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Abstract. Here we present a strategy to obtain a reliable hy-
drological simulation over France with the ORCHIDEE land
surface model. The model is forced by the SAFRAN atmo-
spheric reanalysis at 8 km resolution and hourly time steps
from 1959 to 2020 and by a high-resolution DEM (around
1.3 km in France). Each SAFRAN grid cell is decomposed
into a graph of hydrological transfer units (HTUs) based on
the higher-resolution DEM to better describe lateral water
movements. In particular, it is possible to accurately locate
3507 stations among the 4081 stations collected from the na-
tional hydrometric network HydroPortail (filtered to drain an
upstream area larger than 64 km2). A simple trial-and-error
calibration is conducted by modifying selected parameters
of ORCHIDEE to reduce the biases of the simulated wa-
ter budget compared to the evapotranspiration products (the
GLEAM and FLUXCOM datasets) and the HydroPortail ob-
servations of river discharge. The simulation that is eventu-
ally preferred is extensively assessed with classic goodness-
of-fit indicators complemented by trend analysis at 1785 sta-
tions (filtered to have records for at least 8 entire years)
across France. For example, the median bias of evapotran-
spiration is−0.5 % against GLEAM (−4.3 % against FLUX-
COM), the median bias of river discharge is 6.3 %, and the
median Kling–Gupta efficiency (KGE) of square-rooted river
discharge is 0.59. These indicators, however, exhibit a large
spatial variability, with poor performance in the Alps and the
Seine sedimentary basin. The spatial contrasts and temporal
trends of river discharge across France are well represented
with an accuracy of 76.4 % for the trend sign and an accu-

racy of 62.7 % for the trend significance. Although it does
not yet integrate human impacts on river basins, the selected
parameterization of ORCHIDEE offers a reliable historical
overview of water resources and a robust configuration for
climate change impact analysis at the nationwide scale of
France.

1 Introduction

1.1 Land surface models for high-resolution
hydrological simulations

Land surface models (LSMs) are the land surface compo-
nents of Earth system models (ESMs) that simulate water,
energy and carbon fluxes across continents. The offline use
of LSMs as independent physically based distributed hydro-
logical models has emerged in recent decades for evaluating
water resources and investigating climate change impacts at
both regional and global scales (e.g., Cai et al., 2014; Pokhrel
et al., 2021; Telteu et al., 2021).

Since LSMs provide the lower boundary to atmosphere
circulation in ESMs, the spatial discretization of LSMs is
usually consistent with the atmospheric component or at-
mospheric forcing (in offline mode); therefore spatial dis-
continuity can be averted during land–atmosphere coupling.
However, the spatial resolution of the atmosphere compo-
nent, typically 0.5° (IPCC, 2023), or the atmospheric forcing,
typically tens of kilometers (e.g., EuroCORDEX at 11 km in
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Jacob et al., 2014 and ERA-5 at 31 km in Hersbach et al.,
2020), are too coarse to represent topographic details. In ad-
dition, river flows are much more constrained by topographic
conditions than by the atmosphere. Thus, accurate hydrolog-
ical simulations for flood risk assessment, drought monitor-
ing and human impact assessment (e.g., dam regulation and
irrigation) are difficult to achieve, especially for local-scale
implementations. Hence, incorporating high-resolution river
routing systems into LSMs is necessary to improve hydrolog-
ical simulations by better characterizing the morphological
conditions of river basins with high-resolution digital eleva-
tion models (DEMs) (Bierkens et al., 2015).

The conventional approach to computing river basin dis-
charge levels relies on independent runoff routing mod-
els (RRMs) that interpolate the lateral water flows simulated
by the LSM to the grid cells of the RRMs and cascade river
discharge levels along the drainage network. The RRMs rep-
resent the horizontal movements of water fluxes, while their
vertical movements are kept in LSMs. There are many dif-
ferent RRMs in the literature, such as the TRIP at 0.5° res-
olution (Oki and Sud, 1998; Oki et al., 1999; Vergnes and
Decharme, 2012), the RiTHM at 0.25° resolution (Ducharne
et al., 2003) and the HYDRA at 5′ resolution (Coe, 2000). To
bridge the gap between high-resolution hydrological simula-
tions and coarse LSM grid cells, the concept of constructing
hydrological transfer units (HTUs) in LSM grid cells with
high-resolution DEMs was proposed to better represent nat-
ural river systems (Nguyen-Quang et al., 2018; Polcher et al.,
2023). These hydrologically consistent units within each at-
mospheric grid cell are connected to horizontally transfer the
simulated lateral flows; therefore the generated river flows
in one atmospheric grid cell can flow into neighboring grid
cells (HTU to HTU and then grid cell to grid cell) (Polcher
et al., 2023). The vertical and horizontal movements of water
fluxes can be maintained within the LSM instead of sepa-
rating these two movements by two models (i.e., LSMs and
RRMs) at different resolutions, which facilitates the repre-
sentation of human impacts on hydrological processes (Zhou
et al., 2021; Baratgin et al., 2024).

1.2 How are land surface models calibrated?

When using LSMs to simulate realistic water fluxes, includ-
ing river discharge, a calibration step is often necessary: even
if LSMs are designed to be as physical as possible, they in-
evitably contain parameters that are hard to measure directly,
such as vegetation water stress (Ruiz-Vásquez et al., 2023) or
soil properties at different depths (Yang et al., 2016). Tradi-
tional hydrologic calibration is primarily conducted against
river discharge observations (e.g., Troy et al., 2008; Gou
et al., 2020; Cho and Kim, 2022; Rummler et al., 2022),
which is considered to be a well-suited benchmark (Prentice
et al., 2015). However, calibrating physically based LSMs to
discharge alone does not guarantee the realistic representa-
tion of hydrological processes and the accurate simulation of

other LSM outputs, such as soil moisture (Sutanudjaja et al.,
2014) and evapotranspiration (Rajib et al., 2018a, b). Over
recent decades, the advancement of reanalysis and remote-
sensing data quality at fine scales, such as snow cover (Hall
et al., 2002), evapotranspiration (Martens et al., 2017) and
soil moisture (Dorigo et al., 2017) products, provides new
opportunities to investigate and improve the effectiveness of
LSMs in representing water fluxes. Multi-objective calibra-
tion works that combine discharge observations with these
data products have shown an overall improvement in hy-
drological simulation performance (e.g., López López et al.,
2017; Jiang et al., 2020; Yang et al., 2021).

The complexity of LSMs makes their calibration ex-
tremely difficult in practice because their large number of pa-
rameters induces high degrees of freedom (Fisher and Koven,
2020). Two kinds of methods are mostly used to adjust the
parameter set of LSMs: automatic (i.e., optimization tech-
niques) and manual (i.e., trial-and-error procedure). Numer-
ous efforts have been put into optimization algorithms (e.g.,
Müller et al., 2015; Yang et al., 2021; Cheng et al., 2023),
with the major challenge being the computational burden,
especially for high-resolution applications (Bierkens et al.,
2015; Sun et al., 2020). Another limitation of the automatic
calibration method, especially if applied to large parameter
sets, stems from the equifinality issue that many different pa-
rameter sets lead to equally good results (Beven, 2006; Fisher
and Koven, 2020). In manual calibration practice, modelers
select a few parameter sets, apply them to run the LSM, and
choose the best parameter set based on evaluations. Albeit
highly dependent on expert judgment, this method can be ef-
ficient in saving model run time compared to the hundreds of
model runs required by automatic methods (Schaperow et al.,
2021). Either way, a perfect calibration is always impossible
to achieve due to inherent uncertainties in forcing data (e.g.,
Gelati et al., 2018; Kabir et al., 2022), benchmark observa-
tions (e.g., Zeng and Cai, 2018) and model structure (e.g.,
van Kempen et al., 2021).

1.3 How is the performance of land surface models
evaluated?

Hydrological model performance is typically evaluated with
goodness-of-fit indicators, such as Kling–Gupta (Kling et al.,
2012) or Nash–Sutcliffe (Nash and Sutcliffe, 1970) efficien-
cies. In doing so, discharge is often transformed for perfor-
mance evaluation, such as with logarithms for the emphasis
of low flows (Santos et al., 2018) or with square roots to bal-
ance low and high flows (Song et al., 2019). Hydrological
signatures that characterize statistical or dynamic features of
discharge (e.g., annual discharge and low flow duration) can
also be used to evaluate simulation performance (see the re-
view by McMillan, 2021). These traditional indicators im-
plicitly assume stationary conditions and are no longer suf-
ficient since “stationarity is dead” (Milly et al., 2008). As
shown by Todorović et al. (2022), the traditional indicators
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do not guarantee the reproduction of streamflow trends with
hydrological models. Thus, trend analyses are important to
evaluate the robustness of hydrological models in the long
term, which is essential to subsequent applications for cli-
mate change assessment (Fowler et al., 2020).

1.4 Aim and novelty of the study

At the nationwide scale of France, the first distributed LSM
for hydrological applications was proposed by Habets et al.
(2008). It couples the SAFRAN atmospheric reanalysis sys-
tem (Vidal et al., 2010a) and the ISBA LSM (Decharme and
Douville, 2006), both at a spatial resolution of 8 km× 8 km,
and the MODCOU model (Ledoux et al., 1989) for ground-
water and river flow, with a variable resolution down to 1 km
along rivers. This model, called SIM, short for SAFRAN–
ISBA–MODCOU, was validated by comparison to hundreds
of hydrometric stations with a focus on the Seine, Loire,
Garonne, and Rhône River basins, the four major river basins
in France from 1995 to 2005. Observations of piezometric
head and snow depth at several sites are also used to evaluate
the SIM model. Since then, it has been used to assess drought
risks in the atmosphere, soils and rivers and to investigate the
impact of climate change for future adaptation at the national
scale (e.g., Quintana Seguí et al., 2009; Vidal et al., 2010b;
Boé et al., 2009) and recently improved to better describe
the water and energy budgets in France from 1958 to 2018,
providing an extensive historical analysis (Le Moigne et al.,
2020).

The main goal of the present study is to obtain a reliable
and robust hydrological simulation over France with another
LSM, the Organising Carbon and Hydrology in Dynamic
Ecosystems (ORCHIDEE) LSM, using a high-resolution
HTU-based routing scheme (Nguyen-Quang et al., 2018;
Polcher et al., 2023). This approach allowed us to simulate
river discharge at thousands of hydrometric stations across
French rivers, supporting a thorough performance evaluation.
In doing so, we combined traditional indicators implicitly as-
suming stationary conditions and indicators about trend ac-
curacy because “stationarity is dead” (Milly et al., 2008).
Another novelty stems from a multi-objective calibration fo-
cused on the water budget, benefiting from river discharge
observations at 1785 hydrometric stations and evapotranspi-
ration products. The parameterization selected in this study
has been used to project the impact of climate change on
French water resources, which contributes to the national
Explore2 project (https://professionnels.ofb.fr/fr/node/1244,
last access: August 2024) for future adaptation design. Here,
we only present the simulation results from 1959 to 2020 to
assess the performance of the ORCHIDEE LSM. In Sect. 2,
the ORCHIDEE LSM is presented, followed by a summary
of the input data, the benchmark datasets, and the calibration
strategy. In Sect. 3, we detail the calibration procedure that
was conducted step by step to improve the overall simulated
water budget and evaluate the simulation which was eventu-

ally chosen with classic goodness-of-fit measures and trend
analysis; finally, a discussion and conclusions are presented.

2 Materials

2.1 The ORCHIDEE LSM

The ORCHIDEE model is a physically based LSM devel-
oped at the Institut Pierre Simon Laplace (IPSL) as the land
component of the IPSL climate model, which is used for
all the past and future climate simulation exercises carried
out for the IPCC reports as part of the Coupled Model In-
tercomparison Project (CMIP) (IPCC, 2023). Here, we use
ORCHIDEE version 2.2 (with revision 7738), which is very
close to the version used as the land component of the IPSL-
CM6 climate model (Boucher et al., 2020; Cheruy et al.,
2020). In this study, the ORCHIDEE model is not coupled
to the IPSL climate model (offline simulation) but is instead
fed by an atmospheric forcing (Sect. 2.2.1). The ORCHIDEE
model couples the SECHIBA (water and energy budgets in
Ducoudré et al., 1993) and STOMATE (carbon budget and
phenology in Krinner et al., 2005) modules. This coupling
describes the hydrological processes (e.g., soil moisture dif-
fusion, evapotranspiration and river discharge) and their in-
teractions with vegetation and the carbon cycle; therefore the
simulated variables depend on the atmospheric CO2 concen-
tration. The water, energy and carbon fluxes are calculated
on a 30 min time step within each atmospheric grid cell, and
the river discharge levels are then deduced by aggregating the
lateral flows of each grid cell along the river routing network.
It must be noted that this version of ORCHIDEE does not in-
clude any human impact, with the exception of the presence
of crops among the possible vegetation types.

The vegetation in a grid cell is not uniform but rather
comprises a mosaic of several plant function types (PFTs;
Sect. 2.2.2). Table S1 in the Supplement summarizes the
15 PFTs used in the ORCHIDEE LSM. Each PFT is char-
acterized by different morphological, physiological, pheno-
logical and radiative properties, mainly based on the spe-
cialized literature. The root density profile of each PFT in
the ORCHIDEE model is assumed to decrease exponentially
with depth and is modulated by a decay factor c, as shown in
Fig. S9. The root density of each PFT can be increased (de-
creased) by decreasing (increasing) c. Crop and grass PFTs
have higher c values than forest PFTs; the roots of crop and
grass PFTs are concentrated in surface soil layers, while the
roots of forest PFTs can pass through deep soil layers.

The soil is 2 m deep, and each grid cell is characterized by
the dominant soil texture (Sect. 2.2.2). The soil water reten-
tion properties (including porosity θs, field capacity θc and
wilting point θw) depend on the texture as detailed in Ta-
ble S2. The soil hydraulic conductivity at saturation Ks is
not vertically constant, as shown in Fig. S5: ORCHIDEE as-
sumes an exponential decrease with depth due to soil com-

https://doi.org/10.5194/hess-28-4455-2024 Hydrol. Earth Syst. Sci., 28, 4455–4476, 2024

https://professionnels.ofb.fr/fr/node/1244


4458 P. Huang et al.: Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France

paction, ruled by a decay factor f , combined with an in-
crease towards the soil surface due to the presence of roots,
which enhances infiltration capacity (de Rosnay et al., 2002;
d’Orgeval et al., 2008). This effect depends on the root den-
sity profile. At each time step, soil moisture is redistributed
vertically according to the Richards equation (flow in an
unsaturated medium), taking into account surface boundary
conditions by infiltration and soil evaporation, withdrawals
by roots through the entire soil depth to supply transpiration,
and gravitational drainage at the bottom of the soil (Campoy
et al., 2013; Tafasca et al., 2020). For accurate computation,
soil moisture and vertical water fluxes are discretized across
22 layers over 2 m, with 7 soil layers of increasing depth in
the top 20 cm to capture the strong soil moisture gradients
and then soil layers of constant thickness (12.5 cm) down to
the soil bottom (Campoy et al., 2013). In this framework,
transpiration depends on soil moisture and a factor p, which
represents the soil moisture content above which transpira-
tion is maximal, i.e., not limited by water stress. Figure S7
shows how the parameter p constrains transpiration.

Evapotranspiration (ET) is calculated as the sum of plant
transpiration, evaporation of intercepted water, soil evapora-
tion and snow sublimation. This calculation does not depend
on potential evapotranspiration, but it is coupled to the sur-
face energy balance, which requires a sub-hourly time step
(here 30 min) to describe the diurnal radiation cycle. The four
ET fluxes in ORCHIDEE are described by a bulk aerody-
namic formulation, in which the roughness length for mo-
mentum z0m and for heat z0h controls the aerodynamic re-
sistance. z0m and z0h in ORCHIDEE can be calculated by
prescribed parameters: z0m is calculated by a first-order ap-
proximation of vegetation height, i.e., multiplied by a fac-
tor fz (e.g., 1/10 in Brutsaert, 2005), and z0m/z0h is pa-
rameterized as 1 in CMIP5 to compensate for forcing errors
(Dufresne et al., 2013). Note that z0m/z0h should be larger
than 1; for example, z0m/z0h = 10 was proposed by Brut-
saert (2005). z0m and z0h in the ORCHIDEE can also be
calculated as a function of leaf area index (LAI) by the dy-
namic (dyn) method proposed by Su et al. (2001), as imple-
mented in CMIP6 (Boucher et al., 2020). The formulation of
the method as well as its application is detailed in Su et al.
(2001) and Su (2002). This dynamic method generally de-
creases ET simulation for the CMIP6 configuration of OR-
CHIDEE compared with the CMIP5 configuration.

Snowpack and its dynamics are described by a three-layer
model, which makes it possible to account for variations
in albedo, density and thus the insulating properties of the
snowpack as a function of the age of the snow and the na-
ture of the underlying vegetation (Wang et al., 2013). Rain-
fall not intercepted by vegetation cover and meltwater can
infiltrate or become runoff when the rainfall exceeds the sur-
face hydraulic conductivity. The two runoff terms, surface
runoff and gravitational drainage at the bottom of the soil,
are summed as the total runoff.

Eventually, river flows are calculated by a high-resolution
routing model (Nguyen-Quang et al., 2018; Polcher et al.,
2023), which aggregates the total runoff of HTUs within
each atmospheric grid cell along the river routing network
(Sect. 2.2.3). The routing model contains three linear reser-
voirs in each HTU: the river reservoir allows horizontal flow
to transfer from HTU to HTU along the high-resolution
river network; the groundwater and surface water reservoirs
are used to compute the mean transit time of groundwater
drainage and surface runoff, respectively, and their contri-
bution to the outflow from the river reservoir (Schrapffer
et al., 2020). The groundwater reservoir is simplified as a free
aquifer, and thus the outflow is the base flow. The resident
time of each reservoir depends on the length and slope of the
HTU, modulated by a time constant specific to each reservoir
(Polcher et al., 2023), which leads to a duration of resident
time from long to short according to the order of ground-
water, surface water and river reservoirs. In this context, the
flow velocity in each HTU in the river reservoir does not vary
with discharge and does not depend on flooding, which is not
explicitly described.

2.2 Input data over France

2.2.1 Atmospheric forcing

The near-surface meteorological SAFRAN reanalysis with a
spatial resolution of 8 km and a temporal resolution of hourly
time steps (Vidal et al., 2010a) is used in this study to drive
the ORCHIDEE simulations over France. The SAFRAN grid
cell is thus the horizontal resolution of the ORCHIDEE simu-
lations. To cover the complete drainage area of French rivers,
especially in the eastern Alpine parts of France, the SAFRAN
reanalysis was extended to some parts of neighboring coun-
tries, especially Switzerland (Fig. 1). The SAFRAN reanal-
ysis is available from August 1958 onwards and contains at-
mospheric data for ORCHIDEE: air temperature, air pres-
sure, air specific humidity, wind speed, liquid and solid pre-
cipitation, and downwards longwave and shortwave radia-
tion. In addition, annual CO2 concentration observations in
the atmosphere are sourced from Lurton et al. (2020).

2.2.2 Boundary conditions: soil, vegetation and land
use

The annual vegetation and land use maps for France used
in this study are sourced from Lurton et al. (2020) and de-
rived from two products (see https://orchidas.lsce.ipsl.fr/dev/
lccci/, last access: August 2024, for further data aggrega-
tion information): the global ESA CCI vegetation distribu-
tion (Harper et al., 2023) at 300 m spatial resolution is used
to generate 15 generic PFTs gridded at 0.25° spatial reso-
lution for the ORCHIDEE model (bare soil, 2 crop PFTs,
4 grass PFTs and 8 forest PFTs as detailed in Table S1) to
represent land cover distribution; the distribution of the 15
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Figure 1. The topography and hydrography of Metropolitan France
(including Corsica), delineated in black contours, extended to
neighboring countries based on the upscaled MERIT Hydro DEM.
The river networks in blue are represented by the pixels with a flow
accumulation larger than 200 pixels. Four major river basins, the
Seine, the Loire, the Rhône and the Garonne, and three major moun-
tain ranges, the Alps, the Massif Central and the Pyrenees, in France
are marked on the map. The gray points represent the central points
of the SAFRAN reanalysis grid cells.

generic PFTs is then combined with the Land-Use Harmo-
nization 2 (LUH2) dataset (Hurtt et al., 2020) at 0.25° spa-
tial resolution to produce the temporal evolution of 15 PFTs
for CMIP6 simulations over the historical and future periods
(850–2100). This information is ultimately reaggregated into
SAFRAN grid cells to account for the spatial distribution of
the PFTs across France (Fig. S1 in the Supplement). The har-
vested wood biomass is also sourced from the LUH2 dataset.

The sensitivity of the ORCHIDEE model to global and
regional soil texture maps was tested in the literature (e.g.,
Tafasca et al., 2020; Kilic et al., 2023). The global soil tex-
ture map of Reynolds et al. (2000) shows a better hydrologi-
cal performance for the Seine River basin (Kilic et al., 2023).
Therefore, the soil texture data for France used in this study
are based on the global soil texture map of Reynolds et al.
(2000) at a 1/12° spatial resolution, which classifies soil tex-
tures into 12 USDA types. The soil texture information over
France is then rescaled into SAFRAN grid cells by keeping
the dominant soil texture type for each grid cell (Fig. S2).
The dominant soil textures in France are loam and clay loam
according to the Reynolds soil texture map.

2.2.3 River routing network

The construction of the river routing network across France
for the ORCHIDEE model is based on the DEM at 1/60° res-
olution (approximately 1.3 km over France), built by upscal-
ing the MERIT Hydro global hydrography map at 3 arcsec

resolution (Yamazaki et al., 2019) with the Iterative Hydrog-
raphy Upscaling (IHU) method (Eilander et al., 2021). The
DEM incorporates the following topographic and hydrologic
information from the MERIT Hydro dataset: elevation, flow
direction, flow accumulation and distance to the ocean for
each pixel, as shown in Fig. 1; this information is used to
construct the river routing network connected by the HTUs
of SAFRAN grid cells as detailed in Polcher et al. (2023).
In this study, we selected 15 truncations to construct HTUs
(nbmax= 15, i.e., the maximum number of HTUs within
each atmospheric grid cell) given the spatial resolutions of
the DEM and SAFRAN. Within this framework, the hydro-
metric stations collected from the Explore2 project are po-
sitioned on the constructed high-resolution river routing net-
work to comply with the following criteria: the distance be-
tween the real station and the modeled station must be less
than 5 km, and the error of the upstream surface at the mod-
eled station must be less than 20 %. Of the 4081 hydrometric
stations collected, 3507 stations are within the above toler-
ance level (86 % of the total stations). Finally, ORCHIDEE
can monitor the flow out of the HTU associated with the sta-
tion during the simulation.

2.3 Evaluation strategy

2.3.1 Evaluation datasets

Three evaluation datasets are used in this study to assess the
performance of the ORCHIDEE simulation.

The GLEAM dataset (Martens et al., 2017) provides
daily ET data at a 0.25° resolution at the global scale
from 1980 to 2020; these data were derived from the Priest-
ley and Taylor (1972) evaporation model with satellite-based
products (net radiation, precipitation, surface soil moisture,
skin and air temperatures, vegetation optical depth and snow
water equivalent) as inputs. The FLUXCOM dataset (Jung
et al., 2019) provides daily ET at a 0.5° resolution from 2001
to 2015 based on machine learning algorithms that merge
global FLUXNET measurements with remote-sensing and
meteorological observations. Both ET benchmarks are ag-
gregated to SAFRAN grid cells at monthly time steps.
GLEAM and FLUXCOM provide independent ET estimates,
both of them with large uncertainties (Liu et al., 2023). They
are used in combination to approach the plausible range of
observed ET.

The Explore2 project provides records of daily river dis-
charge (Q) across France extracted from the French na-
tional hydrometric HydroPortail (Leleu et al., 2014; Delaigue
et al., 2020). Of the 3507 hydrometric stations placed across
the constructed river routing network, 1785 stations have
Q records for at least 8 entire years over the simulation pe-
riod of 1959–2020; these records were used to calibrate and
evaluate the ORCHIDEE simulation. Stations withQ records
for at least 8 entire years were chosen because (1) the simu-
lation performance was shown to be rather insensitive to the
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length of evaluation period above 8 years (Sect. S10), and
(2) these stations offer a large coverage of French rivers.

Although the version of ORCHIDEE used in this study
does not include any human impact, the 1785 selected hy-
drometric stations were all used in the evaluation process,
whether human influenced or not. This enables a more com-
prehensive assessment of ORCHIDEE, as natural or weakly
influenced stations are few in number (only 536; see Sect. S9)
and exclude the stations along the main streams of the four
major French rivers (Seine, Loire, Garonne, and Rhône).

2.3.2 Performance criteria

The criteria bias, Pearson correlation, Kling–Gupta effi-
ciency (KGE; Kling et al., 2012) and time lag are used
to quantitatively evaluate the goodness of fit of the simu-
lated ET (at grid cell level over France) and Q against the
above datasets. The square-root transformation of Q is ap-
plied when calculating the KGE criterion to capture both
high and low flows (Song et al., 2019). The time lag cal-
culation is based on auto-correlation with various lags and
determined by the lag t giving the maximum correlation (a
positive t means that the simulated Q time series lags the
observed time series by t days; a negative t means that the
simulated Q time series leads the observed time series by
−t days). The ideal time lag value is 0.

In addition, to verify the ability of the ORCHIDEE LSM
to reproduce the observed trends of ET (at station level as
the spatial averages of grid cells in the basins upstream the
stations) andQ, the trends of the 1785 selected stations were
calculated using Sen’s slope estimator (Sen, 1968). The non-
parametric Mann–Kendall test (Mann, 1945; Kendall, 1948)
was used to determine the significance of the calculated
trends. The significance level in this study is set to 5 %.
Split sample tests were also performed and showed stable
performances if the Q time series are split in two halves
(Sect. S11).

We used a confusion matrix and associated metrics to sum-
marize the trend results: the “accuracy” indicates the pro-
portion of correct simulations among all observations, the
“PPV” (positive predictive value) and “NPV” (negative pre-
dictive value) indicate how many positive/negative simula-
tions are actually correct, and the “TPR” (true positive rate)
and “TNR” (true negative rate) indicate how many posi-
tive/negative observations are correctly represented by the
model. How these classic metrics are calculated is detailed in
Ting (2010). In addition, to focus on the accuracy of the sim-
ulated trend significance, two metrics “PTSA” (positive trend
significance accuracy) and “NTSA” (negative trend signifi-
cance accuracy) are used to indicate the proportions of ac-
curate trend significance (either significant or not) among all
the accurate positive or negative trends. Stations with accu-
rate trend sign but incorrect significance are considered inac-
curate in this framework.

2.4 Calibration design

LSMs are complex models, integrating many coupled pro-
cesses related to hydrology, soils and vegetation but also to
the radiative transfer of the boundary layer. They are also
distributed models designed to be applied over wide and con-
trasted domains (Clark et al., 2015), in which every grid point
could be regarded as one 1D model. Therefore, their cali-
bration is challenging, and a full optimization of LSM’s pa-
rameters is practically intractable, due to the computational
burden (Bierkens et al., 2015), the equifinality (Fisher and
Koven, 2020), and the uncertainty of input and benchmark
datasets (Best et al., 2015). The most common solutions are
to rely on transfer functions to derive the spatial variations
of model parameters from maps of physical parameters (e.g.
Samaniego et al., 2010) and to accept sub-optimal but satis-
factory performance (Best et al., 2015).

In this line, here we chose to calibrate selected parameters
of the ORCHIDEE LSM based on an iterative trial-and-error
procedure to gradually improve simulations by manually ad-
justing some parameters. The simulation period is from 1959
to 2020, with a warm-up from 1959 to 1968 to provide rea-
sonable initial conditions, and the output variables (e.g., ET
and Q) are aggregated to daily time steps. The starting ex-
periment of this calibration procedure is called STD and uses
the “standard” parameter set sourced from CMIP6 (Boucher
et al., 2020), according to which the roughness heights z0m
and z0h are calculated by the dynamic method of Su et al.
(2001). STD forced with SAFRAN reanalysis significantly
underestimates ET and overestimates Q compared with the
evaluation datasets detailed in Sect. 2.3. The calibration is
therefore aimed at increasing ET and decreasing Q. Ac-
cording to expert knowledge on the parameter sensitivity of
ORCHIDEE and previous calibration exercises (Kilic et al.,
2023; Raoult et al., 2021; MacBean et al., 2020; Dantec-
Nédélec et al., 2017; Campoy et al., 2013), we focused on pa-
rameters that control surface roughness, soil hydraulics and
vegetation morphology (detailed in Sect. 2.1) to improve the
simulations of ET and Q.

A hundred parameter sets were tested in this iterative eval-
uation process, summarized in Table 1 by a selection of
six calibration experiments that show a gradual decrease in
ET and Q biases on average over France. Each parameter
set in Table 1 is applied uniformly over the entire simula-
tion area. EXP1a and EXP1b calculate ET using the pre-
scribed z0m/z0h and fz, respectively, with values suggested
by Brutsaert (2005). EXP2 increases the decay factor f , and
the soil hydraulic conductivity decreases more rapidly with
depth; therefore the soil drainage decreases (Q decreases),
and ET increases. EXP3 decreases the soil water threshold
for transpiration from 0.8 to 0.5, and transpiration (and thus
ET) increases. EXP4 changes the root profiles of the PFTs
present in France by increasing the c parameter of tree and
boreal grass PFTs to decrease their root density, while de-
creasing the c parameter of crop PFTs to increase crop root
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Table 1. Parameter sets applied to the calibration experiments of the ORCHIDEE LSM. The means of daily evapotranspiration (ET), surface
runoff (Rs), drainage (Rd) and total runoff (R) are calculated over the extended SAFRAN coverage and the 1959–2020 simulation period.
The medians of ET bias are calculated for all SAFRAN grid cells of the extended SAFRAN coverage with the GLEAM dataset over the
1980–2020 period and with the FLUXCOM dataset over the 2001–2015 period. The median of river discharge (Q) bias is calculated with
the 1785 selected French hydrometric stations over the 1959–2020 period.

Roughness Hydraulics Vegetation ET Rs Rd R Bias ET Bias ET Bias Q
z0m
z0h

fz f p c [mm d−1] [mm d−1
] [mm d−1

] [mm d−1
] to G. to F. [%]

[%] [%]

C
al

ib
ra

tio
ns

STD dyn 1/15 2 0.8 ref 1.350 0.330 0.933 1.263 −11.6 −14.9 28.4
EXP1a 10 – – – – 1.453 0.314 0.847 1.161 −5.6 −9.2 16.7
EXP1b 10 1/10 – – – 1.471 0.318 0.824 1.143 −4.4 −8.0 13.6
EXP2 10 1/10 4 – – 1.490 0.916 0.208 1.124 −3.3 −6.8 11.7
EXP3 10 1/10 4 0.5 – 1.498 0.910 0.206 1.116 −2.7 −6.2 10.7
EXP4 10 1/10 4 0.5 new 1.526 0.893 0.195 1.089 −0.5 −4.3 6.3

– Same as STD; dyn, dynamic; G., GLEAM; F., FLUXCOM; ref= [5.0, 0.8, 0.8, 1.0, 0.8, 0.8, 1.0, 1.0, 0.8, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0] in Table S1; new= [5.0, 0.8, 0.8, 1.0, 0.8, 1.5, 2.0, 2.0,
1.5, 4.0, 4.0, 2.0, 2.0, 4.0, 6.0] in Table S1.

density. As such, the transpiration of trees and boreal grasses
decreases, while the transpiration of crops increases.

3 Results

3.1 Evaluation of simulated basin area

Figure 2 shows the good performance of the high-resolution
river routing model in simulating the basin areas across
France, with R2

= 0.999 across the 3507 stations compared
to the information from HydroPortail. Classically, the per-
formance increases with increasing river basin area, with
R2 ranging from 0.992 for basins less than 103 km2 to
0.998 for basins larger than 104 km2. However, the rout-
ing model tends to overestimate basin areas for basins less
than 104 km2 but tends to slightly underestimate basin areas
for basins larger than 104 km2. There is no significant posi-
tive or negative bias in the simulated basin area for the four
major river basins (the Seine, the Loire, the Rhône and the
Garonne), and the biases of most of the simulated basins are
less than 5 %. For basins larger than 103 km2, most of the bi-
ases that are larger than 5 % are located in the mountainous
regions, especially in the Alps, given the complicated topog-
raphy.

3.2 Performance of the different experiments

Figure 3 illustrates how the performance criteria of the simu-
lated ET and Q improve during the calibration experiments.
The first three calibration experiments show the impact of
two different methods on calculating ET. STD applies a dy-
namic physically based model that calculates z0m and z0h
with the variables simulated by ORCHIDEE (e.g., canopy
height, LAI, and fractional coverage for 15 PFTs). EXP1a
and EXP1b prescribe z0m

z0h
and fz values to approximate z0m

and z0h only with the simulated variable of canopy height.

Compared with STD, EXP1a decreases the negative ET bias
against FLUXCOM by 5.7 % by greatly increasing z0h from
1.10× 10−4 to 1.43× 10−2 m over the extended simulation
domain and simulation period (z0m decreases from 0.385 to
0.255 m). Compared with EXP1a, EXP1b decreases the neg-
ative ET bias by 1.2 % by increasing fz from 1/15 to 1/10:
z0m increases from 0.255 to 0.482 m, and z0h increases from
1.43× 10−2 to 2.28× 10−2 m. Figures S3 and 4 show the
spatial and temporal changes of the z0h, z0m and ET val-
ues for the first three calibration experiments. Q is thus
decreased due to the water budget of ORCHIDEE when
ET is increased, and the positive Q bias against HydroPor-
tail decreases by 11.7 % and 3.1 %, respectively. For the first
three calibration experiments, the biases of simulated ET and
Q against observation datasets are gradually decreased, and
EXP1a decreases the biases of the simulated ET and Q the
most. In addition, the KGE values of square-rootedQ against
observations are slightly increased. However, the correlation
values of the simulated Q against observations are slightly
decreased, and the simulatedQ tends to gradually lag behind
the observations for the first three calibrations.

To improve the goodness of fit of the simulated Q, EXP2
increases the decay factor f from 2 to 4 compared to EXP1b,
which decreases the hydraulic conductivity for soil layers be-
low 0.3 m, while the hydraulic conductivity for soil layers
above 0.3 m remains unchanged (Fig. S6a and b). A decrease
in hydraulic conductivity in deep soil layers leads to a de-
crease in drainage at the soil bottom. Since less water drains
from deep soil layers, while the surface soil layers maintain
the same infiltration capacity, the latter can saturate more eas-
ily, and more surface runoff is produced (Table 1). Eventu-
ally, the total runoff is decreased from EXP1b to EXP2 as the
surface runoff increase is smaller than the decrease in grav-
itational drainage at the soil bottom. EXP2 thus decreases
the positive Q bias against HydroPortail (by 1.9 %), as well
as the negative ET bias against FLUXCOM (by 1.2 %). In
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Figure 2. The comparison between the simulated upstream basin area and the reference area in HydroPortail for the 3507 stations located
in the high-resolution river networks: (a) scatter plot of simulated area to reference area; (b) box plot of simulated area bias; and (c) spatial
map of simulated area bias for basins less than 103 km2, between 103 and 104 km2, and larger than 104 km2.

addition, the ratio of surface runoff to total runoff is greatly
increased from 27.9 % in EXP1b to 81.5 % in EXP2, which
results in more “fast” surface flow and less “slow” ground-
water, leading to more responsive Q to precipitation events.
The correlation and KGE criteria of the simulated Q are im-
proved from 0.59 to 0.69 and from 0.54 to 0.59, respectively
(Fig. 3). The time lag criterion of the simulated Q is also
greatly improved from a range of −11 to 27 d to a range
of −3 to 5 d. Similar improvements in streamflow dynam-
ics could be obtained by changing the time constant of the
fast and slow routing reservoirs without improving theQ and
ET biases.

Two additional simulations, EXP3 and EXP4, were con-
ducted to further improve the bias criteria by changing the
vegetation parameters in ORCHIDEE to potentially increase
transpiration (thus ET): EXP3 reduced the soil moisture
stress for transpiration, while EXP4 changed the vegetation
root profile. Transpiration is conveyed by the factor Us in
ORCHIDEE, which is negatively related to the water stress
factor F and positively related to root density.

The factor F depends on soil moisture and on a threshold
parameter p, as illustrated in Fig. S7: there is no soil moisture
stress if F = 1, which occurs when the soil moisture exceeds
θw+p× (θc−θw). By decreasing p from 0.8 in EXP2 to 0.5
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Figure 3. Performance criteria of calibration experiments: (a) bias of the simulated ET to the GLEAM dataset, (b) bias of the simulated ET
to the FLUXCOM dataset, (c) bias of the simulated Q, (d) Pearson correlation coefficient of the simulated Q, (e) KGE of the square-rooted
simulated Q and (f) time lag of the simulated Q. The calculation of biases for the simulated ET is applied to all SAFRAN grid cells of the
extended domain over the 1980–2020 period against the GLEAM dataset and over the 2001–2015 period against the FLUXCOM dataset,
respectively. The calculation of criteria for the simulated Q is applied to the 1785 hydrometric stations in the HydroPortail dataset with
records for at least 8 entire years. For each box plot, the lower and upper hinges are the first and third quartiles; the minimum and maximum
values extend from the first and third hinge to 1.5 times of the interquartile range.

in EXP3, a wider range of soil moisture leads to F = 1 and
thus unstressed transpiration. As shown in Fig. S8, transpi-
ration (Us) is increased for all PFTs, and the effect is more
pronounced for crop PFTs (PFTs 12 and 13) than for forest
PFTs (PFTs 7 and 8). However, this general decrease in soil
water stress to favor transpiration is weak, as it decreases the
negative ET bias against FLUXCOM by only 0.6 % (1.0 %
for the positive Q bias against HydroPortail).

The change in the root density profile from EXP3 to EXP4
further modifies transpiration but also changes the hydraulic
conductivity of the shallow soil layers. In EXP4, we in-
creased the root density of the crop PFTs (PFTs 12 and 13)
by decreasing c and decreased the root density of the forest
and boreal grass PFTs (PFTs 6, 7, 8, 9 and 15) by increas-
ing c (Table S1; Fig. S9). Given the major spatial distribution
of the crop PFTs in France (Fig. S1 in the Supplement), the
general effect of EXP4 compared to EXP3 increases transpi-
ration (thus ET), which also reduces drainage at the soil bot-
tom. In addition, the hydraulic conductivity of the shallow

soil layers in France is slightly increased but with some spa-
tial differences, as shown in Fig. S6c and d, which generally
reduces surface runoff. The negative ET bias against FLUX-
COM is decreased by 1.9 % (4.4 % for the positive Q bias
against HydroPortail). Both EXP3 and EXP4 barely improve
the correlation and KGE criteria of simulated Q against ob-
servations, while EXP4 slightly degrades the time lag due to
the change in infiltration capacity in surface soils.

In summary, by successively adjusting the surface rough-
ness, hydraulic and vegetation parameters, the goodness-of-
fit measures of the simulated ET and Q are gradually im-
proved. A considerable improvement in the bias criteria for
the simulated ET and Q comes from the method of cal-
culating ET by prescribing the surface roughness parame-
ters (EXP1a and EXP1b). The correlation, KGE and time lag
criteria performance for the simulatedQ are considerably in-
creased by calibrating the hydraulic parameter (EXP2) due to
a better adjustment of the surface runoff and drainage ratios
to total runoff. Calibrations of vegetation parameters (EXP3
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and EXP4) also improve the simulation performance but with
minor sensitivity compared to the previous calibrations. Gen-
erally, EXP4 shows the most satisfactory simulation perfor-
mance among the calibration experiments.

3.3 Preferred experiment: spatial evaluation of the
simulated water fluxes

The simulation is evaluated using the EXP4 calibration ex-
periment, which yields the overall best performance criterion
values in terms of the simulated ET and Q.

3.3.1 ET simulation performance

Both the GLEAM and FLUXCOM datasets are used to eval-
uate the ET simulation by ORCHIDEE in this study. Both
datasets show more ET in the southern part (except for the
high Alps) and less ET in the northern part of the simulation
domain (Fig. 4a and b). However, compared with that in the
GLEAM dataset, the ET of the FLUXCOM dataset is much
greater in the northwestern part of the domain (i.e., the Seine
and Loire River basins) and lower in the mountainous regions
(i.e., the Alps, the Massif Central and the Pyrenees).

Figure 4c shows that the spatial distributions of the sim-
ulated ET biases are distinctly contrasted from those of the
GLEAM dataset over the entire simulated domain: the simu-
lated ET is generally underestimated in the mountainous re-
gions (except for the high Alps, where a considerable overes-
timation occurs) and the Gascony region (alluvial plain of the
Pyrenees) but is significantly overestimated in the northwest-
ern part (notably the Seine River basin). On the other hand,
compared to the FLUXCOM dataset, Fig. 4d shows that the
simulated ET bias is generally underestimated but overesti-
mated in the southeastern part of the entire simulation do-
main (notably the Mediterranean mountainous regions). Al-
though the median bias of the simulated ET against GLEAM
(−0.5 %) is better than that against FLUXCOM (−4.3 %), as
illustrated in Fig. 3, the simulated ET is more spatially con-
sistent with FLUXCOM.

3.3.2 Q simulation performance

Figure 5 shows the spatial distribution of the simulatedQ cri-
teria evaluated by the 1785 selected hydrometric stations in
the HydroPortail dataset. The Q simulated by ORCHIDEE
is mainly underestimated in Mediterranean river basins and
overestimated elsewhere, which is consistent with the over-
estimation of the simulated ET in the Mediterranean region
and the underestimation elsewhere against the FLUXCOM
dataset. The biases of the simulated Q for most basins larger
than 103 km2 are less than 10 %. In general, the river dis-
charge levels in the Saône (a major tributary contributing
to the Rhône River basin), Garonne and Loire River basins
along the main river networks are satisfactorily represented
by ORCHIDEE, with the Pearson correlation and KGE cri-
teria mostly larger than 0.8 and 0.75, respectively. Subbasins

with areas less than 103 km2 in these river basins are also
fairly well simulated, with Pearson correlation and KGE cri-
teria broadly larger than 0.6 and 0.5, respectively. In terms
of the time lag criterion, most simulated Q values with
large time lag errors correspond to catchments smaller than
104 km2, with simulated Q leading the observations by 2 to
6 d in the Seine River basin but lagging the observations by
2 to 4 d in the Loire River basin. The simulated Q values
in the Garonne and Rhône River basins generally reveal no
obvious leading or lagging results.

Human impacts on water that are not explicitly taken into
account in this study lead to the degradation of goodness-of-
fit indicators. An example of the simulation results for the
Loire River basin is illustrated in Fig. 6. The variability and
seasonality of the Q and ET fluxes are well represented by
ORCHIDEE, while the simulated Q of the Loire River dur-
ing the summer period is overestimated. This difference may
be attributed to the irrigation extraction of maize crops by up-
stream reservoirs (Janin, 1996). The Seine River basin is in-
fluenced by upstream reservoirs that store high winter flows
and release them during summer to meet environmental and
navigational needs and by groundwater pumping mostly for
drinking water in Paris (Flipo et al., 2020). These human in-
terventions are not described in the ORCHIDEE LSM, which
probably explains to a large extent why river discharge down-
stream of Paris is strongly underestimated, especially in sum-
mer (Fig. 7). In addition, the mountainous basins in the Alps
(e.g. the Isère and Durance River basins, contributing to the
Rhône River) and the Pyrenees (e.g. the Neste River basin,
contributing to the Garonne River) show unsatisfactory sim-
ulation performance (Fig. S10 and S11) because these river
basins are significantly perturbed by dams and reservoirs for
winter hydropower production, spring refill and summer irri-
gation (e.g. the Serre-Ponçon reservoir in the Durance River
basin, one of the largest dams in Europe) (François et al.,
2014; Andrew and Sauquet, 2017; Huang et al., 2022; Barat-
gin et al., 2024). Figure S14 shows that ORCHIDEE per-
forms better in natural or weakly influenced river basins than
in human-influenced river basins, especially for correlation
and KGE criteria.

Other model imperfections degrade the quality of simu-
lated river discharge. In the mountains, these poor results
could also be related to poor snow simulation. Groundwa-
ter is also known to strongly influence streamflow, especially
in river basins embedded in sedimentary basins (e.g., the
Seine River basin). Groundwater is simply represented in
ORCHIDEE by the slow reservoir of the routing scheme as a
free aquifer. However, ORCHIDEE does not account for the
difference between large aquifers, which significantly buffer
river discharge variability (Gascoin et al., 2009), and smaller
aquifers, with shallow and very reactive water tables. This
degrades ORCHIDEE’s performance (e.g., bias and time lag)
in the sedimentary basins. This problem could be approached
by assigning larger residence times to the slow reservoirs
of grid cells in sedimentary basins. However, it is difficult
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Figure 4. The spatial distributions of the ET datasets and the simulated ET biases against them for all the SAFRAN grid cells over the entire
simulation domain: (a) the mean ET of the GLEAM dataset and (c) the bias of the simulated ET against it from 1980 to 2020 and (b) the
mean ET of the FLUXCOM dataset and (d) the bias of the simulated ET against it from 2001 to 2015. The mean ET of the GLEAM dataset
from 2001 to 2015 is not shown here but is very similar to that of the 1980–2020 period.

in practice because parameters are applied uniformly over
France in ORCHIDEE.

3.4 Preferred experiment: evaluation of river
discharge trends

Figure 8 shows that the calibrated ORCHIDEE LSM satis-
factorily represents the observedQ trend of the 1785 selected
French hydrometric stations. In general, both the observed
and simulated Q trends exhibit similar spatial patterns, with
a decreasing trend (significant) in the southeastern part of
France and an increasing trend (not significant) in the north-
western part of France, which is consistent with the findings
of previous studies (e.g., Gudmundsson et al., 2017; Vicente-
Serrano et al., 2019). Most basins with significant observed
and simulated decreasing trends are located in the Garonne
River, upstream of the Loire River and upstream of the Rhône
River. However, compared with the observed Q trends over
France, the simulated Q trends tend to alleviate the decreas-
ing trend and to enhance the increasing trend. For exam-
ple, there is a general decreasing trend, usually not signifi-

cant, for the basins located on the Mediterranean coast (in-
cluding Corsica) from the observed Q, while the simulated
trends are more variant. In the northwestern part of France
(such as in the middle part of the Seine River and the Brit-
tany Peninsula), the increasing trends of the simulated Q are
more pronounced than in the observations. To summarize,
the simulated trends tend to be more positive than the ob-
served trends over France, which might be attributed to the
fact that intensified water withdrawals (for irrigation, indus-
try, and drinking water) are not considered in the simulation
from 1959 to 2020. This period corresponds to the expan-
sion of agricultural and water infrastructure projects across
France (Janin, 1996), and human activities are inferred to be
the dominant drivers of river flow decreases and drought ag-
gravation (e.g., García-Ruiz et al., 2011; Loon et al., 2022;
Greve et al., 2023). Nonetheless, climate variability and land
use and land cover changes are taken into account in the sim-
ulations of this study, which partially explain the southeast–
northwest (dry–wet) contrast across France.

To further advance the information obtained from the
confusion matrix of Fig. 8d, Table 2 summarizes the
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Figure 5. The spatial distribution of the Q simulation performance evaluated by the (a) bias, (b) Pearson correlation coefficient, (c) KGE of
the square-rootedQ, and (d) time lag for the 1785 selected French hydrometric stations in the HydroPortail dataset over the entire simulation
domain.

performance of the simulated Q trend sign and its
significance with accuracy of the trend sign= (941+
423)/1785, PPV= 423/(423+ 210), NPV= 941/(941+
211), TPR= 423/(423+211), TNR= 941/(941+210), ac-
curacy of trend significance= (143+604+357+15)/1785,
PTSA= (357+15)/423 and NTSA= (143+604)/941. Gen-
erally, the ORCHIDEE LSM satisfactorily reproduces the
past trends of French river discharge from 1959 to 2020,
with an accuracy of 76.4 % for the trend sign and an accu-
racy of 62.7 % for the trend significance. Compared to the
observed Q trend sign over France, the negative Q trend is
relatively better simulated than the positive Q trend despite
the inadequate consideration of human perturbations. How-
ever, in terms of the simulation performance of trend signifi-

cance, the positiveQ trend significance is slightly better than
the negative Q trend significance.

Figures 9 and 10 show the water flux trends in the Loire
and Seine River basins, respectively, as two examples. The
decreasing trends of the annual streamflow for both river
basins are well simulated by the ORCHIDEE LSM. Never-
theless, the simulated decreasing trend of the Loire River is
weakened with the underestimation of wet years, while that
of the Seine River is aggravated with the overestimation of
wet years and the underestimation of dry years. The simu-
lated increasing trends of ET for both river basins are more
consistent with those of the GLEAM dataset than those of
the FLUXCOM dataset given its longer records. More exam-
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Figure 6. The simulation performance of the Loire River at the hydrometric station Montjean-sur-Loire (M5300010): (a) the simulated river
basin area with the legend of the proportion of SAFRAN grids contributing to the basin area, (b) the annual regime of simulatedQ compared
to the observation in the HydroPortail dataset at a daily time step from 1959 to 2020, (c) the annual regime of simulated ET compared to
the GLEAM dataset at a monthly time step from 1980 to 2020, (d) the annual regime of simulated ET compared to the FLUXCOM dataset
at a monthly time step from 2001 to 2015 and (e) the simulated Q compared to the observation at a monthly time step from 1959 to 2020.
The regime plots of ET and Q are presented with the color bands as the range between the 25 % and 75 % quantiles and the solid lines as the
medians.

ples of the water flux trends are provided in the Supplement
(Figs. S12 and S13).

4 Discussion and conclusions

This study presents the development of a hydrological simu-
lation with a high resolution of approximately 1.3 km over
France with the ORCHIDEE LSM to quantify water re-
sources at the nationwide scale, either retrospectively, as
shown here to evaluate the setup, or prospectively, as planned
for the Explore2 project to deliver climate change projec-
tions. After several calibration steps to improve the simulated
water budget and hydrological performance, the simulation
results over the 1959–2020 period are evaluated via com-

parison with the ET products (the GLEAM and FLUXCOM
datasets) at monthly steps and with the French national hy-
drometric networks (the HydroPortail dataset) at daily time
steps. Generally, the selected parameterization of the OR-
CHIDEE LSM provided satisfactory results in terms of the
simulated basin areas and water fluxes.

This study emphasizes the ability of this version of OR-
CHIDEE to reproduce the temporal and spatial patterns of
Q trends, with an accuracy of the trend sign of 76.4 % and
that of the trend significance of 62.7 % over France. The de-
creasing trend in southeastern France with marked signifi-
cance and the increasing trend in northwestern France with
minor significance are adequately represented by the OR-
CHIDEE LSM. To a greater extent, this diagnosis is neces-
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Figure 7. The same as in Fig. 6 but for the Seine River at the hydrometric station Vernon (H8110020).

Table 2. The confusion matrix metrics (detailed in Sect. 2.3) that
evaluate the performance of the ORCHIDEE LSM in representing
the Q trend sign and significance over France from 1959 to 2020
calculated from Fig. 8d.

Trend sign

Metric Accuracy PPV NPV TPR TNR

Value [–] 76.4 % 66.8 % 81.7 % 66.7 % 81.8 %

Trend significance

Metric Accuracy PTSA NTSA

Value [–] 62.7 % 87.9 % 79.4 %

sary for climate change impact studies because adaptation
strategies are grounded in the statistical analysis of the pro-
jections, the potential trends of future river discharge in par-
ticular. Therefore, hydrological models must be able to ac-
curately reproduce trends under current climate conditions.
However, in most climate change impact studies, this inves-
tigation of hydrological model performance has been rarely
analyzed but has been found to depend primarily on tradi-
tional goodness-of-fit indicators (e.g., KGE). A recent study
revealed that these traditional indicators do not ensure the re-
production of trends (Todorović et al., 2022). An inadequate
representation of vegetation dynamics can explain why some
hydrological models fail to accurately reproduce river dis-
charge trends (e.g., the HBV conceptual hydrological model;
Duethmann et al., 2020). On the other hand, the incorpora-
tion of vegetation dynamics into hydrological models often
improves their hydrological simulation performance (e.g.,
Jiao et al., 2017; Bai et al., 2018). The ORCHIDEE LSM ac-
counts for the interactions between the biosphere (15 PFTs in
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Figure 8. The spatial distribution of the observed Q trend (a), the simulated Q trend (b), and the ratio between the simulated Q trend and
observed Q trend (c) for the 1785 selected French hydrometric stations in the HydroPortail dataset from 1959 to 2020. The trends of the
simulated and observed Q are calculated with the yearly mean Q time series for the common period of the two time series. The confusion
matrix (d) between the observed Q trend and the simulated Q trend is presented at four dimensions as colorful boxes (significant positive,
not significant positive, not significant negative and significant negative) and at two dimensions as white boxes (positive and negative).

this study) and hydrosphere (e.g., transpiration, precipitation
interception, and photosynthesis) by coupling the SECHIBA
and STOMATE modules to explicitly simulate the phenom-
ena of the terrestrial carbon and water cycles (Ducoudré
et al., 1993; Krinner et al., 2005).

The limitations of the modeling framework proposed in
this study and the prospects to improve ORCHIDEE simula-
tions are analyzed from these three major aspects: parameter
calibration, input and evaluation datasets, and ORCHIDEE
model structure.

First, uncertainties remain in the selected parameter set. In
this study, we applied the trial-and-error calibration method

(no parameter optimization procedure) to reduce the com-
putational burden. The general principle of calibration is
to decrease the biases of water fluxes across France by in-
creasing ET and decreasing Q simulations starting from the
CMIP6 configuration; the calibration experiments follow this
principle by changing the parameters employed for all the
grid cells across France. This procedure indeed simplifies the
calibration of such sophisticated physically based LSMs to
obtain generally accepted performance criteria over the en-
tire simulation domain. However, improvements in simula-
tion performance in some areas remain limited. For example,
calibrating the hydraulic conductivity influenced by both soil
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Figure 9. The temporal trends of the observed and simulated annualQ (a) and ET (b) of the Loire River at the hydrometric station Montjean-
sur-Loire (M5300010) for the 1959–2020, 1980–2020 and 2001–2015 periods. The trend magnitudes are marked in the plots in units of
percent per year, and the symbol (∗) indicates the significance of the trend (p value< 0.05).

Figure 10. The same as in Fig. 9 but for the Seine River at the hydrometric station Vernon (H8110010).

and vegetation (EXP2 and EXP4) to adjust infiltration and
surface runoff has improved the overall performance crite-
ria, except for those of the Seine River basin. In reality, the
characteristics of the Seine River basin, such as its relief and
lithology, allow more predominant infiltration than surface
runoff, especially in the upstream region of the Seine basin
(e.g., Schneider et al., 2017; Mardhel et al., 2021). The cali-
bration of soil hydraulic conductivity at the basin scale (i.e.,
different parameter values for the grid cells over the sim-

ulation domain) could improve the simulation results (e.g.,
Quintana Seguí et al., 2009). Another challenge is the pa-
rameterization of the 15 PFTs in terms of their transpiration
capacity when facing water stress and root profiles (EXP3
and EXP4) due to the lack of observations, notwithstanding
their importance to terrestrial carbon and water cycles.

Second, uncertainties concerning the input and evaluation
datasets should also be considered. For instance, heterogene-
ity regarding the radiation data of the SAFRAN reanaly-
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sis (i.e., the break of homogeneity in time series with an
abrupt increase in the profile of incident solar radiation after
the late 1980s) has been reported, which could be attributed
to the improvement of the assimilation system over time,
the variation of the in situ observations and the darkening–
lightening effect (e.g., Le Moigne et al., 2020). This directly
impacts the ET simulation results. There are also large uncer-
tainties in the SAFRAN reanalysis on precipitation in high-
elevation areas in France (e.g., Birman et al., 2017; Barat-
gin et al., 2024). The uncertainties of other input datasets,
such as the Reynolds soil texture map and the LUH2 land use
and land cover maps applied to the ORCHIDEE LSM, have
been discussed in other studies (e.g., Kilic et al., 2023; Lur-
ton et al., 2020; Tafasca et al., 2020). In addition, Q records
of the selected 1785 stations are not fully checked because
identifying Q anomalies is extremely time-consuming and
subjective. The remaining observational Q errors might in-
fluence model evaluation.

Third, some perspectives concerning better representa-
tions of land surface processes can be proposed to improve
the simulation performance of the ORCHIDEE LSM. Given
the inadequate performance of basins where drainage plays
an important role in river discharge (e.g., the Seine River
basins), the introduction of a groundwater module in the OR-
CHIDEE LSM is necessary to describe the interactions be-
tween aquifers and rivers in these basins. Moreover, moun-
tainous basins are not adequately simulated; indeed, the
SAFRAN reanalysis is deficient in these regions, and there
is still room for improvement in the three-layer snow model,
especially for the snow thermal conductivity, which is cru-
cial for snow dynamics (Wang et al., 2013). Human impacts
on terrestrial water cycles could also be included to obtain
more reliable simulations by comparison to the observations
in highly anthropized basins. In particular, a new irrigation
module based on the flooding irrigation method (Arboleda-
Obando et al., 2024) and a new demand-based hydropower
module (Baratgin et al., 2024) have recently been developed
and validated by the ORCHIDEE project team at IPSL and
should now be mobilized to achieve more realistic simula-
tions.
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