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Abstract. Excess export of reactive nitrogen in the form of
nitrate (NO−3 ) from suburban watersheds is a major source of
water quality degradation and threatens the health of down-
stream and coastal waterbodies. Ecosystem restoration and
best management practices (BMPs) can be introduced to re-
duce in-stream NO−3 loads by promoting vegetation uptake
and denitrification in the upland and riparian areas. However,
accurately evaluating the effectiveness of these practices and
setting regulations for nitrogen inputs requires an under-
standing of how human sources of nitrogen interact with eco-
hydrological systems. We evaluated how the spatial and tem-
poral distribution of nitrogen sources interacts with ecohy-
drological transport and transformation processes along sur-
face and subsurface flow paths with respect to nitrogen cy-
cling and export. Embedding distributed household sources
of nitrogen and water within hillslope hydrologic systems
influences the development of both planned and unplanned
“hot spots” of nitrogen flux and retention in suburban ecosys-
tems. We chose a well-monitored low-density suburban wa-
tershed, Baisman Run, in Baltimore County, Maryland, USA,
to evaluate patterns of in-stream NO−3 concentrations and ter-

restrial nitrogen cycling processes in response to three com-
mon activities: irrigation, fertilization, and on-site sanitary
wastewater disposal (septic systems). We augmented a dis-
tributed ecohydrological model, RHESSys (Regional Hydro-
Ecological Simulator System), with estimates of the spatial
distribution of these loads at household parcel level to de-
velop a predictive understanding of the factors generating
upland and riparian nitrogen cycling, transport, and stream
NO−3 concentrations. We calibrate subsurface hydraulic pa-
rameters only without calibrating ecosystem and biogeo-
chemical processes. The calibrated model predicted mean
NO−3 concentrations of 1.43 mg NO−3 -N L−1 compared to the
observed 1.6 mg NO−3 -N L−1 from water year 2013 to 2017.
With spatially explicit irrigation, fertilizer, and septic efflu-
ent inputs, estimated denitrification rates in grass lawns, a
dominant land cover in suburban landscapes, were also in the
range of previously measured values. The highest predicted
denitrification rates (N retention hot spots) were downslope
of lawn and septic locations in a constructed wetland and at
a riparian sediment accumulation zone at the base of a gully
receiving street drainage. These locations illustrate the devel-
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opment of hot spots for nitrogen cycling and export in both
planned and “accidental” retention features. Appropriate sit-
ing of suburban nutrient management and BMPs should as-
sess and incorporate spontaneously developed nutrient hot
spots to design improved landscape ecosystem N retention
and water quality.

1 Introduction

Nitrogen (N) and carbon (C) are fundamental elements for
ecosystem functions and are influenced by multiple factors
including climate (Campo and Merino, 2016; Crowther et
al., 2016), moisture and other soil properties (Pastor and
Post, 1986; Wang et al., 2020), plant and microbial com-
munity composition (Chen et al., 2003), and human activi-
ties (Galloway et al., 2008). They are also influenced by the
state and pattern of drainage flow paths as different forms
of C and N are mixed and transported to distinct edaphic
conditions, potentially forming “hot spots” (McClain et al.,
2003) that have a disproportionate influence on landscape
and watershed-scale biogeochemical cycling functions. Un-
derstanding mechanisms of N and C cycling and interac-
tions with hydrologic processes is necessary to design and
implement efficient ecosystem service and restoration strate-
gies. In urban, suburban, and exurban ecosystems, human
disturbance to biogeochemical cycling has led to air and wa-
ter quality degradation. Best management practices (BMPs)
are popularly deployed to reverse the degradation and im-
prove local and downstream water quality, increase C and
N retention, and promote ecosystem resilience to prepare
for extreme weather events with changing climate. BMPs
can be both structural (e.g., constructed wetlands) and non-
structural (e.g., changing fertilization and irrigation regimes).
In addition to planned BMPs, spontaneously developed “hot
spots” (Palta et al., 2017) may be responsible for a large share
of nutrient retention and should therefore be identified and
protected. Both planned and unplanned retention features ex-
ist at very localized, sub-hillslope scales. Therefore, gain-
ing a comprehensive understanding of hillslope-level ecohy-
drological behavior and interactions between (i) ecosystems
and human-derived nitrogen sources, as well as (ii) flow-
path modification, can lay the foundation for effectively mit-
igating these environmental issues through spatially well-
conceived and sustainable management practices.

In urban ecosystems, human activities introduce additional
inputs of water (e.g., lawn irrigation and septic effluent),
carbon (e.g., mulch, lawn amendments), and nitrogen (e.g.,
septic systems, lawn and garden fertilization, sanitary sewer
leakage), occurring on discrete land segments and altering
watershed mass budgets of water and nutrients. Lawn fer-
tilization can contribute more than half of the total N in-
put in urban watersheds, even if it is only applied to 20 %–
30 % of the landscape (Band et al., 2005; Groffman et al.,

2004; Hobbie et al., 2017). In the United States, about 20 %
of households (26.1 million) were reported to be served by
septic systems in 2007 (US EPA, 2008). Through our work
in the Baltimore Ecosystem Study, low-density suburban ar-
eas have been shown to produce the highest NO−3 load per
unit developed land among different land uses, degrading lo-
cal and downstream water quality (Groffman et al., 2004;
Zhang et al., 2022). Atmospheric deposition and septic sys-
tem wastewater N can comprise similar input amounts at the
watershed scale, but septic input is concentrated over only
1 %–2 % of the landscape, with a large, localized volume of
wastewater sufficient to result in groundwater mounding and
effluent plumes extending towards local streams (Cui et al.,
2016). The concentrated inputs over limited areas by septic
inputs and lawn fertilization with or without irrigation create
delivery or retention patterns of N hot spots that provide op-
portunities for targeting N mitigation strategies (Groffman et
al., 2023).

With rapid suburban and exurban sprawl, decision makers
are facing environmental challenges which require detailed
planning for siting BMPs effectively in watersheds to pro-
mote N retention, reduce N export in streams, and protect
water quality. These include both constructed and “inadver-
tent” biogeochemical hot spots of N retention at specific hill-
slope locations (e.g., swales, wetlands, riparian areas) at res-
olutions required for landscape design. However, commonly
used modeling frameworks often do not couple distributions
and interactions of hillslope ecohydrological processes in
transporting and transforming natural and human-induced
N sources to understand or predict local-scale (neighbor-
hood or hillslope) transport and retention. Semi-distributed
hydrologic models, such as the Storm Water Management
Model (SWMM; Rossman, 2010) and the Soil Water Assess-
ment Tool (SWAT; Arnold et al., 1998), are widely used to
simulate nutrient loads at subwatershed-level outlets. They
simulate water and nutrient balance based on hydrologic re-
sponse units (HRUs) with similar land cover and soil, where
nutrients are independently processed by BMPs and added to
streamflow at the subcatchment outlet. However, these mod-
els lack hillslope water and nutrient mixing along interact-
ing surface–subsurface hydrologic flow paths. These inter-
actions are important to simulate the formation of biogeo-
chemical hot spots where potential uptake and retention of
nutrients are high. The lack of sub-hillslope flow-path pro-
cesses may generate significant bias in estimating key hy-
drologic and biogeochemical processes (Band et al., 1993;
Fan et al., 2019). Data-driven approaches, such as SPAR-
ROW (Ator and Garcia, 2016; Smith et al., 1997), are also
developed to assess large-scale water quality in streams by
nonlinear regression from gauged discharge and solute con-
centrations. However, these models also do not investigate
hillslope-scale transport and transformation processes. In ad-
dition, data do not exist at hillslope scales to develop suffi-
cient data-based approaches to understand and predict reten-
tion processes (e.g., denitrification, uptake, immobilization).
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Fully distributed hydrology models, such as MIKE-SHE
(Abbott et al., 1986a, b), RTM-PiHM (Bao et al., 2017;
Zhi et al., 2022), ParFlow (Maxwell, 2013), and RHESSys
(Regional Hydro-Ecological Simulator System; Tague and
Band, 2004), could explicitly couple hillslope hydrologic and
biogeochemical processes that are required to understand
the transport and transformation of these human-induced
N loads along hydrologic flow paths from upland to stream.
They simulate surface and subsurface hillslope processes
with detailed topographic and soil information to generate
distributed surface runoff, recharge, soil moisture, evapotran-
spiration (ET), and other ecohydrological variables. Lateral
surface and subsurface drainages redistribute precipitation,
resulting in gradients of water availability within a watershed
from ridge to riparian areas. These models include modules
for biogeochemical reaction and transport processes, which
can interact with the transport and storage patterns of soil
water and provide high-resolution output for each location
within a watershed.

Therefore, a spatially explicit and process-based frame-
work that simulates hillslope hydrology and interactions be-
tween C, N, vegetation, water, and household-level human
activities through flow paths has important advantages to
understand and manage non-point-source pollutants and hot
spots in urban watersheds (Bernhardt et al., 2017; Groffman
et al., 2009). The ability to represent processes at the scale
of human perception can also provide information useful for
decision-making as well as community and stakeholder in-
volvement. High-resolution simulations and visualization of
spatially explicit water, N cycling, and transport can facil-
itate understanding and communication of how human ac-
tivities can alter terrestrial and aquatic ecosystem functions
in urban ecosystems and contribute to participatory planning.
The framework should be capable of extension to watersheds
without water chemistry data, which are less available than
discharge records worldwide. It would be a valuable fea-
ture of the framework to estimate nutrient dynamics reason-
ably, while restricting calibration to hydrologic parameters.
Calibrating nutrient dynamics may not allow generalization
to watersheds without chemistry records or extrapolation to
conditions in which water quality BMPs are implemented.

RHESSys is an ecohydrological model that simulates mass
balances of water, C, and N of a watershed including hydro-
logic and biogeochemical stores and cycling. The hydrologic
component in RHESSys routes water and solutes based ex-
plicitly on topographic and infrastructure surface water flow
paths, as well as two-dimensional subsurface flow based on
dynamic groundwater table gradients. Biogeochemical pro-
cess rates are then estimated with modules modified from
Biome-BGC (Running and Hunt, 1993), CENTURYNGAS
(Parton et al., 1996), and subsequent models. In this study,
we augmented RHESSys to include household-level transfer
of groundwater for lawn irrigation and domestic water use,
with domestic water use routed to septic spreading fields.
By coupling hillslope hydrology and biogeochemistry at spa-

tially connected patches, RHESSys estimates spatiotemporal
patterns of soil moisture, lateral flow distribution, evapotran-
spiration, groundwater level, and N transportation, transfor-
mation, uptake, and immobilization. In summary, by adding
modules of household-level lawn irrigation, fertilization,
and septic releases (see Sect. 2.3), as commonly sourced
from groundwater in low-density suburban and rural areas,
RHESSys is designed with the capacity to simulate the com-
prehensive ecosystem dynamics and feedbacks of introduced
spatially explicit lawn irrigation, fertilization, and septic re-
leases at resolutions commensurate with human management
of the landscape. This facilitates the scientific assessment of
small-scale human activity and modification to land cover
and infrastructure in expanding suburban and exurban areas.

We developed and used the augmented version of
RHESSys to investigate the spatial and temporal distribution
of hydrologic and biogeochemical N cycling and export in a
low-density suburban watershed, Baisman Run (BARN, see
Sect. 2.1). BARN is in a suburban area of Baltimore County,
with all households using septic systems and well water. We
developed numerical experiments with and without human
additions of water and N and compared model results to field
observations for streamflow, water chemistry, and soil N cy-
cling processes to answer the following research questions:

1. What are the individual and interacting contributions of
different watershed N sources to stream water N export?

2. How do the spatially nested patterns of water and N in-
puts from human activities alter spatial patterns of key
ecohydrological processes including N retention, evap-
otranspiration, groundwater levels, and flows?

3. What are the patterns of hot spots for N retention and
associated implications for the design of BMPs to pro-
mote N retention within suburban watersheds?

2 Methods

2.1 Study area

Our study watershed (Fig. 1), BARN, is in Baltimore
County, MD, outside of the urban sanitary sewer service
boundary. The 3.8 km2 watershed is in the Piedmont phys-
iographic province with a rolling, locally steep landscape.
Mean elevation is 170.5 m, with average slope 7.8°. Meteo-
rological records from 1980 to 2018 were integrated from the
Baltimore–Washington International Airport (BWI) weather
station and a local rain gauge adjacent to BARN at the Ore-
gon Park operated by the Baltimore Ecosystem Study (BES),
available after 2013 (Welty and Lagrosa, 2020). Mean annual
maximum and minimum temperatures are 18.9 and 7.9 °C,
respectively, and mean annual precipitation is 1024 mm. The
discharge and gauge height records of BARN have been
monitored by the USGS (gauge ID: 01583580) since 1999.
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Figure 1. Study watershed Baisman Run (BARN) in suburban Baltimore County, Maryland (from ESRI). The inset (from ESRI World
Imagery) highlights two N retention “hot spots”: a sediment accumulation zone (upper circle) receiving drainage from roads and a constructed
wetland (lower circle). Pond Branch (POBR), a fully forested subcatchment, is outlined in gray.

Soils in BARN range from silt clay loam to silt loam in
the riparian areas to sandy loam on steeper slopes. Forested
areas are dominated by approximately 100-year-old Quercus
spp. (oaks) and Carya spp. (hickory). The entire watershed
is underlain by the medium- to coarse-grained micaceous
schist of the Loch Raven Formation, overlain by a weath-
ered saprolite. The saprolite thickness is highest on ridges
(up to 20 m), thins (< 1 m) with some bedrock outcrops at
steep midslope positions, and is 1–2 m in bottom-land loca-
tions (Cleaves et al., 1970; St Clair et al., 2015). Hydraulic
conductivities of soils generally decrease with depth but may
locally increase into the saprolite. The saprolite may store
substantial amounts of moisture and is drained through un-
derlying bedrock fractures through a set of emergent springs
on the valley sidewall–riparian area transition, providing a
fairly steady baseflow (Putnam, 2018). Dominant land cover
includes forest and lawns, covering 81.5 % and 14.5 % of the
watershed, respectively. Impervious areas cover 4.0 % of the
watershed, including roofs of single-family houses, drive-
ways, and roads. Lawns are located in front and backyards
of households in headwater areas of BARN. Two natural-gas
supply lines cut through the watershed, creating two strips of
herbaceous land.

BARN is a useful watershed for examining the interac-
tions between human activities and watershed ecohydrolog-
ical response, as the sources and disposal of domestic water

are on-site without external piped inputs and outputs. In this
suburban watershed all households use groundwater wells for
water supply and on-site septic systems to process wastew-
ater. Lawn and garden fertilization is another major source
of N input in BARN (Law et al., 2004). Septic and fertiliza-
tion N and water additions are localized on lawns and septic
drain fields near houses in the BARN headwaters.

The availability of several previously collected datasets
allowed us to compare simulation results to field observa-
tions. Rich ecohydrological observations and lawn manage-
ment surveys (Fraser et al., 2013; Law et al., 2004) from the
BES are available as are weekly water chemistry concen-
tration data at the BARN USGS gauge since 1998 (Groff-
man et al., 2020; Castiblanco et al., 2023). In addition, a
fully forested subcatchment of BARN, Pond Branch (POBR,
Fig. 1), is also monitored weekly by the BES and USGS
(Gauge ID: 01583570). POBR serves as a forest control site
without human water and nutrient additions. Finally, we have
previously estimated N stores and cycling rates, including
lawn soil NO−3 content and denitrification rates in BARN
(Suchy et al., 2023), sites on the campus of the University of
Maryland Baltimore County (Raciti et al., 2011), and other
sites in the region (Groffman et al., 2009). Annual atmo-
spheric N deposition was estimated as 11 kg N ha−1 from
site MD99 of the National Trends Network from National
Atmospheric Deposition Program (NADP, 2022).
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2.2 RHESSys setup and calibration

2.2.1 Model inputs and settings

Our study period makes use of observed and simulated wa-
tershed processes from water year 2013 to 017 (i.e., 1 Octo-
ber 2012 to 30 September 2017). BARN had gradual sub-
urban development in the headwater which was converted
from agricultural land over a few decades. New development
was largely completed in the 1990s, with one last field de-
veloped in 2007–2009. Our study period could reduce the
uncertainty of N inputs due to land cover change during ur-
ban development and allow for analysis of N dynamics in
a stationary condition. We set a 30-year simulation spin-up
period to stabilize groundwater levels and C and N pools.
Inspection of the spin-up storage of soil C and N showed
they were asymptotic with stable C : N ratios, with a mean
of 8.5 in the entire watershed. The watershed is delineated us-
ing 1 m digital elevation data (Baltimore County GIS, 2017)
using r.watershed (Ehlschleager et al., 2008) from GRASS
GIS. Streams are identified when accumulated drainage areas
are above 10 ha (Fig. 1), which approximates the extension
of Baltimore County’s dataset of hydrology lines (Baltimore
County GIS, 2016). Detailed land use information (LULC)
data are from the Chesapeake Conservancy (Chesapeake Bay
Program, 2023). The dataset contains “roof” as a LULC
class, from which we identified 249 spatially isolated clus-
ters of roofs within BARN. Comparison with the Baltimore
County parcel dataset (Baltimore County GIS, 2019) and the
latest Google Earth satellite data allows us to filter out de-
tached garages and sheds and to identify the main build-
ing in each parcel. We identified 181 households, although
13 homes are located on the watershed divide, providing
some uncertainty in the effective number of septic systems.

We set up RHESSys in BARN at 10 m resolution. Patches
in centroids of the 181 main buildings were identified as
“drain-in” patches, receiving on-site water supply from a
hillslope-scale groundwater store. We simulated groundwa-
ter well supplies from deep groundwater stores to household
use as either domestic water use routed to septic spreading
fields or to lawns for irrigation. Drain-in patches (homes)
were paired with “drain-to” patches (septic spreading fields
and lawns) to receive domestic water release, which are dis-
cussed in detail in Sect. 2.3. The methods can also draw wa-
ter from ponds, but there is only one pond in the watershed
that has occasionally been used for irrigation, and our simu-
lations relied fully on groundwater wells. The riparian areas
in RHESSys were defined as areas with height above nearest
drainage (HAND) below 1.5 m (Nobre et al., 2011). This is
an approximation of riparian extent based on local inspection
and can be improved with more detailed riparian delineation.
These areas were set to receive additional drainage from the
deep groundwater system, which can set a feedback between
greater household groundwater use and lower groundwater
inputs to riparian areas. The start and end dates of the grow-

ing season in RHESSys are based on local observations and
vary for lawn and forest: deciduous trees grow from 5 May to
22 October and grass is set as perennial, identical to param-
eters in previous RHESSys studies (Lin et al., 2015, 2019).
There is limited conifer cover in BARN and some mountain
laurel (Kalmia sp.) understory on hillslopes.

2.2.2 Parameter calibration

We calibrate several subsurface hydraulic parameters to sim-
ulate lateral and vertical water flows and route subsur-
face lateral flow following the procedure detailed in Smith
et al. (2022). In this study, we calibrated eight parame-
ters (Table 1) for subsurface properties (i.e., lateral and
vertical saturated hydraulic conductivities and their decay
rates, pore size index, and air entry pressure) with ini-
tial estimates (Fig. A2) from the Soil Survey Geographic
Database (SSURGO; USDA, 2019) and deeper groundwater
processes (i.e., bypass seepage from surface and shallow sat-
urated soil, as well as drainage rate to stream). We set the cal-
ibration period from water year 2013 to 015 and validation
period from water year 2016 to 2017. The original parame-
ter values derived from SSURGO were further calibrated by
multipliers to vary their magnitudes but preserve the spatial
patterns of soil hydraulic properties (Fig. A2).

Specifically, the simulated streamflow was used to cali-
brate against the daily USGS discharge records (gauge ID:
01583580). From 4000 parameter set realizations ran-
domly chosen within specified limits described in Smith et
al. (2022), behavioral sets are chosen as yielding Nash–
Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) greater
than 0.5 and fraction of groundwater loss to stream (i.e.,
gw2 in Table 1) less than 0.5 to estimate the ensemble means
and uncertainties of model simulations. The latter condition
was enforced to regulate the flashiness of groundwater dy-
namics, as BARN is found to have large saprolite storage
to provide steady baseflow (Putnam, 2018). To assess uncer-
tainty, we report the 95 % uncertainty boundaries for sim-
ulated streamflow and NO−3 concentration and load. Lastly,
we emphasize that no calibration was performed for N in-
puts (e.g., fertilization rate and septic load) or N cycling and
transport processes in the model, as an important aim of our
methods is to evaluate the capacity of our model to regional-
ize to watersheds where no water chemistry but only stream-
flow observations are available.

2.3 Household additions of water and N

We included estimates of fertilization, on-site wastewater
disposal from septic systems, and irrigation as input to
RHESSys to incorporate water and N management decisions
and capture how such activities affect water and N cycling
and export within the study watershed.
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Table 1. RHESSys parameters being calibrated and their physical representations (Tague and Band, 2004). Calibrated results are shown as
ranges of multipliers to original soil properties (Figs. A2 and A3) and groundwater component generating behavioral simulations with NSE
greater than 0.5 for streamflow.

Parameter RHESSys parameter Detail Source Unit Multiplier
groups abbreviations range

Lateral soil s ml Decay rate of lateral saturated USDA – 0.31–2.91
hydraulics hydraulic conductivity with depth SSURGO

Ksat0_l Lateral saturated hydraulic (2019) m d−1 0.38–2.93
conductivity at the soil surface

z Soil depth m 1.65–5.95

Vertical soil sv mv Decay rate of vertical saturated USDA – 0.51–1.98
hydraulics hydraulic conductivity with depth SSURGO,

Ksat0_v Vertical saturated hydraulic (2019) m d−1 0.52–1.98
conductivity at the soil surface

Soil svalt b Pore size index USDA – 0.51–1.98

properties ϕae Air entry pressure SSURGO m 0.5–1.05
(2019)

Groundwater gw gw1 Fraction of bypass from the saturated – 0–0.13
dynamics zone to groundwater storage

gw2 Fraction of loss from groundwater – 0.03–0.5
storage to stream

gw3 Fraction loss from surface to – 0–0.07
groundwater storage

2.3.1 Fertilization

The lawn fertilization module in RHESSys specifies the
amount, location, and timing of fertilization rates applied to
lawns. Law et al. (2004) and Fraser et al. (2013) conducted
in-person household surveys in a set of neighborhoods in the
Baltimore area, including BARN, and found that approxi-
mately 50 % of homeowners apply fertilizer to their lawns,
with a mean annual total fertilization rate ranging from 3.7 to
13.6 g N m−2. Both surveys were conducted during signif-
icant drought conditions (2002 and 2008) when lawn care
was reduced due to groundwater supply concerns. Hence,
we consider the survey results to be on the lower end of ac-
tual rates. In this study, we used the intermediate lawn fer-
tilization rates consistent with estimates of Law et al. (2004)
surveyed in 2002, 8.4 g N m−2 (12.4 kg N ha−1 yr−1 at wa-
tershed scale, accounting for lawns that are not fertilized),
for a denser suburban site. We assumed all lawns in BARN
were fertilized three times with a 60 d interval between ap-
plications beginning 1 April. This fertilization frequency is
consistent with our prior household surveys and similar to
results of surveys conducted in other suburban communities
(Carrico et al., 2013; Martini et al., 2015). The model dis-
tributed the estimated total fertilization amount uniformly to
all lawns in the watershed at rates modulated by the propor-

tion of lawns fertilized estimated by Law et al. (2004) and
Fraser et al. (2013).

In the model, applied fertilizer is stored in an independent
pool of each lawn patch, and each day we assumed a fixed
fraction of available nutrients in the fertilizer pool leached to
other pools, of which 80 % is dissolved to detention storage
and 20 % to soil. Assuming all lawn fertilization is done with
the slow-release fertilizer designed to remain 10 % after one
fertilization interval, the daily release fraction (RF) is deter-
mined by the fertilization interval (FI), following Eq. (1):

RF=−
log0.1

FI
. (1)

In our case study, our 60 d fertilization interval results in
3.8 % of nutrients in the fertilization pool declining expo-
nentially and being transported to other pools per day and
then stored, consumed by vegetation, immobilized, denitri-
fied, or further transported to groundwater and downslope.
User-defined fertilization time series could overwrite this set-
ting of lawn fertilization if observations are available. In
this study, we considered fertilizer input to only contain
NO−3 , following sensitivity analysis that found that varying
NO−3 and NH+4 proportions in fertilizer had negligible im-
pacts on model outputs. Once NO−3 is released to soil, N cy-
cling is simulated following the procedure detailed in Lin et
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al. (2015). Phosphorous fertilizer, which is banned in Mary-
land lawn fertilizer formulations as protection for the Chesa-
peake Bay, is not considered.

2.3.2 Septic systems

All households within BARN use septic systems to dispose
of domestic wastewater. Wastewater from a house is released
first to septic tanks for settling, then to drain fields which
are typically placed downslope of the house. Therefore, soils
in specified downslope areas receive additional water and
N input from septic effluents and may become N input hot
spots in the watershed. We estimated the N load from sep-
tic systems as 7.7 kg N per capita per year and water input
as 110.5 m3 per capita per year (∼ 80 gal−1 per capita per
day), resulting in a NO−3 concentration of 70 mg N L−1 esti-
mated from results of Gold et al. (1990), Lowe et al. (2009),
and other sources for per-capita water use and septic nitro-
gen concentrations. We set the average number of people
per household as 3.3 for these single-family houses based
on survey results from Law et al. (2004) and census infor-
mation. Applying these water and NO−3 loads for 181 houses
in BARN results in 4599 kg N yr−1 (12.0 kg N ha−1 yr−1) of
NO−3 input to the watershed. The demand for septic source
water (SSWdemand) is 66 001 m3 yr−1 (17 mm yr−1 at the full
watershed scale or 3647 mm yr−1 normalized to the esti-
mated total areas of septic fields) of water extracted from
deep groundwater. Septic water and N loads are currently set
to be evenly distributed through the year.

Septic source water is drawn from drain-in patches (i.e.,
centroid patches of main buildings) and transported to stor-
age in septic drain-to patches (Fig. 2) which are the locations
of drain fields of septic systems and defined as the closest
downslope lawn patches to drain-in patches. We regulated ac-
tual withdrawal of septic source water (SSWactual) to not ex-
ceed the available water in groundwater storage, as in Eq. (2):

SSWactual =min
(
SSWdemand,GWstorage

)
, (2)

where GWstorage is available water in surface detention and
deep groundwater storage of the hillslope at drain-in patches
(Fig. 2). This is a simplification which may miss more grad-
ual household reduction of water use during droughts. The
extracted source water is added to septic drain-to patches (or-
ange arrow in Fig. 2), where it is subject to hydrological and
biogeochemical processes. Nutrients are also added to the
drain-to patches’ storage, depending on the concentrations
and quantity of source water from the groundwater of drain-
in patches. Once NO−3 is added to surface detention storage,
N cycling is simulated following the procedure detailed in
Lin et al. (2015).

Figure 2. Groundwater extraction for irrigation and septic systems
in the RHESSys model. The source water (green arrow) is extracted
from groundwater storage of drain-in patches (i.e., house centroids)
and redistributed (orange arrow) to surface detention in downstream
lawn patches for septic effluents and irrigated lawn patches of a
household. After redistribution of source water, infiltration to soil
and percolation to hillslope groundwater (yellow arrows) would fol-
low the original processing of RHESSys.

2.3.3 Irrigation

Although irrigation practices and quantities vary signifi-
cantly among households, irrigation is commonly applied
during the growing season, especially during dry and hot
conditions. Therefore, we designed a mechanism to deter-
mine the total irrigation amount based on water stress of
grass. Specifically, the amount of irrigation applied on lawns
is determined by a water stress factor (WSF) in Eq. (3):

WSF=
PET−ET

PET
, (3)

where PET and ET represent patch-level potential and ac-
tual ET, which are estimated daily in RHESSys based on
the Penman–Monteith equation (Monteith, 1965) and proce-
dures in Sect. 5.6 in Tague and Band (2004). During con-
tinuously hot and dry days, WSF increases due to lower soil
water content (lower ET) and high atmospheric demand for
water (higher PET). Our model then activates the irrigation
function and calculates the demand of irrigation for patches
modulated by water shortage. This function effectively mod-
ulates soil water conditions through the addition of ground-
water sourced irrigation.

Unlike the septic source water (SSWdemand), which is
fixed each day, the daily demand for irrigation source wa-
ter (ISWdemand) in Eq. (4) for a lawn patch is further con-
trolled by the water stress factor as

ISWdemand = IRmax ·WSF · lawn%, (4)

where IRmax is the user-defined maximum daily irrigation
rate, WSF is the water stress factor in Eq. (3), and lawn % is
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the fraction of grass in an irrigated patch. In the current
model, we defined the maximum irrigation rate (IRmax) in
BARN as 4 mm d−1, which was converted based on the EPA’s
recommendation (US EPA, 2024) of 25.4 mm per week for
lawns. This rate can be modified based on the local practices
or for sensitivity analysis. Like septic source water, with-
drawal of irrigation source water cannot exceed available
water in groundwater storage. The actual irrigation source
water is calculated following the same rule in Eq. (1). The
irrigation amount is pumped from deep groundwater stor-
age to drain-in patches (i.e., centroids of houses, Fig. 2) to
water lawns around houses. Irrigated lawns are limited to
50 m from houses, covering 33.7 ha (60.6 %) out of 55.7 ha
of lawns in BARN. We note that many households in this
area are on programmed sprinkler systems, and our “smart”
irrigation estimates may underestimate actual water use in
non-drought conditions but overestimate irrigation during
droughts when homeowners reduce water use, contributing
to input uncertainty. Dynamic water use is the subject of on-
going research in this watershed.

2.4 Scenarios and N hot spots

We focus on evaluating changes in NO−3 dynamics in ri-
parian and upland areas when additional NO−3 is added
from fertilization and/or septic systems, which resulted in
four scenarios (Table 2) – none (no fertilization or sep-
tic inputs), fertilizer only, septic only, and both (fertiliza-
tion and septic inputs) – for our study watershed. Irriga-
tion is activated in all scenarios, including our reference
control scenario none to emphasize NO−3 dynamics with-
out residential N inputs. Scenario both receives a total of
35 kg N ha−1 yr−1 of N input, with 11 (31.4 %), 12 (34.3 %),
and 12 (34.3 %) kg N ha−1 yr−1 from atmospheric depo-
sition, fertilization, and septic effluents, respectively, ex-
pressed at the watershed level. To better compare our NO−3
concentration results with the sampled weekly water chem-
istry from BES for BARN, we resampled the daily simulated
concentration from RHESSys to weekly averages, expressed
in units of mg NO−3 -N L−1. The weekly NO−3 load was then
estimated by the product of weekly mean NO−3 concentration
and streamflow, expressed in unit of kg N ha−1 yr−1. Note
that this approach may introduce bias for load as the once-
a-week samples, typically not during major storms, and the
observed daily mean discharges may not reflect the average
load of the whole week.

We further evaluated changes in ecohydrological pro-
cesses at potential on-site input hot spots (e.g., residential
lawns and septic drainage fields) receiving direct household
water and N inputs as well as off-site potential hot spots lo-
cated in downslope areas that receive water and N inputs
added upslope (e.g., riparian areas, wetlands, septic fields).
Specifically, lawns are identified as patches with more than
50 % grass, and downstream forests are patches with more
than 50 % forest downslope of residential areas of BARN.

Table 2. Scenarios evaluated in BARN and corresponding combi-
nations of augmented RHESSys features.

Scenario name Irrigation Fertilizer Septic
processes

None X
Fertilizer only X X
Septic only X X
Both X X X

One off-site location is a constructed wetland (lower red cir-
cle in Fig. 1), while the other is a spontaneously developed
“accidental wetland” (Palta et al., 2017) in an area receiving
road drainage and gully sedimentation, and it is referred to
as a “sedimentation accumulation zone” (lower red circle in
Fig. 1).

In the Results section, we present model calibration re-
sults in Sect. 3.1, in-stream NO−3 dynamics of scenarios in
Sect. 3.2, and ecohydrological changes and N retention hot
spots in Sect. 3.3. Since no calibration was performed for
N dynamics, NO−3 concentration and N retention processes
are reported for the entire study period (i.e., water year 2013
to 2017).

3 Results

3.1 Model calibration and validation on streamflow

After performing calibration on soil hydraulic and ground-
water parameters, we found 50 behavioral parameter sets that
provided simulations meeting the requirement in Sect. 2.2.2.
The range of calibrated multipliers is listed in Table 1, and
the distributions are shown in Fig. A3. In the calibration
period (i.e., water year 2013 to 2015, Fig. 3a), the ensem-
ble of simulated mean (standard deviation) daily streamflow
was 1.24 (±0.03) mm d−1, with NSE of 0.63 (between 0.5
and 0.69) compared to the USGS-observed 1.38 mm d−1. In
the validation period (Fig. 3b), the simulated ensemble mean
(standard deviation) streamflow was 0.91 (±0.03) mm d−1,
with NSE of 0.58 (between 0.44 to 0.64) compared to the
USGS’s 0.86 mm d−1. A negligible difference was detected
after activating lawn fertilization or septic processes in the
watershed. The small drop in NSE in the validation period
compared to the calibration period indicated that our cal-
ibrated parameters reasonably captured the hydrologic be-
havior of BARN. The 95 % uncertainty boundary encom-
passed the majority of observed moderate flows. Our model
was able to simulate the seasonality of streamflow and wa-
ter balance well compared to the observation records but
tended to underestimate the lowest flows in the growing
season (from May to September) when streamflow is low-
est and dominated by baseflow. During the entire study pe-
riod, the mean simulated growing season streamflow was
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Figure 3. The ensemble mean of daily streamflow from simulations (red), USGS observations (blue), and the daily 95 % uncertainty range
(gray) from 50 simulations with NSE greater than 0.5. The period of (a) calibration was from October 2012 to September 2015, and (b) val-
idation was from October 2015 to September 2017. All simulations include irrigation, lawn fertilization, and septic processes.

0.95 mm d−1, which is 0.13 mm d−1 (−12 %) lower than the
1.08 mm d−1 in the USGS records.

3.2 Improved prediction of NO−
3 export

Turning fertilization and septic processes on and off in the
model produced variation in in-stream NO−3 concentration
and load simulations. We calculated weekly means of NO−3
load and concentration of behavioral simulations. In our 5-
year study period, the ensemble mean NO−3 concentrations
(Fig. 4a) for scenarios none, septic only, fertilizer only, and
both were 0.34, 0.77, 0.87, and 1.43 mg NO−3 -N L−1, re-
spectively (Table 4). The mean long-term observed concen-
tration at the BARN USGS gauge was 1.6 mg NO−3 -N L−1.
Thus, the simulated bias of mean NO−3 concentration con-
sidering both fertilization and septic loads decreased sig-
nificantly from −1.26 mg NO−3 -N L−1 in the scenario none
to 0.17 mg NO−3 -N L−1 in the scenario both. The 95 % un-
certainty boundary of weekly NO−3 concentration in sce-
nario both captured 67 % of the weekly sampled observa-
tions. The seasonality of NO−3 concentration is also well cap-
tured, except for the growing season (e.g., July to October
in 2013 and 2016) when the model underestimated low flows
(Sect. 3.1). At seasonal scales (Table 3), the weekly mean
NO−3 concentrations of scenario both from spring to winter
were underestimated compared to the BES observations by
small amounts (0.1 (−7 %), 0.34 (−21 %), 0.16 (−7 %), and
0.12 (−10 %) mg NO−3 -N L−1). The highest underestimation
of NO−3 concentration in summer was aligned with the pe-

riod that our model underestimated the lowest flows in the
growing season (Sect. 3.1).

The in-stream NO−3 load (Fig. 4b) followed a similar
trend as concentration, and the bias was reduced substantially
from scenario none to both when fertilizer and septic loads
were included. Scenario none underestimated NO−3 load by
6 (−81 %) kg NO−3 -N ha−1 yr−1, and the scenario both de-
creased the bias substantially to −0.77 (−10 %) kg NO−3 -
N ha−1 yr−1. The seasonality was also well simulated by our
model. The ensemble mean loads (Table 3) in fall and winter
were accurately captured with close-to-zero bias compared
to the observations, and the bias in spring and summer was
slightly higher. The differences were due to lower simulated
than observed discharges (Fig. 3) during the growing sea-
son. Lastly, the NO−3 retention rate (i.e., percent of N input
not exported in streamflow) varied across different scenarios,
ranging from a high of 87 % in scenario none (atmospheric
deposition only) to a low of 81 % in scenario both. In scenar-
ios septic only and fertilizer only, retention rates were 84 %
and 83 %, respectively.

3.3 Ecohydrological and biogeochemical responses of
hot spots

In our simulations, fertilizer is slowly released to soil and
surface detention and transported downslope. This transport
is augmented by irrigation and septic inputs. As a result, wa-
ter and NO−3 are redistributed through other patches along
subsurface hydrological flow paths, providing “off-site” eco-
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Figure 4. Ensemble weekly mean of (a) NO−3 concentration and (b) load at the outlet of Baisman Run over the entire study period (water
year 2013 to 2017). The 95 % uncertainty boundary for scenario both is shown in gray.

hydrological and biogeochemical responses downslope and
across the whole watershed.

3.3.1 Soil moisture and ET

The ensemble catchment mean of water table depth (Fig. A4)
from all behavioral simulations under scenario none was
4.52 m during the study period. Fertilization had overall neg-
ligible effects on watershed mean soil moisture or water ta-
ble depth compared to the base (none) scenario (Fig. 5a–c),
but a minor increase in water table depth was detected in the
residential areas, likely due to higher ET in lawns after fer-
tilization. Septic processes decreased mean catchment wa-
ter table depth to 4.47 m by groundwater mounding, which
increases shallow groundwater flow to surrounding patches
along connected flow paths. Specifically in septic drainage
field patches, the mean water table depth decreased to 3.69 m
(−0.66 m, −15 %) in scenarios both and 3.72 m (−0.63 m,
−14 %) in septic only compared to the mean depth of 4.35 m
in scenarios none and fertilizer only. With hillslope ground-
water as the only source for septic process, we found that
groundwater withdrawal resulted in slightly drier conditions
(i.e., increase in water table depth) in riparian areas of these
residential hillslopes (Fig. A7, hillslopes 11 to 16), where
the mean water table depth increased by 5 mm (2 %) and
8 mm (3.4 %) in scenarios septic only and both compared to
219 mm depth in scenarios none and fertilizer only. Though
the standard deviation of each scenario from the 50 behav-
ioral simulations was 1.1 m, the spatial distribution of soil
moisture is consistent among all behavioral simulations.

The watershed-scale mean ET was 43.9 mm per month in
scenario none and 44.0 mm per month in scenario fertilizer
only. The standard deviation from 50 behavioral parameter
sets was 0.8 mm per month for each scenario. As a result of
higher soil moisture levels after activating septic processes
in scenario both, ET in lawn patches and septic drainage
fields increased to (by) 42.3 (+0.4 mm per month, 1.0 %) and
40.8 (+6.5 mm per month, 18.9 %) mm per month compared
to the levels in scenarios none, respectively. With septic pro-
cesses activated, mean ET increased to 44.1 and 44.2 mm
per month in scenarios septic only and both in the residential
hillslopes, which could be contributed by the additional wa-
ter extracted from groundwater to surface soil at the upland
areas (in Fig. 5). When fertilization is activated in scenario
fertilizer only, ET in riparian areas of residential hillslopes
decreased to (by) 54.7 (−0.1 mm per month, −0.3 %) mm
per month compared to scenario none, while the upland of
these hillslopes increased by 0.1 mm per month. This shows
that fertilization in the upland residential lawns could support
a higher growth rate of vegetation but reduced water from
draining towards downstream areas of a hillslope (in Fig. 5).

3.3.2 Denitrification

Our model suggested significant changes in denitrification
after including additional NO−3 inputs from fertilization and
septic processes. Compared to scenario none (Fig. A5), the
ensemble mean annual rates of denitrification at the water-
shed scale were 7.2, 7.8, and 9.1 kg N ha−1 yr−1 in scenarios
fertilizer only, septic only, and both, respectively, increas-
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Table 3. Mean weekly NO−3 concentration (mg N L−1) and load (kg N ha−1 yr−1) from calibrated simulations for BES weekly observations
(BARN and POBR) and RHESSys simulation scenarios in each season and the entire study period from water year 2013 to 2017. Standard
deviations from behavioral simulations for all scenarios are included below the mean values.

Variables Season Observation RHESSys scenarios

BARN POBR Both Septic Fertilizer None
only only (mg N L−1)

Concentration Spring 1.5 0.02 1.4 0.76 0.77 0.27
(±0.12) (±0.08) (±0.05) (±0.03)

Summer 1.6 0.07 1.26 0.68 0.79 0.33
(±0.13) (±0.1) (±0.1) (±0.06)

Fall 1.57 0.06 1.41 0.77 0.94 0.41
(±0.23) (±0.15) (±0.17) (±0.09)

Winter 1.75 0.01 1.63 0.88 0.96 0.35
(±0.18) (±0.12) (±0.1) (±0.05)

Mean 1.6 0.04 1.43 0.77 0.87 0.34
(±0.16) (±0.11) (±0.1) (±0.06)

Load Spring 10.93 0.01 8.86 4.84 4.77 1.62
(kg ha−1 yr−1) (±0.63) (±0.42) (±0.31) (±0.16)

Summer 5.88 0.02 4.72 2.49 2.81 1.06
(±0.36) (±0.25) (±0.23) (±0.16)

Fall 4.72 0.01 4.72 2.57 3 1.23
(±0.39) (±0.26) (±0.27) (±0.16)

Winter 8.38 0.01 8.42 4.61 4.91 1.81
(±0.68) (±0.46) (±0.38) (±0.18)

Mean 7.44 0.01 6.68 3.63 3.87 1.44
(±0.47) (±0.33) (±0.27) (±0.16)

Figure 5. Ensemble mean differences of water table depth (a–c) and denitrification (d–f) between scenario none and scenarios fertilizer
only (a, d), septic only (b, e), and both (c, f). The inset highlights two hot spots of denitrification (i.e., wetlands in Fig. 1) circled in (f).
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Table 4. Ensemble mean denitrification rates (kg N ha−1 yr−1) in different locations under four scenarios and all seasons. Absolute and
relative changes between scenario none and other scenarios are included below denitrification rates. Rates for forest exclude Pond Branch
patches where no fertilizer or septic inputs are added.

Location Season Scenario

None Fertilizer Septic Both
only only

Lawn Spring 9.4 13.3 11.7 15.0
(3.9, 41.8 %) (2.3, 24.7 %) (5.6, 59.4 %)

Summer 11.6 16.0 13.9 17.6
(4.4, 38 %) (2.3, 19.8 %) (6, 51.6 %)

Fall 9 11.3 10.9 12.7
(2.3, 25.7 %) (1.9, 20.9 %) (3.7, 41.4 %)

Winter 6.6 8.1 8.3 9.4
(1.5, 22.7 %) (1.7, 26.4 %) (2.8, 42.4 %)

Annual 9.2 12.3 11.3 13.8
(3.1, 33.4 %) (2.1, 22.4 %) (4.6, 49.7 %)

Septic fields Spring 3.8 5.8 18.7 18.7
(2, 52.4 %) (14.9, 392.6 %) (14.9, 391.6 %)

Summer 4.7 6.1 19.8 19.7
(1.4, 30.6 %) (15.1, 321.1 %) (15, 319.4 %)

Fall 4 4.8 19.4 19.3
(0.8, 19.5 %) (15.4, 385.8 %) (15.3, 383 %)

Winter 3.2 4.0 15.0 15.0
(0.8, 24.7 %) (11.8, 368.4 %) (11.8, 367.8 %)

Annual 3.9 5.2 18.3 18.2
(1.3, 33.3 %) (14.4, 367.9 %) (14.3, 366.2 %)

Riparian areas Spring 13.2 20.9 23.4 28.3
(7.7, 58.3 %) (10.2, 76.9 %) (15.1, 114.2 %)

Summer 14.5 19.1 19.9 23.8
(4.6, 31.9 %) (5.4, 37.2 %) (9.3, 63.9 %)

Fall 11.1 15.7 16.0 19.7
(4.6, 41.7 %) (4.9, 43.9 %) (8.6, 77.3 %)

Winter 10.1 15.4 16.7 19.8
(5.3, 52.8 %) (6.6, 65.1 %) (9.7, 95.5 %)

Annual 12.3 17.9 19.1 23.0
(5.6, 45.4 %) (6.8, 55.3 %) (10.7, 87.1 %)

Forest Spring 6.5 8.7 10.4 11.7
(2.2, 34.5 %) (3.9, 59.7 %) (5.2, 80.2 %)

Summer 3.8 5.0 5.5 6.7
(1.2, 30.8 %) (1.7, 45.5 %) (2.9, 75 %)

Fall 3.8 5.0 5.4 6.4
(1.2, 30.8 %) (1.6, 41.8 %) (2.6, 68.4 %)

Winter 4.9 6.3 7.4 8.2
(1.4, 29.4 %) (2.5, 50.8 %) (3.3, 67.1 %)

Annual 4.8 6.3 7.2 8.3
(1.5, 31 %) (2.4, 50.4 %) (3.5, 72.7 %)
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Table 4. Continued.

Location Season Scenario

None Fertilizer Septic Both
only only

Watershed Spring 7 9.5 10.4 12.1
(2.5, 35.3 %) (3.4, 48.1 %) (5.1, 72.4 %)

Summer 5.1 6.9 7.0 8.5
(1.8, 34.3 %) (1.9, 36.3 %) (3.4, 65.9 %)

Fall 4.7 6.1 6.4 7.5
(1.4, 29.4 %) (1.7, 35.7 %) (2.8, 59.1 %)

Winter 5.2 6.6 7.4 8.2
(1.4, 26 %) (2.2, 42.7 %) (3, 58.5 %)

Annual 5.4 7.2 7.8 9.1
(1.8, 32.9 %) (2.4, 43.6 %) (3.7, 67.6 %)

ing by 33 %, 44 %, and 68 % (Fig. 5d–f and Table 4). The
standard deviation from the 50 behavioral simulations was
1.5 kg N a−1 yr−1 for scenario none and fertilizer only and
1.6 kg N ha−1 yr−1 for scenario septic only and both. When
fertilization and septic processes were activated, the denitri-
fication rates increased at the residential hillslopes and their
riparian areas. The only exception was found in scenario sep-
tic only, where seven patches experiencing minor reduced
denitrification (−1.4 % in average). All these patches were
found in riparian areas of residential hillslopes where the wa-
ter table drops by 9 mm on average after the septic processes
extracting groundwater in the upstream.

Compared to scenario none, denitrification rates increased
significantly in hot spots – lawn, septic drainage field, and ri-
parian areas (Table 4) – in response to NO−3 inputs from fer-
tilization and septic processes. Scenario fertilizer had higher
denitrification rates than scenario septic only in lawns. Deni-
trification rates in septic drainage patches increased by 368 %
in scenarios septic only compared to the reference scenario
none where these patches do not receive additional water
and N inputs. Fertilization and septic processes added more
than 20 kg N ha−1 yr−1 at the watershed level concentrated
in upland residential areas. These additions increased mean
denitrification rates in forest patches in and below residen-
tial areas (i.e., excluding patches in Pond Branch) by 72.7 %
(Table 4). The annual denitrification rates in the sediment
accumulation zone (upper red circle in Fig. 5) showed a
significant increase after activating fertilization and septic
processes, from 76.9 kg N ha−1 yr−1 before to 95.6 (+18.7,
24.3 %) kg N ha−1 yr−1 after activation. Similarly, denitri-
fication rates in the constructed wetland (lower red cir-
cle in Fig. 1) increased from 81.5 kg N ha−1 yr−1 before to
102.7 (+21.2, 26 %) kg N ha−1 yr−1 after activation.

Changes in denitrification varied among seasons (Table 4).
At the watershed scale and in all hot spots, the highest rates
were generally found in spring and summer, followed by fall,

and were lowest in winter. The greatest increases (%) in den-
itrification at all locations were in spring when fertilizer is
applied to lawns and soil moisture is generally higher. Ripar-
ian areas had significant increases in denitrification in winter
when the watershed receives sustained NO−3 input from sep-
tic effluents.

Our modeled denitrification rates are consistent with
measurements from field studies in Baltimore. Assuming
210 d (∼ 7 months) on which denitrification would oc-
cur, Raciti et al. (2011) reported a denitrification rate of
204 kg N ha−1 yr−1 at 20° for saturated soil samples from
fertilized lawns at the University of Maryland, Baltimore
County. At the same temperature, Suchy et al. (2023) re-
ported a higher rate, 744 kg N ha−1 yr−1, when lawn soil
samples collected from BARN lawns were saturated. We in-
terpolated the two rates based on the method from Raciti
et al. (2011), assuming 5 % storm (i.e., saturated soil) and
95 % dry (i.e., low-soil-moisture) days (with a denitrifica-
tion rate of 2.95 kg N ha−1 yr−1) in a year. The projected
climate-adjusted mean denitrification rates were 13 and
40 kg N ha−1 yr−1 from Raciti et al. (2011) and Suchy et
al. (2023), which are very similar to estimates of annual
denitrification from our simulated scenarios (Table 4). The
mean 25th and 85th percentiles of annual denitrification
rate for lawns from all simulations in scenario both were
2.8 to 30.8 kg N ha−1 yr−1, respectively, which are compa-
rable with the range of empirical measurements from low to
high soil moisture conditions and various fertilization rates.

4 Discussion and conclusions

4.1 Hydrologic processes

In BARN, household water use from wells transports roughly
0.05 mm d−1 of water from groundwater to septic systems
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at the watershed level (10 mm d−1 on septic fields). How-
ever, the conversion of groundwater to septic usage produced
only negligible changes in streamflow while locally changing
soil moisture and groundwater levels. Specifically, simulated
streamflow was slightly decreased compared to the condition
without septic water input. Inspecting growing season phe-
nology, we found that both ET and net photosynthesis were
elevated with septic input (Fig. A8). This may be due to lo-
cal increases in septic water and nutrients increasing ET dur-
ing the growing season, reducing groundwater recharge, in
addition to reducing groundwater storage, and contributing
to watershed baseflow. We also noted that our model tended
to underestimate the lowest streamflows during the growing
season, which was also found in another suburban water-
shed, Dead Run, in Baltimore by Miles (2014). Several po-
tential factors could cause this discrepancy: (1) higher tran-
spiration estimates caused by uncertainties in vegetation eco-
physiological parameters in RHESSys controlling vegetation
water use or phenology, (2) underestimation of groundwa-
ter recharge and release to streams during the growing sea-
son, and (3) a lack of household modulation of groundwater
use during dry periods. During our prior surveys (Law et al.,
2004; Fraser et al., 2013) residents stated they had reduced
their water use during droughts. While the model underesti-
mation was small (up to∼ 0.5 mm d−1), additional empirical
data about water flux, groundwater processes, and household
water management would enhance model prediction accu-
racy of hydrological processes, especially during the growing
season.

4.2 N dynamics and uncertainties

4.2.1 Nitrogen concentrations and loads

Not surprisingly, adding fertilization and septic modules
in RHESSys improved the simulations of in-stream NO−3
concentration and load dynamics. Compared to the weekly
BES observations, our model underestimated mean in-stream
NO−3 concentration by less than 0.2 mg NO−3 -N L−1 (−10 %)
and with similar seasonality (Fig. 5). Considering that no N-
related parameters were calibrated, the reasonable NO−3 sim-
ulations suggest the model can provide sufficient assessment
of the effects of household water and nutrient management
on N transport, transformation, and export in suburban wa-
tersheds when only discharge but no NO−3 observations are
available. The highest bias of NO−3 concentration was found
in summer during our study period, when our model might
retain excessive N in the upland through denitrification and
uptake and leave little transported to streams. In addition, we
assumed identical N inputs for all households in BARN, but
the actual fertilization and septic effluents may have consid-
erable spatial and temporal variations which could impact the
N cycling and transport significantly. Specifically, we used
the annual fertilization rate on lawns as 84 kg N ha−1 from
Law et al. (2004) in which the reported range of annual fertil-

ization was from 10.5 to 369.7 kg N ha−1. It is also important
to note that BARN had extensive agricultural activities for up
to 2 centuries, which may have resulted in accumulation of
legacy N in the groundwater.

Compared to other RHESSys studies (e.g., Lin et al., 2015;
Son et al., 2019; Tague et al., 2013), spinning up the model
for 30 years may be insufficient to account for the export of
this N from groundwater, which possibly caused the lower
simulated mean NO−3 concentration compared to BES mea-
surements. A longer spin-up period (i.e., 500 years) was used
in Lin et al. (2015) for a fully forested watershed. In our
suburban watershed with larger inputs and shorter residence
time of N, the spin-up period could be shorter than a fully
forested watershed, as evidenced by asymptotic C : N ratio
after 30 years. Furthermore, we found that the model yielded
a stronger seasonality of N export, with simulated concen-
trations with fertilization and septic processes lower during
the growing season but spiking right at the end of grow-
ing season. Uncertainty in RHESSys phenology may con-
tribute to these differences, where errors in the prescribed
end of the growing season caused quick mobilization of NO−3
into streams. The lower estimation of streamflow during the
growing season could also increase residence time and reten-
tion and reduce N export from uplands and groundwater to
streams, causing the underestimation of NO−3 concentration
and load in these periods. Lastly, we noted that the observa-
tions of weekly NO−3 from BES tended to avoid the high-
est flow conditions, but our model simulated NO−3 under all
weather conditions. Bias between our model simulation and
the observations is unavoidably expected.

Another interesting finding is that the simulated mean
NO−3 concentration from scenario none was significantly
greater than the observed concentrations at POBR (Table 3),
which is a reference of forest, and pre-urbanization condi-
tions of watersheds in the region. The higher estimated NO−3
concentrations in BARN could be explained by the land use
difference between the two watersheds. Specifically, there
are more impervious areas and lawns in the upland of BARN
than in POBR, which is dominated by strongly N-retentive
oak–hickory forests (with the exception of a regional natural-
gas line cut with herbaceous vegetation), resulting in lower
N uptake and higher N concentration (Table 3, scenario none
vs. POBR). This result implies that, even in the absence of
additional NO−3 input from human activities, the water qual-
ity in urban watersheds is unlikely to fully recover to pre-
urbanization levels due to altered hydrology and differences
in vegetation and land covers.

4.2.2 Denitrification and N retention hot spots

In addition to improving predictions of in-stream NO−3 con-
centration, the simulated denitrification rates (Sect. 3.3.2 and
Table 4) in lawns fell in the range of empirically estimated
rates at BARN (Suchy et al., 2023) and other areas in Balti-
more (Raciti et al., 2011). Among all N retention hot spots,
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the constructed wetland and sediment accumulation zone at
the base of the gully exhibited the highest denitrification rates
within the entire watershed, both before and after consider-
ing fertilization and septic processes (Fig. A5). These rates
were comparable to other wetland denitrification measure-
ments: Groffman and Hanson (1997) estimated denitrifica-
tion rates from 1 to > 130 kg N ha−1 yr−1 at several wetlands
in Rhode Island, Poe et al. (2003) reported rates ranging be-
tween 19 and 191 kg N ha−1 yr−1 at a constructed wetland re-
ceiving agricultural runoff, and Harrison et al. (2011) found
rates of 89 and 158 kg N ha−1 yr−1 at two wetlands adjacent
to Minebank Run in Baltimore. In BARN, these wetlands
were located in low-slope downstream areas and advertently
or inadvertently treat runoff originating from roads and up-
stream households. Unlike lawns which may not maintain
high soil moisture levels, these areas remain consistently wet
throughout most of the year. These features create ideal con-
ditions for promoting denitrification and effectively retain-
ing N loads that would otherwise be transported to streams.
Specifically, these two wetlands covering only 0.09 % of
the watershed contributed 0.39 % of the total denitrification
during the study period. This highlights the significance of
strategically selecting locations for water quality improve-
ment projects in future watershed restoration efforts and as-
sessing the ecosystem services of spontaneously generated
features.

4.3 Future model improvements

The analyses here highlight several challenges in model-
ing the ecohydrology of mixed-land-use watersheds such as
BARN. Our current setup assumed a uniform daily NO−3 in-
put and wastewater volume of septic effluents for all house-
holds and fixed fertilization amounts for lawns adjusted by
application interval (Eq. 1). These parameters could be fur-
ther adjusted when more observations are available. For fer-
tilization, our model distributed the estimated total fertiliza-
tion amount uniformly to all lawns in the watershed at rates
modulated by the proportion of lawns fertilized estimated by
Law et al. (2004) and Fraser et al. (2013). In reality, fertiliza-
tion rate and frequency vary significantly in different lawns.
Variable space and time patterns of fertilization rates could
result in N input hot spots that exceed retention capacity rel-
ative to variable transport rates. For irrigation, our model ap-
plies irrigation close to its maximum (4 mm d−1) when wa-
ter stress is high, but residents may not irrigate their lawns
at these rates during drought to conserve groundwater and
may continue to irrigate lawns during wet periods with au-
tomated sprinkler systems. Survey and high-resolution satel-
lite observations could help to improve our irrigation mod-
ule and accurately estimate the timing and quantity of irriga-
tion practices in suburban watersheds. Current settings of our
model could introduce excessive depletion of groundwater
during droughts and lead to underestimation of baseflow and
in-stream NO−3 concentrations or increased recharge during

wet growing seasons. More detailed information about water
use habits and observations of relationships between meteo-
rological factors and groundwater storage are needed to im-
prove the simulation of the dynamics of water withdrawal in
RHESSys.

4.4 Synthesis of results

Lastly, our study addressed three overarching questions:

1. What are the individual and interacting contributions of
different watershed N sources to stream water N export?

Calibrating hydrologic parameters only, our augmented
RHESSys model reduced the bias of NO−3 load (Ta-
ble 3) significantly after including N loads of fertiliza-
tion and septic effluents in BARN. Specifically, mean
NO−3 load increased from 1.44 kg NO−3 -N ha−1 yr−1 in
scenario none to 6.68 kg NO−3 -N ha−1 year−1 compared
to the 7.4 kg NO−3 -N ha−1 yr−1 observed export (Ta-
ble 3). The reduced bias after adding human inputs
showed that our model could reasonably estimate the
N export once the quantity and spatial patterns of N in-
puts are known. For BARN, the drop in retention rate
in scenario both compared to scenario fertilizer only or
septic only suggested that the watershed is saturated in
its retention capacity, and there is a potential to promote
N retention through new BMPs such as detention ponds
and wetlands to reduce N export to streams through on-
and off-site effects of hillslope hydrology and biogeo-
chemistry.

2. How do the spatially nested patterns of water and N
inputs from human activities alter spatial patterns of a
set of key ecohydrological processes including N re-
tention, evapotranspiration, soil and groundwater levels,
and flows?

Simulation results indicate that septic systems using
deep groundwater as the water source transport that wa-
ter to shallow soils, resulting in systematic shallow wa-
ter table increases within upland residential areas and
small drops in water table levels in riparian areas of
residential subcatchments. Results show how on-site
extraction of water could alter the hydrological con-
ditions of both “on-site” locations where septic efflu-
ent is directly disposed and “off-site” locations. These
results occur because while the septic effluent is de-
pleted by evapotranspiration, the deeper groundwater
that emerges in riparian areas is also affected at hill-
slopes with residential development. Thus, extraction
of water for domestic use lowers riparian water tables
even when this water is ultimately discharged back into
the environment via a septic system. Likewise, the spa-
tial pattern of denitrification showed increases not only
at sites receiving N inputs directly (i.e., lawns and sep-
tic drainage fields) but also at off-site downstream areas
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(i.e., wetlands and riparian areas) receiving transported
NO−3 from upland zones.

3. What are the patterns of hot spots for N retention and
associated implications for the design of BMPs to pro-
mote N retention within suburban watersheds?

In the residential subcatchments of the watershed, ri-
parian zones and constructed and accidental wetlands
were found to be hot spots of denitrification (Zhang et
al., 2023). These areas have the combination of sub-
sidized supplies of water and NO−3 , providing mixing
zones with conditions promoting denitrification that are
more consistent than fertilized lawn areas with variable
soil moisture. Temporal patterns of denitrification were
generally climate-driven, with the highest rates occur-
ring in spring and summer in both hot spots and other ar-
eas in the watershed. Our results showed the spatial pat-
tern of N retention and identified spontaneously existing
(accidental) retention zones that accumulate both water
and N loads from upstream. By effective siting of BMPs
based on our results for developed watersheds, both nat-
urally occurring and built features could become N re-
tention hot spots and provide ecosystem services to im-
prove water quality in the future.

5 Conclusions

Our analysis provides important insights into how differ-
ent sources of N input interact with ecohydrological pro-
cesses to control N export in suburban and exurban water-
sheds relying on local groundwater for domestic use and
septic systems for wastewater release. With single-family
houses dominant in these watersheds, the input of lawn fer-
tilization and irrigation water as well as septic effluent vol-
ume and N load are concentrated in limited areas at much
higher per-unit-area rates. These differences cascade through
the watershed, producing hot spots of N export and reten-
tion. Calibrating hydrologic parameters against streamflow
observations only, our model yielded satisfactory simula-
tions of in-stream NO−3 concentration and upland N reten-
tion processes. Specifically, our model estimated the mean
NO−3 concentration as 1.43 mg L−1, which is only less than
0.2 mg L−1 lower than the weekly observations from the Bal-
timore Ecosystem Study for our study period. The simulated
denitrification rates for fertilized lawns are also comparable
to measurements in the study area and nearby watersheds in
Baltimore, and rates at wetlands and riparian areas are simi-
lar to reported measurements in other studies.

Our results strongly support the basis for small-watershed-
scale analysis and planning to address watershed N exports
and are particularly relevant in areas such as the Chesapeake
Bay that are highly sensitive to N-induced eutrophication.
Small-watershed improvement plans (e.g., Kamenetz, 2011)
only have generic recommendations – more trees on lawns
and reducing fertilizer inputs, without considering the spatial
component of BMPs. The spatially explicit, high-resolution
simulations from our model could help local decision mak-
ers identify existing and potential new hot spots of N re-
tention processes (e.g., denitrification) to further advance
these plans. Specifically, we found that locations accumu-
lating both high N loads and water from upstream are ideal
locations for siting future BMPs (e.g., detention ponds, con-
structed wetlands) to promote N retention and improve wa-
ter quality for local and downstream waterbodies. In sum-
mary, the improved RHESSys simulations with augmenta-
tions for more complete, spatially nested inputs of water
and N and subsequent feedbacks between transport and re-
tention highlight the importance of the structured spatial het-
erogeneity of human impacts to fully understand ecohydro-
logical processes at hillslope level in developed watersheds.
Existing models often miss the patterns and feedbacks of wa-
ter and N inputs at household levels and within hillslope hy-
drologic flow paths. The spatially distributed inputs and our
augmented RHESSys model structure may provide a reliable
framework to comprehensively evaluate current coupled wa-
ter and C and N cycles, as well as to understand and predict
the effectiveness of ecosystem restorations to improve water
quality and ecosystem health in developed watersheds.
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Appendix A: Additional figures and tables

Figure A1. 1 m land use and land cover in Baisman Run from the Chesapeake Bay Conservancy.

Table A1. List of data sources used to set up, calibrate, and evaluate the RHESSys model for Baisman Run.

Data Detail Source

Topography Bare Earth DEM 2014 Baltimore County GIS (2017)
Land use Chesapeake Bay 1 m land use Claggett et al. (2018)
Discharge United States Geological Survey Gauge ID: 01583580 (Baisman Run), 01583570 (Pond Branch)
Water chemistry Baltimore Ecosystem Study Groffman et al. (2020), Castiblanco et al. (2023)
Household parcel Baltimore County parcels Baltimore County GIS (2019)
Hydrologic network County hydrolines Baltimore County GIS (2016)
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Figure A2. SSURGO-derived (USDA, 2019) (a) soil texture, (b) lateral and vertical saturated hydraulic conductivities at the surface (m d−1),
(c) lateral and vertical decay rates for lateral and vertical hydraulic conductivities, (d) soil depth (m), (e) pore size index, and (f) air entry
pressure (m) for Baisman Run.

Figure A3. Distributions of multipliers to RHESSys parameters (Table 1) based on 50 calibrated behavioral parameter sets.
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Figure A4. Spatial pattern of ensemble mean water table depth (m)
of Baisman Run during the entire study period (water year 2013
to 2017) from the 50 behavioral simulations under scenario none.
Map in projection NAD83 UTM 18N (EPSG: 26 918).

Figure A5. Spatial pattern of ensemble mean denitrifica-
tion (kg N ha−1 yr−1) of Baisman Run during the entire study pe-
riod (water year 2013 to 2017) from the 50 behavioral simula-
tions under scenario none. Map in projection NAD83 UTM 18N
(EPSG: 26 918).

Figure A6. Spatial pattern of ensemble mean water stress factor
((PET−ET)/PET; Eq. 3) of Baisman Run during the entire study
period (water year 2013 to 2017) from the 50 behavioral simula-
tions under scenario none. Map in projection NAD83 UTM 18N
(EPSG: 26 918).

Figure A7. Hillslope indices of Baisman Run. Map in projection
NAD83 UTM 18N (EPSG: 26 918).
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Figure A8. Monthly differences of evapotranspiration (a) and net photosynthesis (b) between scenario none and scenarios fertilizer only and
septic only.

Code and data availability. The RHESSys program used for this
study is available at https://doi.org/10.5281/zenodo.13958613
(Zhang, 2024). The model definition files, outputs, and Python
code used to simulate, analyze, and visualize the outputs
(Jupyter Notebook) are posted to a public Zenodo repository
at https://doi.org/10.5281/zenodo.10034198 (Zhang, 2023). Other
files related to the paper can be requested directly from the corre-
sponding author (Ruoyu Zhang).
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