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Abstract. A classical approach to understanding hydrologi-
cal behavior is the unit hydrograph and its many variants, but
these often assume linearity (runoff response is proportional
to effective precipitation), stationarity (runoff response to a
given unit of rainfall is identical, regardless of when it falls),
and spatial homogeneity (runoff response depends only on
spatially averaged precipitation). In the real world, by con-
trast, runoff response is typically nonlinear, nonstationary,
and spatially heterogeneous. Quantifying this nonlinearity,
nonstationarity, and spatial heterogeneity is essential to un-
raveling the mechanisms and subsurface properties control-
ling hydrological behavior.

Here, I present proof-of-concept demonstrations illustrat-
ing how nonlinear, nonstationary, and spatially heteroge-
neous rainfall–runoff behavior can be quantified, directly
from data, using ensemble rainfall–runoff analysis (ERRA),
a data-driven, model-independent method for quantifying
rainfall–runoff relationships across a spectrum of time lags.
I show how ERRA uses nonlinear deconvolution to quantify
how catchments’ runoff responses vary with precipitation in-
tensity and to estimate their precipitation-weighted runoff
response distributions. I further illustrate how ERRA com-
bines nonlinear deconvolution with de-mixing techniques to
reveal how runoff response depends jointly on precipitation
intensity and nonstationary ambient conditions, including an-
tecedent wetness and vapor pressure deficit. I demonstrate
how ERRA’s de-mixing techniques can be used to quantify
spatially heterogeneous runoff responses in different parts of
a catchment, even if those subcatchments are not separately

gauged. I also illustrate how ERRA’s broken-stick deconvo-
lution capabilities can be used to quantify multiscale runoff
responses that combine hydrograph peaks lasting for hours
and recessions lasting for weeks, well beyond the average
spacing between storms.

ERRA can unscramble these multiple effects on runoff re-
sponse even if they are overprinted on each other through
time and even if they are corrupted by autoregressive moving
average (ARMA) noise. Results from this approach may be
informative for catchment characterization, process under-
standing, and model–data comparisons; they may also lead
to a better understanding of storage dynamics and landscape-
scale connectivity. An R script is provided to perform the
necessary calculations, including uncertainty analysis.

1 Introduction

1.1 Response time versus transit time

When a substantial rainstorm hits a catchment, streamflow
will often rise, peak, and recede within a matter of hours or
days. However, much of the rainwater from that storm will
remain within the catchment for months or even years, affect-
ing the composition of streamflow long after the storm’s ef-
fects on discharge rates have faded away. Therefore, stream-
flow often primarily consists of precipitation that fell long
ago but is primarily mobilized by rain that fell much more
recently. Thus, timescales of hydrologic response are often
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much shorter than timescales of transport. This decoupling
of timescales has been recognized since at least the 1960s
(e.g., Brown, 1961; Martinec, 1975; Rodhe, 1981), but it has
been widely overlooked in hydrology textbooks and rainfall–
runoff models, and understanding its underlying mechanisms
remains a central challenge in catchment hydrology (Kirch-
ner, 2003; Beven, 2012; McDonnell and Beven, 2014).

The contrast between hydrologic response and transport,
and between their respective timescales, can be simply il-
lustrated through the behavior of a simple conceptual catch-
ment model. Figure 1 shows how a simple nonlinear two-
box model responds to a hypothetical sequence of 10 iden-
tical rainstorms (Kirchner et al., 2023). The left-hand side
of Fig. 1 shows how each rainstorm affects future discharge
rates, whereas the right-hand side shows how much water
from each rainstorm is present in future streamflow. Four in-
dividual storms are highlighted in contrasting colors.

The effects of each event on future runoff volumes are
quantified by effect tracking – that is, by running the model
with and without each event and then comparing the resulting
hydrographs. The differences between the hydrographs with
and without the four highlighted rainstorms, which quantify
the stream’s runoff response, are shown by the matching col-
ored bands in Fig. 1a. The runoff responses to all 10 storms
are shown in Fig. 1c, each expressed relative to a baseline of
zero so that their magnitudes can be more easily compared.

One can see that, owing to the nonlinearities in the un-
derlying model, the runoff responses that are initially larger
decay away faster. One can also see that the initial runoff re-
sponses are larger for storms that fall when the model catch-
ment is already wet, and, thus, discharge is already high;
because the model is nonlinear, runoff response to a given
storm depends on how large and how recent previous storms
were. The model’s nonlinearity further implies that runoff
response also depends on future precipitation, as one can see
from Fig. 1c. In one particularly clear example, the largest
runoff response to storm no. 8, shown in red, does not come
at the end of storm no. 8 but instead comes during storm no.
9, illustrating how storm no. 9 amplifies storm no. 8’s effects.
When these runoff response curves are synchronized accord-
ing to the times that the precipitation fell and are normalized
by the precipitation rate (Fig. 1e), they can be considered to
be runoff response distributions (RRDs), which quantify how
the runoff response to a unit of precipitation is distributed
over future time. In nonlinear systems, these runoff response
distributions will be time-varying because they depend on the
size and timing of both preceding and subsequent precipita-
tion inputs, as shown in Fig. 1e. Nonetheless, one may sum-
marize the time-varying RRDs for a given ensemble of events
by averaging them together, resulting in the ensemble runoff
response distribution shown in dark blue in Fig. 1e. Estimat-
ing this ensemble-averaged response directly from data is the
central task of this paper.

In contrast to the short-lived runoff response shown on the
left-hand side of Fig. 1, the right-hand side shows that the

same storms have much more persistent effects on the com-
position of streamflow itself (compare Fig. 1a and b). Fig-
ure 1d shows the contributions of all 10 storms to future
streamflow, relative to a baseline of zero so that they can
be more easily compared (analogously to Fig. 1c). Storms
that fall when the catchment is wetter generate sharper peaks
in Fig. 1d and also mobilize more water from prior storms
compared to storms that fall during drier conditions. There-
fore, each storm’s distribution of transit times (between when
water enters the catchment and subsequently leaves it) de-
pends on the size and timing of both previous and subse-
quent storms. Thus, these transit time distributions (TTDs;
light-blue curves in Fig. 1f) are time-varying, but they can,
nonetheless, be summarized by averaging them over an en-
semble of events, resulting in the ensemble transit time dis-
tribution shown in dark blue in Fig. 1f.

The behaviors shown in Fig. 1 are not data; instead, they
are hypothetical results derived from a particular simulation
model for purposes of illustration. Are these results, nonethe-
less, at least qualitatively relevant to the real world? In the
early days of scientific hydrology, the observed rapid re-
sponse of runoff to rainfall led to an intuitive assumption
that storm hydrographs should be mostly composed of “new”
water from recent rainfall traveling quickly to the stream, of-
ten via overland flow (Horton, 1933). This conceptual model
formed the foundation of decades of unit hydrograph stud-
ies (beginning with the work of Sherman, 1932), as well as
attempts to relate the unit hydrograph to drainage basin geo-
morphology (e.g., Ross, 1921; Rodriguez-Iturbe et al., 1982;
Gupta et al., 1980), as reviewed by Rigon et al. (2015) and
Beven (2020). The assumption that recent rainfall dominates
storm hydrographs was subsequently challenged by tracer
data showing that streamflow, even during storm peaks, is of-
ten composed mostly of “old” water from precipitation that
fell much earlier (e.g., Brown, 1961; Hubert et al., 1969;
Martinec, 1975; Pinder and Jones, 1969; Sklash and Far-
volden, 1979; Rodhe, 1981; Sklash, 1990; Neal and Rosier,
1990). This discovery has spurred decades of studies using
isotopes and conservative chemical tracers to estimate tran-
sit times in many different catchments (e.g., Kirchner et al.,
2000; McGuire and McDonnell, 2006; Godsey et al., 2010;
Botter et al., 2010; van der Velde et al., 2012; Heidbüchel
et al., 2012; Benettin et al., 2015a, b, 2022; Harman, 2015;
Berghuijs and Kirchner, 2017; Kirchner, 2019; Knapp et al.,
2019).

Amid the intense focus in recent decades on catchment
travel times and on flux tracking in models (e.g., the right-
hand side of Fig. 1), questions of catchment response times,
and of effect tracking in models (e.g., the left-hand side
of Fig. 1) have received much less attention. As a step to-
ward addressing this imbalance, this paper presents ensemble
rainfall–runoff analysis (ERRA), a model-independent, data-
driven method for quantifying runoff response distributions
from precipitation and streamflow time series. This approach
is made possible by recent mathematical developments in the
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Figure 1. Effects of 10 rainstorms on future runoff (a, c, and e) compared to future streamflow composition (b, d, and f), illustrated using
the nonlinear two-box benchmark model of Kirchner (2019). In (a), the colored bands show the runoff response to the corresponding storms,
as determined by effect tracking. Effect tracking quantifies the runoff response according to how much the discharge time series changes
when individual storms are included in or excluded from the precipitation time series. Thus (for example) the orange domain shows how
much more runoff occurred when storm no. 6 was included in the precipitation time series versus when it was excluded (shown by the teal-
colored hydrograph). In (b), the colored bands show the streamflow fluxes that originated as precipitation during each storm, as determined
by flux tracking (streamflow from precipitation that fell before event no. 1 is shown in gray). Panels (c) and (d) show the runoff and transport
responses, respectively, for all 10 storms, plotted against a baseline of zero so that they can be more clearly compared. Panels (e) and (f)
show the same curves, expressed as the time since the start of their respective storms. Dark-blue curves show the ensemble-averaged runoff
response distribution (RRD, panel e) and transit time distribution (TTD, panel f). Each horizontal axis shows the same time interval. The
vertical scales are identical in panels (a–c) but differ among the remaining panels to more clearly show the behavior. The gray bars along
the right edge of each panel show what the relative sizes of the vertical axes would be if the scales were consistent. Model parameters are
Su,ref= Sl,ref= 400 mm, bu= bl= 10, and η= 0.5. Each of the 10 modeled storms are of equal intensity (20 mmh−1) and duration (10 h).
The model ignores evapotranspiration so each 200 mm storm causes 200 mm of additional streamflow in the future (a) and adds 200 mm
of water that will eventually leave the catchment (b). Thus, the total volumes of the colored bands in (a) and (b) are equivalent, but the
hydrological response to precipitation (a, c, and e) decays away much faster than the event water is flushed out of the catchment (b, d,
and f). Modified, with permission, from Kirchner et al. (2023). Permission for the re-use and/or modification of this figure can be found at
the following link: https://www.annualreviews.org/page/authors/author-instructions/distributing/permissions (last access: 7 August 2024).

estimation of impulse response functions for nonlinear, non-
stationary, and heterogeneous systems (Kirchner, 2022, here-
after denoted as K2022). ERRA characterizes hydrologic be-
havior using runoff response distributions (as shown on the
left-hand side of Fig. 1) as a counterpart to ensemble hy-
drograph separation (Kirchner, 2019; Kirchner and Knapp,
2020), which characterizes transport behavior using transit
time distributions (as shown on the right-hand side of Fig. 1).

1.2 ERRA versus unit hydrographs

At its core, ensemble rainfall–runoff analysis is based on
least-squares deconvolution of a stream discharge time se-
ries by one or more precipitation time series. ERRA’s her-
itage thus reaches back to unit hydrograph methods, which
have a long history in hydrology (e.g., Sherman, 1932; Sny-
der, 1955; Dooge, 1973; Bruen and Dooge, 1992). It differs
from conventional unit hydrograph approaches in several im-

portant ways, however. First, classical unit hydrograph meth-
ods invoke what Hewlett and Hibbert (1967) termed “com-
pletely arbitrary” assumptions in order to separate the hydro-
graph into storm runoff and baseflow, and they invoke fur-
ther assumptions to separate the rainfall time series into ef-
fective precipitation and evaporative losses. To avoid making
such assumptions, which substantially influence the result-
ing unit hydrographs (Beven, 2012), ERRA analyzes time
series of total precipitation (instead of effective precipitation
alone) and total discharge (instead of storm runoff alone).
Second, the area under conventional unit hydrographs is con-
strained to be equal to 1, thus enforcing the assumption that
whatever is defined as storm runoff must equal, on average,
whatever is defined as effective precipitation (and making
the analysis vulnerable to biases in either of these quanti-
ties). ERRA makes no such assumption and instead allows
the area under the runoff response distribution to reflect mass
imbalances due to evapotranspiration losses or infiltration to
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deep groundwater (or due to potential biases in discharge
and precipitation measurements). Third, in contrast to many
unit hydrograph methods, ERRA does not require the defi-
nition and isolation of individual events but instead assimi-
lates information from the entire time series of precipitation
and streamflow. That is, it analyzes how streamflows at every
point in time (not just during pre-defined “events”) are cor-
related with precipitation – or lack thereof – over previous
time steps. In this way, it can exploit the information con-
tained in the differences in streamflows that follow different
precipitation patterns, including those that follow no precip-
itation at all. Indeed, a key objective of ERRA is to quanti-
tatively understand how differences in precipitation patterns
and ambient conditions shape the relationship between pre-
cipitation and subsequent streamflows. Fourth, whereas unit
hydrograph methods primarily seek to predict storm hydro-
graphs, ERRA does not focus on hydrograph prediction per
se but rather focuses on characterizing the magnitude and
timing of rainfall–runoff relationships and on quantifying
how they depend on precipitation intensity, ambient condi-
tions, and catchment characteristics. That is, its goal is pri-
marily data-based characterization of hydrologic response
rather than prediction of the hydrograph per se.

Fifth, and perhaps most importantly, whereas conventional
unit hydrograph methods assume that the effects of rainfall
on runoff are linear, stationary, and homogeneous, ERRA is
specifically designed to characterize and quantify the nonlin-
earity, nonstationarity, and heterogeneity of runoff response.
For example, typical unit hydrograph methods are driven by
a single whole-catchment precipitation time series and thus
implicitly assume either that the same precipitation falls ev-
erywhere or that its effects on runoff are spatially homoge-
neous (but there are exceptions, e.g., Kothyari and Singh,
1999). By contrast, through a combination of deconvolution
and de-mixing methods, ERRA can distinguish and quantify
how runoff responds to precipitation falling on different parts
of the landscape, even when those individual hydrologic re-
sponses are overprinted on one another at the catchment out-
let (see Sect. 2.3 below and Sect. 3 of K2022). Unit hydro-
graph methods are also based on the premise of linear su-
perposition of precipitation inputs, such that the response to
x units of rain falling at time t is assumed to be x times the
response to a single unit of rainfall at time t . By contrast,
ERRA recognizes that streamflow may respond nonlinearly
to variations in rainfall intensity and uses nonlinear deconvo-
lution methods to quantify that response (see Sect. 3 below
and Sect. 5 of K2022). Furthermore, conventional unit hy-
drograph methods assume that runoff response is stationary
such that a given unit of rain always has the same effects
on runoff, regardless of when it falls. By contrast, ERRA
combines deconvolution and de-mixing methods to explic-
itly quantify how runoff responses vary over time or vary
with ambient conditions, even if those runoff responses are
overprinted on one another (see Sect. 5 below and Sect. 4 of
K2022).

Here, I briefly introduce ERRA and outline some of
its potential applications. The mathematical foundations
underlying ERRA have previously been documented and
benchmark-tested in K2022, and those results will only be
briefly summarized here. Instead, the purpose of the present
contribution is to outline several applications through proof-
of-concept demonstrations, thus illustrating the potential of
the technique. Software is provided to perform the neces-
sary calculations, including uncertainty analysis, in the open-
source programming environment R.

2 Characterizing spatially heterogeneous hydrological
responses via deconvolution and de-mixing

2.1 Runoff response distributions (RRDs) as measures
of hydrological response

In their simplest forms, runoff response distributions like the
dark-blue curve in Fig. 1e can be interpreted as convolu-
tion kernels that, when convolved with precipitation, yield
streamflow. In continuous time, this convolution can be ex-
pressed as

Q(t)=

∞∫
τ=0

RRD(τ )P (t − τ)dτ, (1)

whereQ and P are the rates of streamflow and precipitation,
respectively, and the runoff response distribution RRD quan-
tifies their coupling at lag time τ . The process of estimating
RRD(τ ) from time series of Q and P is termed deconvo-
lution. For typical hydrological time series measured in dis-
crete time steps of length 1t , Eq. (1) becomes

Qj =

m∑
k=0

RRDkPj−k1t, (2)

where Qj is streamflow at time step j , Pj−k is precipitation
occurring k time steps earlier, RRDk is the impulse response
of streamflow to precipitation at lag k, and m is the maxi-
mum lag being considered. It is important to keep in mind
that, in ERRA, Eq. (2) is applied over large ensembles of
time steps j . As explained in Sect. 1.2 above, no attempt is
made to isolate individual events for analysis. To estimate the
runoff response distribution, it would appear to be straight-
forward to re-cast Eq. (2) as the multiple linear regression
equation shown below:

Qj =

m∑
k=0

βkPj−k +α+ εj , (3)

(see also Eq. 4 of K2022) where RRDk is estimated
by βk/1t , the constant term α accounts for persistent bi-
ases or mass imbalances, and the residuals εj capture any
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time-varying errors. However, conventional least-squares re-
gression techniques assume that the residuals εj are tempo-
rally uncorrelated white noise, whereas, in practice, stream-
flow estimation errors typically have both autoregressive
and moving-average characteristics. These autoregressive
moving-average (ARMA) errors can arise from several
sources. Measurement errors in discharge may be serially
correlated. There will also be measurement errors in precip-
itation, and even if they are not themselves serially corre-
lated, they will be smoothed and lagged by the same con-
volution process that smooths and lags the (unknown) true
precipitation, leading to correlations in the residuals. Mis-
specification of the underlying model, such as its assumption
of linearity and stationarity (these assumptions are relaxed
later), will also be reflected in serial correlations in the resid-
uals εj . Deconvolution in the presence of such ARMA resid-
uals is a non-trivial problem because the fitted streamflow
values will contain serially correlated signals both from the
errors εj and from the real-world process that convolves pre-
cipitation to generate streamflow, and these signals need to
be distinguished from one another. It is even more challeng-
ing to perform such deconvolutions efficiently in large prob-
lems, which may involve hundreds of thousands of time steps
and hundreds or even thousands of lag times. Readers are re-
ferred to Sect. 2 of K2022 for technical details of how this
is done and for benchmark tests demonstrating that ERRA
handles this challenge effectively and efficiently (i.e., over 3
orders of magnitude faster than the closest built-in R func-
tion). ERRA implements this correction for ARMA noise by
default, with no intervention required by users in most cir-
cumstances (for an earlier implementation of an analogous
approach, see Duband et al., 1993). Because this approach is
based on solving large linear regression problems and then
deconvolving the resulting coefficients, the standard errors
of the RRD coefficients can be straightforwardly calculated
from the normal equations of regression, combined with first-
order, second-moment error propagation for any transforma-
tions of the coefficients themselves (see Sects. 2.3 and 5.1
of K2022 for details). ERRA reports the resulting standard
errors with all of its outputs.

One technical detail that is particular to hydrology, and
thus not covered in K2022, is that the effective lag time
between precipitation and streamflow, along with the value
of RRDk at lag k = 0, will depend on whether Qj is the in-
stantaneous streamflow at the end of time step j or the aver-
age streamflow over time step j . If Qj is measured instan-
taneously at the end of each time step, the average lag be-
tween rainfall and its effect on streamflow is (k+0.5)1t and
RRDk = βk/1t for all k. However, if Qj is averaged over
each time step, during lag step zero (k = 0), streamflow will
only reflect the effects of rain that falls beforehand and not
later during the same time step. Thus, streamflow at the end
of the time step will reflect all of the rain that fell during that
time step, while streamflow at the beginning of the time step
will reflect none, and streamflow in the middle of the time

step will reflect half (on average since rainfall is stochas-
tic). Integrating over stochastic rainfall fluctuations in many
such time steps will yield the result that, when lag k = 0,
βk=0 is reduced by half; thus, the RRD must be estimated as
RRDk=0 = 2βk=0/1t , and the average lag time linking the
effects of precipitation to streamflow is1t/3. For lags k > 0,
RRDk = βk/1t , and the effective lag time is k1t .

2.2 Whole-catchment runoff response at Roanoke
River

Here, I illustrate the estimation of runoff response dis-
tributions using the Roanoke River catchment, a 995 km2

drainage basin with mixed land use lying between Blacks-
burg and Roanoke, Virginia, USA (Fig. 2). I extracted
hourly precipitation time series for 2006–2022 from the avi-
ation weather records at two airports located ∼ 40 km apart,
just beyond the eastern and western catchment boundaries
(Roanoke Regional Airport in Roanoke and Virginia Tech
Montgomery Executive Airport in Blacksburg, respectively),
and aggregated hourly streamflows for the same period from
15 min discharge data from USGS gauge 02055000 in down-
town Roanoke (Fig. 2). Figure 3 shows 1 year of these hourly
measurements. The Roanoke and Blacksburg precipitation
time series are imperfectly correlated, with a Pearson cor-
relation of 0.3 on an hourly timescale and of 0.7 on a daily
timescale. Some precipitation events occur nearly simultane-
ously at both stations, but the Blacksburg time series contains
some precipitation events that were not observed at Roanoke
and vice versa, and events occurring at both locations of-
ten differ in magnitude or timing. From Fig. 3, one can also
see that streamflow responds most strongly to precipitation
that is recorded simultaneously, or nearly so, at both weather
stations. This makes sense because such events are likely
to have entailed widespread precipitation over most of the
catchment.

In a typical catchment-scale analysis with multiple
weather stations, the precipitation time series are usually av-
eraged together to yield a single catchment-averaged input.
Figure 4a shows the runoff response distribution (RRD) gen-
erated by using ERRA (Eq. 3, with ARMA noise correc-
tion as described in Sect. 2 of K2022) to deconvolve hourly
Roanoke River streamflow by the average of Roanoke and
Blacksburg hourly precipitation.

As the name implies, the RRD quantifies how the catch-
ment’s streamflow response is distributed over time per unit
of precipitation. Because precipitation and streamflow are
measured in the same units (mmh−1), the RRD has dimen-
sions of time−1. If the catchment’s response were linear and
stationary (time-invariant), the RRD would be a complete
description of its behavior; that is, convolving the precipi-
tation time series with the RRD would yield the streamflow
time series. In the more realistic case of a catchment that
is approximately linear but nonstationary, the RRD approxi-
mates the ensemble average streamflow response to precipi-

https://doi.org/10.5194/hess-28-4427-2024 Hydrol. Earth Syst. Sci., 28, 4427–4454, 2024



4432 J. W. Kirchner: Ensemble rainfall–runoff analysis

Figure 2. Map of the 995 km2 Roanoke River catchment (Virginia, USA; perimeter shown by dashed black line), with major stream channels
(blue lines) and location of airport rain gauges (blue circles). Hillshade is from the USGS National Map Viewer (https://apps.nationalmap.
gov/viewer/, last access: 7 August 2024), with red and purple colors indicating impermeable surfaces in the National Land Cover Database
(Dewitz, 2021).

Figure 3. Hourly precipitation at the Roanoke and Blacksburg airports and hourly streamflow at the Roanoke gauge over 1 year. Note that
the streamflow axis is expanded 25× relative to the precipitation axes.

Hydrol. Earth Syst. Sci., 28, 4427–4454, 2024 https://doi.org/10.5194/hess-28-4427-2024
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Figure 4. ERRA runoff response distributions calculated by deconvolving Roanoke River streamflow by different precipitation inputs. In (a),
streamflow is deconvolved by the average of precipitation measured at Roanoke and Blacksburg using the approach outlined in Sect. 2.1.
The same approach is used in (b) to deconvolve streamflow by either Roanoke precipitation alone (dark blue) or Blacksburg precipitation
alone (light blue). In (c), by contrast, deconvolution and de-mixing are used to jointly determine the effects of Roanoke and Blacksburg
precipitation on streamflow using the approach outlined in Sect. 2.3. This combined deconvolution and de-mixing analysis reveals that the
effects of Roanoke and Blacksburg precipitation are markedly different. Error bars show 1 standard error.

tation. If the catchment’s runoff response scales nonlinearly
with precipitation intensity, its average is best approximated
by a precipitation-weighted average RRD, as described in
Sect. 3.4 below.

The RRD shown in Fig. 4a shows that the peak stream-
flow response occurs approximately 15.4± 0.9 h after pre-
cipitation falls, but the streamflow response curve is broad,
with a width at half-maximum of 39.2± 1.6 h. The in-
tegral under the curve yields an effective runoff coeffi-
cient of 0.286± 0.001 for all streamflow responses shorter
than the maximum lag (here, 168 h= 1 week). When com-
pared to the long-term ratio of 0.345± 0.005 between av-
erage streamflow (0.042 mmh−1) and average precipitation
(0.122 mmh−1), this runoff coefficient implies that over 80 %
of streamflow leaves the catchment within 1 week of the pre-
cipitation that triggered it, with longer-term baseflow com-
prising the remainder. Note that this should not be interpreted
as “over 80 % of streamflow leaving the catchment within
1 week following the precipitation it originated from”, nor
should the runoff coefficient of 0.289 be interpreted as “29 %
of precipitation leaving the catchment as streamflow within
1 week”. Hydrometric data reflect the coupling between pre-
cipitation and streamflow but do not trace the movement of
water itself. As noted in Sect. 1.1 above, decades of tracer
data from many different catchments show that storm flow is
often dominated by precipitation that fell weeks, months, or
even years before and that has been stored within the catch-
ment ever since.

A notable feature of Fig. 4a is the sharp spike in the runoff
response distribution at a lag of roughly 4 h. Such a rapid and
brief runoff response could potentially be generated by rain
falling on the Roanoke metropolitan area and being routed
rapidly over impermeable surfaces (denoted in red and purple
in Fig. 2). One might attempt to gain some insight into this
possibility by deconvolving streamflow by Roanoke precipi-
tation alone and by comparing the resulting runoff response
distribution (dark-blue curve in Fig. 4b) with one derived by

deconvolving streamflow by Blacksburg precipitation alone
(light-blue curve in Fig. 4b). This comparison appears to
imply that Roanoke precipitation triggers a small additional
short-term runoff response but that, otherwise, the runoff re-
sponses to Roanoke and Blacksburg precipitation are similar.

Such an interpretation would be naïve, however, because
deconvolving streamflow by Roanoke precipitation does not
measure the effects of precipitation falling on Roanoke alone.
Instead, it measures the effects of any precipitation, falling
anywhere in the catchment, that is correlated with the pre-
cipitation measured at Roanoke. In principle, of course, the
ideal solution would be to obtain precipitation and stream-
flow measurements in subcatchments that isolate particular
landscapes of interest, such as the Roanoke metropolitan
area. But such subcatchment gauging data are unavailable
in many situations like this one. How can we separate the
effects of Roanoke and Blacksburg precipitation on stream-
flow if we only have streamflow measurements that integrate
over the entire catchment?

2.3 Deconvolution and de-mixing of multiple
precipitation inputs

The Roanoke and Blacksburg precipitation time series are
correlated with one another, and their effects are not only
convolved forward through time but are also mixed to-
gether at the catchment outlet. This is a common problem in
rainfall–runoff analysis at the catchment scale: precipitation
falling in different parts of the landscape with different hy-
drological properties may generate different streamflow re-
sponses, which may then be lagged and dispersed differently
on their way to the basin outlet. Estimating the streamflow
response to individual inputs therefore combines a decon-
volution problem (one must un-scramble each input’s tem-
porally overlapping effects) and a de-mixing problem (one
must separate the different inputs’ effects from one another).
As outlined in Sect. 3 of K2022, this combined deconvolu-
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tion and de-mixing problem can be approached by analyzing
the effects of the two precipitation inputs jointly as follows:

Qj = fA

m∑
k=0

RRDA,kPA,j−k1t

+ fB

m∑
k=0

RRDB,kPB,j−k1t, (4)

where RRDA and RRDB are the runoff response distributions
for precipitation inputs PA and PB, which are assumed to fall
on fractions fA and fB of the catchment. Equation (4) can be
re-cast as the multiple regression equation

Qj =

m∑
k=0

βA,kfAPA,j−k +βB,kfBPB,j−k +α+ εj , (5)

which is identical to Eq. (3) and is solved identically, ex-
cept for the fact that there are more coefficients to estimate
(this approach could, of course, be generalized to any num-
ber of inputs as long as their time series are sufficiently
distinct). Equation (5) is analogous to the “multiple-input
single-output variable gain factor model” of Liang et al.
(1994), although that approach was applied to flood rout-
ing, using the flows of tributaries rather than precipitation
as inputs. The approach outlined in Eqs. (4) and (5) has been
benchmark-tested using synthetic data in Sect. 3 of K2023;
here, I show a simple application, for purposes of demonstra-
tion, using the Roanoke River basin. Readers should note that
values of the runoff response distributions RRDA and RRDB
will inevitably be inversely proportional to the mixing frac-
tions fA and fB; there is no way to determine them inde-
pendently without making additional assumptions. This is
because a given precipitation input can generate (for exam-
ple) twice the effect on runoff either by falling on twice as
much of the catchment or by falling on a part of the catch-
ment that is twice as responsive to precipitation. Therefore,
although the shapes of the RRDs will be determined by the
data, their absolute magnitudes will depend on the assumed
values of fA and fB. Here, I assume that fA = fB = 0.5,
which yields the RRDs shown in Fig. 4c.

As Fig. 4c shows, solving jointly for the effects of pre-
cipitation at Roanoke and Blacksburg reveals that they are
markedly different, in sharp contrast to the results obtained
in Fig. 4b by applying each precipitation record separately.
Figure 4c reveals a sharp spike in the runoff response to
Roanoke precipitation at a lag of just 3.9± 0.2 h (see the
dark-blue curve in Fig. 4c), presumably reflecting the preva-
lence of impermeable surfaces in the metropolitan Roanoke
area, as well as the relatively short network flow paths to the
gauging station in downtown Roanoke. By contrast, there
is almost no short-term runoff response at Roanoke that is
attributable to Blacksburg precipitation (see the light-blue
curve in Fig. 4c), presumably reflecting the lack of any short
flow paths connecting precipitation falling near Blacksburg

with the Roanoke gauging station. The peak runoff response
to Blacksburg precipitation is delayed (17.5± 0.8 h) and rel-
atively broad, presumably also reflecting the relative scarcity
of impermeable surfaces within the catchment near Blacks-
burg (Fig. 2). The runoff response to Roanoke precipitation
also shows a broad decline over lags ranging from about 15
to 60 h, presumably reflecting longer, slower flow paths to
the gauging station, including via tributaries that flow west-
ward before joining the main stream and flowing back east-
ward to Roanoke (see Fig. 2). A 50 / 50 mixture of the two
response distributions shown in Fig. 4c almost exactly repro-
duces the response distribution to catchment-averaged pre-
cipitation shown in Fig. 4a. Thus, Fig. 4c implies that the
short-term peak in the runoff response shown in Fig. 4a
is generated by precipitation falling near Roanoke, and the
broader, later peak is generated by precipitation falling near
both Roanoke and Blacksburg.

These results have the practical implication that storms de-
livering the same catchment-averaged precipitation can yield
very different hydrographs, depending on how much of that
precipitation falls near Roanoke versus Blacksburg. Runoff
responses to storms can also differ markedly, depending on
whether they move from southwest to northeast (such that
the runoff peaks from Blacksburg and Roanoke precipitation
tend to coincide) or from northeast to southwest (increasing
the separation between the arrival times of the runoff peaks
at the outlet). More generally, the analysis presented here
demonstrates that, whenever one has precipitation records for
different parts of a catchment, one can quantify their individ-
ual effects on runoff even if the individual subcatchments are
not separately gauged (as long as the subcatchments are not
too numerous and their precipitation records are not too sim-
ilar, which would be reflected in very large standard errors
in the reported RRDs). In this way, one can explore how net-
work routing and local variations in catchment characteristics
affect runoff dynamics directly from data without positing a
physical model and without subcatchment gauging data.

3 Quantifying nonlinearities and thresholds in runoff
response via nonlinear deconvolution

3.1 Introduction: nonlinear deconvolution

It has long been recognized that storm runoff often responds
more than proportionally to changes in precipitation inten-
sity. For example, Fig. 5 shows unit hydrographs estimated
for five brief (10–15 min) bursts of rainfall in an agricultural
catchment in Illinois (data of Minshall, 1960). From Fig. 5,
one can see that unit hydrograph peaks are both higher and
earlier for higher-intensity storms in this small (11 ha) catch-
ment. Conventional deconvolutions, and unit hydrographs
in particular, are inconsistent with the behavior shown in
Fig. 5 because they assume that outputs scale proportionally
to inputs, leading Minshall (1960) to conclude that a single
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Figure 5. Unit hydrographs estimated by Minshall (1960) for 10–
15 min periods of different rainfall intensities in an 11 ha catchment.

unit hydrograph cannot adequately characterize the runoff re-
sponse to different precipitation intensities, at least in small
catchments like those that he studied.

Here, I outline an approach to characterizing this type
of nonlinear runoff response based on the nonlinear decon-
volution method presented in Sect. 5 of K2022. The core
of the problem is that one cannot directly observe a catch-
ment’s response to (for example) a single hour of precipi-
tation at a given intensity because these responses are con-
volved forward through time, overlapping with the responses
to other hours of precipitation at other intensities. To handle
this problem, I adapt the methods outlined in Sect. 2 above by
replacing each coefficient of the runoff response distribution
with a function of the precipitation rate. If the RRD at each
lag is a function of precipitation intensity, Eq. (2) becomes

Qj =

m∑
k=0

Pj−kRRDk(Pj−k)1t, (6)

(see also Ding, 2011) where the parentheses indicate func-
tional dependence rather than multiplication. Because rain-
fall is stochastic and its distribution is highly skewed, the pre-
cipitation intensity Pj−k will be inherently dependent on the
duration 1t over which it is measured. The runoff response
distribution RRDk may, likewise, vary with the time step1t .
It may also be highly uncertain when precipitation inten-
sity and the resulting runoff response are close to zero. For
these reasons, and to more clearly visualize the functional
relationship between precipitation intensity and streamflow
response, it is useful to define a nonlinear response func-
tion NRFk as the product between the precipitation-intensity-
dependent RRDk and the precipitation rate P :

NRFk(Pj−k)= Pj−kRRDk(Pj−k), (7)

where the parentheses indicate functional dependence rather
than multiplication. Combining Eq. (7) and Eq. (6) yields

Qj =

m∑
k=0

NRFk(Pj−k)1t, (8)

where Qj is streamflow at time step j , Pj−k is precipitation
occurring k time steps earlier, NRFk is the nonlinear response
of streamflow to precipitation that falls at a rate of Pj−k and
lasts for a time step of 1t , m is the maximum lag being con-
sidered, and the parentheses indicate functional dependence
rather than multiplication. From Eqs. (6) and (7), one can
see that the units of the NRF will be millimeters per hour
squared (mmh−2), consistent with its interpretation as the
rate of streamflow expected to result at a given time lag k
from precipitation falling at a rate P , per unit of time that
this precipitation falls. In cases where the time step is equal
to the time unit (for example, where precipitation and stream-
flow are measured in millimeters per hour (mmh−1) over
time steps of 1 h), the time step of 1t will equal 1, and the
NRF will be numerically (though not dimensionally) equal
to the increment of additional streamflow resulting from one
time step of precipitation at rate P . Nonetheless, one can
also consider the time step to be a part of the definition of
the NRF (in this example, an “hourly” NRF) and can con-
sider the NRF to be an estimate of the incremental addition to
runoff (in mmh−1) that would be expected to result from 1 h
of precipitation at a given rate (or within a given range of
rates). This alternative interpretation, in which the NRF has
units of streamflow, will be more intuitive in many contexts,
although the implicit timescale must be kept in mind.

The question now becomes one of how to estimate the non-
linear response function NRFk . We want to avoid needing to
specify the form of this function and instead allow it to be
determined from the data. The approach adopted here and in
K2022, as illustrated schematically in Fig. 6a, is to approxi-
mate NRFk using a continuous piecewise-linear broken-stick
model, with linear segments intersecting at knots that corre-
spond to user-defined precipitation intensities. Dividing the
precipitation axis of Fig. 6 into nκ segments between knots κ`
allows precipitation intensity to be re-expressed as a vector
of values P ′` that quantify how much of each segment lies at
or below any given value of P .

P =

nκ∑
`=1

P ′`,
P ′` =


0 if P < κ`−1

P − κ`−1 if κ`−1 ≤ P < κ`

κ`− κ`−1 if P ≥ κ`
=max(0,min(P − κ`−1,κ`− κ`−1))

(9)

The nonlinear response function NRFk thus becomes the
sum of these individual precipitation components, each mul-
tiplied by the slopes β ′`,k of the corresponding broken-stick
segments (and rescaled by the time interval 1t):

NRFk(P )≈
nκ∑
`=1

β ′`,kP
′

`/1t. (10)

The slopes β ′`,k can be estimated by a linear regression equa-
tion that is formed by combining Eqs. (10) and (8):

Qj ≈

m∑
k=0

nκ∑
`=1

β ′`,kP
′

`,j−k +α+ εj . (11)
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Figure 6. Nonlinear response function (NRF) estimation by piecewise-linear broken-stick approximation. (a) Estimation of the nonlinear
dependence of Q on precipitation intensity P at a specified lag k. As described in Sect. 3.1, splitting the precipitation value P (solid
circle) into sub-ranges P ′

`
between user-specified knots κ` (open circles) facilitates the fitting of slopes β ′

`,k
between these knots by linear

regression, yielding a nonparametric piecewise-linear continuous curve (see Eqs. 9 and 10). (b) Estimation of the weighted average runoff
response distribution (RRDk) as the ratio between the means of the NRF and P (red square) over all time steps (four example values of P
and NRF shown by solid blue circles), as described in Sect. 3.4.

For the methodological details underlying this approach,
users are referred to Sect. 5 of K2022, and for practical im-
plementation details, including different options for setting
the knot values κ`, they are referred to the documentation for
the ERRA script itself.

It is worth emphasizing that this approach differs from
conventional transfer function models that use a nonlin-
ear transformation to convert total rainfall to effective rain-
fall and then estimate a transfer function to route this rain-
fall through the catchment (e.g., IHACRES; Jakeman et al.,
1990). The present approach, by contrast, estimates nonlin-
ear relationships like those shown in Fig. 6 separately for
each lag between 0 and m; in the conceptual framework of
transfer function models, this means that the effective rain-
fall can vary with lag time.

3.2 Profiles of nonlinear response at the Saco River

Figure 7 illustrates the approach outlined above, using the
Saco River as a test case. At the Conway, NH, stream gauge,
the Saco River drains 997 km2 of the White Mountains. I ag-
gregated USGS 15 min discharge measurements from the
Conway gauge to hourly intervals to correspond with hourly
estimates of catchment-averaged precipitation that are avail-
able from MOPEX (Duan et al., 2006). To minimize the ef-
fects of snow, the months of November through April were
excluded. In all, about 16 years of overlapping hourly pre-
cipitation and discharge data are available, spanning 1987
through 2003.

Figure 7a shows NRF estimates of the Saco River’s runoff
response to seven ranges of precipitation intensity, as es-
timated by Eq. (11). Unsurprisingly, the highest precipita-
tion intensities yield the strongest runoff responses and the

highest peaks. They also have the largest error bars because
the precipitation distribution is highly skewed, and, thus, the
highest intensity ranges contain relatively few data points.
The peak height, calculated from a quadratic fit to all NRF
values within 20 % of the peak, increases nonlinearly with
precipitation intensity, presumably reflecting the effects of
interception losses and of refilling of near-surface storage
(Fig. 7b).

The total runoff volume, calculated by integrating the NRF
over the 100 h range of lag times shown in Fig. 7a, also in-
creases nonlinearly with precipitation intensity (Fig. 7c). Be-
cause the units of the NRF are millimeters per hour squared
(mmh−2), the units of the runoff volume shown in Fig. 7c
are millimeters per hour (mmh−1), which is millimeters of
streamflow (here, in the first 100 h following precipitation)
per hour of precipitation at a given intensity or over a given
intensity range. One could also equivalently consider Fig. 7c
to be a plot of 1 h precipitation intensity in millimeters (on
the x axis) versus the total streamflow resulting from 1 h of
that precipitation within the first 100 h (on the y axis). The
gap between the runoff volume curve and the 1 : 1 line in
Fig. 7c indicates the volume lost to interception and evapo-
transpiration, as well as to infiltration that does not generate
streamflow within 100 h.

Peak height increases with runoff volume following a
power function with an exponent greater than 1 (Fig. 7d).
This more-than-proportional increase in peak height implies
that higher precipitation intensities do not amplify runoff re-
sponse by the same proportion at all lags but instead am-
plify runoff response near the peak lag by somewhat larger
factors. The runoff coefficient, calculated as the ratio be-
tween the y and x axes of Fig. 7c, increases with precipi-
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Figure 7. Nonlinear rainfall–runoff behavior at the Saco River near Conway, NH, USA, inferred from ERRA nonlinear response functions
(NRFs). (a) NRF as a function of lag time for specified ranges of precipitation intensity. (b) Peak height of NRFs as a function of precipitation
intensity, showing nonlinearity in peak runoff response. (c) Effect of precipitation intensity on NRF runoff volume, measured as the total
area under each curve in panel (a) and expressed in millimeters of streamflow per hour of precipitation at the stated intensity. Runoff volume
increases more slowly than precipitation intensity does (i.e., the gap between the blue curve and the gray 1 : 1 line continues to grow),
suggesting that losses to evapotranspiration and/or long-term storage are not constant but instead increase with increasing precipitation
intensity. (d) Log–log relationship between NRF peak height and NRF runoff volume, with a scaling exponent of 1.16, indicating that peak
height is modestly more sensitive to precipitation intensity than total runoff volume is. Thus, as precipitation intensity increases, peak height
grows more than proportionally relative to average runoff response. (e) Runoff coefficient (ratio between NRF runoff volume and precipitation
intensity) as a function of precipitation intensity, with an arbitrary smooth curve to guide the eye. (f) Lag to peak and peak width (at half
maximum) as functions of precipitation intensity, showing that NRF peaks are earlier and narrower at higher precipitation rates. Source data
span 1987–2003; months from November through April were omitted to exclude effects of snow. Error bars show 1 standard error, where
this is larger than the plotting symbols.
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tation intensity, reflecting the greater relative importance of
interception losses and storage deficits at lower precipita-
tion rates (Fig. 7e). The runoff coefficient appears to reach
an upper limit of approximately 0.6, suggesting that, even
at high precipitation rates, interception and infiltration losses
may remain significant. Runoff response peaks are narrower
and earlier at higher precipitation rates (Fig. 7f). Figure 7b–
f can be considered to be profiles of nonlinear hydrologi-
cal response and, thus, fingerprints of catchment behavior.
Controls on nonlinear hydrological response may potentially
be illuminated by comparing these response profiles among
streams with different catchment characteristics.

3.3 Effects of sampling interval on nonlinear response
functions

The stochastic nature of precipitation means that precipita-
tion rates measured over different time intervals will have
different distributions. This naturally leads to the question of
how the results reported in Fig. 7 might look different if pre-
cipitation rates and runoff responses were measured at differ-
ent time resolutions.

This question is important because one may want to com-
pare runoff responses at different catchments that have dif-
ferent sampling frequencies. Furthermore, when the sam-
pling interval is much shorter than the response time of the
catchment itself, the runoff time series will be strongly au-
tocorrelated and so will the residuals of analyses such as
Eqs. (3), (5), or (11). ERRA is designed to handle autocorre-
lated residuals, but if the autocorrelation is too strong (e.g.,
lag− 1 residual autocorrelation > 0.99), the NRF and RRD
may exhibit spurious features. These problems can gener-
ally be avoided by aggregating the input data over longer and
longer time steps until the residual autocorrelation becomes
manageable. Thus, it is important to understand how aggre-
gating the underlying time series might affect the results ob-
tained from ERRA.

Figure 8 shows the runoff response curves for the Saco
River, with precipitation and streamflow aggregated over in-
tervals from 1 to 12 h. The timing of the peak response
and the shapes of the curves are similar across the differ-
ent timescales, but the precipitation intensities – and, thus,
the NRF values – decrease with increasing time aggregation.
However, as Fig. 9 shows, the underlying relationships be-
tween runoff response peak height, runoff volume, peak lag,
and precipitation intensity are generally consistent across the
different measurement intervals, with each of the response
profiles lying approximately on top of one another. Longer
aggregation timescales, however, inherently lead to smaller
ranges of precipitation intensities, with the result being that
a smaller part of the response profile is visible. Thus, the re-
sults obtained from ERRA at different levels of time step ag-
gregation are consistent with one another but are not equiva-
lent to one another.

3.4 Average of nonlinear runoff response

The NRF quantifies the system’s ensemble-averaged re-
sponse to time steps of rain falling at an intensity of P (av-
eraged over the time step). The NRF is not, however, nor-
malized by precipitation intensity like the RRD is. For any
individual value of P , one could straightforwardly estimate
the runoff response per unit of precipitation as NRFk(P )/P .
This could be viewed as the runoff response distribution for
a specific precipitation intensity, as in Eq. (6), but one should
be aware that it may yield highly uncertain results for low-
intensity precipitation with a small runoff response. A bet-
ter approach, and the one adopted in ERRA, is to define the
weighted average runoff response distribution as equalling
the average of the NRF over all time steps, divided by the
average P , as illustrated schematically in Fig. 6b. This will
equal the precipitation-weighted average of the runoff re-
sponse distribution RRDk(Pj−k) over all time steps.

avgRRDk =

n−k∑
j=1

NRFk(Pj−k)

n−k∑
j=1

Pj−k

1t

=

n−k∑
j=1

Pj−kRRDk(Pj−k)

n−k∑
j=1

Pj−k

(12)

This average runoff response distribution will be inher-
ently dependent on the distribution of precipitation inten-
sities whenever the system response is nonlinear. Readers
should also note that, whenever the runoff response is non-
linear and, thus, the underlying relationship between NRF
and P is curved, the point defining the average P and aver-
age NRF (e.g., the red square in Fig. 6b) will not lie along
the function NRF(P ) but instead will lie inside of the curve.
Thus, in the typical case of an upward-curving NRF, the av-
erage NRF will be greater than the value of the NRF evalu-
ated at the average P ; thus, the weighted average RRD will
also be greater than the RRD evaluated at the average P . The
weighted average RRD is nonetheless the average runoff re-
sponse per unit of precipitation (averaged over the nonlin-
ear relationship between precipitation intensity and runoff
response) and, thus, is the closest analogue to the runoff re-
sponse distribution of a linear system.

One should also be aware that, if the system’s response is
nonlinear, RRD values calculated via Eqs. (1)–(3) – that is,
without recognition of the system’s nonlinearity – will gen-
erally overestimate the precipitation-weighted average RRD
(Eq. 12). This overestimation bias arises because precipita-
tion distributions typically have very long upper tails, and
so the highest precipitation points (whose leverage scales as
roughly P 2) have a disproportionate influence on the RRD
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Figure 8. Effects of time step aggregation on inferred nonlinear runoff response of the Saco River. Panels (a–d) show ERRA nonlinear
response functions (NRFs) as functions of lag time for specified ranges of precipitation intensity using hourly precipitation and streamflow
time series (a) and the same data aggregated by averaging over 3 h (b), 6 h (c), and 12 h (d). Average precipitation intensity is lower and
runoff responses are correspondingly more muted when precipitation and discharge are averaged over longer spans of time. Source data span
1987–2003; months from November through April were omitted to exclude any effects of snow. Error bars show 1 standard error.

estimate. This bias, which is inherent in all regression-based
estimates of unit hydrographs, may be desirable if one wants
an estimate that is skewed toward the catchment response to
high-intensity precipitation. However, if one wants to capture
the average of the nonlinear runoff response, the approach
outlined in Eqs. (6)–(12) will be needed.

Here, I illustrate this approach using rainfall–runoff data
from five rivers in the southeastern US that exhibit differ-
ent degrees of nonlinearity and markedly different response
times (Fig. 10). As in Sect. 3.2 above, I aggregated 15 min
discharge measurements from USGS gauges on each of these
rivers to hourly intervals and combined them with hourly
estimates of catchment-averaged precipitation that are avail-
able from MOPEX (Duan et al., 2006) for the corresponding
drainage basins. The resulting time series for the five sites
span between 13 and 18 years of hourly data.

As Fig. 10 shows, precipitation-weighted average RRDs
calculated via Eq. (12) for all five sites are less strongly
peaked (dark-blue symbols, left panels) than unweighted
RRDs (light-blue symbols, left panels) calculated via
Eqs. (1)–(3). It may seem counterintuitive that the un-
weighted RRDs are more strongly peaked and that account-
ing for the nonlinearities in runoff response and weighting by
precipitation dampens the RRD peaks rather than sharpening
them. But it is important to remember that, as noted above,

because the mean P is close to zero, each point’s leverage in
Eq. (3) is approximately P 2; thus, the “unweighted” RRDs
are implicitly weighted by the square of precipitation. The re-
sulting overestimation bias is greatest at sites like the Clinch
River or the South Fork New River, where the NRF peak is
a strongly nonlinear function of precipitation intensity. By
quantifying this nonlinearity and explicitly weighting by P ,
the approach of Eqs. (9)–(12) corrects the overestimation
bias that arises in simpler approaches like Eqs. (1)–(3) and in
similar regression-based approaches to unit hydrograph esti-
mation.

Figure 10 also demonstrates a wide range of hydrologic re-
sponse timescales among the five catchments, with the peak
runoff response in the weighted average RRD ranging from
just over 3 h (for the Northeast Branch of the Anacostia River
at Riverdale, Maryland, draining 189 km2 of a mostly sub-
urban landscape north of Washington DC) to 48 h (for the
Clinch River above Tazewell, Tennessee, draining 3818 km2

of mostly forests and farmlands of the Appalachian Moun-
tains). Notably, only the slowest runoff responses among
these sites would be captured by daily time series, which are
widely used for hydrological analysis and modeling. Thus,
daily time series and models that are calibrated to them may
fail to reflect the rapid dynamics that characterize runoff re-
sponse in many landscapes.
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Figure 9. Nonlinear responses of peak heights, peak lags, and runoff volumes to variations in precipitation intensity at the Saco River,
estimated from precipitation and streamflow data aggregated over different time intervals. Time step aggregation reduces average precipi-
tation intensity and damps the resulting nonlinear response functions (NRFs; Fig. 8). However, the nonlinear response curves relating peak
heights (a) and runoff volumes (b) to precipitation intensity plot on top of one another at different levels of time step aggregation, as do
the power-law relationships between peak heights and runoff volumes (c) (dashed gray line is offset from the data for clarity). Time step
aggregation has little effect on lag-to-peak (d) at high precipitation intensities but may have a more noticeable effect at low precipitation
intensities. Source data span 1987–2003; months from November through April were omitted to exclude any effects of snow. Error bars
show 1 standard error.

3.5 Nonlinear storage–discharge relationships

It should be clear that, here, in Sect. 3, the term “nonlinear”
refers to catchments that respond nonlinearly to variations in
precipitation intensity, as shown, for example, in Figs. 7–9.
Elsewhere in the hydrological literature, the term “nonlinear”
has also been used to refer to catchments in which streamflow
is a nonlinear function of catchment storage:

Q= f (S),
dS
dt
= P −E−Q, (13)

where Q, S, P , and E (discharge, storage, precipitation, and
evapotranspiration, respectively) are all functions of time,
and the function f may have any general nonlinear form.
Data-driven streamflow prediction models for such systems
can be fitted using Volterra series (e.g., Amorocho, 1967;
Kothyari and Singh, 1999), which represent streamflow as
a linear function of a multidimensional array of past inputs.
But even a second-order Volterra series requiresm·(1+m+1

2 )

coefficients, and a third-order series requires m · (1+ m+1
2 ·

(1+ m+2
3 )) coefficients, where m is the number of lags, such

that the coefficients can rapidly become too numerous to es-

timate accurately. This overfitting problem can be handled
using regularization methods (Kothyari and Singh, 1999) or
by approximating the (multidimensional) response function
with polynomials such as Meixner functions or Chebyshev
polynomials (Amorocho and Brandstetter, 1971), which can
greatly reduce the number of coefficients to be estimated at
the cost of obscuring sharp features in the response func-
tion. Whatever the specific calculation procedure, however,
a Volterra series is difficult to interpret in terms of impulse
response (i.e., a runoff response distribution).

As illustrated in Fig. 1, the runoff response of a nonlinear
system such as Eq. (13) to individual precipitation inputs will
depend on both past rainfall (which determines antecedent
moisture) and future rainfall (which amplifies the runoff re-
sponse of a given storm). Thus, the NRF should not be ex-
pected to accurately reflect the catchment’s response to each
individual precipitation event, which is in contrast to linear
systems (for which the RRD should completely describe ev-
ery event’s runoff response). However, as Fig. 1e illustrates,
even though a nonlinear system’s responses to individual rain
events may be highly variable, an ensemble of such events
can yield reliable estimates of the NRF and weighted aver-
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Figure 10. Runoff response distributions (RRDs) calculated with (dark blue) and without (light blue) accounting for nonlinear response to
precipitation intensity (left panels) and profiles of nonlinear response function (NRF) peak height as a function of precipitation intensity (right
panels) for five mesoscale river basins in the southeastern US. Basins are the Northeast Branch of the Anacostia River at Riverdale, MD (a, b:
189 km2); the Nantahala River near Rainbow Springs, NC (c, d: 134 km2); the South Fork New River near Jefferson, NC (e, f: 531 km2); the
French Broad River at Asheville, NC (g, h: 2448 km2); and the Clinch River above Tazewell, TN (i, j: 3818 km2). Weighted average RRDs,
calculated via Eq. (12) to take account of nonlinear responses (dark blue, left panels), are less strongly peaked and peak a bit later than RRDs
calculated without taking nonlinearity into account (light blue, left panels). Note that the axis scales differ substantially among the different
panels. All sites’ weighted average RRDs and NRF peak height profiles are shown on consistent axes in panels (k) and (l). At several sites
with delayed and long-lasting runoff response, time steps were aggregated to 3 or 6 h to prevent the residual autocorrelation from becoming
excessive. Error bars indicate 1 standard error.
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age RRD because it averages over the confounding effects of
past and future inputs.

From the impulse response perspective that is the focus of
this paper, a nonlinear system such as Eq. (13) is more prop-
erly considered to be both nonlinear and nonstationary be-
cause, even if the coefficients of the function f are constant
over time, the response to precipitation will depend not only
on input intensity but also on the value of the storage S (and
thus on the prior history of inputs, which is what the Volterra
series aims to capture). The next section presents methods for
quantifying how antecedent wetness and other nonstationary
catchment properties affect runoff response to precipitation.

4 Quantifying nonstationary controls on runoff
response

4.1 Introduction

From the impulse response perspective, a catchment’s wet-
ness status is a nonstationary property that influences its re-
sponse to precipitation falling at any moment. Other exam-
ples of nonstationary properties influencing runoff response
include air temperature (which influences the phase of pre-
cipitation and the energy available to drive evapotranspira-
tion), vapor pressure deficit (which influences how rapidly
intercepted precipitation evaporates), and the leaf area index
of vegetation (which influences how much precipitation is
intercepted in the first place). Thus, the same precipitation
inputs may generate substantially different runoff responses,
depending on the ambient conditions. Precipitation inputs
themselves may also change those ambient conditions (for
example, by increasing soil moisture and reducing the vapor
pressure deficit) and, thus, may influence catchment response
to future precipitation inputs.

The challenge, then, is to characterize how a landscape’s
response to precipitation inputs will vary, depending on the
ambient conditions when those inputs fall. This is both a de-
convolution problem (because the lagged effects of precipi-
tation inputs are overprinted on each other) and a de-mixing
problem (because the effects of precipitation falling under
one set of ambient conditions are overprinted on the effects of
precipitation falling at other times under other ambient con-
ditions). These two problems can be solved simultaneously
via a combined deconvolution and de-mixing approach anal-
ogous to that presented in Sect. 2.3 above. In a simple case,
we might be able to separate the precipitation time steps into
two groups according to the ambient conditions when the
rain falls (for example, groups A and B corresponding to an-
tecedent wetness above and below a particular value). Then,
if we use RRDA,k and RRDB,k to represent the runoff re-
sponse distributions over lags k resulting from precipitation
that falls under wet and dry antecedent conditions, respec-

tively, the discharge time series becomes

Qj =

m∑
k=0

RRDA,kPA,j−k1t +

m∑
k=0

RRDB,kPB,j−k1t, (14)

where Qj is streamflow at time step j , PA,j−k is pre-
cipitation falling k time steps earlier under wet conditions
(and zero otherwise), and PB,j−k is precipitation falling k
time steps earlier under dry conditions (and zero otherwise).
Equation (14) can be re-cast as the multiple regression equa-
tion

Qj =

m∑
k=0

βA,kPA,j−k +βB,kPB,j−k +α+ εj , (15)

which is identical to Eq. (5), except it lacks the area frac-
tions fA and fB. Section 4 of K2022 outlines the derivation
of this approach and presents several benchmark tests of it.
This approach can be combined with the nonlinear deconvo-
lution methods outlined in Sect. 3 above, yielding regression
equations of the form

Qj ≈

m∑
k=0

nκ∑
`=1

β ′A,`,kP
′

A,`,j−k+β
′

B,`,kP
′

B,`,j−k+α+εj , (16)

which quantify the combined effects of variations in an-
tecedent wetness and precipitation intensity. It should be
clear that Eqs. (14)–(16) can be generalized to any number of
categories, potentially representing combinations of different
ambient conditions (such as, for example, multiple levels of
antecedent wetness in both the growing season and the dor-
mant season). It should also be clear that these categories
can include time itself to test whether runoff response is non-
stationary over time (between decades, between seasons, or
between day and night, for example), even if the factors re-
sponsible for that nonstationary behavior are unknown.

ERRA can automatically separate the precipitation time
series according to defined ranges (expressed as either values
or percentiles) of nested combinations of multiple variables
and can quantify the runoff response across all of these cate-
gories simultaneously while also correcting for ARMA noise
(as outlined in Sect. 2 above and described in more detail in
Sect. 2 of K2022).

4.2 Proof of concept

Here, I illustrate this approach using rainfall–runoff data
from the Plynlimon research catchments in Wales (Fig. 11).
Hourly weather data are available from four weather stations,
and discharge data are available every 15 min from 10 stream
gauges with drainage areas ranging from 0.9 to 10.5 km2.
For seven of these gauges, records are available for at least
35 years from the mid-1970s through 2010 (Marc and Robin-
son, 2007); more recent measurements are also available, but
here I analyze older data that have been extensively quality-
controlled. The climate is generally cool and humid, with
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Figure 11. Map of the Plynlimon research catchments (a), redrawn with permission from Kirchner (2009), and one example year of hourly
time series of precipitation (b), vapor pressure deficit (c), and Hafren streamflow (d). Permission for the re-use and/or modification of this fig-
ure can be found at the following link: https://www.agu.org/publish-with-agu/publish/agu-publications-policies (last access: 7 August 2024).

annual precipitation averaging roughly 2500–2600 mmyr−1

(Marc and Robinson, 2007); over 70 % of days have some
measurable precipitation, and over 24 % of days have pre-
cipitation totals exceeding 10 mm. The resulting hydrographs
are flashy, with many high-flow events each year (Fig. 11b–
d).

Using hourly data from 1976 to 2010 for the 3.6 km2

Hafren catchment as a proof-of-concept case (catchment 9 in
Fig. 11a, with precipitation estimated by averaging measure-
ments at weather stations 1 and 2 in Fig. 11a), I tested how
runoff responses to precipitation vary between wet and dry
antecedent conditions (Fig. 12). Because long-term records
of soil moisture or groundwater levels are not available, I use
antecedent discharge (antQ, the streamflow measured during
the hour before rain falls) as a proxy for antecedent wetness
at the catchment scale (this may be a less effective proxy
in large catchments with long lag times). Figure 12a shows
RRDs estimated via Eq. (15) for five ranges of antecedent
discharge, separated by the approximate 40th, 67th, 90th,

and 97th percentiles of the Hafren discharge distribution. For
the same five ranges of antecedent discharge, Fig. 12b shows
weighted average RRDs, estimated via Eq. (12) from nonlin-
ear response functions that account for nonlinear effects of
variations in precipitation intensity.

The runoff response shown in Fig. 12a and b is markedly
larger, and somewhat quicker, under wetter antecedent con-
ditions. Readers may worry that this is an artifact of the
use of antecedent discharge as a measure of antecedent wet-
ness. However, the RRDs in Fig. 12 are not determined by
discharge itself (which would, indeed, be correlated with
antecedent discharge) but rather by how much discharge
changes, depending on how much precipitation falls (see
Eqs. 3 and 15). Thus, the effects of antecedent discharge on
the RRDs are not artifactual.

One would expect that runoff response under a given an-
tecedent wetness condition may depend on precipitation in-
tensity and, likewise, that runoff response for a given pre-
cipitation intensity may depend on antecedent wetness. Fig-
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Figure 12. Runoff responses at Hafren, estimated via Eq. (16) as functions of precipitation intensity P and antecedent wetness (using
1 h antecedent discharge, antQ, as a proxy). (a) Runoff response distributions (RRDs) for different ranges of antQ, calculated using Eq. (15)
without accounting for nonlinear effects of P or co-variation between P and antQ. Peak runoff response is somewhat exaggerated due
to the greater leverage of high precipitation values (see text). (b) Precipitation-weighted average RRDs for different ranges of antQ, with
nonlinear effects of P and co-variation between P and antQ taken into account via Eq. (15). Peak runoff responses in weighted average
RRDs (b) are less pronounced relative to unweighted RRDs (a), particularly under drier antecedent conditions. (c) Effects of variations in
precipitation intensity P (shown by different colors) for two example ranges of antQ (as a proxy for antecedent wetness), illustrating how
runoff response under drier antecedent conditions (lower antQ: inset figure) is less pronounced across all ranges of precipitation intensity.
(d) Effects of variations in antQ (shown by different colors, as a proxy for antecedent wetness) for two example ranges of precipitation
intensity P , illustrating how runoff response to lower-intensity precipitation (lower P : inset figure) is less pronounced across all ranges of
antQ. Insets in (c) and (d) are on the same axis scales as the main figures but are cropped and offset for compact presentation. Error bars
indicate 1 standard error, where this is larger than the plotting symbols.

ure 12c and d illustrate the combined effects of antecedent
wetness and precipitation intensity on runoff response at
Hafren. Figure 12c shows how the NRF varies with precip-
itation intensity (shown by the different colors) for two dif-
ferent ranges of antecedent wetness (shown by the main plot
for high antQ and by the inset plot for moderate antQ). Sim-
ilarly, Fig. 12d shows how the NRF varies with antecedent
wetness (shown by the different colors) for two different
ranges of precipitation intensity (9–12 mmh−1, shown in the
main plot, and 3–6 mmh−1, shown in the inset plot). Both
Fig. 12c and d demonstrate that the shape, scale, and tim-
ing of runoff response can depend jointly on both antecedent
wetness and precipitation intensity. For example, 1 h of pre-
cipitation at an intensity of 9–12 mmh−1 can be expected to
raise stream discharge by a maximum of ∼ 2 mmh−1 at a
lag of ∼ 2 h if it falls under high-antecedent-wetness condi-
tions (purple curve in the main plot in Fig. 12c or blue curve

in the main plot in Fig. 12d) but only by ∼ 1 mmh−1 if it
falls under moderate-antecedent-wetness conditions (purple
curve in the inset plot in Fig. 12c or green curve in the main
plot in Fig. 12d). In other words, Fig. 12c and d reveal a
runoff response that is nonstationary (i.e., dependent on the
antecedent wetness in the landscape when rain falls) and that
also scales nonlinearly with precipitation intensity.

Readers will notice that several of the RRD and NRF val-
ues in Fig. 12 are below zero. ERRA does not artificially
constrain NRF and RRD coefficients to be non-negative, so
small negative values may occur from time to time for at least
three reasons. The first is random statistical fluctuations: if
the true value of a coefficient is positive but small then ran-
dom noise may lead to stochastic fluctuations in the coeffi-
cient estimates that occasionally dip below zero. In this case,
one would usually expect the error bars to be roughly as large
as the deviation below zero. This is not the case in Fig. 12,
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Figure 13. Peak runoff response at Hafren as a joint function of precipitation intensity P and antecedent wetness (using 1 h antecedent
discharge, antQ, as a proxy). (a) Peak height of the nonlinear response function (NRF) as a function of antecedent wetness for four ranges
of precipitation intensity (shown by different colors). (b) Peak height as a function of precipitation intensity for five ranges of antecedent
wetness (shown by different colors). Error bars indicate 1 standard error, where this is larger than the plotting symbols.

where the error bars are almost always smaller than the plot-
ting symbols. A second reason for negative values can be
residual autocorrelation that is too strong to be adequately
compensated for by the ARMA noise correction procedure,
which can lead to spurious patterns in the NRF or RRD co-
efficients and to underestimation of the error bars (for this
reason, ERRA issues warnings when it detects strong resid-
ual autocorrelation). A third reason can be confounding vari-
ables that are not included in the analysis and whose effects
are aliased as distortions of the NRF or RRD coefficients.
All three of these phenomena can be amplified when – as is
the case here – one tries to jointly estimate coefficients for
very strong signals (from high precipitation rates and wet an-
tecedent conditions) and very weak signals (from low precip-
itation rates or dry antecedent conditions). Small variations
in the coefficients of a strong signal can sometimes be off-
set by larger variations in the coefficients of a weak signal,
and least-squares fitting will make such a tradeoff if it leads
to a closer match to the observed streamflow. ERRA does its
best to suppress statistical cross-talk between the coefficients
of the strong signals and the weak ones, but this is an inher-
ently difficult task. Because streamflow is relatively insen-
sitive to low-intensity precipitation and rain that falls under
dry conditions, it is difficult to estimate the corresponding co-
efficients accurately, particularly at long lags. Nevertheless,
Fig. 12 clearly shows the main peak of the runoff response
to both high-intensity and low-intensity precipitation falling
under both wet and dry ambient conditions.

In a catchment that exhibits both nonlinear and nonstation-
ary responses to precipitation, any index of runoff response
(such as peak height) can be considered to be a joint func-
tion of antecedent wetness and precipitation intensity. Fig-
ure 13 shows the joint influence of antecedent wetness and
precipitation intensity on NRF peak height at Hafren. Fig-
ure 13a shows that peak runoff response depends nonlinearly

on antecedent wetness and that it is more sensitive to an-
tecedent wetness at higher precipitation intensities. Provid-
ing a perpendicular view of the same three-dimensional re-
lationship between antecedent wetness, precipitation inten-
sity, and runoff response, Fig. 13b shows that peak runoff
response depends nonlinearly on precipitation intensity and
that it is more sensitive to precipitation intensity at higher
levels of antecedent wetness. These dependencies may be in-
tuitively reasonable to many hydrologists, but what is new is
that they can now be rigorously quantified directly from data.
The shapes of the curves shown in Fig. 13 and their numeri-
cal values would not be inferable from data by any previous
methods of which the author is aware.

If runoff response depends on both precipitation intensity
and antecedent wetness, it is essential to analyze them jointly
(as in Fig. 13) because, otherwise, co-variation between them
could bias the assessment of both. Antecedent wetness and
precipitation intensity often co-vary as seasonal weather pat-
terns or large-scale weather systems raise antecedent wet-
ness and make intense precipitation more likely. At Hafren,
for example, between the lowest antecedent wetness cate-
gory in Fig. 13 (antecedent discharge < 0.1 mmh−1) and the
highest (antecedent discharge (> 1 mmh−1), the mean pre-
cipitation rate increases from 0.13 to 1.68 mmh−1, and the
90th percentile of precipitation intensity increases from 0.25
to 4.75 mmh−1. Thus, if we just compare runoff responses
under different levels of antecedent discharge, we will over-
estimate the influence of antecedent wetness because higher
antecedent wetness tends to be accompanied by more intense
precipitation. Conversely, if we simply compare runoff re-
sponses to different rainfall rates, antecedent wetness may be
a hidden variable that exaggerates the effect of precipitation
intensity. Accurately assessing the influence of these interde-
pendent drivers requires analyzing their effects jointly, which
is what Eq. (16) is designed to do.
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Figure 14. Peak runoff response at Hafren as a joint function of precipitation intensity P and 1 h antecedent vapor pressure deficit (antVPD)
without accounting for the co-variation between VPD and antecedent wetness. (a) Peak height of the nonlinear response function (NRF) as
a function of vapor pressure deficit for four ranges of precipitation intensity (shown by different colors). (b) Peak height as a function of
precipitation intensity for five ranges of antVPD (shown by different colors), corresponding to quintiles of the VPD distribution. Precipitation
intensity ranges are more limited than in Figs. 12 and 13 to provide enough time steps for each combination of P and antVPD. Error bars
indicate 1 standard error, where this is larger than the plotting symbols. High levels of antecedent VPD appear to reduce runoff response by
roughly 80 %, including when precipitation intensity is high.

The need to jointly quantify the influence of multiple cor-
related drivers can be illustrated by considering the question
of how the vapor pressure deficit (VPD) can influence runoff
response to precipitation. One may expect that a higher VPD
will lead to faster evaporation of incoming precipitation and,
thus, to a smaller runoff response. But how big is this ef-
fect? To exclude the direct effects of precipitation itself on
VPD (whenever rain is falling, the atmosphere is likely to
be close to saturation, and, thus, VPD is likely to be low),
here, I analyze antecedent VPD (antVPD), the VPD mea-
sured during the time step before rain falls. However, even
so, one may expect antecedent VPD to be correlated with
precipitation rates, partly because hours of rain tend to fol-
low other hours of rain. Between the lowest 60 % and the
highest 20 % of VPD in the Hafren data, mean P decreases
from 0.44 to just 0.02 mmh−1. Thus, clearly, just as with an-
tecedent wetness in Fig. 13 above, accurately assessing the
effects of antecedent VPD and precipitation intensity will re-
quire analyzing them jointly, as outlined in Eq. (16). As we
will see below, this will also require accounting for the co-
varying effects of antecedent wetness, but, as a cautionary
tale, I first show what happens when this confounding factor
is overlooked.

Figure 14 presents a first attempt at analyzing the joint
influence of antecedent VPD and precipitation intensity on
NRF peak height at Hafren using five bins of antecedent
VPD, each accounting for 20 % of the data. The ranges of
precipitation intensity analyzed in Fig. 14 are different from
those in Figs. 12 and 13 to ensure sufficient numbers of pre-
cipitation events in each combination of precipitation inten-
sity and antecedent VPD. Both panels of Fig. 14 suggest that
the lowest 60 % of antecedent VPD has little effect but that,
in the upper 40 % (and particularly in the highest 20 %) of an-

tecedent VPD, runoff response is reduced by roughly a factor
of 5 relative to the lowest 60 % of VPD, even at the highest
precipitation intensities (compare the red curve with the blue,
purple, and green curves in Fig. 14b).

This effect is surprisingly large, and a moment’s reflection
gives a good clue as to why. Periods with high VPD tend to
be dry in other ways as well; in particular, weather condi-
tions that lead to higher VPD will also usually lead to low
antecedent wetness in the landscape, and, conversely, wet-
ter landscapes will promote faster evaporation and thus re-
duce VPD. Between the lowest 60 % and the highest 20 %
of VPD in the Hafren data, mean antecedent discharge de-
creases from 0.27 to 0.11 mmh−1, and between the same
VPD ranges, the 98th percentile of antecedent discharge (cor-
responding to the wettest landscape conditions) decreases by
a factor of 3, from 1.56 to 0.49 mmh−1. Thus antecedent wet-
ness may be a confounding variable that amplifies the appar-
ent effect of VPD variations on runoff response.

In such cases, seeing the effect of VPD variations will
require analyzing them jointly with variations in both an-
tecedent wetness and precipitation intensity. ERRA can do
this seamlessly, setting up Eq. (16) to solve for the non-
linear effects of precipitation intensity in nonstationary sys-
tems described by any desired combination of drivers – in
this case, two ranges of VPD (the lowest 60 % and high-
est 40 %) crossed with five ranges of antecedent discharge.
Accounting for both antecedent VPD and antecedent wet-
ness yields markedly different results than those in Fig. 14.
As Fig. 15 shows, runoff response in high-VPD conditions
(dashed lines, lighter colors) is reduced by roughly 20 %–
30 % relative to runoff response in low-VPD conditions
(solid lines, darker colors) but broadly follows the same pat-
terns of dependence on antecedent wetness and precipita-
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Figure 15. Peak runoff response at Hafren as a joint function of precipitation intensity P and antecedent wetness (using 1 h lagged discharge,
antQ, as a proxy) for low antecedent vapor pressure deficit (antVPD) conditions (darker colors and solid lines: lowest 60 % of VPD values)
and high antVPD conditions (lighter colors and dashed lines: highest 40 % of VPD values). (a) Peak height of the nonlinear response function
(NRF) as a function of antecedent wetness for four ranges of precipitation intensity (shown by different colors). (b) Peak height as a function
of precipitation intensity for five ranges of antecedent wetness (shown by different colors). Precipitation intensity ranges are more limited
than in Figs. 12 and 13 to provide enough time steps in each combination of P and antVPD. Error bars indicate 1 standard error, where this
is larger than the plotting symbols. Jointly accounting for the effects of precipitation intensity and antecedent wetness shows that, all else
being equal, peak runoff response is roughly 20 %–30 % lower following periods of high VPD (dashed lines) than following periods of low
VPD (solid lines). However, peak runoff response following both low and high VPD exhibits similar dependencies on antecedent wetness
and precipitation intensity.

tion intensity. Thus, one can infer that, as hypothesized, the
large apparent effects of VPD in Fig. 14 are not realistic
but instead arise from the co-variation between VPD and an-
tecedent wetness.

As the Hafren time series is used to estimate more rela-
tionships – first with just antecedent discharge in Fig. 12a;
then with antecedent discharge and precipitation intensity
in Figs. 12 and 13; and then with antecedent discharge, an-
tecedent VPD, and precipitation intensity in Fig. 15 – the er-
ror bars grow. This reflects widening parameter uncertainties
as the information contained in the precipitation and stream-
flow time series is diluted among coefficients for more and
more variables, particularly for those that, like VPD and an-
tecedent wetness, are interrelated. Very humid landscapes
like the Welsh setting of the Hafren catchment are hardly
ideal for measuring how atmospheric vapor demand influ-
ences hydrological behavior. Nonetheless, it is reassuring
that, even here, ERRA can measure such effects directly from
data by analyzing them jointly with potential confounding
factors.

5 Quantifying multiscale runoff response spanning
both short and long lag times

5.1 Introduction

Streamflow response to precipitation spans a wide range of
time scales, often rising to a peak within minutes or hours,
followed by a recession that potentially lasts days, weeks,
or months. The analysis presented above has focused on

short-term responses to streamflow (as most rainfall–runoff
analyses do). However, long-tail recession behavior can po-
tentially give interesting insights as well (for example, into
catchment storage dynamics; e.g., Kirchner, 2009; Tashie
et al., 2019, 2020) if it can be accurately quantified. A
challenge in recession analysis is that recessions rarely last
more than a few days before they are disrupted by new
precipitation inputs. In principle, ERRA should be able to
filter out the effects of overlapping precipitation inputs if
the runoff response (RRD or NRF) is accurately estimated.
However, while this approach solves one problem, it also
creates another because accurately portraying the long tails
of streamflow recession requires accurately estimating the
much quicker and much larger short-term response to pre-
cipitation. How can we capture both the quick, high peaks
of runoff response and the long tails? If we use time steps
that are too long, we will fail to capture the short-term re-
sponse accurately. But if the time steps are short instead, we
will need lots of them, leading to computational inefficiency
and also to statistical inaccuracy because (for example) the
effects of 1 h of precipitation will be nearly identical at lags
of 499 and 501 h, making estimates of coefficients at both
lags unreliable.

Since the hydrological response changes rapidly soon af-
ter rain falls and then changes slowly thereafter, we would
like to approximate that response with a function that does
the same thing. However, in keeping with the philosophy
behind ERRA, we want a nonparametric approach rather
than one that requires specifying the form of a nonlinear
function a priori and estimating its parameters using non-
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Figure 16. Long-tail recession behavior at Hafren and six other Plynlimon streams. Panels (a–c) show precipitation-weighted average runoff
response distributions (RRDs) for Hafren on linear, log–linear, and log–log axes, respectively. In contrast to the other figures in this paper,
error bars are not shown here so that the scatter among the points is more clearly visible. Each of these panels shows RRDs calculated at every
lag using non-robust and robust estimation (light blue and dark blue, respectively) and RRDs calculated using a piecewise-linear broken-stick
model over a geometric progression of lag intervals using non-robust and robust estimation (orange and yellow, respectively). At larger lags,
the broken-stick approach averages the runoff response over longer lag intervals, thus greatly reducing the scatter in the long tail of the RRD.
Robust estimation further reduces the scatter in the RRD tail by limiting the influence of individual data points with large residuals. Panel (d)
shows robust broken-stick RRDs for seven Plynlimon streams. All seven streams have recession limbs that scale as approximately τ−1 over
more than 2 orders of magnitude in lag time τ .

linear regression techniques. Using techniques described in
Sect. 6 of K2022, ERRA can approximate a catchment’s
runoff response over multiple timescales using a piecewise-
linear broken-stick function that has closely spaced knots at
short lag times and widely spaced knots at long lag times
(Fig. 16). Each knot represents a weighted average of the
runoff response over the range of lag times that are closest
to it.

The general approach, as described in detail in K2022, as-
sumes that the runoff response coefficient βk varies linearly
as a function of lag time between pairs of knots with (for
example) values of β∗3 and β∗4 at lags of k = κ3 and k = κ4,
respectively:

βk = β
∗

3

(
κ4− k

κ4− κ3

)
+β∗4

(
k− κ3

κ4− κ3

)
. (17)

If expressions of this form are substituted into Eq. (3), the
linearly weighted regression coefficients between each set of
knots can be replaced by weighted averages of precipitation

values around each knot κ`:

P ∗j,` ≈
∑(κ`)−1

k=κ`−1

(
k− κ`−1

κ`− κ`−1

)
Pj−k

+

∑κ`+1

k=κ`

(
κ`+1− k

κ`+1− κ`

)
Pj−k. (18)

Making this substitution converts Eq. (3) from an equation
that estimates coefficients βk for every lag k based on precip-
itation inputs Pj−k at each lag to an equation that estimates
coefficients β∗` for knots at lags κ` based on weighted aver-
ages P ∗j,` of precipitation at lags surrounding those knots:

Qj =

∑nκ

`=1
β∗`P

∗

j,`+α+ εj . (19)

Equations of the form of Eq. (19) can be solved by the
same methods used to solve Eq. (3) once the precipita-
tion values Pj−k have been appropriately transformed to the
weighted averages P ∗j,`. This implies that any of the methods
outlined above for quantifying heterogeneity, nonlinearity,
and nonstationarity in runoff response (Sects. 2–4, respec-
tively) can also be applied using the multiscale broken-stick
approach outlined here. Readers should note that the meth-
ods outlined in Sect. 3 also use piecewise-linear broken-stick

Hydrol. Earth Syst. Sci., 28, 4427–4454, 2024 https://doi.org/10.5194/hess-28-4427-2024



J. W. Kirchner: Ensemble rainfall–runoff analysis 4449

models but for quantifying nonlinear runoff response over
specified intervals of precipitation intensity rather than for
quantifying runoff response over wide ranges of lag times.
Some of the notation used above has been recycled from
Sect. 3, but these are different broken-stick models used for
different purposes.)

5.2 Proof of concept: long-tail recession curves at
Plynlimon

Here, I demonstrate how the methods outlined in Sect. 5.1
can be used to estimate the long tails of recession curves
using hourly data from Plynlimon (Fig. 11) as a proof of
concept. Plynlimon nicely illustrates the challenge of esti-
mating recession behavior because rain there is so frequent;
at Hafren, only 10 % of rainless periods are 5 d or longer,
and only 2.5 % are 10 d or longer. Thus, there are few un-
interrupted recessions of significant length, and so inferring
recession behavior on longer timescales will require filter-
ing out the effects of subsequent precipitation inputs, which
ERRA is designed to do.

Figure 16a–c shows Hafren’s weighted average RRD (that
is, accounting for nonlinear effects of variations in precip-
itation intensity) at all hourly lags up to 1000 h or roughly
6 weeks (light-blue symbols in Fig. 16a–c). The RRD is well
constrained (as one might expect from over 300 000 hourly
measurements spanning 35 years), but plotting on log–log
axes (Fig. 16c) reveals that, even with such an extensive data
set, the long tail of the RRD is not well constrained in per-
centage terms (note also that several values beyond the range
of the axis, including values below zero, are not shown). The
amplitude of the noise in the RRD is approximately constant
across the full range of lags and, thus, constitutes a small
fraction of strong signals (like the RRD peak) but a large
fraction of weak signals (like the long tail).

Some of this noise can be suppressed by invoking robust
estimation, which is implemented as an option in ERRA
via iteratively reweighted least squares (IRLS; Holland and
Welsch, 1977). Robust estimation results from ERRA must
be interpreted cautiously because, like any robust estimation
method, IRLS downweights points that deviate from the pat-
tern of behavior exhibited by the bulk of the data and, thus,
may mistake high-precipitation points as outliers and limit
their influence on the results. This artifact is minimized by
applying robust estimation only where, as in Fig. 16, the non-
linear effects of precipitation intensity have been accounted
for via the methods of Sect. 3. As the dark-blue symbols in
Fig. 16a–c show, robust estimation only slightly reduces the
runoff response peak while having the intended effect of sub-
stantially dampening the noise in the recession. Nonetheless,
the recession remains highly uncertain at long lags.

The uncertainty in the long recession tail is substantially
reduced by the broken-stick approach outlined in Eqs. (17)–
(19), shown in orange and yellow for non-robust and robust
estimation, respectively. In Fig. 16, broken-stick weighted

average RRDs are shown for 40 knots that span the full range
of lags between 0 and 1000 h in a nearly geometric progres-
sion (an exact geometric progression is not possible because
each knot must correspond to an integer lag number). The
broken-stick estimates closely follow the regularly spaced
RRD estimates when the signal is strong and closely follow
their average trend when the signal is weak and thus the in-
dividual lag estimates are noisy (Fig. 16c).

Figure 16d presents robust broken-stick weighted average
RRDs for seven Plynlimon streams with drainage areas rang-
ing from 0.9 to 10.1 km2 and with at least 35 years of hourly
streamflow data. As Fig. 16d shows, all seven streams exhibit
power-law recessions that scale as approximately Q∼ τ−1

over lags τ ranging from roughly 5 h to roughly 1000 h. This
behavior is markedly different from the exponential reces-
sion that would be expected to result from drainage of lin-
ear groundwater reservoirs. In particular, if we estimate the
recession timescale as Q/(−dQ/dτ), we observe that, for
a general power-law recession Q∼ τ−γ , this timescale in-
creases linearly with the lag time itself:

Q

−dQ/dτ
=

τ−γ

γ τ−γ−1 =
τ

γ
. (20)

Such recessions, therefore, have no fixed characteris-
tic timescale; instead, in our case with γ ≈ 1, the reces-
sion timescale at a lag of 10 h is about 10 h, the recession
timescale at a lag of 100 h is about 100 h, and so on. The
log–log recession slopes in Fig. 16c are not exactly γ = 1; in-
stead, they range from γ = 1.07 to γ = 1.21, deviating from
γ = 1 by at least 3 standard errors. The corresponding slopes
in a conventional recession plot of log(−dQ/dτ) against
logQ (Brutsaert and Nieber, 1977) would be b = 1+ 1/γ ,
ranging from 1.83 to 1.93.

The log–log recession slope γ can be interpreted in terms
of the drainage equation of groundwater storage if one as-
sumes that streamflow recession, particularly at long lag
times, is controlled by groundwater seepage alone and is
not significantly influenced by evapotranspiration. Following
the analysis outlined in Sect. 6 of Kirchner (2009), a reces-
sion that scales as Q∼ τ−γ with γ > 1 implies a storage–
discharge relationship ofQ(S)∼ (S−S0)

1/(1−1/γ ), where S0
indicates the groundwater storage at which baseflow would
go to zero (which would not be reached in finite time). Note
that, for values of γ close to 1, the exponent 1/(1−1/γ ) can
become quite large (e.g., if γ = 1.2, the exponent is 6, and
if γ = 1.1, the exponent is 11), implying strong nonlinear-
ity in the storage–discharge relationship. If γ < 1, a reces-
sion that scales as Q∼ τ−γ implies a storage–discharge re-
lationship of Q(S)∼ (S0− S)

1/(1−1/γ ), where the exponent
is now negative, and S0 indicates a theoretical upper limit to
groundwater storage at which seepage would be infinite. If
γ = 1, seepage becomes an exponential function of storage,
Q(S)∼ ea(S−S0), where a is the reciprocal of the proportion-
ality constant in Q∼ τ−1 (see Eq. 16 of Kirchner, 2009).
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6 Limitations

ERRA must estimate many coefficients because it requires
one for each lag (of which there may be dozens or hundreds)
or one for each knot if the broken-stick approach of Sect. 5 is
used. The number of coefficients is multiplied further if mul-
tiple rainfall records are considered simultaneously (Sect. 2),
if the rainfall record is divided into ranges of rainfall intensity
to evaluate nonlinear runoff response (Sect. 3), or if the rain-
fall record is split among different time windows or different
ambient conditions in order to assess nonstationary behav-
ior (Sect. 4). Estimating so many coefficients naturally raises
the question of parameter identifiability and overfitting. How
do we know when we have too many coefficients? The short
answer is that ERRA’s standard error estimates will usually
tell us. ERRA calculates standard errors for all of its results,
starting with conventional uncertainty analysis in the under-
lying regressions, followed by first-order second-moment er-
ror propagation for any subsequent transformations. Thus, if
there are more coefficients than can be estimated reliably, this
should be revealed by their standard errors becoming large
enough to obscure features of interest in the RRD and the
NRF. However, the standard errors may be underestimated
if the residual autocorrelation is too strong to be adequately
compensated for by the ARMA noise correction procedure,
usually because the time steps are too short compared to the
timescales over which streamflow varies (if it detects this,
ERRA will issue a warning and recommend time step aggre-
gation).

At a minimum, ERRA requires evenly spaced time se-
ries of precipitation and streamflow (potentially with some
missing values in either variable). But how long should those
time series be? The answer will depend on many factors, in-
cluding the precision of the measurements, the complexity
of the analysis that one wants to conduct, the influence of
confounding factors, the characteristics of the rainfall forc-
ing (how frequent are precipitation events?), and the charac-
teristics of the system itself (how damped and smoothed is
its response?). Broadly speaking, what matters is the balance
between the complexity of the analysis that the user wants
to conduct and the information contained in the precipita-
tion and streamflow time series. That information content is
determined primarily by the number and diversity of precip-
itation and streamflow events that are visible in the time se-
ries rather than its length or the number of points it contains.
ERRA works best when it can extract information from many
diverse rainfall–runoff events to accurately estimate the en-
semble average system response. Although it would be math-
ematically possible to apply ERRA to individual rainfall–
runoff events (and ERRA can optionally perform Tikhonov–
Phillips regularization to suppress the resulting overfitting
noise), that is not its intended purpose, and the reliability of
any such analysis has not been benchmark-tested in K2022
and has not been demonstrated here.

Although the proof-of-concept demonstrations presented
here have been based on hourly data, the mathematics of
ERRA do not tie it to any particular timescale, and it has
been tested with everything from 10 min data to daily data.
As shown in Figs. 8–10, changes in the time resolution of the
underlying data can reveal some features and conceal others.
In general, if the frequency of the underlying data is too high
compared to the timescale of the runoff response, the stan-
dard errors of the RRD and NRF will be large because the
residuals will be strongly autocorrelated, reflecting the dif-
ficulty in distinguishing runoff responses at closely spaced
lags. Conversely, if the frequency of the underlying data is
too low compared to the width of the runoff response peaks,
those peaks will be damped by averaging. Furthermore, in
low-frequency data, it may become difficult to distinguish
between a nonlinear response to variations in precipitation
intensity and a nonstationary response to variations in an-
tecedent wetness because (for example) precipitation falling
early in the day will contribute to the wetness of the land-
scape and, thus, to a greater runoff response later in the day.
In this example, runoff response to daily averaged precipita-
tion will inherently combine the direct effects of precipitation
intensity (in relation to infiltration capacity, for example) and
the effects of precipitation on catchment wetness during the
same time step.

At the risk of stating the obvious, results from ERRA
(or, indeed, from any data-driven technique) will only be as
good as the data that are available. While ERRA can do a
lot to filter out confounding factors (particularly where the
potential confounders have themselves been measured), it
will be inherently vulnerable to artifacts in the underlying
data. Users are therefore strongly encouraged to visually –
not just statistically – inspect their data for problems rather
than blindly applying ERRA or other analysis tools. Users
are also encouraged to avoid sub-dividing the input data into
too many categories or time periods, leaving ERRA with too
little information to work with (although this should be evi-
dent in the standard errors, which ERRA reports with all of
its results). Because ERRA is based on temporal correlations
between inputs and outputs, it will likely struggle to iden-
tify linkages where those correlations are weak. For exam-
ple, whereas the temporal correlations between rainfall and
streamflow are usually strong, the temporal correlations be-
tween snowfall and streamflow are typically much weaker
because the timing of snowmelt is highly variable and con-
trolled primarily by energy fluxes to the land surface rather
than by precipitation per se. ERRA will not work well (and
should not work well) where major variations in streamflow
are controlled by drivers that are not accounted for in the in-
put data (e.g., snowmelt, glacier melt, or dam releases).

Users should also take care to ensure that the time series
that they use are measured on consistent time bases. This can
be more challenging than it might seem because weather and
streamflow data may be provided by different agencies using
time stamps based on different time zones, sometimes with
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shifts between summer and winter time. Even daily data sets
may be based on different definitions of when a “day” be-
gins and ends: at midnight UTC, at midnight local time, or
at some other hour (which may, again, shift between summer
and winter time). A further difficulty is that these important
details are often poorly documented but can significantly af-
fect the results of ERRA analyses.

7 Applications and outlook

The proof-of-concept demonstrations in Sects. 2–5 show that
ERRA provides a powerful, flexible, and widely applica-
ble data-driven framework for quantifying how streamflow is
coupled to precipitation, including how that coupling varies
with ambient conditions (Sect. 4), with precipitation intensity
(Sect. 3), and across the landscape (Sect. 2). These proof-of-
concept demonstrations suggest three broad categories of po-
tential applications. First, ERRA could be applied to quantify
hydrological responses for purposes of catchment character-
ization. ERRA quantifies the coupling between precipitation
and streamflow (rather than just the statistics of streamflow
itself). Thus, in inter-catchment comparisons, ERRA should
help in clarifying the effects of differences in landscape char-
acteristics (e.g., soil depth and bedrock lithology) by factor-
ing out potentially confounding site-to-site variability in pre-
cipitation patterns. Second, both in site-to-site comparisons
and in longitudinal studies at individual sites, ERRA could
be applied to quantify how changes in factors like climate,
land cover, and land use have altered the coupling between
precipitation and streamflow. ERRA could, for example, be
applied to distinguish cases where streamflow patterns have
shifted because precipitation patterns have shifted and cases
where the relationship between precipitation and streamflow
has changed. Third, ERRA could be applied to define signa-
tures of hydrological response for comparison with models.
Figures 8, 9, 13, 15, and 16 are all “fingerprints” of hydrolog-
ical behavior that could be quantified from real-world data
and then from model simulations to facilitate model–data
comparisons. Such targeted approaches for confronting mod-
els with data are likely to have greater diagnostic power than
goodness-of-fit statistics applied to hydrological time series
(Kirchner et al., 1996; Kirchner, 2006).

The illustrative examples presented here have focused on
the coupling between precipitation and streamflow, but the
underlying mathematical methods are general and could po-
tentially be used to quantify linkages between many other
hydrological inputs and outputs. For example, ERRA could
be used to explore the coupling between precipitation and
groundwater recharge wherever groundwater level time se-
ries are accurate enough to allow recharge rates to be es-
timated from rates of water table rise. Such an approach
would help in characterizing how the vadose zone modu-
lates recharge response to precipitation inputs. Alternatively,
groundwater recharge and streamflow could be used as the

input and output, respectively, to characterize how the satu-
rated zone mediates streamflow response to recharge fluxes.
Similarly, changes in soil moisture could potentially be used
as measures of infiltration rates, and ERRA could potentially
be used to explore their coupling to precipitation patterns and
recharge dynamics. Or eddy flux data or sap flow time se-
ries could potentially be used within ERRA to explore how
evaporation and evapotranspiration respond to precipitation
inputs while accounting for vapor pressure deficit and avail-
able energy as co-variates. Beyond a purely hydrological fo-
cus, runoff response distributions quantified by ERRA could
also be combined with transit time distributions quantified
by ensemble hydrograph separation (Kirchner, 2019; Kirch-
ner and Knapp, 2020) to estimate the “forward” transit time
distribution and to explore how it varies with ambient con-
ditions and precipitation intensity. ERRA could also be used
to explore the coupling between precipitation time series and
chemical fluxes in streamflow in order to quantify how so-
lute fluxes respond to variations in precipitation forcing and
antecedent conditions. Several of these potential applications
are currently under investigation.

It should be clear that ERRA is not a simulation model
in the conventional sense. The goal of ERRA is analysis
and characterization rather than prediction because RRDs
and NRFs are, at best, incomplete descriptions of hydro-
logical behavior, even when the nonlinearity, nonstationarity,
and spatial heterogeneity in that behavior are accounted for.
RRDs and NRFs are aggregated descriptions of behavior, av-
eraged over ensembles of events. Thus, one should not expect
them to yield nice goodness-of-fit statistics if they are used
for hydrograph prediction. That is not their purpose.

It should also be clear that ERRA is designed as a tool for
iterative, hands-on exploration of hydrological data through
trial and error with analyses of varying degrees of complex-
ity. Thus, although ERRA is computationally efficient and
could be blindly applied to the massive hydrological data
sets that are now becoming available, its primary intended
purpose is not data mining per se. It is designed for human
learning rather than machine learning.

Last but not least, analyses like those presented here
should be the beginning, not the end, of a scientific investi-
gation. They characterize how hydrological systems behave
but do not explain why, at least not by themselves. Answer-
ing “why” questions will require carefully designed hypoth-
esis tests, including those that are encoded in models. Here,
too, ERRA can play a role, helping to test alternative models
of “why” by comparing their signatures to the signatures of
real-world behavior.

Code and data availability. The ERRA script, introductory docu-
mentation for users, and scripts and source data for the analyses
in this paper are available at https://doi.org/10.16904/envidat.529
(Kirchner, 2024).

https://doi.org/10.5194/hess-28-4427-2024 Hydrol. Earth Syst. Sci., 28, 4427–4454, 2024

https://doi.org/10.16904/envidat.529


4452 J. W. Kirchner: Ensemble rainfall–runoff analysis

Competing interests. The author has declared that there are no
competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. I thank the US Geological Survey and the
MOPEX study for making available the data analyzed in Sects. 2
and 3, the Centre for Ecology and Hydrology and the Plynlimon
field staff for making available the data analyzed in Sects. 4 and 5,
and the editor and two anonymous reviewers for their thoughtful
comments. I thank Paolo Benettin, Wouter Berghuijs, Harsh Be-
ria, Cansu Culha, Zahra Eslami, Xiahong Feng, Marius Floriancic,
Huibin Gao, Minhui Li, Shaozhen Liu, Ilja van Meerveld, Cristina
Prieto, Hansjörg Seybold, Zhuoyi Tu, Jian Wang, Tetiana Zabolot-
nia, and Maria Grazia Zanoni for helpful discussions and particu-
larly for beta-testing the ERRA code and documentation.

Review statement. This paper was edited by Thom Bogaard and re-
viewed by two anonymous referees.

References

Amorocho, J.: The nonlinear prediction problem in the study
of the runoff cycle, Water Resour. Res., 3, 861–880,
https://doi.org/10.1029/WR003i003p00861, 1967.

Amorocho, J. and Brandstetter, A.: Determination of
nonlinear functional response functions in rainfall–
runoff processes, Water Resour. Res., 7, 1087–1101,
https://doi.org/10.1029/WR007i005p01087, 1971.

Benettin, P., Kirchner, J., Rinaldo, A., and Botter, G.: Mod-
eling chloride transport using travel-time distributions at
Plynlimon, Wales, Water Resour. Res., 51, 3259–3276,
https://doi.org/10.1002/2014WR016600, 2015a.

Benettin, P., Rinaldo, A., and Botter, G.: Tracking resi-
dence times in hydrological systems: forward and back-
ward formulations, Hydrol. Process., 29, 5203–5213,
https://doi.org/10.1002/hyp.10513, 2015b.

Benettin, P., Rodriguez, N. B., Sprenger, M., Kim, M., Klaus, J.,
Harman, C. J., van der Velde, Y., Hrachowitz, M., Botter, G.,
McGuire, K. J., Kirchner, J. W., Rinaldo, A., and McDonnell, J.
J.: Transit time estimation in catchments: Recent developments
and future directions, Water Resour. Res., 58, e2022WR033096,
https://doi.org/10.1029/2022WR033096, 2022.

Berghuijs, W. R. and Kirchner, J. W.: The relationship between
contrasting ages of groundwater and streamflow, Geophys. Res.
Lett., 44, 8925–8935, https://doi.org/10.1002/2017gl074962,
2017.

Beven, K. J.: Rainfall–runoff modelling: the primer, second
edn., Wiley-Blackwell, Chichester, ISBN 978-0-470-71459-1,
456 pp., 2012.

Beven, K. J.: A history of the concept of time of con-
centration, Hydrol. Earth Syst. Sci., 24, 2655–2670,
https://doi.org/10.5194/hess-24-2655-2020, 2020.

Botter, G., Bertuzzo, E., and Rinaldo, A.: Transport in the hydro-
logical response: Travel time distributions, soil moisture dynam-
ics, and the old water paradox, Water Resour. Res., 46, W03514,
https://doi.org/10.1029/2009WR008371, 2010.

Brown, R. M.: Hydrology of tritium in the Ottawa Valley, Geochim.
Cosmochim. Ac., 21, 199–216, https://doi.org/10.1016/S0016-
7037(61)80055-0, 1961.

Bruen, M. and Dooge, J. C. I.: Unit hydrograph estima-
tion with multiple events and prior information: I. Theory
and a computer program, Hydrolog. Sci. J., 37, 429–443,
https://doi.org/10.1080/02626669209492610, 1992.

Brutsaert, W. and Nieber, J. L.: Regionalized drought flow hydro-
graphs from a mature glaciated plateau, Water Resour. Res., 13,
637–643, https://doi.org/10.1029/WR013i003p00637, 1977.

Dewitz, J.: National Land Cover Database (NLCD) 2019
Products, distributed by U. S. Geological Survey,
https://doi.org/10.5066/P9KZCM54, 2021.

Ding, J. Y.: A measure of watershed nonlinearity: interpreting a
variable instantaneous unit hydrograph model on two vastly dif-
ferent sized watersheds, Hydrol. Earth Syst. Sci., 15, 405–423,
https://doi.org/10.5194/hess-15-405-2011, 2011.

Dooge, J. C. I.: Linear theory of hydrologic systems, U. S. Govern-
ment Printing Office, Washington, DC, 327 pp., 1973.

Duan, Q., Schaake, J., Andreassian, V., Franks, S., Goteti, G.,
Gupta, H. V., Gusev, Y. M., Habets, F., Hall, A., Hay, L.,
Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova,
O. N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T.,
and Wood, E. F.: Model Parameter Estimation Experiment
(MOPEX): An overview of science strategy and major results
from the second and third workshops, J. Hydrol., 320, 3–17,
https://doi.org/10.1016/j.jhydrol.2005.07.031, 2006.

Duband, D., Obled, C., and Rodriguez, J. Y.: Unit hydro-
graph revisited: an alternate iterative approach to UH and ef-
fective precipitation identification, J. Hydrol., 150, 115–149,
https://doi.org/10.1016/0022-1694(93)90158-6, 1993.

Godsey, S. E., Aas, W., Clair, T. A., de Wit, H. A., Fernandez, I.
J., Kahl, J. S., Malcolm, I. A., Neal, C., Neal, M., Nelson, S.
J., Norton, S. A., Palucis, M. C., Skjelkvåle, B. L., Soulsby, C.,
Tetzlaff, D., and Kirchner, J. W.: Generality of fractal 1/f scaling
in catchment tracer time series, and its implications for catch-
ment travel time distributions, Hydrol. Process., 24, 1660–1671,
https://doi.org/10.1002/hyp.7677, 2010.

Gupta, V. K., Waymire, E., and Wang, C. T.: A repre-
sentation of an instantaneous unit hydrograph from
geomorphology, Water Resour. Res., 16, 844–862,
https://doi.org/10.1029/WR016i005p00855, 1980.

Harman, C. J.: Time-variable transit time distributions and trans-
port: Theory and application to storage-dependent transport
of chloride in a watershed, Water Resour. Res., 51, 1–30,
https://doi.org/10.1002/2014WR015707, 2015.

Heidbüchel, I., Troch, P. A., Lyon, S. W., and Weiler,
M.: The master transit time distribution of vari-
able flow systems, Water Resour. Res., 48, W06520,
https://doi.org/10.1029/2011WR011293, 2012.

Hewlett, J. D. and Hibbert, A. R.: Factors affecting the response
of small watersheds to precipitation in humid regions, in: Forest

Hydrol. Earth Syst. Sci., 28, 4427–4454, 2024 https://doi.org/10.5194/hess-28-4427-2024

https://doi.org/10.1029/WR003i003p00861
https://doi.org/10.1029/WR007i005p01087
https://doi.org/10.1002/2014WR016600
https://doi.org/10.1002/hyp.10513
https://doi.org/10.1029/2022WR033096
https://doi.org/10.1002/2017gl074962
https://doi.org/10.5194/hess-24-2655-2020
https://doi.org/10.1029/2009WR008371
https://doi.org/10.1016/S0016-7037(61)80055-0
https://doi.org/10.1016/S0016-7037(61)80055-0
https://doi.org/10.1080/02626669209492610
https://doi.org/10.1029/WR013i003p00637
https://doi.org/10.5066/P9KZCM54
https://doi.org/10.5194/hess-15-405-2011
https://doi.org/10.1016/j.jhydrol.2005.07.031
https://doi.org/10.1016/0022-1694(93)90158-6
https://doi.org/10.1002/hyp.7677
https://doi.org/10.1029/WR016i005p00855
https://doi.org/10.1002/2014WR015707
https://doi.org/10.1029/2011WR011293


J. W. Kirchner: Ensemble rainfall–runoff analysis 4453

Hydrology, edited by: Sopper, W. E. and Lull, H. W., Pergamon
Press, Oxford, 275–290, 1967.

Holland, P. W. and Welsch, R. E.: Robust regression using iter-
atively reweighted least-squares, Commun. Stat. A-Theor., 6,
813–827, https://doi.org/10.1080/03610927708827533, 1977.

Horton, R. E.: The role of infiltration in the hydrologic cycle, Eos
T. Am. Geophys. Un., 14, 446–460, 1933.

Hubert, P., Marin, E., Meybeck, M., Olive, P., and Siwertz, E.: As-
pects hydrologique, gèochimique et sèdimentologique de la crue
exceptionnelle de la Dranse du Chablais du 22 septembre 1968,
Arch. Sci. (Genève), 22, 581–604, 1969.

Jakeman, A. J., Littlewood, I. G., and Whitehead, P. G.: Com-
putation of the instantaneous unit hydrograph and identifiable
component flows with application to two small upland catch-
ments, J. Hydrol., 117, 275–300, https://doi.org/10.1016/0022-
1694(90)90097-H, 1990.

Kirchner, J. W.: A double paradox in catchment hydrol-
ogy and geochemistry, Hydrol. Process., 17, 871–874,
https://doi.org/10.1002/hyp.5108, 2003.

Kirchner, J. W.: Getting the right answers for the right rea-
sons: Linking measurements, analyses, and models to advance
the science of hydrology, Water Resour. Res., 42, W03S04,
https://doi.org/10.1029/2005WR004362, 2006.

Kirchner, J. W.: Catchments as simple dynamical systems:
catchment characterization, rainfall–runoff modeling, and do-
ing hydrology backward, Water Resour. Res., 45, W02429,
https://doi.org/10.1029/2008WR006912, 2009.

Kirchner, J. W.: Quantifying new water fractions and transit
time distributions using ensemble hydrograph separation: the-
ory and benchmark tests, Hydrol. Earth Syst. Sci., 23, 303–349,
https://doi.org/10.5194/hess-23-303-2019, 2019.

Kirchner, J. W.: Impulse response functions for nonlinear, non-
stationary, and heterogeneous systems, estimated by deconvo-
lution and demixing of noisy time series, Sensors, 22, 3291,
https://doi.org/10.3390/s22093291, 2022.

Kirchner, J. W.: ERRA – an R script for Ensemble Rainfall–Runoff
Analysis, EnviDat [code], https://doi.org/10.16904/envidat.529,
2024.

Kirchner, J. W. and Knapp, J. L. A.: Technical note: Calculation
scripts for ensemble hydrograph separation, Hydrol. Earth Syst.
Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020,
2020.

Kirchner, J. W., Hooper, R. P., Kendall, C., Neal, C., and Leavesley,
G.: Testing and validating environmental models, Sci. Total Env-
iron., 183, 33–47, https://doi.org/10.1016/0048-9697(95)04971-
1, 1996.

Kirchner, J. W., Feng, X., and Neal, C.: Fractal stream chemistry
and its implications for contaminant transport in catchments, Na-
ture, 403, 524–527, 2000.

Kirchner, J. W., Benettin, P., and van Meerveld, I.: Instructive
surprises in the hydrological functioning of landscapes, Annu.
Rev. Earth Pl. Sc., 51, 277–299, https://doi.org/10.1146/annurev-
earth-071822-100356, 2023.

Knapp, J. L. A., Neal, C., Schlumpf, A., Neal, M., and Kirchner,
J. W.: New water fractions and transit time distributions at Plyn-
limon, Wales, estimated from stable water isotopes in precipi-
tation and streamflow, Hydrol. Earth Syst. Sci., 23, 4367–4388,
https://doi.org/10.5194/hess-23-4367-2019, 2019.

Kothyari, U. C. and Singh, V. P.: A multiple-input single-
output model for flow forecasting, J. Hydrol., 220, 12–26,
https://doi.org/10.1016/S0022-1694(99)00055-4, 1999.

Liang, G. C., O’Connor, K. M., and Kachroo, R. K.: A multiple-
input single-output variable gain factor model, J. Hydrol., 155,
185–198, https://doi.org/10.1016/0022-1694(94)90164-3, 1994.

Marc, V. and Robinson, M.: The long-term water balance (1972–
2004) of upland forestry and grassland at Plynlimon, mid-Wales,
Hydrol. Earth Syst. Sci., 11, 44–60, https://doi.org/10.5194/hess-
11-44-2007, 2007.

Martinec, J.: Subsurface flow from snowmelt traced
by tritium, Water Resour. Res., 11, 496–498,
https://doi.org/10.1029/WR011i003p00496, 1975.

McDonnell, J. J. and Beven, K.: Debates-The future of hydrologi-
cal sciences: A (common) path forward? A call to action aimed
at understanding velocities, celerities and residence time distri-
butions of the headwater hydrograph, Water Resour. Res., 50,
5342–5350, https://doi.org/10.1002/2013wr015141, 2014.

McGuire, K. J. and McDonnell, J. J.: A review and evaluation
of catchment transit time modeling, J. Hydrol., 330, 543–563,
https://doi.org/10.1016/j.jhydrol.2006.04.020, 2006.

Minshall, N. E.: Predicting storm runoff on small exper-
imental watersheds, Journal of the Hydraulics Divi-
sion, American Society of Civil Engineers, 86, 17–38,
https://doi.org/10.1061/JYCEAJ.0000509, 1960.

Neal, C. and Rosier, P. T. W.: Chemical studies of chloride
and stable oxygen isotopes in 2 conifer afforested and moor-
land sites in the British uplands, J. Hydrol., 115, 269–283,
https://doi.org/10.1016/0022-1694(90)90209-G, 1990.

Pinder, G. F. and Jones, J. F.: Determination of the ground-
water component of peak discharge from the chem-
istry of total runoff, Water Resour. Res., 5, 438–445,
https://doi.org/10.1029/WR005i002p00438, 1969.

Rigon, R., Bancheri, M., Formetta, G., and de Lavenne, A.:
The geomorphological unit hydrograph from a historical-
critical perspective, Earth Surf. Proc. Land., 41, 27–37,
https://doi.org/10.1002/esp.3855, 2015.

Rodhe, A.: Spring flood – meltwater or groundwater?, Nord. Hy-
drol., 12, 21–30, 1981.

Rodriguez-Iturbe, I., Gonzalez-Sanabria, M., and Bras, R.
L.: A geomorphoclimatic theory of the instantaneous
unit hydrograph, Water Resour. Res., 18, 877–886,
https://doi.org/10.1029/WR018i004p00877, 1982.

Ross, C. N.: The calculation of flood discharge by the use of time
contour plan isochrones, Transactions of the Institution of Engi-
neers of Australia, 2, 85–92, 1921.

Sherman, L. K.: Streamflow from rainfall by the unit-graph method,
Eng. News-Rec., 108, 501–505, 1932.

Sklash, M. G.: Environmental isotope studies of storm and
snowmelt runoff generation, in: Process Studies in Hillslope Hy-
drology, edited by: Anderson, M. G. and Burt, T. P., Wiley,
Chichester, ISBN 978-0471927143, 401–435, 1990.

Sklash, M. G. and Farvolden, R. N.: The role of
groundwater in storm runoff, J. Hydrol., 43, 45–65,
https://doi.org/10.1016/0022-1694(79)90164-1, 1979.

Snyder, W. M.: Hydrograph analysis by the method of least squares,
Proceedings of the American Society of Civil Engineers, Journal
of the Hydraulics Division, 81, 1–25, 1955.

https://doi.org/10.5194/hess-28-4427-2024 Hydrol. Earth Syst. Sci., 28, 4427–4454, 2024

https://doi.org/10.1080/03610927708827533
https://doi.org/10.1016/0022-1694(90)90097-H
https://doi.org/10.1016/0022-1694(90)90097-H
https://doi.org/10.1002/hyp.5108
https://doi.org/10.1029/2005WR004362
https://doi.org/10.1029/2008WR006912
https://doi.org/10.5194/hess-23-303-2019
https://doi.org/10.3390/s22093291
https://doi.org/10.16904/envidat.529
https://doi.org/10.5194/hess-24-5539-2020
https://doi.org/10.1016/0048-9697(95)04971-1
https://doi.org/10.1016/0048-9697(95)04971-1
https://doi.org/10.1146/annurev-earth-071822-100356
https://doi.org/10.1146/annurev-earth-071822-100356
https://doi.org/10.5194/hess-23-4367-2019
https://doi.org/10.1016/S0022-1694(99)00055-4
https://doi.org/10.1016/0022-1694(94)90164-3
https://doi.org/10.5194/hess-11-44-2007
https://doi.org/10.5194/hess-11-44-2007
https://doi.org/10.1029/WR011i003p00496
https://doi.org/10.1002/2013wr015141
https://doi.org/10.1016/j.jhydrol.2006.04.020
https://doi.org/10.1061/JYCEAJ.0000509
https://doi.org/10.1016/0022-1694(90)90209-G
https://doi.org/10.1029/WR005i002p00438
https://doi.org/10.1002/esp.3855
https://doi.org/10.1029/WR018i004p00877
https://doi.org/10.1016/0022-1694(79)90164-1


4454 J. W. Kirchner: Ensemble rainfall–runoff analysis

Tashie, A., Scaife, C. L., and Band, L. E.: Transpiration and sub-
surface controls of streamflow recession characteristics, Hydrol.
Process., 33, 2561–2575, https://doi.org/10.1002/hyp.13530,
2019.

Tashie, A., Pavelsky, T., and Band, L. E.: An empirical
reevaluation of streamflow recession analysis at the con-
tinental scale, Water Resour. Res., 56, e2019WR025448,
https://doi.org/10.1029/2019WR025448, 2020.

van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. A. T. M., and
Uijlenhoet, R.: Quantifying catchment-scale mixing and its effect
on time-varying travel time distributions, Water Resour. Res., 48,
W06536, https://doi.org/10.1029/2011WR011310, 2012.

Hydrol. Earth Syst. Sci., 28, 4427–4454, 2024 https://doi.org/10.5194/hess-28-4427-2024

https://doi.org/10.1002/hyp.13530
https://doi.org/10.1029/2019WR025448
https://doi.org/10.1029/2011WR011310

	Abstract
	Introduction
	Response time versus transit time
	ERRA versus unit hydrographs

	Characterizing spatially heterogeneous hydrological responses via deconvolution and de-mixing
	Runoff response distributions (RRDs) as measures of hydrological response
	Whole-catchment runoff response at Roanoke River
	Deconvolution and de-mixing of multiple precipitation inputs

	Quantifying nonlinearities and thresholds in runoff response via nonlinear deconvolution
	Introduction: nonlinear deconvolution
	Profiles of nonlinear response at the Saco River
	Effects of sampling interval on nonlinear response functions
	Average of nonlinear runoff response
	Nonlinear storage–discharge relationships

	Quantifying nonstationary controls on runoff response
	Introduction
	Proof of concept

	Quantifying multiscale runoff response spanning both short and long lag times
	Introduction
	Proof of concept: long-tail recession curves at Plynlimon

	Limitations
	Applications and outlook
	Code and data availability
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

