’s task is
to conduct a specification search (Leamer, 1978) to identify
it; other candidate simulators inconsistent with observations
and theory can be said to be misspecified (Cranmer et al.,
2020). One example of misspecification in this work is un-
derscored by the misfit between the process-based ParFlow
and the surrogate LSTM simulators. We call this special sit-
uation surrogate misspecification.

Our research shows that using a misspecified surrogate to
conduct simulation-based inference for a process-based hy-
drologic simulator can yield erroneous parameter estimates.
These overconfident estimates occur because the neural den-
sity estimator learns the conditional relationship between pa-
rameters and data only from the surrogate simulator. Thus,
SBI explicitly infers inputs to the surrogate and not parame-
ters of the process-based simulator. Given surrogate misspec-
ification, the inferred values of parameters may not retain
their physical significance with respect to the process-based

simulator; this can be a barrier to the interpretability of those
simulator configurations identified by inference.

We demonstrate that erroneous parameter estimates due
to surrogate misspecification can be addressed through in-
formal Bayesian model averaging (BMA). This approach to
BMA applies a performance check – the informal likelihood
– to weight and reject simulator configurations identified by
SBI. Notably, the likelihood and related limits of accept-
ability are chosen by the practitioner based on simulation
goals. Thus, broadly, informal BMA belongs to the class
of approaches to encode expert/domain knowledge into a
deep-learning framework (e.g., Reichstein et al., 2019). More
specifically, SBI conducts a preliminary search of parameter
space for plausible simulator structures and configurations,
and the likelihood test incorporates expert-defined informa-
tion about simulator adequacy into the parameter estimates.
Overconfident parameter estimates carry the risk of under-
representing the uncertainty in the inferences that we draw
form simulators. Our work shows that, with these two meth-
ods in combination, erroneously overconfident parameter es-
timates are less likely to occur, compared with standalone
SBI.

In our experiments, we focused investigation on SBI and
not the process-based simulator. Extending this methodol-
ogy to observed data requires consideration of many addi-
tional sources of uncertainty compared with the synthetic
case. Among these is much deeper uncertainty about which
simulator structure(s) is (are) appropriate. In the synthetic ex-
periments presented, the relationship between the simulator
(the surrogate) and the data-generating process (ParFlow) is
well-defined; the surrogate is learned directly from ParFlow.
However, for real hydrologic problems, physics-based sim-
ulators are nearly always simplified representations of real
data-generating processes; stumbling upon a true representa-
tion is unlikely or even impossible. Moreover, physical pa-
rameters like the hydraulic conductivity (K) and Manning’s
roughness (M) are themselves conceptual quantities and are
almost never known at the scale that we care about, mak-
ing estimates difficult to validate (Oreskes et al., 1994). In
this real-world case, the practitioner’s search may be for
a set of adequate simulator structures and configurations
(i.e., Gupta et al., 2012), where adequacy is subjectively de-
fined. Here, a reasonably good estimate of the hydrologic
variable (i.e., streamflow) is often what catchment scientists
strive for (van Fraassen, 1980). For completeness, a worked
example demonstrating the estimation of parameters using
the current simulator formulation and observed streamflow
data from the Taylor River catchment is presented in Ap-
pendix E. The critic might suggest that not enough was done
to tailor the present analysis to real-world data. We disagree
on the grounds that our purpose here is to rigorously present
and evaluate a method for parameter inference given well-
defined constraints. The challenge of this goal is real and rel-
evant. In fact, this work seems to show an upper bound for the
performance of SBI where undiagnosed structural error ex-
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ists. A novel simulation-averaging approach inspired by ap-
proximate Bayesian averaging (BMA) and general likelihood
uncertainty estimation (GLUE) (Hoeting, 1999; Beven and
Binley, 1992) is demonstrated to be an important check to
SBI, in presented synthetic and real examples. Further com-
parison to observations would instead shift the focus of this
work from the quality of the SBI and BMA methods to the
quality of the underlying hydrologic simulator.

At the core of the challenge of extending SBI is the de-
velopment of simulators that adequately capture hydrologic
behavior. These challenges arise in both the surrogate and
the PB simulators. For example, the LSTM surrogate simula-
tor in this study is relatively effective at mimicking ParFlow.
This is understandable because the catchment is dominated
by snowmelt, which the LSTM mimics well due to its strong
memory capabilities. However, in arid catchments, stream-
flow dynamics are often driven more strongly by short-term
reactions to acute rainfall events, and LSTM networks may
struggle to represent these processes (Feng et al., 2020).
Additionally, PB simulators are not perfect; for example,
Richard’s equation may not adequately represent groundwa-
ter flow through fractured bedrock (Ofterdinger et al., 2019)
or preferential unsaturated zone flow (Vriens et al., 2021).
Inadequate surrogate and PB simulator structures may yield
erroneous parameter estimates when coupled with SBI.

A more nuanced question regarding simulator adequacy is
“How good is good enough?”. For example, when should an
LSTM trained on PB simulator representations of arid catch-
ment conditions be used with SBI for parameter estimation?
The informal performance-weighting approach defines simu-
lator adequacy to exclude poorly performing surrogate simu-
lator structures from the parameter estimation process. Here,
the practitioner’s belief in each simulation defines its ade-
quacy. This performance-weighted approach within the SBI
framework can mitigate issues arising from mismatches be-
tween the system of interest and the surrogate simulator. If a
surrogate trained on arid catchment conditions fails to meet
the acceptability criteria, SBI will yield no viable parameter
estimates, signaling the need for simulator reevaluation (as
explored in Appendix E). This outcome highlights the ne-
cessity for practitioners to reconsider the assumed simulator
structures, whether surrogate or process based.

The development of robust simulator structures, both sur-
rogate and process-based, remains a central challenge in hy-
drology. Advances in surrogates capable of representing spa-
tially distributed hydrologic systems and the use of high-
fidelity PB simulators, like ParFlow, which capture a broad
range of hydrologic processes across various scales, continue
to enhance our ability to simulate real hydrologic conditions.
As these simulators improve, so too will the overall effective-
ness of SBI. Logical next steps to further extend this method-
ology to the real case are outlined below.

Adding additional complexity to the training set for the
surrogate simulator (i.e., exploring a larger number of param-
eters configurations, their spatial variability, or multiple forc-

ing scenarios) may help yield better estimates and associated
predictions. Many of the practitioners of simulation-based in-
ference advocate packing as much complexity into simula-
tors as possible (Alsing and Wandelt, 2019). High-resolution
process-based simulators (such as ParFlow) can be used to
explore the realistic behaviors of catchments across a great
number of variable and parameter configurations by leverag-
ing surrogate simulators trained using deep learning and SBI.
Beyond the informal BMA evaluation of SBI presented here,
it may also be important to control for the trade-off between
complexity and parsimony in this expanded set of simula-
tor structures and configurations. This could be achieved us-
ing a framework similar to the Akaike information criterion
(e.g., Schoups et al., 2008), which adds a penalty term related
to the number of estimated physical parameters in the likeli-
hood evaluation. A similar “penalty for complexity” concept
was explored in traditional applications of Bayesian simula-
tor averaging for statistical models through Occam’s window
(Madigan and Raftery, 1994).

SBI is well-suited for inference in high-dimensional space,
and has had many adaptations (Cranmer et al., 2020). As
with any approach to inference, scaling to a greater num-
ber of parameters will bump into computational constraints.
Those constraints come from the cost of simulation (i.e., in
the present work, the cost of our PB simulations) and the
cost of inference (i.e., the cost of training and evaluating the
neural density estimator). In our study, the cost of PB simu-
lation is high, and this has a compounding effect on the cost
of inference. Utilizing a surrogate can reduce the cost of in-
ference by reducing the need to resort to the PB simulator;
however, we show that the resulting parameter estimates may
not be accurate if the surrogate is not perfect. Focusing in-
ference on the most informative parts of higher-dimensional
parameter space is important if SBI is conducted directly
with a costly simulator. Papamarkarios’ early work with SBI
developed sequential neural sampling techniques that might
be less wasteful than other approaches to sampling parame-
ter space (i.e., Papamakarios et al., 2018; Lueckmann et al.,
2017; Greenberg et al., 2019). Tsai et al. (2021) used a neural
network to learn the mapping between physical parameters
and outputs only for PB simulator configurations that cor-
responded closely to observations; SBI can be implemented
similarly. However, any framework for parameter learning
focused only on observed behavior needs to be updated as
new observations become available and may omit reasonable
model configurations from the parameter estimates. Lastly
is the option of compressing or reducing the dimensionality,
which could be important for estimating distributed parame-
ters. The topic of compression and SBI is explored by Asling
and Wandelt (2019).

Including additional catchment observation types (i.e.,
groundwater and soil moisture) in the inference workflow
could also improve estimates of the physical parameters for
real systems as well as for the predictions associated with
complex simulators. However, observations in hydrology –
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particularly of groundwater systems – are generally sparse.
This presents a problem. One option is to better observe that
complexity. New spatially distributed “big data” products
that leverage remote sensing offer new opportunities to ob-
serve hydrologic variables like soil moisture (Mohanty et al.,
2017; Petropoulos et al., 2015). The extension of the method-
ology to real-world observations will also need to consider
the role of data quality, adequacy (Gupta et al., 2012), and
disinformation (Beven and Westerberg, 2011) as well as the
challenge of defining limits of acceptability regarding model
performance.

6 Conclusion

Our investigation implements simulation-based inference
(SBI) to determine parameters for a spatially distributed,
process-based catchment simulator. We believe that this re-
search is among the first to apply contemporary SBI to catch-
ment modeling. The implementation employed here has a
couple of noteworthy features, which are outlined in the fol-
lowing.

– We use deep learning to train a surrogate long short-
term memory (LSTM) network on the original phys-
ically based simulations (from ParFlow). This allows
for quick and comprehensive exploration of simulation
results for which we have corresponding observations,
such as streamflow at a catchment outflow in a catch-
ment.

– A density-based neural network leverages the capacity
of the surrogate to generate simulations quickly to learn
a representation of the full conditional density, p(θ |Y ),
of parameters given data. This learned conditional den-
sity can be evaluated using observations to determine
the parameter posterior density, p(θ |Y = YObs). This
parameter posterior represents our best guess of what
the parameters for our simulator should be.

We demonstrate that this approach to SBI can generate
reasonable estimates of the parameters of a hydrologic sim-
ulator, ParFlow, through a set of synthetic experiments. In
Experiment 1 (the Best case), we show that SBI works well
in controlled settings in which we assume that our surro-
gate LSTM simulator is accurate. Moreover, this experiment
highlights how, once learned, the model of the conditional
density can be used to determine the process-based param-
eters rapidly and effectively for many observations without
the need for additional process-based simulations. That is
particularly valuable when simulations are costly, as is of-
ten the case with high-resolution, transient simulators used
in the field of catchment modeling.

In Experiment 2 (the Tough case), we show that SBI pro-
duces a set of probable parameters with precision in settings
where the simulator does not represent the underlying system

generating the observation perfectly. These inferred parame-
ters are used to generate reasonable streamflow simulations
relative to observations. However, the Tough case shows that
parameter inference is not always accurate with respect to the
physics-based simulator that was used to train the surrogate.
This undesirable characteristic (of precision but not accuracy,
or overconfidence) arises from issues related to the structural
adequacy of the simulator, which is well-recognized in the
literature as an impediment for accurate parameter inference
(Cranmer et al., 2020). The controlled nature of Experiment 2
explores the special case of surrogate misspecification. This
special case arises from a mismatch between the surrogate
and the process-based simulations from ParFlow. In infer-
ence, surrogate misspecification gives rise to error in esti-
mates of the physical parameters. We show that sources of
this error can be quite difficult to diagnose, although con-
ducting a posterior predictive check is a qualitative way of
ascertaining the extent of simulator bias.

In experiments 3 and 4 (the Boosted and Weighted cases,
respectively), we attempt to address the issue of overconfi-
dent parameter inference due to misspecification. In Exper-
iment 3, we use an ensemble of weak surrogate simulators
(instead of just one strong surrogate simulator) to learn the
full conditional density. The underlying principle is that the
behavior of an ensemble of surrogate simulators in aggregate
may not be biased, even if each individual simulator has its
own bias. This may “wash out” the negative effects of surro-
gate misspecification on parameter inference. Evidence from
the Boosted case shows that this approach reduces the oc-
currence of overconfident parameter estimates, but it is not a
silver bullet for conducting accurate inference.

In Experiment 4 (the Weighted case), the practitioner as-
signs a measure of belief to parameter estimates from a set of
competing surrogate simulators, reflecting their confidence
in its validity. This measure of belief – or informal likelihood
(i.e., Beven and Binley, 1992) – is used to weight and reject
simulator configurations identified by SBI. The underlying
principle is that SBI conducts a preliminary search of param-
eter space for plausible simulator structures and configura-
tions, and the likelihood test incorporates expert-defined in-
formation about simulator adequacy into the parameter esti-
mates. The Weighted case is demonstrated to solve the prob-
lem of overconfident parameter estimates introduced by sur-
rogate misspecification.

The results of experiments 2, 3, and 4 demonstrate
progress towards being able to implement SBI in hydrolog-
ical domains subject to uncertainty that we can benchmark
(i.e., the misspecification of the surrogate). Additional work
is needed to address deeper uncertainty about the structural
adequacy of the underlying physics-based simulator. This un-
certainty often exists in catchment modeling – due to factors
such as natural heterogeneities in the subsurface, approxima-
tions in process parameterizations, and bias in the meteoro-
logical input data – that can seldom be fully accounted for.
Thus, the notion of structural “adequacy” is nearly always
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subjective (Gupta et al., 2012). In many real-world applica-
tions, a calibrated estimate of the hydrologic variable (i.e.,
streamflow) is what catchment scientists strive for. Enhanc-
ing standalone SBI with the likelihood-weighting methodol-
ogy introduced in Experiment 4 embraces this principle of
subjective adequacy and is broadly extendable to more com-
plex inference problems in catchment modeling. When no
simulators are identified as adequate, an obvious next step is
to expand the simulator to explore more and different config-
urations of parameters and input variables.

Appendix A: The process-based simulations (ParFlow)

Table A1. The relationship between ParFlow and LSTM static inputs (e.g., parameters, θ ), dynamic inputs (e.g., meteorological forcings,
X), and dynamic outputs (e.g., streamflow, Y ). ParFlow variables must be compressed into lower-dimensional representations in order to be
used in the LSTM. Non-italicized content constitutes the general descriptions of the parameters, inputs, and outputs of the table. Italicized
content is further commentary.

ParFlow description LSTM description

Parameters, θ (a) 2D homogeneous Manning’s roughness (M)
(b) 3D heterogeneous hydraulic conductivity (K)
(Other static inputs, such as soil properties and land cover,
are not used by LSTM.)

(a) Scalar value (Ms) set for all values of M
(b) Scalar factor (Ks) multiplied by all values of K
(Both values are log transformed and re-normalized
to be between zero and one.)

Dynamic outputs, Y Hourly, 3D spatially distributed pressure field Daily, 1D discharge time series (length= 350)
at location i, j , corresponding to USGS gage
ID 09110000, are created as follows:
1. Gridded discharge is calculated using surface
pressure, slopes, Manning’s roughness, and resolu-
tion via the overland flow equation for each hourly
time step (n= 8.760) of 1 year of ParFlow results.
2. Data are sliced at location i, j , and a daily aver-
age is calculated.
3. The first 15 d of record (burn-in time) is removed,
and values are re-normalized between zero and one.

Dynamic inputs, X Hourly, 2D spatially distributed meteorological forcings, in-
cluding the following:
– DLWR – direct longwave radiation (W m−2);
– DSWR – direct shortwave radiation (W m−2);
– Press – atmospheric pressure (Pa);
– APCP – precipitation (mm s−1);
– Temp – air temperature (K);
– SPFH – specific humidity (kg kg−1);
– UGRD – east–west wind speed (m s−1);
– VGRD – south–north wind speed (m s−1)

Daily, 1D time series (length= 350) are used for each
(n= 8) forcing.
(Except for APCP, forcings are averages taken over
space and time for all hours (n= 24) in each day.
APCP is the sum over space and time for all hours
(n= 24) of precipitation each day.)

Table A2. ParFlow was run many times under different parameter configurations. This table shows the scalar factors used to modify the
spatially distributed Manning coefficient and hydraulic conductivity. We call these factors Ks and Ms, respectively, to keep the distinction
between them and ParFlow’s parameters clear.

Ks (scaling factor times whole domain) (unitless) Ms (constant across domain) (h m−(1/3))

Scalar parameters 0.001, 0.01, 0.025, 0.05, 0.075, 1e-8, 1e-7, 2.5e-7, 5e-7, 7.5e-7,
0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10 1e-6, 2.5e-6, 5e-6, 7.5e-6, 1e-5, 2.5e-5, 5e-5, 1e-4
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Figure A1. Sensitivity of ParFlow-generated streamflow time series for water year 1995 to perturbations in the hydraulic conductivity and
Manning’s coefficient. We show the sensitivity of holding Ks and Ms constant at 0.1 and 5× 10−6, respectively, while varying the other
values across the range of parameters explored in Table A2.

Appendix B: The surrogate simulator (LSTM)

Table B1. Relevant notes on the architecture, training, and hyperparameters for the surrogate LSTM simulator.

LSTM Further description

Number of epochs 300 Number of times iterating through training loops
Batch size 50 Batching during training
Input size 10 Number of input features
Hidden layers 1 Number of hidden layers
Hidden size 10 Number of hidden nodes/layers
Number of classes 1 Number of nodes in output
Objective function MSE Mean-squared error
Optimizer Adam
Learning rate 0.001
Training–validation–test split 0.7, 0.2, 0.1 Simulations were divided into sets based on their pa-

rameters, such that each member characterizes the
streamflow response (encoded as a yearlong time series)
to an individual pair of Ks and Ms parameter values. We
conduct the training–validation–test split in a pseudo-
Latin hypercube manner across parameter space.

Figure B1. Plots show the training–validation and test split for the LSTM surrogate trained on n= 183 ParFlow simulations. In subplot (a),
the locations in parameter space where ParFlow simulations were run are shown. The surrogate was trained and tested at the orange dots. In
subplot (b), a comparison of ParFlow to LSTM streamflow simulation generated at benchmark parameter set θA, Ks ∼ 0.6, and Ms ∼ 0.85
is shown. The fit between ParFlow and LSTM is explored more in Sect. 4 of the paper.
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Appendix C: Improved components for SBI

Deriving implicit statistical models using density estimation
techniques is not new (Diggle and Gratton, 1984). How-
ever, these traditional approaches suffer from some short-
comings, including sample efficiency and inference quality,
as described further in Cranmer et al. (2020). We show two
components of the density-based SBI workflow utilized here
that have benefited due to recent innovations: masked autoen-
coder for density estimation (MADE) and sequential neural
posterior sampling.

C1 Masked autoencoder for density estimation
(MADE)

While mixture density networks have a long operational his-
tory, there have been more recent innovations in using neural
networks to learn and represent conditional probability distri-
butions. This study utilizes a class of neural density estima-
tors called masked autoregressive flows (Alsing et al., 2019),
which shares some of the underlying principles described for
mixture density networks. Masked autoregressive flows arise
from the principle that “any probability density can be fac-
torized as a product of one-dimensional conditionals” via the
chain rule (Alsing et al., 2019); these 1D conditionals are pa-
rameterized by a fully connected neural network known as
a masked autoencoder for density estimation (MADE) (Uria
et al., 2016). Masked autoregressive flows are composed of
“stacks” of masked autoencoder for density estimations, to
add flexibility (Papamakarios et al., 2018). A detailed de-
scription of these methods is beyond the scope of this paper.

Table C1. Hyperparameters and model architecture for neural density estimation. The reader is also referred to Tejero-Cantero et al. (2020)
for more information.

Hyperparameter Value Significance

Inference method SNPE_C Sequential neural posterior estimator (see text)
Neural density model, qφ(θ |Y ) MAF Masked autoregressive flow (see text)
Hidden features 10 Number of hidden layers in each MADE of qφ(θ |Y )
Number of transforms 2 Number of flows (transforms) between MADE in qφ(θ |Y ), MAF
Prior_min, Prior_max 0.0, 1.0 Minimum and maximum possible values of qφ(θ |Y ), Ks, and Ms
Prior function Uniform All values a priori equally possible in parameter space
Number of simulations 1000 Number of simulated {θ,Y } pairs, used to train qφ(θ |Y )
Number of samples 5000 Number of sampled {θ,Y } pairs, used to evaluate qφ(θ |Y )

C2 Sequential neural posterior estimation

We use a sampling technique called sequential neural pos-
terior estimation (SNPE) to speed up and improve the eval-
uation of a trained neural conditional density estimator. By
evaluation, we mean using data Y (most typically observed
data, YObs) to generate a posterior estimate p(θ |Y = YObs)

here (step 4 in Sect. 3.5). The need for SNPE arises from
the challenge that drawing simulation parameters from the
full prior distribution is wasteful (Papamakarios et al., 2018;
Lueckmann et al., 2017; Greenberg et al., 2019). This is due
to the fact that data simulated from some parts of param-
eter space have higher or lower posterior density for YObs.
SNPE iteratively refines the posterior estimate to make infer-
ence more efficient and flexible, as described by Greenberg
et al. (2019).

Details related to the architectures, hyperparameters, train-
ing, and evaluation of neural density estimators are shown in
Table C1. Decisions about hyperparameters were made via
trial and error. It is important to note that the goal of our
work is not to create the most robust neural density estimator
model; rather, we aim to explore inference under a variety of
different conditions.
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Appendix D: Inference for many observations,
YObs_LSTM_i

A trained neural density estimator can be used to infer the
parameters of an observation without the need for addi-
tional simulation runs. In this section, we extend Experi-
ment 1 (the Best case) to quickly and effectively evaluate the
posterior parameter density for many synthetic observations
(YObs_LSTM_i). We use many parameter sets (θi) of Ks and
Ms sampled uniformly across parameter space to generate an
equivalent number of synthetic observations, where i = 1, 2,
. . . , 441.

SBI can infer the parameters from many diverse and dif-
ferent synthetic observations well, as shown in Fig. D1. The
precision of inference of the posterior parameter densities is
explored in Fig. D1a as a map of determinants across parame-
ter space. Parameter inference is more precise (with a smaller
determinant) in the center than at the edges of the parameter
space; it is below our precision threshold of 1× 10−6 ev-
erywhere. Parameter inference is accurate across parameter
space, as shown by the map of the Mahalanobis distance in
Fig. D1B. There are some pockets of parameter space char-
acterized by more- and less-accurate parameter inference.
The structure of the Mahalanobis distances across parame-
ter space does not seem to be as well-defined as that of the
determinant; this is likely a consequence of randomness in
the initialization of the neural density estimator (confirmed
by many independent trials). We note that evaluating each of
the synthetic observations in Fig. D1 took only a few sec-
onds.

Figure D1. Once the neural conditional density estimator is trained, it can be evaluated quickly and effectively given new data. This figure
shows the performance of SBI of Manning’s coefficient (Ms) and the hydraulic conductivity (Ks) given synthetic streamflow data generated
by the surrogate from across 441 locations across parameter space. Subplot (a) shows the determinant, |6|, of the posterior parameter
estimate, which quantifies the precision of parameter inference. Subplot (b) shows the Mahalanobis distance, DM (θTrue), between the
inferred distribution and true parameter values, which quantifies the accuracy of the inference. These values are shown across the entirety
of the parameter space investigated, where purple is better. The red star in the subplots corresponds to the benchmark location θA in the
parameter space of the analysis shown in Fig. 3.

The posterior predictive check shows that streamflow char-
acterization is generally both precise and accurate. This re-
quired drawing a subset of parameters from each of the 441
posterior parameter densities represented as points in Fig. D1
and generating an ensemble of simulated streamflow time se-
ries using the surrogate simulator. The accuracy of the pos-
terior predictions is explored in Fig. D2A as a map across
parameter space. In general, the posterior predictions have
an average error of less than 0.01. Accuracy is highest in the
middle of the parameter space and seems to degrade towards
the upper boundaries where the parameters Ks and Ms are
large. The precision of the posterior predictions is explored
in Fig. D2B as a map across parameter space. In general,
the posterior predictions are precise, with standard deviation
of the error less than 0.01. We note that both the average and
standard deviation of error increase at large parameter values,
in particular large values of hydraulic conductivity. Overall,
Figs. D1 and D2 show that SBI can reliably infer parameters
and characterize streamflow processes for many streamflow
observations that span the parameter space that we investi-
gated.
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Figure D2. Posterior predictive check for many observations: once parameters are inferred, the posterior can be drawn (n= 50) to generate
probabilistic streamflow ensembles. This figure shows the performance of streamflow ensembles derived from SBI at 441 locations across
parameter space. Subplot (a) shows the average of the error (RMSEAve) of streamflow ensembles relative to the “truth”, which can be
thought of as a measure of accuracy. Subplot (b) shows the standard deviation of the error (RMSESD) of streamflow ensembles, which can
be thought of as a measure of precision. Streamflow ensembles are evaluated against the “true” synthetic streamflow time series generated
by the surrogate simulator, where blue is better.

Appendix E: Inference on non-synthetic observations at
the Taylor River

The informal BMA methodology is suited to assessing the
adequacy of model structures and configurations in the real-
world case. In Fig. E1, inference is conducted on the ob-
served streamflow time series for water year 1995 from the
Taylor River gage ID 09110000 (red). Figure E1 shows the
posterior predictive check with confidence intervals from
standalone SBI (blue) as well as the “persistence” baseline
(orange). Model configurations scoring less than persistence
(defined by setting next week’s predicted data equal to to-
day’s observed data) are considered not to be credible and
are assigned a weight of zero. Note that standalone SBI does
not perform well relative to persistence (KGE= 0.94). The
culprit is the timing of peak simulated flows, which occur
on average some 44 d before the peak observation and 51 d
before persistence. With no models superior to persistence,
the BMA methodology returns an empty set; no model struc-
tures (LSTM surrogates) or configurations (parameter sets)
yield predications that are “reasonably good”. In fact, no
model structures or configurations superior to persistence ex-
ist in the full space of possible combinations of M and K ,
as shown by the confidence intervals in gray. We emphasize
to the reader that the BMA methodology results in a desir-
able outcome: all models identified by standalone SBI are
rejected, while overconfident predictions and parameter esti-
mates are avoided.

Figure E1. Time series comparing the observed streamflow for wa-
ter year 1995 (red) with the persistence baseline (orange), posterior
predictive check from standalone SBI (blue), and simulations drawn
from the full parameter space (gray).

Code availability. The repository containing the scripts used to
create the LSTM surrogate simulator and infer parameters by
SBI was created by Robert Hull and can be accessed at
https://github.com/rhull21/sbi_taylor/ (last access: 11 July 2024;
https://doi.org/10.5281/zenodo.13899823, Hull, 2024).

Data availability. The repository containing the scripts to create
inputs and forcing scenarios and run Parflow-CLM for the Taylor
catchment in Colorado was created by Elena Leonarduzzi and can
be accessed at https://github.com/HydroGEN-pubs/Taylor_CO (last
access: 11 July 2024; Leonarduzzi et al., 2022).
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