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Abstract. This paper investigates the influence of multi-
decadal climatic variability on the temporal evolution of
root zone storage capacities (Sr,max) and its implications for
streamflow predictions in the Meuse basin. Through a com-
prehensive analysis of 286 catchments across Europe and
the US that are hydro-climatically comparable to the Meuse
basin, we construct inter-decadal distributions of past devi-
ations in evaporative ratios (IE) from expected values based
on catchment aridity (IA). These distributions of 1IE were
then used to estimate inter-decadal changes in Sr,max and
to quantify the associated consequences for streamflow pre-
dictions in the Meuse basin. Our findings reveal that, while
catchments do not strictly adhere to their specific parametric
Budyko curves over time, the deviations in IE are generally
very minor, with an average 1IE = 0.01 and an interquar-
tile range (IQR) of −0.01 to 0.03. Consequently, these mi-
nor deviations lead to limited inter-decadal changes in Sr,max,
mostly ranging between−10 and+21 mm (−5 % to+10 %).
When these changes (1Sr,max) are accounted for in hydro-
logical models, the impact on streamflow predictions in the
Meuse basin is found to be marginal, with the most signif-
icant shifts in monthly evaporation and streamflow not ex-
ceeding 4 % and 12 %, respectively. Our study underscores
the utility of parametric Budyko-style equations for first-
order estimates of future Sr,max in hydrological models, even
in the face of climate change and variability. This research
contributes to a more nuanced understanding of hydrological
responses to changing climatic conditions and offers valuable
insights for future climate impact studies in hydrology.

1 Introduction

Transpiration from vegetation is, on average, the largest wa-
ter flux that leaves terrestrial hydrological systems (Jasechko,
2018). In spite of some uncertainty (Coenders-Gerrits et al.,
2014), its magnitude is controlled by the interplay between
sub-surface water supply and canopy water demand (Eagle-
son, 1982; Milly, 1994; Rodriguez-Iturbe et al., 2007; Dono-
hue et al., 2007; Jaramillo et al., 2018). Both individual plants
and the composition of plant communities within given spa-
tial domains (hereafter referred to as vegetation for brevity)
have, over time, adapted to local environmental and hydro-
climatic conditions to ensure continuous and sufficient ac-
cess to water, nutrients, and light, which has allowed their
survival (Yuan et al., 2019; Ma et al., 2021). Adaptation
strategies include, amongst others, the regulation of water
use efficiency (e.g. Troch et al., 2009; Flo et al., 2021) or
the adaptation of the extent of root systems so that roots
penetrate large-enough sub-surface pore volumes for water
supply to satisfy transpiration demand during dry periods
(e.g. Gao et al., 2014; Fan et al., 2017). This sub-surface pore
volume between field capacity and permanent wilting point
defines the maximum water volume that is within the reach of
roots and that is thus available for plant transpiration, here-
after referred to as root zone storage capacity Sr,max (mm).
Indeed, Sr,max is a core property of terrestrial hydrological
systems as it regulates, to a large extent, the partitioning of
water fluxes into drainage of liquid water and, thus, eventu-
ally, streamflow Q (mm d−1), vapour released to the atmo-
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sphere as transpiration ET (mm d−1), and interception or soil
evaporation EI (mm d−1) (Savenije and Hrachowitz, 2017).

At the catchment scale, Sr,max has, in the past, been quanti-
fied with three methods: firstly, by calibration as parameter of
hydrological models (e.g. Fenicia et al., 2009; Coxon et al.,
2020; Fowler et al., 2020; Bouaziz et al., 2021; Hanus et al.,
2021; Wang et al., 2023); secondly, as product of estimates
of average root depth, soil porosity, and water content at field
capacity (e.g. Clark et al., 2008; Maxwell et al., 2015); and,
thirdly, by following optimality principles and thus maximis-
ing variables such as net primary production, transpiration
rates, or others (e.g. Kleidon, 2004; Guswa, 2008; Sivan-
dran and Bras, 2012; Speich et al., 2020). Although all three
methods mentioned above are correct in principle, insuffi-
cient data often limits their use. For example, although there
are observations of root depth for several thousand individ-
ual plants worldwide (Guerrero-Ramírez et al., 2021), it is
difficult to meaningfully upscale these values to plant com-
munities with different compositions, ages, or densities. In
addition, these estimates are mostly snapshots in time reflect-
ing past conditions and, similarly to the calibration method,
do not give any indication of the potential future evolution
of Sr,max.

Alternatively, there is increasing evidence that Sr,max can
be robustly estimated exclusively based on water balance
data, i.e. long-term estimates of precipitation P (mm d−1)
and actual evaporation EA = ET+EI (e.g. Donohue et al.,
2012; Gentine et al., 2012; Gao et al., 2014, 2016; de Boer-
Euser et al., 2016; Wang-Erlandsson et al., 2016; Dralle et
al., 2021; Hrachowitz et al., 2021; McCormick et al., 2021;
van Oorschot et al., 2021; Stocker et al., 2023). Under the
assumption that vegetation allocates resources in an efficient
way between above- and sub-surface growth (Guswa, 2008;
Schymanski et al., 2008), root systems and, thus, Sr,max will
not be larger than necessary to guarantee access to sufficient
water during dry periods with certain return periods. The wa-
ter of volume that, in the past, has been transpired during the
driest periods and that can be estimated via the water bal-
ance must have been accessible to roots and therefore must
reflect the magnitude of the water volume that was stored in
the sub-surface and that was accessible to plants during these
dry periods, i.e. Sr,max.

This approach offers the advantage that an evolution
of Sr,max over time, either through natural adaptation to
changing hydro-climatic conditions (e.g. Jaramillo et al.,
2018) or through human interventions such as deforestation
(e.g. Nijzink et al., 2016a; Hrachowitz et al., 2021) and irri-
gation (van Oorschot et al., 2024), is manifest in changes in
dry-period transpiration ET. This offers an opportunity not
only to trace the past evolution of Sr,max over time but also,
together with projections of future hydro-climatic conditions,
including P and EP, to quantify its potential future trajec-
tories and the associated effects of this temporal evolution
of Sr,max with regard to the hydrological response.

More specifically, estimating Sr,max from the water bal-
ance requires knowledge of EA. For past conditions, this
can be robustly estimated from the water balance by assum-
ing negligible storage change, i.e. dS/dt ∼ 0, which is sat-
isfied for the vast majority of catchments worldwide over
timescales of around 10 years (Han et al., 2020). Climate
model projections can generate, in addition to estimates of
future P and potential evaporation EP (mm d−1), estimates
of future EA. However, the latter are subject to major un-
certainties (e.g. van Oorschot et al., 2021). As an alterna-
tive method, non-parametric formulations of the Budyko hy-
pothesis demonstrate that the long-term partitioning of water
fluxes – expressed as the evaporative index IE = EA/P =

1−Q/P (–) – and, thus, of the hydrological response of
catchments globally is, to the first order, controlled by the
aridity index IA = EP/P (Schreiber, 1904; Oldekop, 1911;
Budyko and Miller, 1974). To reduce the scatter around these
non-parametric Budyko-style curves and to assign catch-
ments a unique position in the IA–IE space, parametric re-
formulations such as the Tixeront–Fu equation (Tixeront,
1964; Fu, 1981; Zhang et al., 2004) and similar expressions
(see Andréassian et al., 2016) were developed:
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where ω (–) [1,∞) is a catchment-specific effective param-
eter that aggregates all other influences on IE next to IA
(Berghuijs and Woods, 2016). Higher values of ω indicate
higher EA/P .

As this relationship has emerged from catchment re-
sponses and, thus, also vegetation, having adapted to past
hydro-climatic conditions, expressed by IA, it is plausible
to assume that the hydrological partitioning IE of a catch-
ment will eventually adapt to a changing future IA in a
corresponding way by moving along its catchment-specific
curve defined by ω. This reasoning then allows us to esti-
mate future EA based on future projections of P and EP
(Roderick and Farquhar, 2011; Wang et al., 2016; Liu et
al., 2020). As a consequence, the effects of a changing fu-
ture EA on the future root zone storage capacity Sr,max can
be quantified. In contrast to the vast majority of climate im-
pact studies, which, in the absence of further information,
assume time-invariant Sr,max even under changing future cli-
mate (e.g. Prudhomme et al., 2014; Brunner et al., 2019;
Hakala et al., 2020; Rottler et al., 2021; Hanus et al., 2021),
the use of such a time-variant formulation of Sr,max as param-
eter in hydrological models has the potential to provide more
reliable predictions of the future hydrological response of
catchments, as, for example, demonstrated in a recent proof-
of-concept study by Bouaziz et al. (2022) for the Meuse basin
in northwestern Europe. They found with model simulations
that the adaptation of Sr,max to future climate conditions, ex-
pressed as IA, can cause major shifts in seasonal water sup-
ply. This involved future increases in Sr,max and, thus, in-
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creases in vegetation-accessible sub-surface water volumes,
which lead to increases in summerEA of up to 15 %; these, in
turn, reduced groundwater recharge, which resulted in 10 %
decreases in late-summer and autumn groundwater storage,
eventually causing winter flows that could be up to 20 %
lower as compared to model runs that used constant val-
ues of Sr,max estimated from past hydro-climatic conditions.
These findings are qualitatively consistent with the results
of Speich et al. (2020), who reported significant changes in
modelled streamflow when replacing a static parameter used
to describe Sr,max with a forest dynamics model. More gen-
erally, Wagener et al. (2003) and Merz et al. (2011) docu-
mented the role of time-variant model parameters, includ-
ing Sr,max (in their papers referred to as root constant and FC,
respectively), by comparing model calibrations over multi-
ple time windows. In a different approach, the importance
of time-variable vegetation dynamics was demonstrated by
Duethmann et al. (2020), who used remotely sensed vegeta-
tion indices, including the normalised difference vegetation
index (NDVI), to account for temporal variations in evapo-
ration surface resistance in the Penman equation, leading to
considerably improved model skill with regard to reproduc-
ing observed river flow over multiple decades.

A major assumption underlying the approach of Bouaziz
et al. (2022) is that, under changing future conditions, catch-
ments will indeed follow their specific Budyko curve as de-
fined by the time-invariant parameter ω, which describes the
long-term average past conditions. The resulting IE is, in the
following, referred to as the expected IE,exp. Several recent
studies have pointed out that this assumption may not strictly
hold and that ω itself may be subject to fluctuations over time
(e.g. Berghuijs and Woods, 2016; Reaver et al., 2022). While
of minor relevance to humid environments, IE and, thus, EA
become proportionally more sensitive to fluctuations in ω
with increasing aridity IA (Gudmundsson et al., 2016). As
a consequence, it has to be expected that estimates of fu-
ture EA and the associated Sr,max are subject to uncertainties
or deviations 1IE,exp from IE,exp that are not accounted for
by Bouaziz et al. (2022).

The overall objectives of this paper are thus (1) to quan-
tify the deviations in IE following changes in IA based on
historical observations and (2) to analyse how this has, in the
past, propagated further into uncertainties in time-variant es-
timates of Sr,max in contrasting environments over multiple
decades in a large-sample approach using long-term water
balance data from 286 catchments from Great Britain (GB),
the US, and the Meuse basin. In a direct follow up to Bouaziz
et al. (2022), who modelled the impact of a changing future
climate on the hydrological response in several catchments
of the Meuse basin without accounting for deviations in IE
and, thus, uncertainties in Sr,max, we will, in a third step,
using the same model, (3) quantify the additional effect of
deviations in IE and, thus, uncertainties in Sr,max on the hy-
drological response in the Meuse basin and compare it to pre-
vious streamflow predictions in the Meuse basin (Bouaziz et

al., 2022) that do not account for these uncertainties. Specifi-
cally, we will test the hypothesis that the inter-decadal evolu-
tion of Sr,max, reflecting vegetation adaptation to factors other
than IA, which is manifest in deviations from the expected
future IE,exp and thus from the associated future Sr,max, lead
to significant changes in the predicted future hydrological re-
sponse in the Meuse basin and needs to be accounted for in
hydrological climate impact studies.

2 Study area and data

2.1 Study area

The hydrological model experiment in this study is done for
the Meuse River basin upstream of Borgharen at the border
between Belgium and the Netherlands (Fig. 1), which spans
an area of 21 300 km2 in northwestern Europe. Largely lo-
cated in the Ardennes, a rolling-hill landscape characterised
by ridges and incised valleys, the elevation reaches up to
around 650 m. Approximately 60 % of the basin is used for
agriculture, while 30 % is covered by forests (Bouaziz et al.,
2022).

The Meuse basin is characterised by a temperate hu-
mid climate with average annual precipitation of around
920 mm yr−1, potential evaporation of around 610 mm yr−1,
and streamflow of around 400 mm yr−1. The Meuse is a rain-
fed river with a response time of several hours up to a few
days. Transient snowpacks can be present for a few days in
some parts of the basin but are overall of minor importance
(Bouaziz et al., 2021). The streamflow has strong seasonality,
with low summer flows and high winter flows, which are, on
average, 4 times higher than the summer flow (De Wit et al.,
2007). Precipitation falls relatively homogenously through-
out the year, and the seasonality of the streamflow is thus
mainly caused by the seasonal differences in solar-energy in-
put and, thus, evaporation.

2.2 Data

To quantify the deviations 1IE,exp from expected IE,exp, we
adopted a large-sample strategy using long-term water bal-
ance data from catchments in contrasting environments.

For the Meuse river basin, daily precipitation, temperature,
and radiation were obtained for the 1989–2018 period from
the E-OBS v20.0 data set (Cornes et al., 2018) and were pre-
processed as described by Bouaziz et al. (2022). Temperature
was downscaled using a digital elevation model and a fixed
temperature lapse rate, while potential evaporation was es-
timated using the Makkink method (Hooghart and Lablans,
1988). This method was chosen to balance the availability
of the required data with their suitability for hydrological
model applications (Oudin et al., 2005). Monthly bias cor-
rection was applied to address underestimation of precipi-
tation. Daily streamflow data were available for 23 catch-
ments within the Meuse basin from water authorities in Bel-
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Figure 1. (a) The location of the Meuse basin in northwestern Europe, where the red colour indicates the aridity index IA of the catchment;
(b) the elevation range, river trajectory, and gauges in the Meuse River basin. Gauges are indicated with orange dots. The catchments of
Borgharen, Ortho, and Chooz are specifically highlighted (with green) as they are separately emphasised in some of the results and analyses.

Table 1. Segmentation of data by 10-year periods, with the exception of the CAMELS USA, which has two periods of 9 years. Note the
extra time period for the France Meuse data in comparison with the Belgium and Netherlands data.

Data set Data periods (1 Jan of first year to 31 Dec of last year)

CAMELS GB 1971–1980 1981–1990 1991–2000 2001–2010
CAMELS USA 1981–1989 1990–1999 2000–2009
Meuse Belgium and the Netherlands 1999–2008 2009–2018
Meuse France 1989–1998 1999–2008 2009–2018

gium (Service publique de Wallonie), France (Eau France),
and the Netherlands (Rijkswaterstaat) for various time pe-
riods between 1989–2018 (Table 1). Note that the stream-
flow data at the station of Borgharen in the Netherlands are
constructed by combining observations from the nearby sta-
tions St. Pieter on the Meuse and Kanne on the Albert canal
(De Wit et al., 2007).

Long-term temporal changes in IE,exp and devia-
tions 1IE,exp therefrom that can be quantified in the Meuse
basin remain limited to the 23 catchments that are gauged and
streamflow records of 30 years at most. To increase the sam-
ple size in space and time and to encompass a broader range
of climates, we have, in addition, included data from catch-
ments in GB and the US, available from the CAMELS GB
(Coxon et al., 2020) and CAMELS US (Addor et al., 2017)
databases for the time periods indicated in Table 1. To ensure
consistency, potential evaporation across all data sets was re-
calculated using the Makkink equation based on mean daily
temperature and shortwave radiation (Hooghart and Lablans,
1988). From the full set of 671 catchments available in each
of the two CAMELS databases, we excluded from the anal-
ysis those that exhibited long-term IE > IA, indicating that
EA exceeds EP and, thus, the energy limit, which is an in-

dicator of major data errors or significant unaccounted water
export to adjacent catchments via, for example, groundwa-
ter exchange or irrigation water abstraction (Bouaziz et al.,
2018). This does not imply that catchments retained for our
analysis are not subject to data errors or unaccounted wa-
ter exports. Although the effect of spurious results cannot
be completely avoided, removing catchments which exhibit
clear evidence of water balance deficits can at least reduce
the impact of spurious effects.

In addition, catchments were excluded from the analysis if
they did not meet the criteria of minimal human impact or if
they received more than 10 % of their annual precipitation as
snow. The exclusion of catchments with snowfall was nec-
essary due to the temporary water storage capacity of snow,
which can lead to inaccurate estimation of root zone storage
capacity due to delayed water input (Dralle et al., 2021). This
resulted in a total of 286 catchments being used for the sub-
sequent analysis (23 – Meuse basin; 94 – CAMELS GB; 169
– CAMELS USA; Fig. 2), covering a wide range of hydro-
climatic conditions, with the catchments in the Meuse basin
being located at an intermediate position between the GB and
US catchments (Fig. 3). Finally, the data were segmented
into distinct 10-year periods (Table 1), allowing us to quan-
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Figure 2. The locations of the catchments that are provided by the large-sample data sets (a) CAMELS GB and (b) CAMELS USA. The red
colour indicates the aridity index IA of the catchment.

Figure 3. Illustration of the long-term average values for the entire
period of data analysis.

tify decadal changes in IA, IE, and the associated Sr,max, as
well as their decadal deviations from the expected values,
i.e. 1IE,exp and 1Sr,max,exp.

3 Methods

Following the three specific research objectives as for-
mulated in Sect. 1, the experiment of this study is ex-
ecuted in several subsequent steps, shown in Fig. 4: for
each of the 286 study catchments, (a) estimate IE,obs
and, thus, ωobs and EA,obs from the water balance data
of multiple past individual decades in the period 1989–
2018 (Sect. 3.1); (b) quantify the distributions of devia-
tions 1IE,exp and, thus, 1EA,exp from the expected IE,exp
and EA,exp between subsequent decades (Sect. 3.1); (c) es-
timate Sr,max,obs from the past water balance data and, thus,
from EA,obs of multiple past individual decades (Sect. 3.2);
(d) quantify the distribution of deviations 1Sr,max,exp from
the expected Sr,max,exp between subsequent decades based
on 1EA,exp (Sect. 3.2); (e) for the 23 Meuse catchments for
the 2009–2018 decade, sample Sr,max,sam from the distribu-
tion 1Sr,max,exp (Sect. 3.2); and, finally, (f) quantify the ef-
fect of uncertainties in Sr,max on the hydrological response
by using the sampled values Sr,max,sam as parameters in mul-

tiple runs and compare the results to model runs that assume
1IE,exp = 0 and, thus, 1Sr,max,exp = 0 (Sect. 3.3).

3.1 Estimate IE, EA, and their deviations from
expected values over time

For each of the 286 study catchments, we estimated for each
individual decade i with a data record (see Table 1) the
decadal average evaporation and the associated decadal av-
erage evaporative indices from the observed decadal average
balance data:

EA,obs,i = Pobs,i −Qobs,i, (2)
IE,obs,i = EA,obs,i/Pobs,i . (3)

Together with Pobs,i and EP,obs,i , expressed as aridity in-
dex IA,obs,i , we then use EA,obs,i to solve the parametric
Tixeront–Fu formulation of the Budyko hypothesis (Eq. 1)
for ωobs,i for each decade for each individual catchment.

In a next step, assuming that Pobs,i+1 and EP,obs,i+1 of
the following decade i+ 1 are projections of an unknown
future, we solve Eq. (1) for IE to “predict” the expected
evaporative index of that following decade, i.e. IE,exp,i+1 =

EA,exp,i+1/Pobs,i+1, based on IA,obs,i+1 together with ωobs,i
from the current decade, implying that each catchment
will follow its specific curve defined by ωobs,i . The differ-
ence in the expected IE,exp,i+1 in relation to the actual ob-
served IE,obs,i+1 then represents the deviation 1IE,exp,i+1
and, thus, 1EA,exp,i+1 for that decade i+ 1 for each indi-
vidual catchment. The deviations for all decades of all catch-
ments are then aggregated to an individual distribution of
deviations for each of the three data sets, i.e. 1IE,Meuse,
1IE,GB, and1IE,US, and for one distribution of all three data
sets combined, i.e. 1IE. The general procedure is illustrated
in Fig. 5.

3.2 Estimate root zone storage capacity Sr,max and its
deviations from expected values over time

For each study catchment and each decade i with a
data record we estimated the root zone storage capac-
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Figure 4. Overview of the methodological procedure.

ity Sr,max,obs,i . This was done on the basis of observed
decadal water balance data, as described in detail elsewhere
(e.g. Nijzink et al., 2016a; Bouaziz et al., 2020; Hrachowitz
et al., 2021).

Briefly, the decadal averages EA,obs,i (Eq. 2) of each study
catchment were redistributed to daily values EA,obs,i(t) by
rescaling daily observed values of EP,obs,i(t) according to
the following:

EA,obs,i(t)=
EP,obs,i(t)

EP,obs,i
EA,obs,i, (4)

where t is any given day within a decade i. Note that the
rescaling in Eq. (4) is based on the simplifying assump-
tion of a constant EA/EP ratio. This does not account for
the effects of vegetation water stress and may cause in-
flated Sr,max estimates in regions with pronounced dry pe-
riods (e.g. van Oorschot et al., 2021). The catchments of the
Meuse basin for which Sr,max was estimated in this study are
characterised by abundant summer precipitation and rather
short dry spells. The effect of a constant scaling factor on
Sr,max is therefore minor.

These daily estimates of evaporation EA,obs,i(t) were then
used together with daily observed precipitation Pobs,i(t) to
compute the time series of daily cumulative storage deficits
for a specific year j according to the following:

SD,j,i (t)=
t∫
t0

(
Pobs,i (t)−EA,obs,i (t)

)
dt, if

t∫
t0

(
Pobs,i (t)−EA,obs,i (t)

)
dt ≤ 0

0, if
t∫
t0

(
Pobs,i (t)−EA,obs,i (t)

)
dt > 0

, (5)

where t0 is the last preceding day on which the cumulative
storage deficit SD,j,i(t)= 0. Note that the effects of inter-
ception evaporation EI on the estimation of storage deficits
are negligible, as demonstrated by Bouaziz et al. (2020), and
we therefore assumed that EA = ET.

The maximum annual storage deficit SD,j,i represents the
volume of water that needs to be stored within the reach of
roots to provide vegetation with continuous access to water
in that year j ; this is obtained as follows:

SD,j,i =max
(∣∣SD,j,i(t)

∣∣) . (6)

Previous studies suggested that, in a wide spectrum of en-
vironments, vegetation develops root systems that allow ac-
cess to sufficient water to bridge dry spells with return pe-
riods of around 20 years (Gao et al., 2014; Nijzink et al.,
2016a). The annual storage deficits SD,j,i of all years j in a
specific decade i and catchment were therefore used to fit the
generalised-extreme-value distribution. This then allowed us
to estimate the storage deficit with a 20-year return period,
which, here, was defined as the root zone storage capac-
ity for that decade: Sr,max,obs,i = SD,20 yr,i . Note that, strictly
seen, Sr,max is a lower limit of the magnitude of vegetation-
accessible sub-surface water volumes. Based on Eqs. (2)–(6),
it is an estimate of the water volume that was required in the
past to meet the estimated EA (Eq. 2). In principle, the total
volume of Sr,max could be higher. However, several previ-
ous studies have shown that estimating Sr,max as a parame-
ter of a hydrological model calibrated according to observed
streamflow leads to very similar values of Sr,max in many re-
gions worldwide (e.g. Gao et al., 2014; de Boer-Euser et al.,
2016; Nijzink et al., 2016a; Hrachowitz et al., 2021; Wang
et al., 2024). In other words, this is evidence that models
can only reproduce observed streamflow if Sr,max does in-
deed represent a maximum vegetation-accessible water vol-
ume and, thus, an upper limit.

In a next step, assuming that Pobs,i+1 of the follow-
ing decade i+ 1 is a projection of an unknown future, we
follow the same procedure described above by Eqs. (2)–
(4) but using 1EA,exp,i+1 to “predict” the expected root
zone storage capacity of the following decade Sr,max,exp,i+1.
The difference between the expected Sr,max,exp,i+1 and the
actually observed Sr,max,obs,i+1 then represents the devia-
tion 1SR,max,exp,i+1 for that specific catchment for decade
i+ 1. The deviations for all decades for all catchments are
then aggregated to an individual distribution of deviations
for each of the three data sets, i.e.1Sr,max,Meuse,1Sr,max,GB,
and 1Sr,max,US.
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Figure 5. The step-by-step process for calculating the error in IE (1IE) using data with three decades as an example.

3.3 Effect of 1Sr,max on streamflow

To isolate and quantify the effect of uncertainties 1Sr,max in
predicted Sr,max on predictions of the hydrological response,
we run several simulation scenarios with a process-based
model for the 23 study catchments in the Meuse basin.

3.3.1 Hydrological model

The hydrological model used in this study is wflow-
FLEXTopo (van Verseveld et al., 2024), a fully distributed
process-based model designed to represent spatial variability
in hydrological processes. The modular model uses flexible
model structures for the selection of hydrological response
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units (HRUs), which are delineated based on topography and
land use. See Fig. 6 for a schematic representation of wflow-
FLEXTopo within one HRU.

Briefly, each HRU consists of several storage components
linked by fluxes, similarly to comparable process-based mod-
els successfully used in previous studies (e.g. Fenicia et al.,
2006; Euser et al., 2015; Gao et al., 2016; Fowler et al.,
2020). Here, we have defined three HRUs that represent
wetlands, hillslopes, and plateaus and which are connected
through a common groundwater storage (e.g. Hulsman et al.,
2021). The HRUs were delineated using the MERIT Hydro
data set at 60 m× 90 m resolution (Yamazaki et al., 2019),
with a threshold of 5.9 m for the height above the nearest
drainage (HAND; Rennó et al., 2008) and a slope thresh-
old of 0.13 following the methodology proposed by Gharari
et al. (2011). The hillslopes are associated with forest, and
the largest parts of the plateaus are used for crop cultivation
agriculture in the study region, as identified using CORINE
land cover data (European Environment Agency, 2018). The
areal fraction of each of the three HRUs was derived for each
cell at a model resolution of approximately 600 m× 900 m,
similarly to the sub-grid landscape variability implemented
by Nijzink et al. (2016b) in the distributed mesoscale hydro-
logic model (mHM). All relevant model equations are given
in Table 2. Note that Horton ponding and runoff processes
(Fig. 6) have minor importance in the study region and were
therefore switched off for the model implementation in this
study.

The model was previously calibrated for, at most, the
downstream gauge at Borgharen (Bouaziz et al., 2022) us-
ing a multi-objective calibration strategy based on the Nash–
Sutcliffe efficiencies of flows (ENS), as well as on the log-
arithm of flows (ENS,log), the Kling–Gupta efficiency of
flows (EKG), and the monthly runoff coefficients as perfor-
mance metrics (Bouaziz et al., 2022). The model was subse-
quently evaluated for its skill in reproducing streamflow for
all of the other 22 stream gauges in the Meuse basin on the
basis of the same performance metrics.

3.3.2 Scenarios

The effect of uncertainties1Sr,max in the predicted Sr,max on
the predictions of the hydrological response in the 23 study
catchments was then quantified by running the calibrated
model for the 2009–2018 period and replacing Sr,max with
different “predictions” thereof for that period. Following the
procedure used to predict Sr,max and 1Sr,max (Sect. 3.2)
from IE and 1IE (Sect. 3.1), we have, for this experiment,
used the decadal period 1999–2008 (p1) as the basis to pre-
dict Sr,max and 1Sr,max for the period 2009–2018 (p2) in
three scenarios.

Baseline scenario (1Sr,max = 0)

We estimate ωobs,p1 of the first decade p1 based on ob-
served data Pobs,p1 ,EP,obs,p1 , andQobs,p1 of that period. Sub-
sequently, we have used these values together with Pobs,p2

and EP,obs,p2 of the second decade p2 to predict the ex-
pected IE,exp,p2 and, finally, Sr,max,exp,p2 for that second pe-
riod p2 in each catchment. The calibrated Sr,max values are
then replaced in the model by the predicted values Sr,max,p2 .
Re-running the model with Sr,max,p2 for period p2 then pro-
vides the baseline output of the hydrological response assum-
ing that the catchments follow their specific Budyko curves
as defined by their individual ωobs,p1 and that, therefore,
1IE,p2 = 0 and 1Sr,max,p2 = 0. This scenario is equivalent
to the approach used by Bouaziz et al. (2022).

Scenario A (1Sr,max 6= 0)

The catchments do not follow their specific Budyko curves.
In this case, we used the combined distributions of histori-
cal deviations 1IE from the Meuse, GB, and US data sets to
determine 1Sr,max,p2 . The predicted IE,pred,p2 for decade p2
was thus estimated by sampling 100 times from the dis-
tribution of deviations 1IE and adding the sampled values
to the expected value IE,exp,p2 . This sample of 100 values
of IE,pred,p2 then allowed us to generate a distribution of 100
values Sr,max,pred,p2 to be used in 100 model re-runs. Thus,
each model run represents the effect of an error 1IE on the
estimation of IE,exp,p2 . The differences in the hydrological re-
sponses with respect to the baseline scenario were then quan-
tified (Fig. 7a). The distributions of 1IE sampled in this sce-
nario are based on all 286 catchments. They reflect a plausi-
ble overall distribution of1IE in rather cool, humid climates
with comparable aseasonal precipitation distributions, simi-
larly to the Meuse basin.

Scenario B (1Sr,max 6= 0)

Scenario B is the same as scenario A, with the only difference
being that we did not use the full distribution of1IE from all
three data sets combined. Instead, here, we have limited the
sampling distribution of deviations to1IE,Meuse and, thus, to
historical deviations in the Meuse basin only to account for
potential effects of regionally different distributions of 1IE
(Fig. 7b).

4 Results

4.1 Historical IE and deviations 1IE from expected
values over time

For historical water balance observations of all three data
sets, i.e. Meuse, GB, and US, the decadal IE,obs exhibits de-
viations 1IE from the expected values IE,exp (Figs. 8b, d, f
and 9) following decadal shifts in IA, with medians of be-
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Figure 6. Schematic representation of the wflow-FLEXTopo model for a single-class model including all storages and fluxes (van Verseveld
et al., 2024).

Figure 7. Overview of the scenario structure. p1 is the time period
of 1999–2008, and p2 is the time period of 2009–2018.

tween 1IA =−0.05 to 0.11 (Figs. 8a, c, e and S1–S3 in
the Supplement) or ∼−8.03 % to 18.12 % in relative terms.
Overall, the 1IE remains minor, and the distributions are
largely centred around zero, although they do not generally
follow normal distributions, as indicated by an analysis of Q–
Q plots and Shapiro–Wilk tests for normality (Shapiro and
Wilk, 1965). Differences are evident, as indicated by non-
parametric Wilcoxon rank sum tests that suggest significant
differences (p < 0.05) in the 1IE distributions of the dif-
ferent data sets and different decades. The median 1IE,GB
for GB is rather stable and varies only between 0 and 0.01
with rather narrow spread, as shown by the interquartile
ranges IQR∼ 0.03. This narrow scatter around zero and the
stability over time allow balanced and rather robust predic-
tions of IE with this data set. On the other hand, the dis-
tributions 1IE,US for the US catchments are characterised
by stronger fluctuations, with medians changing from −0.01
to 0.04 between the decades, and a somewhat wider spread,
with IQR∼ 0.04.

The noticeable and significant shift towards higher,
i.e. more positive, 1IE,US between these decadal distribu-
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Table 2. Water balance and flux equations used in the hydrological model, with variables: PS is snowfall (mm t−1), QM is
snowmelt (mm t−1), QR is refreezing snow (mm t−1), Tthresh is melting-temperature threshold (°C), Trange is the range over which pre-
cipitation partly falls as snow and partly falls as rainfall (°C), T is air temperature (°C), QR,pot is potential snowmelt (mm t−1), sDDF is the
degree-day factor (mm t−1 °C), sRF is a coefficient of refreezing (–), PR is rainfall (mm t−1), Imax is the maximum interception storage for
each class (mm), EI is interception evaporation (mm t−1), PE is effective precipitation (mm t−1), LP is the threshold parameter for water
stress (–), Fmax is the maximum infiltration capacity (mm t−1), Fdec is the decay coefficient (–), SR,max is the root zone storage capac-
ity (mm), QR,direct is direct runoff (mm t−1), QR,in,net is net infiltration in the root zone storage (mm t−1), ER is the evaporation from the
root zone storage (mm t−1), QR is runoff (mm t−1), Qperc is percolation to the slow groundwater (mm t−1), Qcap is capillary rise from
the slow groundwater (mm t−1), Qperc,max is the maximum percolation parameter (mm t−1), Qcap,max is the maximum capillary rise flux
parameter (mm t−1), QRF is inflow in the fast storage (mm t−1), QF is fast runoff (mm t−1), KF is the recession constant (t−1), QRS is
preferential recharge from the outflow of the root zone storage (mm t−1), QS is linear outflow from the slow groundwater storage (mm t−1),
KS is the recession timescale coefficient, QTOT is the total streamflow (mm t−1), and Fhrufrac is the fraction of each class in a cell (–).

Storage component Water balance Constitutive equations

Snow storage dSw
dt = PS−QM+QR PS = P ·max

(
0,min

(
1, Tthresh−T

Trange

))
QM =max(0, sDDF · sRF · (T − Tthresh))
QR =min(SW · sDDF · sRF · (Tthresh− T ))

Interception storage dSI/dt = (PR+PM)−EI−PE PE =max(0, (SI− Imax)/dt)
PR = P −PS
EI =min(EP,SI/dt)

Root zone storage dSR/dt = PE−ER−QR−Qperc+Qcap QR,direct =max
((
SR+PE− SR,max

)
;0.0

)
QR,in,net =QHR−QR,direct
SR = SR/SR,max
ER =min

(
(EP−EI) ·min

(
SR/LP,1

)
,SR/dt

)
QR =QR,in,net ·

(
1−

(
1− SR

)β)
Qperc =Qperc,max · SR
Qcap =Qcap,max ·

(
1− SR

)
Fast-responding storage dSF/dt =QRF−QF QRF =QR · (1− ds)

QF =KF · S
α
F

Slow-responding storage dSS/dt =QRS+Qperc−QS−Qcap QRS =QR · ds
QS =KS · SS

QTOT =QS+
n∑

class=1
(QF) ·Fhrufrac

tions entails proportionally higher-than-expected evaporation
for the later decade. In contrast, while, for the first decade,
the catchments in Meuse basin have a median 1IE,Meuse ∼ 0
that is broadly consistent with those of the GB and the
US catchments, the distribution experiences a major shift
towards lower, i.e. more negative, values, with a median
1IE,Meuse ∼−0.06 in the second decade, suggesting lower-
than-expected proportional evaporation. However, this pat-
tern may be an artefact of the limited sample sizes, consisting
of only 9 and 23 catchments in the first and second decades,
respectively, in the Meuse basin and should be interpreted
with due care to avoid misinterpretations.

In the deviations 1IE from the expected IE, no appar-
ent geographical pattern can be distinguished through visual
analysis (Fig. S4). In particular, for GB, adjacent catchments
do frequently display opposing signs in 1IE, indicating pos-

itive and negative deviations from expected IE within very
close distances.

Similarly, aggregating the individual distributions of 1IE
of all three data sets and all decades into one full distribu-
tion and stratifying this distribution into individual distribu-
tions according to their aridity index IA in bins of 0.2 width
(Fig. 9) also does not exhibit systematic differences between
the distributions. The median of all five distributions with
1IE = 0.00–0.01 close to zero and their spreads are charac-
terised by only minor differences, with values of IQR∼ 0.02
for IA = 0.2–0.4 and IQR∼ 0.06 for IA = 0.8–1.0. For addi-
tional context, the individual values of 1IE for each catch-
ment are plotted against the corresponding 1IA, illustrat-
ing that, overall, the variability from catchment to catch-
ment is much greater than for single catchments through time
(Fig. S8).
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Figure 8. Distributions of 1IA per decade and per data set, CAMELS GB (a), CAMELS USA (c), and Meuse (e), and the deviations in
estimating IE (1IE) for the different data sets of CAMELS GB (b), CAMELS USA (d), and Meuse (f).

Figure 9. (a) IE deviations (1IE) plotted per aridity index in the Budyko framework for all data sets combined, (b) distributions of IE devia-
tions (1IE) corresponding to the aridity index groups from (a), (c) distributions of IE deviations (1IE) for all data combined and for Meuse
data.
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To avoid the need to base the further analysis in the Meuse
exclusively on the small sample of 1IE,Meuse, we initially
intended to construct more robust estimates of 1IE in the
Meuse by further stratifying the above according to hydro-
climatic and landscape indicators. However, this further at-
tempt to find multi-variate relationships that link 1IE with
hydro-climatic and landscape indicators did not show clear
and consistent results and is not further reported on here. As
an alternative, we therefore decided to use two extreme cases
of distributions to sample 1IE for the Meuse basins, i.e. sce-
nario A and scenario B (Fig. 9c; Sect. 3.2.2), in the subse-
quent modelling experiment. Based on the results above, the
rationale behind using scenario A is that the full distribu-
tion 1IE describes a large sample of catchments. In the ab-
sence of a clear pattern with regard to which distribution of
deviations 1IE is more suitable for which type of environ-
ment, the full distribution, combing all data, allows a conser-
vative perspective as it contains a wide range of historically
observed 1IE in a wide range of different environments. In
addition, note that the full distribution of 1IE from all data,
with a median1IE = 0.01 and IQR= 0.04, is very similar to
the distribution associated with the IA bin 0.6–0.8, into which
most of the Meuse basins fall. The use of the full 1IE distri-
bution in scenario A is contrasted by scenario B and its small
sample distribution 1IE,Meuse. The rationale of scenario B is
to conserve potentially relevant regional information that is
contained in 1IE,Meuse and which may be under-represented
in the full distribution due to the differences in the sample
sizes.

4.2 Historical Sr,max and its deviations 1Sr,max from
expected values over time

The general pattern of Sr,max estimated from historical water
balance data following the procedure described in Sect. 3.2
is broadly consistent with previous studies (Gao et al., 2014;
Wang-Erlandsson et al., 2016; de Boer-Euser et al., 2016;
Stocker et al., 2023) and reflects the overall role of hydro-
climatic conditions as a control in water storage in the root
zone of vegetation (Fig. 10a). While, in catchments in hu-
mid regions with low IA, root zone storage capacities as low
as Sr,max < 100 mm are predominant, more arid regions with
IA > 1 are characterised by significantly higher values of
Sr,max > 300 mm. In other words, vegetation in humid cli-
mates has developed smaller root systems due to shorter and
less frequent dry spells, which ensure more regular rainwa-
ter supply that can be directly used for transpiration. In con-
trast, vegetation in arid climates requires more extensive root
systems to access sufficient water throughout the longer and
more frequent dry spells.

The changing hydro-climatic conditions between peri-
ods p1 and p2, expressed as changes in IA in Fig. 8, re-
sulted in shifts in 1Sr,max,obs for p2. Depending on the
data set, the median 1Sr,max,obs was between −24.9 for the
Meuse data set and 13.6 mm for the US data set (Fig. 11).

Figure 10. (a) Root zone storage capacities (Sr,max) in the Budyko
framework for the Meuse, CAMELS GB, and CAMELS USA
catchments. Panels (b) and (c) show the error in estimating the
root zone storage capacity (1Sr,max,exp) plotted in the Budyko
framework by colour scale in absolute values (mm) and in percent-
ages (%), respectively.

The deviations 1IE (Sect. 4.1) between p1 and p2 then
caused corresponding deviations 1Sr,max,exp from the ex-
pected Sr,max,exp. The results illustrate that the absolute mag-
nitudes and spreads of the deviations from expected root zone
storage capacities, i.e. 1Sr,max,exp, remain, in general, rather
limited and closely centred around zero (Fig. 11), with a
median 1Sr,max,exp = 1.39 mm (IQR= 19.2 mm) in GB and
slightly more pronounced values of 1Sr,max,exp = 13.6 mm
(IQR= 43.7 mm) in the US. The relative deviations show
a similar picture, with medians of 0.8 % (IQR= 11.9 %)
in GB and 4.8 % (IQR= 16.5 %) in the US. Reflecting the
higher 1IE,Meuse, 1Sr,max,exp, with a median of −24.9 mm,
is characterised by more marked negative deviations in the
Meuse basin, suggesting that the expected root zone stor-
age capacity is overestimated and therefore smaller than ex-
pected.
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Figure 11. The distributions of shifts in (a)1Sr,max,obs observed root zone storage capacity and (b)1Sr,max,exp expected root zone storage
capacity for the different data sets.

As shown in Fig. 10, both the absolute and relative magni-
tudes of1Sr,max,exp do not show a clear relationship with IA.
Throughout all types of environments, from humid to arid,
most deviations 1Sr,max,exp remain closely confined to the
range of −25 to 25 mm or −5 % to 5 % in relative terms.
The only exception is that the highest positive and nega-
tive1Sr,max,exp values occur in the 0.75–1.0 aridity bin, with
absolute values reaching extremes of −124 and +147 mm.
However, it is noteworthy that the positive extremes in ab-
solute changes concur with the highest magnitudes of Sr,max
(Fig. 10a and b) so that the relative values of 1Sr,max,exp in
that aridity bin are largely consistent with those in more arid
and more humid environments (Fig. 10c).

4.3 Effect of 1Sr,max on streamflow predictions

4.3.1 Overall model performance

The model calibrated according to observed streamflow at
the station of Borgharen at the outlet of the Meuse basin
captures the main features of the hydrological response at
that location. Slightly underestimating low flows and overes-
timating a few peaks, such as in January 2011, the model
performance at Borgharen was obtained as ENS = 0.85,
ENS,log = 0.72, and EKG = 0.88 (Fig. S9a). This is mirrored
by the model’s ability to reproduce streamflow in the re-
maining 22 sub-catchments (Fig. S9b and c), which largely
exhibit only moderately lower performances, with medians
of ENS = 0.72, ENS,log = 0.75, and EKG = 0.80 (Fig. S9d).
However, for two of the catchments (Modave and Jemelle),
the model could not reproduce well the hydrological re-
sponse. The underlying geology of these catchments is com-
plex, and they are likely to experience major groundwater
losses which are not accounted for in this model (Bouaziz et
al., 2018).

4.3.2 Changes in the hydrological response due
to 1Sr,max – scenario A

Sampling from the full distribution 1IE of all 286 catch-
ments, as described in Sect. 3.3.2, and re-running the model
for period p2 with the associated values 1Sr,max, the re-
sulting modelled evaporation and streamflow were compared
to that of the baseline scenario (1IE = 0 and 1Sr,max = 0).
Overall, it was found that the modelled annual average evap-
oration and streamflow were affected only to a minor de-
gree by 1Sr,max with respect to the baseline scenario, with
median values of between 1EA <∼ 5 mm yr−1 (< 1 %) and
1Q>∼−6 mm yr−1 (−1 %) for all catchments.

However, minor but distinguishable shifts in the seasonal
re-distribution of water fluxes compared to the baseline sce-
nario could be observed. EA from early summer to early au-
tumn increases, on average, by up to ∼ 0.5 mm per month,
depending on the catchment. In relative terms, this is equiv-
alent to increases of up to ∼ 0.6 % (Fig. 12a). More specifi-
cally, at the station of Borgharen, 1Sr,max causes the highest
annual change in June, with a median1EA of approximately
0.4 mm per month (∼ 0.5 % Fig. 12b). Similar changes can
be observed in other catchments (Figs. 12c and d and S10–
S32). Higher summer EA due to 1Sr,max is contrasted by
reduced winter streamflow, which generally reaches val-
ues of 1Q that do not exceed ±∼−0.3 mm per month
(∼−1 %; Fig. 12e). At Borgharen, the most pronounced
changes occur in December, with median 1Q of approxi-
mately -0.1 mm per month (∼−1 %; Fig. 12f).

Differences between the baseline scenario and scenario A
also remain rather limited in terms of modelled annual
maximum flow with a median 1Qmax of approximately -
0.1 mm d−1 (<−1 %) across all 23 study catchments in
the Meuse basin (Fig. 13a). The most pronounced 1Qmax
of approximately -0.3mmd−1 (∼−1 %) was observed in
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Figure 12. Change in evaporation and streamflow for scenario A. The change is calculated for every run as the difference between the
evaporation (a–d) or streamflow (e–h) in relation to the reference run (1IE = 0). The outputs for all years and runs have been put together.
The lightly shaded area represents the 90th and 10th percentiles, while the slightly darker shaded area represents the 25th to 75th percentiles.
The black line represents the median. Images (a) and (e) display all catchments, (b) and (f) display Borgharen, (c) and (g) display Ortho, and
(d) and (h) display Chooz.

the Le Mouzon Circourt-sur-Mouzon catchment, while, at
Borgharen, 1Qmax ∼−0.1 mm d−1 (∼−1 %) was found
(Fig. 13b). Annual minimum flows experienced only negli-
gible overall increases of 1Qmin� 1 % caused by 1Sr,max
(Fig. 13a).

4.3.3 Changes in the hydrological response due
to 1Sr,max – scenario B

Alternatively, sampling from the sparse, regional distribu-
tion1IE,Meuse as described in Sect. 3.3.2 to estimate1Sr,max
for model re-runs provided a perspective on how more ex-
treme, regionally confined distributions of 1IE may af-
fect the hydrological response. Similarly to scenario A, the
modelled average annual changes of 1EA does not ex-
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Figure 13. Change in maximum flow (Qmax, left part of the violin)
and 7 d minimum flow (Qmin, right part of the violin) in terms of
percentage of the reference run. The quartiles are indicated with
dashed lines for (a) all catchments and (b) Borgharen.

ceed ∼−38 mm yr−1 (∼−4 %) and 1Q does not exceed
∼ 44 mm yr−1 (∼ 12 %) compared to the baseline scenario.
The effects of1Sr,max thus remained modest across all study
catchments in the Meuse basin, albeit being slightly more
pronounced than for scenario A.

In contrast, major differences were detected in the mod-
elled seasonal water fluxes. On average, catchments experi-
enced a reduction in summer evaporation, particularly in the
months June and July, with 1EA reaching up to ∼−3 mm
per month (−4 %), as shown in Fig. 14a. Zooming in to the
selected stations of Borgharen, Ortho, and Chooz, a corre-
sponding pattern of 1EA can be found (Fig. 14b–d), with
the most pronounced1EA at -0.56 mm per month (−1 %), at
station La Meuse Goncourt (Fig. S29). Seasonal streamflow
experienced partly considerable increases. The modelled in-
creases 1Q were, on average, most pronounced in late au-
tumn and early winter across all catchments, with median
increases of up to ∼ 3 mm per month (∼ 12 %) in Novem-
ber and ∼ 4 mm per month (∼ 8 %) in December (Fig. 14e).
Similarly, at Borgharen, median increases of 1Q=∼ 1 mm
per month (∼ 12 %) in November, accompanied by minor de-
creases in the summer months, were found (Fig. 14f).

The modelled annual maximum flows increased through
for scenario B, with a median 1Qmax of approximately
0.35 mm d−1 (∼ 5 %) across all study catchments in the
Meuse basin (Fig. 13a). The most pronounced 1Qmax of
1 mm d−1 (∼ 6 %) was observed in the La Meuse Goncourt
catchment, while, at Borgharen, 1Qmax ∼ 0.2 mm d−1 (∼
5 %) was found (Fig. 13b). In spite of these partly marked
increases in Qmax, the effect of 1Sr,max on annual minimum

flows in scenario B remained low and comparable to that
from scenario A. For all catchments, 1Qmin was found to
be close to zero (Fig. 13a and b).

5 Discussion

Parametric formulations of the Budyko hypothesis, such as
the Tixeront–Fu equation (Eq. 1; Tixeront, 1964; Fu, 1981),
have, in the past, been used to predict IE and, thus, future
water partitioning based on changes in IA under the assump-
tion that catchments follow their specific curves in the IA–IE
space, as defined by parameter ω that is obtained from long-
term historical water balance data (Roderick and Farquhar,
2011; Wang et al., 2016; Liu et al., 2020). Recently, several
studies correctly observed that catchments do not necessar-
ily follow their specific curves under changing environmen-
tal conditions, raising the concern that parametric Budyko-
style equations may therefore have little predictive power
(Berghuijs and Woods, 2016; Reaver et al., 2022; Jaramillo
et al., 2022). The absolute decadal fluctuations1IA =−0.05
to 0.11 across all data sets in our study are rather minor
and closely correspond to those reported by previous studies
(e.g. Jaramillo et al., 2022; Ibrahim et al., 2024), although
the relative changes may be somewhat higher. Following
these absolute values1IA, our results indeed provide further
evidence that such deviations 1IE from expected IE are a
widespread phenomenon. However, our results also illustrate
that, although catchments do not strictly follow their specific
curves at decadal timescales, the magnitude of deviations re-
mains, overall, rather minor, with a median of 1IE = 0.01
and an IQR=−0.01to 0.03 across all catchments in this
study (Fig. 10). In spite of some differences in detail, the gen-
eral distributions of1IE from different data sets, regions, and
hydro-climatic conditions are broadly similar, and no sys-
tematic differences linked to catchment properties or hydro-
climatic conditions could be identified (Figs. 9 and 10).

The root zone storage capacity Sr,max as a core property
of terrestrial hydrological systems and parameters in hydro-
logical models can, together with its evolution over time, be
robustly estimated at the catchment-scale based on water bal-
ance data (Gao et al., 2014; de Boer-Euser et al., 2016; Wang-
Erlandsson et al., 2016; Dralle et al., 2021; Hrachowitz et al.,
2021; McCormick et al., 2021; van Oorschot et al., 2021,
2024; Stocker et al., 2023). This offers an opportunity to ac-
count for vegetation adaptation to changing hydro-climatic
conditions with a time-variable parameter Sr,max for predic-
tions with hydrological models. Bouaziz et al. (2022) were
the first to demonstrate the potential of doing that in a re-
cent proof-of-concept study. However, they estimated fu-
ture Sr,max under the assumption that their catchments will
strictly follow their specific curves in the IA–IE space as
determined by parameter ω, which was obtained from his-
torical water balance data. In other words, they did not ac-
count for deviations1Sr,max that result from deviations1IE.
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Figure 14. Change in evaporation and streamflow for scenario B. The change is calculated for every run as the difference between the
evaporation (a–d) or streamflow (e–h) in relation to the reference run (1IE = 0). The outputs for all years and runs have been put together.
The lightly shaded area represents the 90th and 10th percentiles, while the slightly darker shaded area represents the 25th to 75th percentiles.
The black line represents the median. Images (a) and (e) display all catchments, (b) and (f) display Borgharen, (c) and (g) display Ortho, and
(d) and (h) display Chooz.

In addition, the analysis of Bouaziz et al. (2022), predict-
ing future streamflow based on projected future water bal-
ance data, remained a scenario analysis which they could
not evaluate against actual observations. Sequentially ad-
dressing these knowledge gaps, here, we quantify distribu-
tions 1IE from historical observed water balance data and
used these observed past deviations 1IE to estimate past de-
viations 1Sr,max, which were not accounted for by Bouaziz
et al. (2022). In a first step, we found that, for the vast ma-

jority of the 286 catchments analysed in this study, charac-
terised by a median historical Sr,max of 239.2 mm, the limited
deviations 1IE also resulted in 1Sr,max that remained nar-
rowly confined between ∼−10 to 25 mm or −5 % to 10 %
(Fig. 11), although some regional outliers can reach higher
values.

In a second step, using samples of 1IE from two distinct
distributions in scenarios A and B, we estimated 1Sr,max
for use as parameter in model simulations. Overall, it was
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found with the more balanced scenario A that1Sr,max caused
shifts in seasonal EA andQ; however, this was characterised
by marginal magnitudes, with the most pronounced changes
in 1EA < 1 % occurring, on average, in June and those
in1Q∼−1 % occurring in December, with a similar pattern
for the annual maximum and minimum flows, 1Qmax and
1Qmin, respectively. For scenario B, with an example of
a rather extreme, regionally confined 1IE, the deviations
showed somewhat higher magnitudes, with 1EA ∼−4 % in
July and1Q∼ 12 % in November, and a comparable pattern
for 1Qmax and 1Qmin.

Notwithstanding the above, it is important to bear in mind
that, as in any catchment-scale hydrological experiment, the
available data may be subject to various types of uncertain-
ties, which can be further exacerbated by decisions made
in the modelling process (e.g. Beven, 2016; Nearing et al.,
2016; Hrachowitz and Clark, 2017; McMillan et al., 2018),
so that results have to be interpreted with due care. This is
particularly true for the use of long time series of data records
generated by different data providers, potentially also using
changing observation methods over time and for which, in
many cases, homogenisation to make them comparable is
not a trivial task. In this study, the use of E-OBS precipi-
tation data, together with streamflow data, from various data
providers in Belgium, France, and the Netherlands for the
Meuse basin, as well as the initial analysis of the CAMELS
GB and US data sets, illustrated the presence of system-
atic differences in the water balances between the three in-
dividual groups of data sets. These differences could, in the
preliminary analysis conducted here, largely be attributed
to different methods to estimate EP. While, for the data
record of the Meuse basin, the lack of more detailed con-
sistent long-term data dictated the use of the Makkink equa-
tion based on temperature and incoming shortwave radiation,
EP was estimated using the Penman–Monteith method in
the CAMELS GB catchments and using the Priestley–Taylor
method in the CAMELS US catchments. In an attempt to ho-
mogenise across the data sets, we therefore re-estimated EP
in the GB and US catchments with the Makkink equation. Its
simplicity and the exclusion of factors such as vapour pres-
sure deficit or wind speed may have the potential to cause a
certain level of uncertainty, although this has previously been
shown to produce plausible estimates of EP for use in hydro-
logical models (Oudin et al., 2005).

Another unresolved issue that emerged from our analysis
is the considerable reduction in evaporation in the Meuse
basin between the two study periods p1 (1999–2008) and
p2 (2009–2018), as illustrated by the distribution of1IE that
is characterised by remarkably more negative bias (Fig. 9)
than in any other study catchment. The origin of this pattern
is unclear, but similar anomalies in the hydrological response
have previously been reported for the middle 20th century by
others (Fenicia et al., 2009). They put forward the hypothe-
sis that major decadal fluctuations in IE in the Meuse basin
may have been the result of active, large-scale forest man-

agement. More specifically, forest rotation and a shift from
deciduous to coniferous forest, together with an increase in
average forest age towards the end of the 20th century, were
hypothesised to have caused the IE fluctuations observed in
the Meuse basin. While the relationship between stand age
and evaporation is still under investigation (Teuling and Hoek
van Dijke, 2020), there is evidence that young forests tend
to evaporate more than mature forests (e.g. Vertessy et al.,
2001; Brown et al., 2005). Together with Dirkse and Daa-
men (2004), who noted that, in the Netherlands, changes
in forest management practices from clear-cutting and in-
creased thinning resulted in a 10-year increase in the average
age of trees between 1980 and 2001, specifically from 43 to
53 years; this may indeed explain at least some of the 1IE
observed in the Meuse basin, although it remains unclear
why similar pattern were not observed elsewhere.

Together, the results of this study suggest that, although
most catchments do not strictly follow their specific curves
in the IA–IE space over time, the general magnitudes of de-
viations 1IE are, in general, low enough to cause only very
minor deviations 1Sr,max in predictions of root zone stor-
age capacities. As a consequence, even under the assumption
of rather exceptional 1IE and thus 1Sr,max in scenario B,
the effects on the hydrological response remain limited. This
further suggests that vegetation adaptation to factors other
than IA, which are manifest in the deviations 1IE and, even-
tually, in 1Sr,max, does not lead to major changes in the pre-
dicted future hydrological response in the Meuse basin over-
all. However, it is plausible to assume that, in other regions
that are characterised by stronger seasonal contrasts in liq-
uid water supply (related to both seasonal rainfall distribu-
tion and snowmelt), similar deviations in 1IE may lead to
larger 1Sr,max and thus more pronounced effects on stream-
flow dynamics. Irrespective of that and in spite of not strictly
following their specific curves, catchment estimates of fu-
ture IE, based on changes in future IA, may therefore still be
considered to be useful as first-order estimates to quantify the
future evolution of parameter Sr,max in hydrological models
for climate impact studies over decadal timescales.

6 Conclusions

In this study, we have quantified the cascading effects of
uncertainties in decadal predictions of evaporative ratios IE
as a function of changes in catchment aridity IA on pre-
dictions of root zone storage capacities Sr,max and, eventu-
ally, on predictions of streamflow. In this study in the Meuse
basin, it was found that (1) when inferred from long-term
data from 286 catchments in Europe and the US that are
hydro-climatically similar to the Meuse basin, catchments
do not strictly follow their specific curves defined by pa-
rameter ω in the IA–IE Budyko space over multiple decades,
but these deviations are characterised by limited magnitudes
with average 1IE of 0.01 (0.89 %); (2) the deviations 1IE
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have a minor impact on predictions of Sr,max, with the re-
sulting deviations 1Sr,max ranging mostly between −10 to
20 mm or −5 % to 10 %; and, finally, (3) these uncertain-
ties1Sr,max have only a limited effect on the hydrological re-
sponse in the Meuse basin because, in spite of causing shifts
in the seasonal water supply, the magnitudes of these shifts
in monthly EA andQ largely remain very minor (< 1 %) and
do not, even in the exceptional scenario B, exceed 4 % (EA)
to 12 % (Q). Overall, this suggests that uncertainties in pre-
dictions of IE based on parametric Budyko-style equations
and the associated uncertainties in predictions of model pa-
rameter Sr,max do not cause major uncertainties in streamflow
predictions in the Meuse basin and can thus be considered to
be useful first-order estimates in the absence of more detailed
information.
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