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Abstract. Soil moisture plays a key role in soil nutrient
and carbon cycling; plant productivity; and energy, water,
and greenhouse gas exchanges between the land and the
atmosphere. The knowledge on drivers of spatiotemporal
soil moisture dynamics in subarctic landscapes is limited. In
this study, we used the Spatial Forest Hydrology (SpaFHy)
model, in situ soil moisture data, and Sentinel-1 synthetic
aperture radar (SAR)-based soil moisture estimates to ex-
plore spatiotemporal controls of soil moisture in a subarc-
tic headwater catchment in northwestern Finland. The role
of groundwater dynamics and lateral flow in soil moisture
was studied through three groundwater model conceptualiza-
tions: (i) omission of groundwater storage and lateral flow,
(ii) conceptual TOPMODEL approach based on topographic
wetness index, and (iii) explicit 2D lateral groundwater flow.
The model simulations were compared against continuous
point soil moisture measurements, distributed manual mea-
surements, and novel SAR-based soil moisture estimates
available at high spatial and temporal resolutions. Based on
model scenarios and model–data comparisons, we assessed
when and where the lateral groundwater flow shapes shallow
soil moisture and under which conditions soil moisture vari-
ability is driven more by local ecohydrology, i.e., the balance
of infiltration, drainage, and evapotranspiration. The choice
of groundwater flow model was shown to have a strong im-
pact on modeled soil moisture dynamics within the catch-

ment. All model conceptualizations captured the observed
soil moisture dynamics in the upland forests, but accounting
for the lateral groundwater flow was necessary to reproduce
the saturated conditions common in the peatlands and oc-
casionally in lowland forest grid cells. We further highlight
the potential of integrating multi-scale observations with land
surface and hydrological models. The results have implica-
tions for ecohydrological and biogeochemical processes, as
well as for modeling hydrology and Earth system feedbacks
in subarctic and boreal environments.

1 Introduction

Soil moisture has a direct influence on land surface energy
fluxes (Seneviratne et al., 2010; Ji et al., 2017), partition-
ing of precipitation into infiltration and runoff (Liu et al.,
2019; Singh et al., 2021), and plant productivity and wa-
ter use (Daly and Porporato, 2005; Lagergren and Lindroth,
2002). It is also a key variable controlling soil microbial
activity and consequent greenhouse gas emissions (Bonan,
1990; Karhu et al., 2014; Lohila et al., 2016; Makhnykina
et al., 2020) and soil carbon balances (Larson et al., 2023).
In the boreal and subarctic regions, climate change is pre-
dicted to amplify seasonal variability of soil moisture due
to longer and more frequent summer droughts, increased au-
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tumn and winter precipitation (Holmberg et al., 2014; Ruos-
teenoja et al., 2018), and changes in snow accumulation and
melt (Räisänen, 2021). The altered soil moisture dynamics
have an effect on the severity of abiotic stressors (e.g., wa-
ter shortage, excess water, extreme temperatures) and biotic
damages, affecting tree health, mortality, and forest produc-
tivity (Buermann et al., 2014; Muukkonen et al., 2015; Wang
et al., 2023). The changes in soil moisture across the land-
scape can significantly impact vegetation dynamics and alter
competition between species, shaping the structures of the
ecosystem (Venäläinen et al., 2020; Junttila et al., 2022; Am-
eray et al., 2023). Moreover, northern peatlands are sources
of methane (Huttunen et al., 2003; Schneider et al., 2016),
and boreal upland forests can change from methane sinks
to sources under long-lasting high-soil-moisture conditions
(Korkiakoski et al., 2022; Lohila et al., 2016). Hence, accu-
rate information on spatiotemporal soil moisture conditions
has the potential to improve estimates of tree health, terres-
trial carbon stocks, and greenhouse gas sinks and sources,
as well as the lateral export of carbon and nutrients (Bond-
Lamberty et al., 2016; Nakhavali et al., 2021). Soil moisture
dynamics are also critical for weather and hydrological fore-
casting (Zhang et al., 2020a; Joo and Tian, 2021), climate
change impact studies (Seneviratne et al., 2010; Kløve et al.,
2014; IPCC, 2019), and developing sustainable forest man-
agement practices (Salmivaara et al., 2021; Kankare et al.,
2019).

Soil moisture has strong spatiotemporal variability driven
by hydrometeorological conditions, landscape heterogeneity,
and hydrological connectivity through lateral groundwater
flow (Corradini, 2014; Kemppinen et al., 2023; Kim and Mo-
hanty, 2016; Ji et al., 2017). The unsaturated soil is bounded
at the bottom by the water table, and exchanges between the
saturated and unsaturated zone occur through upward capil-
lary rise and downward percolation (Maxwell et al., 2007;
Miguez-Macho et al., 2007; Vergnes et al., 2014). The lat-
eral groundwater flow and consequent variation in the water
table depth influence soil moisture, especially in areas with
shallow water tables, such as riparian areas, floodplains, and
peatlands (Krinner, 2003; Decharme et al., 2019; Kollet and
Maxwell, 2008).

Information on soil moisture dynamics can be obtained via
in situ measurements and remote sensing, as well as using
numerical models (Robinson et al., 2008; Yu et al., 2021;
Dobriyal et al., 2012). Continuous automatic in situ measure-
ments are well-suited to capturing soil moisture patterns at
high temporal resolutions at the point scale (Moreno et al.,
2022; Kemppinen et al., 2023). However, distributing the
observation network in space requires significant resources
(Tyystjärvi et al., 2022) and is thus restricted to specific study
areas (Kemppinen et al., 2023). Recent advances in satel-
lite remote sensing have shown the potential to obtain soil
moisture estimates at high spatial resolutions (e.g., Sentinel-
1 synthetic aperture radar (SAR): Quast et al. (2023); Bauer-
Marschallinger et al. (2019); Manninen et al. (2021)), but

their accuracy for high-latitude forests is still limited (Ce-
lik et al., 2022). To predict soil moisture conditions under
environmental change, process-based hydrological models
are a prerequisite. However, their development also relies
largely on observations (Panday and Huyakorn, 2004; Tyys-
tjärvi et al., 2022), and it is widely accepted that the integra-
tion of in situ measurements, remote sensing, and process-
based modeling is the best avenue forward (Crow and Yil-
maz, 2014; Sidle, 2021; De Lannoy et al., 2022). To yield
accurate predictions, it is essential that process-based models
represent the most relevant local features and processes that
affect soil moisture dynamics (Sidle, 2021; Ji et al., 2017;
Kollet and Maxwell, 2008).

Due to the proliferation of geospatial data on land use, to-
pography, vegetation, and soil characteristics, spatially dis-
tributed models can, to an increasing extent, incorporate spa-
tial variability in their parameterizations and extend point-
scale simulations to scales relevant for practical applications
(Launiainen et al., 2019; Ma et al., 2016; Clark et al., 2015;
Maneta and Silverman, 2013). To model soil moisture at
high spatial resolutions, incorporating the effects of local soil
texture and vegetation and the conceptualization of subsur-
face water storage and lateral flow become important. Inte-
grated surface–groundwater models can explicitly represent
these interactions in 3D (Ala-aho et al., 2017a; Thornton
et al., 2022; Autio et al., 2023), but these are rarely used
in ecosystem studies or large-scale applications due to their
vast data needs and low computational efficiency. Attention
to groundwater dynamics is rather recent in land surface
models used in climate, weather, and hydrological model-
ing communities (Decharme et al., 2019; Zeng et al., 2018;
Li et al., 2022; Maxwell and Condon, 2016; Ji et al., 2017;
Niu et al., 2014). In catchment hydrological models, the lat-
eral movement of groundwater is also rarely explicitly de-
scribed, and the groundwater dynamics are often based on
conceptual approaches such as the use of the topographic
wetness index (TWI) (Beven and Kirkby, 1979) or grid cell-
independent groundwater buckets (Bergström, 1992). These
simplified approaches can efficiently link grid cell and catch-
ment water budgets and simulate sufficient discharge dynam-
ics (Launiainen et al., 2019). They can also accurately es-
timate soil moisture dynamics at locations where the wa-
ter balance is mostly driven by local processes, i.e., infiltra-
tion, vertical water percolation, and evapotranspiration (ET),
rather than lateral flows and capillary rise (Tyystjärvi et al.,
2022). However, once the impacts of lateral groundwater
flow and a shallow water table become more pronounced,
models neglecting these processes encounter obvious chal-
lenges in accurately simulating soil moisture dynamics (Kol-
let and Maxwell, 2008). Consequently, they often exhibit dry
biases that directly affect simulations of soil evaporation and
plant transpiration (Maxwell and Condon, 2016).

Hydrological models are currently advancing towards in-
corporating more processes at higher spatial resolutions (Si-
dle, 2021; Wood et al., 2011), but model calibration and eval-
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uation are still largely based on point-scale observations of
soil moisture, ET, and stream discharge at the catchment out-
let (Ala-aho et al., 2017b; Launiainen et al., 2019), creat-
ing uncertainties for spatiotemporal simulations (Koch et al.,
2018). The persistent lack of spatial observations of hydro-
logical fluxes and water storages (model state variables) pre-
vents leveraging the full potential of distributed models and
available data on landscape characteristics. Recent advances
in remote sensing with regard to producing spatially explicit
data of precipitation (Yu et al., 2022; Skofronick-Jackson
et al., 2017) and ET (Bhattarai and Wagle, 2021), canopy and
soil water content (Manninen et al., 2021; Zhang and Zhou,
2015), snow cover (Meriö et al., 2023), and water table depth
(Toca et al., 2023; Räsänen et al., 2022; Isoaho et al., 2023)
open new opportunities to evaluate (Niu et al., 2021) and, in
some cases, calibrate (Koch et al., 2018) spatially distributed
models. Such data are increasingly being included in hydro-
logical model–data assimilation (Li et al., 2023; Deschamps-
Berger et al., 2022).

In this study, we assess the controls of soil moisture dy-
namics at the subarctic Pallas Lompolonjängänoja headwa-
ter catchment in northern Finland. We combine the anal-
ysis of multi-scale observations, including in situ continu-
ous and manual soil moisture measurements (Marttila et al.,
2021; Aurela et al., 2015); SAR-based spatiotemporal esti-
mates (Manninen et al., 2021); and process-based hydrolog-
ical modeling. We use the Spatial Forest Hydrology model
(SpaFHy; Launiainen et al., 2019) at high spatial resolu-
tion (16× 16 m2) with three alternative conceptualizations
for groundwater storage and dynamics. We focus particularly
on the influence of a shallow water table and lateral ground-
water flow, as well as vegetation heterogeneity, on spatiotem-
poral soil moisture dynamics through the following research
questions:

1. Where does lateral groundwater flow affect the temporal
variability of shallow soil moisture?

2. How does the role of lateral groundwater flow compare
to the impact of vegetation heterogeneity in shaping soil
moisture patterns?

3. How do SAR-based soil moisture estimates compare
with the models and can they be useful in model evalu-
ation?

To answer the research questions, we compare and contrast
model predictions (i) between model conceptualizations, ii)
against point-scale soil moisture data, and (iii) against SAR-
based soil moisture estimates available from the study area.

2 Materials and methods

2.1 Study site

Our study area is located in the Pallas area (67°59′ N,
24°13′ E) in northwestern Finland (Fig. 1b, c). Pallas has

over 85 years of meteorological observations (Lohila et al.,
2015), and the area has been recently set up as an interdisci-
plinary platform for atmospheric, ecological, and hydrolog-
ical research. It includes multiple eddy covariance (EC) sta-
tions measuring surface–atmosphere energy and greenhouse
gas fluxes and both manual and automated ecohydrological
monitoring over a range of ecosystem types (Marttila et al.,
2021). The climate in the area is characterized as subarctic.
The long-term annual (1991–2020) mean temperature and
mean annual precipitation at the Muonio weather station,
located approximately 25 km west of Pallas, are −0.6 °C
and 532 mm, respectively (Jokinen et al., 2021). The propor-
tion of precipitation falling as snow is approximately 42 %
(Marttila et al., 2021), and the seasonal snow cover persists
from about October until May (Aurela et al., 2015). Particu-
larly, we consider the Lompolonjängänoja catchment (here-
after LJO, Fig. 1a), which has a total area of circa 4.5 km2,
with elevations varying between 268 and 364 m a.s.l. Soils in
the upland parts of the catchment are mainly gravely sand
and sandy tills, and vegetation cover varies from coniferous
forests to various types of mires such as open fens, treed
mires, and paludified forests. Except for a few small roads
and ditches, the area has had little human influence and can
be considered to be a mostly pristine subarctic headwater
catchment. Figure 1a gives an overview of the landscape and
the main measurement locations in the LJO catchment.

EC flux data and the meteorological data used in this pa-
per were collected from two stations located in the catch-
ment of Lompolonjängänoja (Fig. 1a). The forest site Kent-
tärova (ICOS Ecosystem associate site) is a Norway-spruce-
dominated forest growing on podzol soil, with the age of the
trees varying from 90 to 250 years. The number of trees,
643 and 68 stems per hectare for spruce and deciduous
trees (mainly Betula pubescens), has stayed the same since
a survey in 2011 (Aurela et al., 2015). The dominant tree
height is currently about 15.5 and 11 m for spruce and Betula
pubescens, respectively. In 2011, a mean one-sided leaf area
index (LAI) for Norway spruce and Betula pubescens was
2.0 and 0.1 m2 m−2, respectively (Aurela et al., 2015).

The mire site Lompolojänkkä (ICOS Ecosystem Class-2
site) is an open, mesotrophic sedge fen (Zhang et al., 2020b)
with a maximum peat thickness of about 2.5 m (Mathijssen
et al., 2014). The Lompolonjängänoja stream flows through
the long and narrow fen, draining into a nearby lake, Pal-
lasjärvi. The dominant vascular species are Andromeda po-
lifolia, Betula nana and B. pubescens, Carex spp., Equise-
tum spp., and Eriophorum spp. The dominant moss species
are Sphagnum spp., whose coverage is about 50 %. In 2018,
the mean one-sided LAI was 1.4 m2 m−2, and the mean veg-
etation height was 0.4 m.

2.2 Models

We used the Spatial Forest Hydrology model (SpaFHy; Lau-
niainen et al., 2019), developed to predict spatial and tem-
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Figure 1. The Lompolonjängänoja (LJO) catchment and its hydrological measurement locations (a) (the aerial image by NLSF (2020))
are located in the northern boreal zone (b) (green area, Olson et al. (2001)) in northwestern Finland (c) (Esri (2023)). The ICOS flux
stations Kenttärova (forest) and Lompolojänkkä (open mire) are presented in red circles, the stream gauge is presented in blue, soil moisture
measurement locations are labeled and presented in light blue, and water table depth monitoring locations are labeled and presented in
orange. Streams are shown as blue lines.

poral patterns of hydrological fluxes and state variables in
the vegetation canopy, organic moss–humus layer, and top-
soil (root zone). SpaFHy has been tested for 9 EC flux sites
in Finland and Sweden (stand-scale; ET and soil moisture)
and for 21 small boreal headwater catchments in Finland
(catchment-scale; runoff dynamics and ET-to-precipitation
ratio) in Launiainen et al. (2019). It has been adapted to
drained peatland forests (Leppä et al., 2020; Stenberg et al.,
2022), extended with nutrient balance and leaching modules
(Laurén et al., 2021), applied to model forest drought risks
(Launiainen et al., 2022), and used to predict soil moisture
dynamics in arctic tundra (Tyystjärvi et al., 2022). Its aim
is to provide a simple and practically applicable framework
to study the effects of landscape heterogeneity, management,
and macroclimatic change on catchment hydrology in boreal
and subarctic landscapes.

The original SpaFHy includes two groundwater conceptu-
alizations: a free-drainage approach (i.e., neglecting ground-
water dynamics, SpaFHy-1D) and a TOPMODEL-based ap-
proach (i.e., groundwater return flow based on topographic

wetness index, SpaFHy-TOP). In this study, we implemented
a new submodel to represent the 2D lateral Darcy flow
(SpaFHy-2D). The salient features of the three model ver-
sions are briefly described next and are summarized in Ta-
ble 1. The general model parameters are given in Table 2.

2.2.1 SpaFHy-1D

SpaFHy-1D considers grid cells to be independent hydrolog-
ical units (Launiainen et al., 2019). The hydrological pro-
cesses in the vegetation canopy, snowpack, organic moss–
humus layer, and root zone are explicitly simulated at a daily
time step for each grid cell in the model domain. The above-
ground fluxes and state variables are computed in the canopy
submodel, including rainfall and snowfall interception and
evaporation, throughfall, transpiration, and snow accumula-
tion and snowmelt (see Sect. 2.2 in Launiainen et al. (2019)).
Snowmelt is computed with a degree-day approach, while ET
components are solved by the Penman–Monteith equation.
For transpiration, the canopy conductance is derived from
the stomatal optimality principle, accounting for an expo-
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Table 1. Geospatial data used by each submodel and submodel used by each model configuration.

Geospatial data Canopy Bucket TOPMODEL 2D flow

Digital elevation model X X
Catchment mask X X X X
Topographic wetness index X
Shading coefficient X X
Site class X
Leaf area index X
Canopy height X
Canopy fraction X
Soil type X X
Streams X

Model configuration Canopy Bucket TOPMODEL 2D flow

1D X X
TOP X X X
2D X X X

nential attenuation of light in the canopy (Launiainen et al.,
2019). The bucket submodel describes topsoil hydrology and
soil moisture dynamics in two layers. The upper layer is the
organic moss–humus layer, whose water budget is affected
by throughfall and snowmelt interception and soil evapo-
ration, as well as infiltration to the lower root zone layer,
where drainage and transpiration take place. The lateral wa-
ter flow between the grid cells is omitted, and drainage from
the bucket submodel is removed from the model domain as
stream discharge at the catchment outlet without a delay.
Thus, SpaFHy-1D represents a situation where soil mois-
ture variability within the catchment is driven solely by the
heterogeneity of vegetation, soil characteristics, and meteo-
rological forcing. Similar conceptualizations of soil hydrol-
ogy are common for large-scale land surface and hydrologi-
cal models (Smith et al., 2001; Seibert and Vis, 2012; Clark
et al., 2008; Niu et al., 2011). The canopy and bucket sub-
models are common to all three SpaFHy versions.

2.2.2 SpaFHy-TOP

SpaFHy-TOP includes a conceptual description of the
saturated zone using the TOPMODEL approach (Beven
and Kirkby, 1979). Drainage from the bucket submodel
feeds TOPMODEL’s lumped catchment groundwater stor-
age, which is then spatially distributed via the topographic
wetness index (TWI). The TWI is defined as the natural
logarithm of the flow accumulation area (i.e., upslope area
draining through the grid cell) divided by the tangent of the
local slope (Beven and Kirkby, 1979). The local saturation
deficit is related to the TWI and catchment average satura-
tion deficit, creating a higher probability for grid cells with
greater TWI to become saturated. During a model time step,
return flow from groundwater storage to the root zone and
organic moss–humus layer occurs in grid cells where the lo-

cal saturation deficit is zero (Launiainen et al., 2019). The
return flow is routed through the root zone and the organic
moss–humus layer, and their respective soil moisture values
are updated, while potential excess water becomes surface
runoff. Discharge at the catchment outlet is the sum of catch-
ment average baseflow (predicted by TOPMODEL) and sur-
face runoff without a delay. This version of SpaFHy-TOP is
identical to the one used in Launiainen et al. (2019, 2022).

2.2.3 SpaFHy-2D

The SpaFHy-2D version was developed in this study to ex-
plicitly describe lateral groundwater flow within the catch-
ment. The modeling domain consists of soil columns whose
relative elevation compared to one another is defined by the
digital elevation model. Each soil column extends to an im-
permeable layer (no-flow boundary) at a predefined depth,
while the columns are characterized by their water reten-
tion characteristics (following the van Genuchten -model;
van Genuchten, 1980) and saturated hydraulic conductivity
based on the soil type.

Lateral flow in the saturated zone is solved using the 2D
groundwater flow equation:

C
∂h

∂t
=
∂h

∂x

(
T
∂h

∂x

)
+
∂h

∂y

(
T
∂h

∂y

)
+ S, (1)

where t is time (d), x and y are the horizontal dimensions
(m), C is the storage coefficient (m m−1), T is transmissiv-
ity (m2 d−1), h is the hydraulic head (m), and S (m d−1)
is water drained from the overlaying bucket submodel. Lat-
eral groundwater flow between grid cells takes place only in
the saturated zone, and, thus, T is obtained by integrating
the saturated hydraulic conductivity over the saturated layer
depth. C describes the change in h relative to a change in
the soil column water content W (m). The relation between
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h and W is solved based on the assumption that, in the un-
saturated zone, the water content profile is set to hydraulic
equilibrium (constant hydraulic head in vertical dimension;
Skaggs, 1980). For numerical efficiency with regard to solv-
ing Eq. (1), interpolation functions forW(h), T (h), andC(h)
were constructed prior to simulation for each soil column
type (Laurén et al., 2021). When the soil column becomes
oversaturated, i.e., when the groundwater level rises to the
root zone, the excess water is routed as return flow to the
bucket submodel, similarly to in SpaFHy-TOP.

Streams (and ditches) in the catchment were described as
grid cells with constant h. The outflow to streams is com-
puted from the local hydraulic head gradient when the sur-
rounding water table level is above the stream h. No flow
from streams to the soil is allowed. We do not consider tem-
poral changes in stream water level and omit channel flow
in the stream network; thus, the sum of the outflow into the
stream cells and the surface runoff form the runoff at the
catchment outlet without a delay. The assumption of a con-
stant stream water level simplifies the modeling framework
and should not significantly impact catchment soil moisture
dynamics. Catchment borders are defined as no-flow bound-
aries, assuming that no significant water flows occur between
the delineated catchment and its surroundings that impact
shallow soil moisture.

2.3 Model input

2.3.1 Geospatial data

To set up SpaFHy for the LJO catchment, we used mainly
open geospatial data that are available throughout Finland.
The rasters used are presented in Fig. 2 and are summarized
in Table 1.

For canopy attributes and for distinguishing between for-
est soils and mires, we used the multi-source National Forest
Inventory (mNFI; Mäkisara et al., 2016) data at 16 m hor-
izontal resolution. This was also chosen as the model grid
resolution for the simulations, and other input rasters were
aggregated accordingly, consistently with Launiainen et al.
(2019). From mNFI data, needle and leaf mass rasters were
used to derive the one-sided LAI of deciduous and conif-
erous trees. LAI values were estimated using specific one-
sided leaf areas for pine, spruce, and birch (6.8, 4.7, and
12.0 m2 kg−1, respectively; Härkönen et al., 2015). LAI es-
timates of shrub and grass were adopted from local multi-
source remote sensing data by Räsänen et al. (2021). The
canopy fraction and prevailing site class (used for parame-
terizing the organic moss–humus layer) were also obtained
from the mNFI data.

The soil type affects the hydraulic properties of the root
zone and the SpaFHy-2D lateral groundwater flow module. A
combined soil type raster was constructed by taking the peat-
land boundaries from the National Land Survey of Finland
topographic map (NLSF, 2020) and the remaining soil char-

acteristics from the Geological Survey of Finland soil texture
map (GSF, 2020), similarly to Launiainen et al. (2019).

The catchment was delineated based on the digital eleva-
tion model (NLSF, 2020) with Whitebox Geospatial Anal-
ysis Tools (GAT) software (Lindsay, 2014). TWI was cal-
culated using the slope and flow accumulation raster, with
the flow accumulation determined through the D8 method
(O’Callaghan and Mark, 1984). The stream network was ob-
tained from NLSF (2020). Furthermore, topographic impacts
for solar radiation were considered by computing a daily
shading coefficient, calculated as the potential daily radia-
tion input for each grid cell normalized by the potential input
at the grid cell of the Kenttärova station, where the global
radiation forcing was measured (see Sect. 2.3.2).

2.3.2 Meteorological forcing

All SpaFHy versions require the same daily meteorological
forcings: mean air temperature Ta (°C), global radiation Rg
(W m−2), relative humidity RH (%), wind speed U (m−1),
and daily accumulated precipitation P (mm). These data
were compiled and made available by Nousu et al. (2023)
and include in situ observations at Kenttärova station avail-
able from the Finnish Meteorological Institute (FMI) open
database (FMI, 2021), supplemented by the FMI’s Rg ob-
servations from the Kenttärova station (located at the hilltop,
Fig. 1). The data gaps inRg were first filled by data from con-
tiguous sites and then by ERA5 reanalysis data (Hersbach
et al., 2020). We multiplied the Rg forcing by the shading
coefficient (see Sect. 2.3.1) for each day (Fig. 2) to account
for the topographic effects on the radiation forcing at each
grid cell. For the other meteorological variables, a spatially
uniform forcing was applied.

2.4 Model parameterization

The canopy and bucket submodels were common to all
model versions and were parameterized as in Launiainen
et al. (2019). The only exception was the organic moss–
humus layer, which was refined to allow for full or partial sat-
uration in situations where upward return flow occurs from
the root zone layer. Drainage from the organic moss–humus
layer to the root zone layer is represented identically as the
drainage from the root zone layer (Eq. 18 in Launiainen
et al. (2019)). A depth of 0.05 m was assigned to the organic
moss–humus layer (Table 2). To account for the different hy-
draulic properties of the organic moss–humus layer in min-
eral forest soils (dominated by feather mosses) and peatlands
(mainly Sphagnum moss), the moss hydraulic parameters
(porosity, field capacity, and relative available water) were
derived from Williams and Flanagan (1996) and Elumeeva
et al. (2011). The peatlands and mineral soils were separated
based on mNFI site class (see Fig. 2); the site-class- and
soil-type-specific parameters for the organic moss–humus,
root zone, and deep soil layers are given in the Supplement
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Figure 2. Set of geospatial rasters used to set up the model for the LJO catchment. Top row shows leaf area index (LAI) for different plant
types. For each grid cell, the conifer and deciduous LAI forms the canopy LAI, and the understory LAI is the sum of shrubs and grasses.
TWI is the topographic wetness index. The rasters overlay a topographic map (NLSF, 2020).

(Tables S1–S3). The available literature was used to define
the van Genuchten (1980) water retention parameters for the
bucket and 2D flow submodels (Autio et al., 2023; Men-
beru et al., 2021). The root zone was assigned a depth of
0.30 m (Table 2). Due to a lack of reliable data on the depth
to bedrock, a uniform thickness of 5 m was assigned for the
deep soil layer of the 2D groundwater module throughout the
model domain. This estimate corresponds approximately to
the thickest peat layers and the shallowest mineral soil depths
of the catchment (Autio et al., 2023). Canopy parameters for
surface conductance and for evaporation from the wet for-
est floor (Gf), the canopy storage capacity for rain (wmax),
and the TOPMODEL effective soil depth parameter were ob-
tained from Launiainen et al. (2019). No further calibration
or sensitivity tests of any model parameters were conducted
in this study.

Model simulations with the three different treatments of
groundwater dynamics (named 1D, TOP, and 2D) were

run with identical meteorological forcings, geospatial inputs
(Fig. 2), and canopy and bucket submodel parameterizations
(Table 2). To study how spatially heterogeneous vegetation
affects soil moisture, an additional 1D simulation was run
with site-class-specific mean vegetation parameters. This ex-
periment is referred to as 1Dhomog.canopy, and vegetation char-
acteristics at each grid cell belonging to a certain site class
(Fig. 2) were set to the average of that particular site class
(see Fig. S1 in the Supplement). All simulations cover the
period from 1 January 2011 to 1 September 2021, of which
the beginning until 1 September 2013 was considered to be a
model spin-up period and was omitted from subsequent anal-
ysis.

2.5 Hydrological observations

This study benefits from the extensive hydrological monitor-
ing of the LJO catchment (Marttila et al., 2021; Aurela et al.,
2015). We further conducted several campaigns to measure
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the spatiotemporal variability of soil moisture (i.e., volumet-
ric water content θ ) during 2019–2021. In particular, during
snow-free seasons, biweekly manual measurements at 15 dif-
ferent points (denoted as “i” in Fig. 1) were conducted using
WET-2 and PR2 Profile Probe sensors with an HH2 read-
out unit (Delta-T Devices Ltd., Cambridge, UK), sampling
the soil moisture profile at depths of 0, 10, 20, and 30 cm
(from the soil surface). Additionally, we conducted two ex-
tended soil moisture measurement campaigns, including 56
additional locations (denoted as “l” and “m” in Fig. 1). The
first (17 June 2021) represents wet conditions when the soil
moisture was still highly impacted by the snowmelt. The sec-
ond (1 September 2021) was conducted in early-autumn con-
ditions after a precipitation event. Both these campaigns used
the sensor ML3 ThetaProbe (Delta-T Devices Ltd., Cam-
bridge UK) that measures soil moisture at 5 cm depth. For
the ML3 ThetaProbe sensor, soil moisture values at locations
with peat soils at full saturation were assigned directly to the
assumed peat porosity (0.89).

In addition, we used data from continuous soil moisture
sensors distributed in close proximity to the Kenttärova flux
site. From 2013 to 2017, soil moisture was continuously
measured by four ThetaProbe type ML2x sensors at 5 and
20 cm depths (two each) (Aurela et al., 2015). In 2017, more
sensors were installed alongside the existing ones, among
which we used two sensors (Soil Scout Oy, Helsinki, Fin-
land) at depths of 5 and 30 cm (from the soil surface). The
continuous soil moisture measurements were averaged into
daily values. To overcome the inherent uncertainties in in situ
measurements of soil moisture, stemming from different de-
vices and measurement and installation procedures (Robin-
son et al., 2008; Dobriyal et al., 2012; Iwata et al., 2017),
we present the means and variability ranges of continuous
soil moisture sensors and address these uncertainties by av-
eraging multiple manual probings within the area of inter-
est within a radius of approximately 5 m. All soil moisture
measurements from 0 to 30 cm depth correspond to the root
zone layer of SpaFHy. As soil moisture of the organic moss–
humus layer was not directly measured, we assume soil mois-
ture measurements at the soil surface (0 cm depth) to best
represent this layer.

ET was measured by the eddy covariance (EC) technique
at the two flux stations, Kenttärova spruce forest and Lom-
polojänkkä peatland (Fig. 1a). The EC systems consist of
USA-1 (METEK) 3D sonic anemometers and closed-path
LI-7000 (LI-COR, Inc.) CO2 /H2O analyzers (Aurela et al.,
2015). EC data processing is described in detail in Aurela
et al. (2015) and in Nousu et al. (2023).

The runoff was measured by the Finnish Environment In-
stitute with a 120° V-notch weir at the outlet (stream gauge in
Fig. 1a). Snow data consisted of automated snow depth ob-
servations at the Kenttärova flux station and approximately
monthly manual snow water equivalent (SWE) measure-
ments at Kenttärova and Lompolojänkkä stations (Marttila
et al., 2021).

2.6 SAR-based soil moisture estimates

We used SAR-based surface soil moisture estimates from
the study area. This newly derived research data set was
developed by Manninen et al. (2021), who used Sentinel-1
synthetic aperture radar (SAR) ground-range-detected high-
resolution data to produce high-resolution spatiotemporal
soil moisture estimates. The soil moisture retrieval using
SAR images is based on the gradient-boosting method, uti-
lizing input variables of non-locally averaged VH (vertical–
horizontal) and VV (vertical–vertical) backscattering coeffi-
cients, multitemporal SAR statistics, terrain data, effective
LAI estimates based on SAR, SAR overpass information,
and the time for the soil moisture estimate to be calculated.
Distinct algorithms were developed for morning and evening
flyovers, both relating soil moisture estimates to instanta-
neous midday. They were validated against discrete and con-
tinuous in situ soil moisture measurements at Pallas (Man-
ninen et al., 2021). In particular, the gradient-boosted-tree
methods were trained with manual surface soil moisture mea-
surements (depth= 0 cm) and continuous soil moisture mea-
surements at deeper soil layers that were converted to surface
conditions via linear regression in order to correspond to the
penetration depth of the C-band SAR signal in soil, which is
in the range of 1–5 cm (Beale et al., 2021; Nolan and Fatland,
2003). Further details on the SAR data can be found in Man-
ninen et al. (2021). In this study, the original irregular grids
with approximately 10 m pixel spacing were averaged into a
16 m regular grid using subpixel area weights to be compared
with the model outputs.

2.7 Evaluation methods

Annual periods are defined as hydrological years starting
from September (e.g., 2016 is from 1 September 2015 to
31 August 2016). We use performance metrics of mean ab-
solute error (MAE), mean bias error (MBE), and coefficient
of determination (R2) for model–data comparisons. More-
over, we use the Kling–Gupta efficiency (KGE) (Gupta et al.,
2009) for comparing daily runoffs between simulations and
observations. Mean differences (MDs) are computed to com-
pare different simulations (i.e., the mean difference at each
grid cell).

3 Results

3.1 Climatology and water budget dynamics

As is typical for high latitudes, the period with permanent
snow cover and freezing temperatures is long (Fig. 3a, b),
with nearly half of the annual precipitation falling as snow
(250–350 mm, Fig. 3c), resulting in annual peak snow depths
from approximately 0.9 to 1.3 m (Fig. 3b). The snowmelt pe-
riod commonly spans roughly from late April to the begin-
ning of June, resulting in the highest soil moisture during
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Table 2. Parameters used by each submodel. Soil-type- and site-type-specific parameters are listed in the Supplement (Tables S1–S3).

Parameter Value Units Explanation Note

Canopy

Amax 10 µmol m−2 s−1 maximum leaf net assimilation rate Launiainen et al. (2019)
g1,c 2.1 kPa0.5 stomatal parameter for conifers Launiainen et al. (2015)
g1,d 3.5 kPa0.5 stomatal parameter for deciduous Lin et al. (2015)
b 50 W m−2 half-saturation PAR of light response Launiainen et al. (2019)
kp 0.6 – radiation attenuation coefficient Launiainen et al. (2019)
rw 0.2 – critical relative extractable water Lagergren and Lindroth (2002)
rw,min 0.02 – minimum relative conductance Launiainen et al. (2019)
Gf 0.01 m s−1 surface conductance for evaporation from wet forest floor Launiainen et al. (2019)
wmax 1.5 mm LAI−1 canopy storage capacity for rain Launiainen et al. (2019)
wmax,snow 4.5 mm LAI−1 canopy storage capacity for snow Pomeroy et al. (1998), Essery et al. (2003)
Km 2.5 mm d−1 melt coefficient in open area Kuusisto (1984)
Kf 0.5 mm d−1 freezing coefficient Koivusalo and Kokkonen (2002)
Ymax 18.5 °C phenology model parameter Kolari et al. (2007)
τ 13 d time constant Kolari et al. (2007)
T0,y −4 °C base temperature Kolari et al. (2007)

Bucket

zs,org 0.05 m organic layer depth Launiainen et al. (2019)
zs,root 0.3 m root zone depth Kalliokoski et al. (2010)

TOPMODEL

T0 0.001 m s−1 transmissivity at saturation Launiainen et al. (2019)
m 0.05 m effective soil depth Launiainen et al. (2019)

2D flow

zs,deep 5 m deep soil layer thickness assigned
zstream −0.2 m stream water level relative to surface elevation assigned

snowmelt (Fig. 3B). The summer is characterized by cool
to warm temperatures and higher precipitation that typically
peaks in July (Fig. 3a).

Due to energy limitations for annual ET and a high peak
SWE, runoff dominates the water balance, covering 49 % to
67 % of annual precipitation, while ET represents 34 % to
50 % depending on the year (Fig. 3c). SpaFHy-2D is able to
closely capture the observed annual runoff during the simu-
lated years (Fig. 3c). Also, daily runoff dynamics are reason-
ably well represented by both SpaFHy-TOP (KGE: 0.63) and
SpaFHy-2D (KGE: 0.65; see Fig. S2). The summer runoff
dynamics after precipitation events are better captured by
the 2D approach, whereas the baseflow is better predicted by
TOP (Fig. S2). The simulations of SWE also align relatively
well with the observations at Kenttärova and Lompolojänkkä
(Fig. S3). Although catchment-scale ET observations are not
available, the good performance in reproducing the Q/P ra-
tio (Fig. 3c) means that annual ET is also well described. This
is in accordance with the relatively good correspondence be-
tween simulated and EC-measured daily ET from the Lom-
polojänkkä mire and the Kenttärova spruce forest flux sites
(Fig. S4). SpaFHy has also been shown in earlier studies to
reproduce well the EC-based ET across the range of boreal
and subarctic forests and peatlands (Launiainen et al., 2019).

3.2 Comparison of temporal soil moisture with in situ
observations

Intra-seasonal continuous in situ data allow the analysis
of temporal soil moisture dynamics and the evaluation of
models and SAR data (Fig. 4). Soil moisture peaks during
snowmelt, and the date of complete snow melt-out corre-
sponds to the date when the modeled organic moss–humus
layer moisture content begins to drop due to evaporative dry-
ing (Fig. 4). Later in the summer, the soil moisture dynamics
are driven by intermittent precipitation events and more con-
tinuous drying by ET and drainage, with the general drying
trend being dominant (Figs. 4 and 5).

At Kenttärova hilltop area (Fig. 1a), which contributes
to groundwater recharge, the SpaFHy-1D and TOP predic-
tions were nearly identical to SpaFHy-2D. The model cap-
tures well the seasonal trend but tends to overestimate both
root zone soil moisture content and its temporal variability
compared to the mean of point observations (Fig. 4, MBE:
0.05 m3 m−3). This mismatch could be corrected by calibrat-
ing the soil field capacity and wilting point. However, as
the simulations mostly fall within the observed range (MBE:
−0.01 m3 m−3 when compared to observed maximum) and
because the comparison in Fig. 4 represents a single loca-
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Figure 3. Hydrometeorological characteristics of Pallas. (a) Monthly observed climatology for the simulation period and (b) monthly ob-
served volumetric soil moisture (θ ) and snow depth (HS) at Kenttärova forest site. The air temperature (T ) and θ envelopes represent
minimum and maximum monthly averages during the simulation period, while the snow depth envelope shows the minimum and maximum
of monthly maximum during the simulation period. (c) Annual water budget as observed (obs) and simulated (mod) with SpaFHy-2D, where
Q is catchment runoff, ET is evapotranspiration, Pobs is observed precipitation, and Psnow,mod is modeled snow precipitation. The change
in catchment water storage (including canopy water, soil water, and groundwater storage) dS / dt =P +ET+Q is not shown. Due to gaps in
measurements, Qobs is not available for 2018.

Figure 4. Temporal dynamics of soil moisture at Kenttärova spruce forest simulated by SpaFHy-2D (root zone and organic moss–humus
layers), measured in situ and estimated from SAR for 2014–2021 during May–September period. Simulations and SAR-based estimates
correspond to the mean of the nearby grid cells (64× 64 m2 grid northwest of Kenttärova). The SAR-based surface soil moisture estimates
are only available in 2019.

tion, such a calibration was not considered to be meaningful
for the aims of this study.

The SpaFHy-2D predicts reasonably well the root zone
soil moisture differences between locations, especially in
terms of ranking the locations between wet, intermediate,
and dry (Fig. 5). Minor discrepancies between SpaFHy-
2D-predicted root zone and in situ-measured shallow soil
moisture content are likely due to uncertainties in soil hy-
draulic parameters (e.g., too-large field capacity in Fig. 5a).
The moisture content of the organic moss–humus layer is
more dynamic than the root zone moisture as evaporative
losses exceed throughfall input, leading to drying of the or-
ganic moss–humus layer from mid-July to the end of Au-

gust (Fig. 5). SpaFHy-2D does not include capillary rise
to the organic moss–humus layer, and, therefore, simulta-
neous high evaporation and a high water table can cre-
ate large differences between the moisture contents of the
two layers (Fig. 5d, e, g). The largest differences between
data and root zone simulations are found in mixed forested-
peatland grid cells (Fig. 5f, g), mostly due to overestimation
of the water table level in early summer. Considering the fact
that no model calibration was conducted, the comparison of
SpaFHy-2D-simulated and in situ-observed groundwater lev-
els shows rather good model performance, and, in particular,
the shallow water tables are well captured (see Fig. S5 and
Table S4). As we aim to assess the influence of lateral flow
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Figure 5. Temporal dynamics of SpaFHy-2D-simulated, SAR-estimated, and in situ-measured range of soil moisture (obsmin:max) at two
forest, three peatland, and three mixed forested-peatland locations during June–September period in 2019.

on shallow soil moisture dynamics rather than fully replicate
the observations, the performance of the 2D model is consid-
ered to be sufficient.

SAR-based shallow soil moisture values mostly fall within
the observed range, and the SAR morning flyover captures
the main temporal dynamics of the observations, particu-
larly drying in June and wetting in late August (Figs. 4 and
5). However, the SAR-based estimates consistently fall short
of the highest observed and simulated values, leading to an
underestimation of soil moisture content (Fig. 5). There is
also noticeable noise in the SAR-based soil moisture, and
the level and temporal patterns of SAR morning and evening
flyovers differ from each other. The comparison at different
locations (Fig. 5: two forest, three peatland, and three mixed
forested-peatland grid cells) shows a systematic shift (up to
0.2 m3 m−3) between SAR morning and evening flyover.

3.3 Effect of groundwater flow conceptualizations on
soil moisture

The in situ soil moisture data are further used to compare
the model conceptualizations and to assess the impact of
groundwater flow on shallow soil moisture across the catch-
ment (Fig. 6). The comparison shows that the observed soil
moisture contents below ca. 0.55 m3 m−3 are rather well cap-
tured by all model conceptualizations (Fig. 6a, b, c), espe-
cially considering the uncertainties in soil hydraulic parame-
ters based on geospatial data (Fig. 2: soil type). Most of the
forest grid cells (i.e., grid cells with high canopy fraction)

belong to this category. The results indicate that model per-
formance improves when the lateral flows are accounted for,
and only the 2D approach with explicit lateral groundwater
flow can satisfactorily reproduce the wetter conditions above
0.55 m3 m−3, commonly found in open-peatland grid cells
and occasionally in forest grid cells (Fig. 6). Conceptually,
the SpaFHy-TOP should also be able to mimic groundwa-
ter dynamics via TWI. However, it was able to capture only
one of the observed wet grid cells, and the overall goodness
of fit is close to that of the SpaFHy-1D version. All evalua-
tion metrics are considerably better for the 2D model, but this
model variant tends to overestimate soil moisture on peatland
grid cells, consistently with Fig. 5f and g.

The same comparison in Fig. S6c, but with colors clas-
sifying the points as either mineral soil or peat soil (based
on Fig. 2: soil type), indicates that either many of the grid
cells where the model overestimates soil moisture are fault-
ily parameterized as peat soil or the model may exaggerate
the impact of lateral flow at those locations.

Qualitative spatial evaluation of the model versions in
Fig. 7 reveals that the large-scale spatial heterogeneity of
shallow soil moisture is most strongly driven by the soil type
(see Fig. 2) via the soil hydraulic properties. In particular, the
differences in the 1D simulation arise almost solely from dif-
ferences in soil types (coarse- and medium-texture mineral
soil and peat), while the role of vegetation heterogeneity ap-
pears to be minimal (Fig. 10). The histograms of 1D simula-
tions show that daily moisture values are distributed around
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field capacities of mineral and peat soils (Fig. 7), which is
consistently the case in Fig. S7a, where all daily simulated
distributions are shown. All model conceptualizations match
the drier observations in the upland forest areas rather well,
consistently with Fig. 6. However, as the 1D approach ne-
glects groundwater storage and flow, the soil moisture es-
timates do not reach the observed high values as drainage
rapidly removes water in excess of field capacity. Hence, the
1D simulation is biased low at wet locations (Figs. 6 and
7). Slightly more spatial variability can be seen in the TOP
simulation, yet the cells where return flow from groundwater
storage is activated remain rare (except close the stream net-
work), even in wet conditions (17 June 2021, Fig. 7b), and
almost non-existent in drier autumn conditions (1 Septem-
ber 2021, Fig. 7e).

The SpaFHy-2D simulates larger saturated areas and
matches most of the point observations well in Fig. 7. Nev-
ertheless, there are still inaccuracies as saturated conditions
adjacent to ditches are not well simulated and the observed
variability in forests is not fully captured. The spatial vari-
ability of soil moisture in the 2D simulation depends strongly
on the water table dynamics. Compared to other model vari-
ants, this creates stronger soil moisture variability within the
catchment and yields better agreement with the observations.
The histograms of Figs. 7c and f and S7c also show a higher
frequency of grid cells being wet.

3.4 Comparison of spatial soil moisture

The previous section suggests that it is necessary to include
the lateral groundwater flow to model the spatial patterns of
soil moisture at the LJO catchment. However, comparison to
point measurements can only capture a fraction of the simu-
lated time steps and grid cells, and comparison with the spa-
tially explicit SAR-based soil moisture is useful. In contrast
to the model, SAR-based soil moisture values have poorer
correspondence with the observations in grid cells where
canopy fraction is high but provide a better match in open
and wetter grid cells (i.e., peatlands, Figs. 6d and S6d). How-
ever, it is worth noting that the observations in Figs. 6d and
S6d include all measurements in the root zone (0–30 cm),
surpassing the assumed penetration depth of the SAR signal
(1–5 cm).

A spatial comparison between SpaFHy-2D and spatially
explicit SAR-based soil moisture is shown in Fig. 8. As
already noted, the simulated spatial patterns mostly fol-
low soil parameterizations, as well as water table dynam-
ics affected by the lateral flow. The vegetation hetero-
geneity and consequent differences in rainfall interception
and evaporation result in additional variability for simu-
lated organic moss–humus layer moisture in dry conditions
(Figs. 5 and 10). SAR and the SpaFHy-2D root zone sim-
ulations agree in terms of their main spatial patterns (i.e.,
drier forests and wetter peatlands). Spatiotemporal com-
parison metrics (Table S5) show that SAR generally pre-

dicts lower mean soil moisture and variance (mean, vari-
ance= 0.34, 0.02 m3 m−3) than SpaFHy-2D (mean, vari-
ance= 0.39, 0.04 m3 m−3) but higher mean soil moisture and
variance compared to SpaFHy-1D (mean, variance= 0.29,
0.01 m3 m−3). It is also noticeable from Table S5 that the
wet quantiles (0.9) of SpaFHy-2D root zone (0.82 m3 m−3)
and SAR (0.65 m3 m−3) both suggest a major influence of
lateral groundwater flow on soil moisture, consistently with
earlier findings concerning peatlands (Fig. 8), throughout the
season (Fig. 5c, d)

It is likely that SpaFHy-2D overestimates the organic
moss–humus layer moisture content variability as there is
a clear discrepancy between the SpaFHy-2D and the SAR-
based estimates. The simulations provide too-high moisture
content in wet (Fig. 8a) and are biased low in drier condi-
tions (Fig. 8d). Compared to the simulations, SAR data show
significantly more cell-to-cell variability, and the histogram
appears to be nearly normally distributed, especially below
0.55 m3 m−3 (mainly mineral soils). Histograms of all daily
soil moisture values in Fig. S7d confirm that the SAR data
tend to be normally distributed between 0.1 and 0.5 m3 m−3.
A closer look at the rectangular box shown in Fig. 8 further
confirms the good agreement of SpaFHy-2D-simulated and
SAR-estimated root zone moisture in both the dry and wet
areas but also demonstrates the high cell-to-cell variability in
SAR-based soil moisture (Fig. 9).

Considering the ability of SAR to predict relatively well
the peatland soil moisture (Figs. 6d and S6d), the agreement
of SpaFHy-2D and SAR provides support for our earlier find-
ings that soil moisture predictions improve when the lateral
groundwater flow is included (SpaFHy-2D). The agreement
of SpaFHy-2D and SAR is further supported by a quantita-
tive comparison in Fig. S8, where two clusters of soil mois-
ture emerge in peatlands. The cluster of wet points corre-
sponds to the grid cells with groundwater flow influence,
while the other cluster is not impacted by the lateral flow.
The consistency between the SAR and SpaFHy-2D is not as
clear in mineral soil grid cells (Fig. S8), likely due to uncer-
tainties in the model’s soil hydraulic parameters, as well as
limitations in SAR soil moisture detection in forests (Fig. 6).

3.5 Drivers of spatiotemporal soil moisture variability

To better separate the role of lateral groundwater flow from
that of vegetation heterogeneity under different temporal soil
moisture regimes, Fig. 10 shows the grid-cell-to-grid-cell dif-
ferences (1θ ) between SpaFHy-2D and 1D simulations, as
well as between 1D and 1Dhomog.canopy runs. As expected,
the difference between SpaFHy-2D and 1D simulations is
highest in wet conditions (q = 0.9, Fig. 10c). In this case the
lateral groundwater flow has a large impact on soil moisture
(mean 1θ between 2D and 1D of ca. 0.1 m3 m−3) in ma-
jor parts of the catchment, including parts of the forested ar-
eas. The difference between the models is smallest at periods
with intermediate soil moisture (q = 0.5, mean difference of
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Figure 6. Comparison of simulated root zone soil moisture content and SAR-based surface soil moisture estimates against spatiotemporal
manual in situ soil moisture observations. The color of the points correspond to grid cell canopy fraction, ranging from open peatlands to
forest grid cells.

Figure 7. Spatial patterns of modeled root zone volumetric water content from the three model conceptualizations on 17 June 2021 (upper
row, more moist) and 1 September 2021 (lower row, drier conditions). The bar plot shows binned distributions of simulated grid cell soil
moisture across the whole catchment, and in situ measurements at 5 cm depth are shown as circles. The rasters overlay a topographic map
(NLSF, 2020).
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Figure 8. Spatial patterns of SpaFHy-2D modeled root zone and organic moss–humus moisture and SAR-based estimates on wet
(26 June 2019, upper row) and dry days (1 August 2019, lower row). In situ measurements at 0 and 20 cm depths are shown as circles,
and the bar plot shows binned distributions of simulated and SAR-estimated soil moisture across the whole catchment. The rectangular box
shows an area that is presented in Fig. 9. The rasters overlay a topographic map (NLSF, 2020).

ca. 0.05 m3 m−3, Fig. 10b), during which the lateral flow has
an effect almost only in peatland grid cells. Interestingly, the
difference between the 2D and 1D predicted soil moisture
also becomes significant in dry conditions (mean difference
of ca. 0.07 m3 m−3, Fig. 10a), indicating a long-lasting ef-
fect of lateral groundwater flow from the upland to the low-
land grid cells. The role of vegetation heterogeneity in soil
moisture patterns is negligible at intermediate and wet con-
ditions (Fig. 10e, f), and only minor differences are found in
very dry conditions (Fig. 10d). The vegetation heterogene-
ity plays a larger role in the moisture content of the organic
moss–humus layer, but the impact of lateral flow still remains
stronger (Fig. S9).

4 Discussion

4.1 Insights into the role of lateral groundwater flow
for shallow soil moisture

Our multi-scale data and high-resolution process-based sim-
ulations in the subarctic LJO catchment showed that, regard-
less of the catchment hydrologic state (from dry summer
to very moist conditions after snowmelt), lateral groundwa-
ter flow plays a major role in shaping the spatial variabil-
ity of soil moisture (Fig. 10). The results indicate that spa-
tially resolved models which include groundwater flow are
necessary to predict soil moisture variability at high-latitude
catchments. Nevertheless, lateral groundwater flow is com-
monly neglected in current hydrological and land surface
models that operate at a coarse resolution (Best et al., 2011;
Lawrence et al., 2012; Niu et al., 2011; Noilhan and Mah-
fouf, 1996). Increasing the spatial resolution of hydrologi-
cal and biogeochemical land surface models is the current
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Figure 9. A zoomed-in distribution of 2D modeled root zone and organic moss–humus moisture and SAR-based estimates on wet
(26 June 2019, upper row) and dry days (1 August 2019, lower row). In situ measurements at 0 and 20 cm depths are shown as circles.
The rasters overlay a topographic map (NLSF, 2020).

Figure 10. The impact of lateral groundwater flow (upper row) on
root zone soil moisture expressed as simulated1θ = 2D–1D and the
impact of vegetation heterogeneity (bottom row) expressed as simu-
lated1θ = 1D–1Dhomog.canopy in different catchment soil moisture
states. The panels correspond to 0.1, 0.5, and 0.9 quantiles of grid
cell soil moisture, and the bars show the distribution of binned dif-
ferences. The mean difference (MD) is shown in each panel. Note
that the blank panel refers to 1θ = 0.0 m3 m−3.

trend; for instance, Wood et al. (2011) set the ambition for
future hyper-resolution land surface models (LSMs) to 1 km
for global-scale and 100 m for regional-scale simulations.

When the models are adapted to finer grids, it becomes in-
creasingly important to implement lateral groundwater dy-
namics (Ji et al., 2017; Kim and Mohanty, 2016; Decker
et al., 2013). Our relatively simple 2D shallow groundwater
Darcy flow model, incorporating only seven additional pa-
rameters (water retention parameters, depth-to-bedrock, and
stream water level) determined using openly available digital
elevation model, soil type, and stream network rasters, per-
formed comparably to the state-of-the-art integrated surface–
groundwater model HydroGeoSphere (Brunner and Sim-
mons, 2012) in predicting observed groundwater levels at the
LJO catchment (compare Fig. S6 and Table S4 and Fig. 6
and Table S6 in Autio et al. (2023)). Also, the groundwater-
influenced areas in the catchment are in broad agreement
with the simulations by Autio et al. (2023).

Regardless of the known sensitivity of ecohydrologi-
cal fluxes (i.e., interception, evaporation, transpiration) to
changes in LAI and plant type (Launiainen et al., 2019; Kozii
et al., 2020; Launiainen et al., 2016), the impact of lateral
groundwater flow outweighed the impact of vegetation het-
erogeneity on soil moisture dynamics throughout the year.
However, the growing season in Pallas is short, and vegeta-
tion is rather sparse and not very heterogeneous within the
site classes (Fig. 2). In addition, the impact of vegetation
heterogeneity on soil moisture is attenuated due to the com-
pensating processes; soil evaporation decreases while tran-
spiration and interception evaporation increase with increas-
ing LAI, resulting in less drastic changes in total ET (Leppä
et al., 2020; Launiainen et al., 2019). Consistently with Kol-
let and Maxwell (2008), the impact of groundwater flow on
shallow soil moisture also persisted in dry conditions, sug-
gesting high resilience of lowlands to droughts due to long-
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lasting lateral flow from the upland part of the catchment.
The simulations showed that, for large parts of the catch-
ment, root zone moisture content was controlled by lateral
groundwater flow, and the strength of this effect depends on
the state of the groundwater storage. Ji et al. (2017) showed
that the role of lateral water flow becomes crucial in high-
resolution land surface simulations in a region dominated by
a humid climate and coniferous forests in the western USA.
At a resolution of 100 m, they showed that subsurface lat-
eral flow transports moisture from high-elevation areas to
valley bottoms, impacting local grid cell and catchment av-
erage ET, especially in dry conditions. Kollet and Maxwell
(2008) coupled a groundwater and a land surface model and
demonstrated that, when the water table depth was above
5 m, there was strong coupling between groundwater dynam-
ics and land surface processes at the subhumid grassland-
dominated watershed in the USA. Our results at the LJO
catchment are in line with these studies regarding the im-
portance of groundwater flow to shallow soil moisture.

The impact of lateral flow was found to be especially im-
portant for peatlands due to both the high porosity of peat
(Menberu et al., 2021) and the location in the valley bot-
tom (Figs. 2, 7, and 8). Mineral forest topsoils can also be
(temporarily) impacted by lateral flow, especially soon after
strong precipitation events and snowmelt. However, the dif-
ference between 1D and 2D models remained smaller due to
the small difference in mineral soil field capacity and poros-
ity (Fig. 10).

4.2 SAR-based soil moisture: potential and limitations

The Sentinel-1 SAR-based soil moisture estimates were use-
ful in supplementing the point-scale in situ measurements
and confirming the plausibility of the spatial soil moisture
predicted by the SpaFHy-2D. To this date, model develop-
ments and evaluations of soil moisture predictions in bo-
real and subarctic forests and peatlands have typically been
limited to point-scale studies, which fail to encompass the
full spatiotemporal extent that distributed hydrological mod-
els simulate (Launiainen et al., 2015; Ala-aho et al., 2017b;
Tyystjärvi et al., 2022). We found SAR estimates useful for
spatial model–data comparison, and envision SAR to have
further potential as, for instance, a proxy for water table
depth assimilation or improved estimates of topographic wet-
ness indices (TWIs, depth to water) in peatlands (Bechtold
et al., 2020; Zhang et al., 2018).

The comparison between SAR-based estimates and mod-
eled soil moisture was not straightforward and revealed limi-
tations in using the SAR-based data as, for instance, ground-
truth calibration data for hydrological models. A direct com-
parison is challenging due to the disparate penetration depth
of SAR in soil (1–5 cm: Nolan and Fatland (2003)), contrast-
ing with the model layering (root zone layer of 0–30 cm).
Indeed, the correspondence of SAR-based estimates with in
situ measurements in the root zone (0–30 cm, Fig. 6) was

poorer than the original validation of SAR estimates in rela-
tion to in situ measurements at the surface soil (0 cm, Fig. 11
in Manninen et al. (2021)). This vertical mismatch is a com-
mon challenge (Shellito et al., 2020), and, hence, enhancing
the comparability of in situ measurements, as well as of hy-
drological models, with SAR estimates would contribute to
more effectively harnessing the SAR-based data. Another no-
table difference is that hydrological models such as SpaFHy
neglect heterogeneity within the grid cells, while SAR es-
timates can integrate multiple backscattering signals for a
given grid cell (Manninen et al., 2021). In turn, hydrological
models can integrate temporal information, whereas SAR-
based estimates are instantaneous.

We also emphasize the need for potential algorithm im-
provements in computing soil moisture from SAR signals.
Given the homogeneity of the vegetation and soil texture,
some of the spatial variability in the SAR-based data ap-
peared more as noise than realistic soil moisture patterns.
To a large extent, the different SAR incidence and view
angles with respect to the topography cause the systematic
difference in the soil moisture estimates from the morn-
ing and evening flyover times (Figs. 4 and 5). Indeed,
topography-induced shading posed a significant challenge
in the development of the evening soil moisture algorithm
for SAR-based estimates (Manninen et al., 2021). Conse-
quently, Manninen et al. (2021) reported higher RMSEs
for the evening flyover (0.088 m3 m−3) than for the morn-
ing flyover (0.065 m3 m−3), while the maximum errors were
relatively similar (0.341 m3 m−3 for morning flyover and
0.339 m3 m−3 for evening flyover). Further discussion on
the differences between these SAR flyovers can be found in
Manninen et al. (2021).

Although the SAR-based soil moisture fell mostly within
the observed range, the temporal variability and seasonal
patterns, especially from the evening flyovers, were small
and followed neither the simulated nor in situ-observed shal-
low soil moisture (Fig. 5). The morning flyover occasion-
ally captured some temporal dynamics observed and simu-
lated (see, e.g., Fig. 5d). The SAR-based estimates do not
reach the highest observed or simulated values, resulting in
underestimation of the soil moisture content, likely because
they integrate information from multiple signals within a
given grid cell that have been averaged to correspond to the
model grid. The presence of different vegetation characteris-
tics and soil textures further complicates the interpretation of
the backscattering signals, leading to uncertainties and noise
in soil moisture estimates.

Overall, the capability of any remote-sensing-based soil
moisture estimate to represent various meteorological and
landscape conditions can only be as good as the training
data. As acquiring high-quality and representative in situ soil
moisture data is challenging and costly, we encourage deeper
collaboration between hydrological measurement, modeling,
and remote sensing communities.
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4.3 Model limitations and outlook

The modularity of SpaFHy (Launiainen et al., 2019) was
ideal for comparing the impact of different conceptualiza-
tions of the lateral groundwater flow. Nevertheless, there are
potentially relevant hydrological processes that are not yet
represented. For instance, overland flow and soil freezing and
thawing are currently omitted, and this may influence soil
moisture dynamics, particularly during and after snowmelt
and in the autumn (Ala-Aho et al., 2021). Lateral overland
flow has been found to distribute water from saturated grid
cells to unsaturated areas (e.g., in subarctic tundra and bo-
real forests; Tang et al., 2014). We suspect that it may be
especially important after snowmelt and heavy-precipitation
events over the low-lying flat peatlands of the catchment.
The snowpack representation of SpaFHy successfully cap-
tured the snowmelt timing (Figs. S2 and S3) but relies on a
simple degree-day approach, potentially limiting its ability
to fully capture snowmelt dynamics. Moreover, the radiation
conditions on the forest floor within a specific grid cell may
be influenced by the forest canopy in the surroundings. Thus,
employing 3D radiation transfer schemes that consider the
shading from grid cell neighbors (Webster et al., 2023) or the
demography of individual trees within a grid cell could be
beneficial (Mazzotti et al., 2021).

Although the explicit 2D lateral groundwater flow module
added process realism and improved shallow soil moisture
predictions, the simulations were still far from perfect due to
uncertainties in classifying soil types and because soil mois-
ture data were not used to calibrate the model’s hydraulic pa-
rameters. The improvement also comes with a computational
cost: in terms of running time, SpaFHy-2D is approximately
60 times slower than TOP and 1D versions. For instance, a
1-year simulation with 1D and TOP was completed in 5.4 s,
while 2D took 321.6 s. This can become a burden when ap-
plying the 2D model to large areas or when parameter cali-
bration or ensemble simulations are done.

Uncertainties in model simulations and model evaluation
accumulate from multiple sources: input data, model param-
eters, model structure, and errors in in situ measurements
(Moges et al., 2021). The meteorological forcing time series
was constructed from observations at the upland forest site,
and radiation data gaps were filled with ERA5 data (Hers-
bach et al., 2020). It is known that there are intrinsic uncer-
tainties in meteorological observations (Stuefer et al., 2020).
Although data gaps were limited, those filled by ERA5 data
further add uncertainties into the model–data comparison
(Raleigh et al., 2015). In addition, we used spatially uni-
form meteorological forcings (excluding radiation where to-
pographic shading was accounted for) measured at the for-
est site that may have been slightly different to those experi-
enced on the lowland peatlands (Aurela et al., 2015).

The model was initiated and parameterized based on the
best available open geospatial data on the landscape char-
acteristics. As Härkönen et al. (2015) found a good agree-

ment between the mNFI-based and ground-based LAI esti-
mates and because soil moisture patterns were not majorly
altered by vegetation characteristics (Fig. 10), we assume
that vegetation parameters did not create marked biases in the
soil moisture predictions. However, estimating soil hydraulic
properties from available geospatial data sets is challenging
(Launiainen et al., 2022) and can yield systematic uncertain-
ties and biased local soil moisture. Modeling lateral ground-
water flow by means of the proposed 2D Darcy scheme also
requires distributed data on the depth to bedrock. As such in-
formation was not readily available, these parameters were
assigned as estimates. Even with these limitations, the mod-
eled groundwater level dynamics were relatively close to the
observed levels (Fig. S5 and Table S4)

5 Conclusions

We explored the controls of high-resolution soil moisture dy-
namics, particularly the role of lateral groundwater flow, in
the subarctic Lompolonjängänoja catchment in northwest-
ern Finland. We combined soil moisture data from multi-
ple sources, including in situ measurements and Sentinel-
1 SAR-based estimates, and interpreted soil moisture vari-
ability with high-resolution (16× 16 m2) process-based hy-
drological modeling. To accomplish this, we extended the
Spatial Forest Hydrology (SpaFHy) model with an explicit
lateral groundwater (2D Darcy flow) submodel and com-
pared it to existing approaches where lateral groundwater
flow was either neglected (free drainage) or based on a
simple TOPMODEL conceptualization. The results showed
the major impact of lateral groundwater flow on shaping
soil moisture dynamics, particularly post snowmelt and af-
ter heavy rainfall. The inclusion of the lateral groundwa-
ter flow model notably improved soil moisture simulations
in forested peatlands and open peatlands. The soil moisture
simulations were affected by uncertainties in hydraulic pa-
rameters, which were assigned based on geospatial data on
soil types. SAR-based soil moisture estimates were valuable
in confirming modeled spatial patterns. Discrepancies in spa-
tial resolutions, SAR penetration depth, and model layering,
however, hampered direct comparison. Moreover, the noise
in SAR-based data, particularly for forested areas, compli-
cates the use of SAR as ground-truth evaluation data for
hydrological models. Our study provides novel insights and
tools for predicting soil moisture dynamics at a high reso-
lution, necessary for ecohydrological, biogeochemical, and
climate change adaptation studies, as well as for land use
management and planning in high-latitude environments.

Code and data availability. The SpaFHy model version developed
and used in this study is available at Nousu et al. (2024a)
(https://doi.org/10.5281/zenodo.10820456). The code repository
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also includes meteorological forcing files and geospatial input
rasters.

In situ hydrological measurement data, including soil
moisture, evapotranspiration, groundwater levels, and spe-
cific discharge, are available at Nousu et al. (2024b)
(https://doi.org/10.5281/zenodo.10820563).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-4643-2024-supplement.
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