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Abstract. This study provides the first inter-comparison of
different state-of-the-art approaches and frameworks that
share a commonality in their utilization of satellite remote-
sensing data to quantify irrigation at a regional scale. The
compared approaches vary in their reliance on either soil
moisture or evapotranspiration data or their joint utilization
of both. The two compared frameworks either extract irri-
gation information from residuals between satellite observa-
tions and rainfed hydrological models in a baseline frame-
work or use soil water balance modeling in a soil-moisture-
based inversion framework. The inter-comparison is con-
ducted over the lower Ebro catchment in Spain where ob-
served irrigation amounts are available for benchmarking.
Our results showed that within the baseline framework, the
joint approach using both soil moisture and evapotranspi-
ration (ET) remote-sensing data only differed by +37 mm
from the irrigation benchmark (922 mm) during the main ir-
rigation season over 2 years and by +47 and −208 mm for
approaches relying solely on soil moisture and ET, respec-
tively. A comparison of the different frameworks showed
that the main advantage of the more complex baseline frame-
work was the consistency between soil moisture and ET com-
ponents within the hydrological model, which made it un-
likely that either one ended up representing all irrigation wa-
ter use. However, the simplicity of the soil-moisture-based
inversion framework, coupled with its direct conversion of
soil moisture changes into actual water volumes, effectively
addresses the key challenges inherent in the baseline frame-
work, which are associated with uncertainties related to an

unknown remote-sensing observation depth and the static
depth of the soil layers in a conceptual model. The perfor-
mance of the baseline framework came closest to the irriga-
tion benchmark and was able to account for the precipita-
tion input, which resulted in more plausible temporal distri-
butions of irrigation than what was expected from the bench-
mark observations.

1 Introduction

As illustrated in the newly updated version of the water cycle
by the USGS (Corson-Dosch et al., 2023), the role of irri-
gation is now manifested as one of the major hydrological
fluxes, which in many regions cannot be ignored when re-
solving the water balance (Döll and Siebert, 2002). Further,
with future projections of climate change, population growth,
and food demand (Hunter et al., 2017), irrigation-based agri-
culture is expected to become an even more vital part of the
water cycle that needs to be managed sustainably to secure
global food security and livelihoods for the billions of peo-
ple living in arid regions (Ferguson et al., 2018; Jain et al.,
2021; Mujumdar, 2013). The main obstacle in managing this
major flux component is the lack of knowledge about where,
when, and how much irrigation is applied.

Large-scale irrigation mapping and quantification from
satellite data have commonly been studied by the hydro-
logical community, and the number of studies addressing
these questions has rapidly increased over the last decade
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(Massari et al., 2021). One of the major branches of pro-
posed frameworks is represented by the soil moisture inver-
sion frameworks (SM-based inversion framework) (Brocca
et al., 2018) hypothesizing that irrigation can be estimated
by backward calculation of total water input from an in-
version of the soil water balance equation by using remote-
sensing soil moisture observations. The other branch is rep-
resented by the baseline frameworks, hypothesizing that dif-
ferences between purely rainfed hydrological models and
satellite remote-sensing products of soil moisture and evap-
otranspiration (ET) are contributed to by a non-precipitation
source of water.

The SM-based inversion framework is rooted in the soil-
moisture-to-rain algorithm (Brocca et al., 2014) intended to
estimate global precipitation from soil moisture satellite ob-
servations. The documented alteration of the soil moisture
signal by irrigation practices (Filippucci et al., 2020) is lever-
aged to estimate irrigation as a distinct precipitation com-
ponent using soil moisture inversion techniques, which is
subsequently isolated by subtracting the measured precipi-
tation. The framework has successfully been applied in stud-
ies focusing on mapping and quantifying irrigation in vari-
ous regions as well as on a global scale, and several stud-
ies have been aiming at validating the framework by test-
ing different soil moisture remote-sensing products, refining
the ET contribution and calibration strategies (Dari et al.,
2020, 2021, 2022b, 2023; Filippucci et al., 2020; Jalilvand
et al., 2019; Zhang et al., 2022). One of the main chal-
lenges within the SM-based inversion framework is to ensure
the right magnitude of contributions between soil moisture,
drainage, and ET by targeting the precipitation input through
calibration. As pointed out by Jalilvand et al. (2019) and Dari
et al. (2022b), a simple soil water stress approach to quanti-
fying the actual ET is a crucial part of the framework that can
potentially restrain the calibration parameters.

The baseline frameworks can be found in many varieties,
but, overall, they aim to quantify irrigation from soil mois-
ture or ET residuals between retrieved changes from satel-
lite remote-sensing models and a rainfed baseline, typically
a hydrological model without an explicit representation of
irrigation. Lawston et al. (2017) used satellite soil moisture
observations to estimate irrigation patterns by comparing soil
moisture dynamics of irrigated and rainfed satellite pixels
in the western United States. Similarly, Brombacher et al.
(2022) compared irrigated actual ET with a rainfed reference
ET through a hydrologically similar pixels algorithm in three
irrigated regions in Africa, Spain, and Australia. In both stud-
ies, the rainfed satellite pixels and the rainfed reference ET
acted as a baseline. Zappa et al. (2021) combined a compar-
ison of local and regional surface soil moisture changes with
independent ET and drainage loss estimates to quantify ir-
rigation in Germany. Other studies have compared satellite
remote-sensing models and hydrological models to extract
soil moisture changes associated with a non-precipitation
source of water to estimate irrigation (Zaussinger et al., 2019;

Zohaib and Choi, 2020). Koch et al. (2020) and Kragh et al.
(2023) further compared remote-sensing model retrievals of
actual ET from irrigated cropland areas with a rainfed hydro-
logical model calibrated against the remote-sensing model
retrieval of actual ET over rainfed cropland (hence with nat-
ural vegetation) to counteract the influence of a possible
rainfed bias between the remote-sensing and hydrological
models. The main challenge within this framework relates
to the uncertainty in the remote-sensing products used and
the estimation of a rainfed baseline when combining satel-
lite remote-sensing models and hydrological models. Espe-
cially the soil-moisture-based approaches are faced with the
need for bias corrections or rescaling between independent
satellite remote-sensing and hydrological model estimates to
assure coherence between the magnitudes of the rainfed esti-
mates (Reichle and Koster, 2004).

Another branch of irrigation quantification frameworks in-
volves the assimilation of satellite data into hydrological
and land surface models. Modanesi et al. (2022) used the
Noah-MP model with an irrigation scheme and assimilated
vegetation-sensitive Sentinel 1 VH polarization backscatter
to improve irrigation simulations. Abolafia-Rosenzweig et al.
(2019) proposed an ensemble methodology where satellite
soil moisture data were assimilated with a model ensemble
forced with precipitation and superimposed irrigation sig-
nals to extract the total water input and hence irrigation by
subtracting precipitation. Further work has lately been con-
ducted on evaluating the framework sensitivity and incor-
porating a rainfed bias correction to address the challenge
of simulating a correct soil moisture state (Jalilvand et al.,
2023), which is a challenge for all frameworks that try to
combine satellite data and hydrological models.

An inter-comparison is needed to further advance the fast-
evolving development of irrigation quantification method-
ologies toward more robust estimates by elucidating the as-
sets and shortcomings within the framework structures. How-
ever, an in-depth inter-comparison is challenging due to the
general absence of in situ irrigation observations (Massari
et al., 2021) needed to go a step beyond the validation
of area-averaged (e.g., at the district scale) irrigation esti-
mates. Furthermore, many irrigation studies exhibit a uni-
directional emphasis, relying solely on either soil moisture
or ET remote-sensing data. Consequently, they overlook the
potential synergy that can be derived from an integrated
approach capable of capturing the characteristics of both
equally important components.

This study applies a novel baseline methodology to quan-
tify irrigation from a joint approach using both soil moisture
and ET in a dual-component calibration for a rainfed model
baseline and compares the results with approaches focusing
on either soil moisture or ET in isolation within the same
framework. This extends to previous work (Koch et al., 2020;
Romaguera et al., 2014) and aims to showcase the poten-
tial advantages of moving toward joint soil moisture and ET-
based approaches. Also, a stand-alone near-surface soil mois-
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Figure 1. Maps over the study area. (a) Map over the Iberian Peninsula (source: Esri, Garmin, GEBCO, NOAA NGDC, and other contribu-
tors); the red square marks the extent of (b). (b) Outline of the model domain, the four irrigation districts, canals, and pumps from which the
benchmark was required. The light gray shaded area is rainfed cropland used for calibration. (Source: Esri, DigitalGlobe, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.)

ture approach within a baseline framework is included, aimed
at quantifying irrigation solely from soil moisture residu-
als. The analysis is carried out in a well-studied irrigation
hot spot area situated in the lower Ebro catchment in Spain
and covers the period 2016–2017. The three main objectives
of this paper are (1) to extend an earlier ET-based baseline
framework to also include soil moisture; (2) to compare ir-
rigation estimates from a soil-moisture-based, ET-based, and
joint soil moisture and ET satellite datasets to explore any
gains; and (3) to attempt to compare and validate irrigation
estimates from baseline frameworks and SM-based inversion
frameworks to uncover strengths and weaknesses of each
framework.

2 Study area and benchmark data

The study area is situated in the northeastern part of Spain
(Fig. 1a) and constitutes a smaller part of the lower Ebro
River basin. The area is characterized by a semi-arid cli-
mate with yearly mean temperatures of around 15 ◦C and
precipitation of approximately 400 mmyr−1 (La Agencia Es-
tatal de Meteorología: https://www.aemet.es/, last access:
31 May 2023). Precipitation mainly occurs in April–May
and October–November, and summer is characterized by
sporadic precipitation and high temperatures. The plains in
the lower part of the sub-catchment are covered by crop-
land (Fig. 1b) that is further subdivided into four central

irrigated districts, mainly with summer cereal, forage, and
fruit trees, and surrounded by drylands with cereals and olive
groves. Yearly crop and irrigation practice maps from Catalo-
nia are available via the Geographic Information System for
Agricultural Parcels (SIGPAC), provided by the Department
d’Agricultura, Ramaderi, Pesca i Almentació (https://analisi.
transparenciacatalunya.cat, last access: 15 April 2022).

The irrigation districts are of varying sizes and are linked
to specific reservoirs connected, in turn, to a network of
canals that deliver water to the fields. The districts in-
cluded in this study are described in the following. (1) The
Urgell district (887.62 km2) is the oldest irrigation district
and largely applies biweekly flood irrigation, supplied by the
Rialb (measured at canal C116) and Sant Llorenç de Montgai
reservoirs (measured at canal C117) (Fig. 1b). (2) The Al-
gerri Balaguer district (70.79 km2) is supplied with irrigation
water from the Santa Ana reservoir (measured at pump E271)
and mainly applies sprinkler and drip irrigation techniques,
which can occur daily. (3) The Catalan Aragonese district
(1161.52 km2) irrigation water is supplied by the Barasona
(measured at canal C081) and Santa Ana reservoirs (mea-
sured at canal C101). The water is applied by different ir-
rigation techniques: flood irrigation (18 %), drip irrigation
(28 %), and sprinkler irrigation (54 %) (Dari et al., 2020).
We assume that most irrigation water to the northern part of
the district is supplied by the Barasona Reservoir and that
to the southern part by the Santa Ana Reservoir (Fig. 1b).
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Figure 2. The scheme gives an overview of the similarities and differences between the four hydrological baseline models.

Data on irrigation water use from each of the main reser-
voirs are collected by the Automatic Hydrologic Information
System of the Ebro River basin (SAIH Ebro) (available at
http://www.saihebro.com, last access: 15 April 2022). The
data are used as a benchmark for the period 2016–2017.

Dari et al. (2020) estimated expected water losses due to
irrigation efficiency based on literature and irrigation tech-
niques adopted within each district that were applied to the
benchmark irrigation volumes: Urgell (30 % loss), Algerri
Balaguer (10 %), and the north and south Catalan Aragonese
district (15 %). In the Urgell district, irrigation still occurs
through a traditional flood irrigation network, which explains
the highest loss rate adopted for such districts. Algerri Bal-
aguer is equipped with a modern system in which drip irri-
gation is employed for fruit trees and sprinkler irrigation is
adopted for herbaceous crops (Dari et al., 2021); hence, a
lower loss rate (10 %) has been adopted here. Finally, mixed
techniques are employed over the Catalan Aragonese dis-
tricts (with sprinkler irrigation predominating), and thus an
intermediate loss rate has been considered. For the Urgell
district, data are missing from July 2016 to February 2017,
and data are missing for the north Catalan Aragonese district
for September and October.

3 Method and data

With this study, we aim to compare irrigation estimates from
soil-moisture- and ET-based approaches. The framework
used herein aims to isolate a non-precipitation source of wa-
ter (either soil moisture or ET) from satellite observations by
subtracting a hydrologically modeled rainfed baseline (Koch
et al., 2020; Zaussinger et al., 2019). We present results based
on four baseline models: one calibrated solely against rainfed
ET, two calibrated against rainfed soil moisture with different
adjustments (further described in Sect. 3.1), and one model
calibrated jointly against ET and soil moisture. The aim is
to keep the framework as similar as possible for all four ap-
proaches. Figure 2 presents the overall approach for the four
model calibrations and irrigation quantification steps, and
similarities and differences are highlighted. The differences
will be further described in Sect. 3. We also include pub-
lished irrigation estimates over the same study site obtained
through an SM-based inversion framework forced with dif-
ferent soil moisture datasets as described in Dari et al. (2020,
2023)

3.1 Evapotranspiration and soil moisture data

Information on ET and soil moisture quantities and patterns
is available from a variety of satellite remote-sensing sys-
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tems. In this study, we choose the MODIS 16 ET product
(Mu et al., 2007, 2011) that among other products was found
to provide valid ET estimates across several European catch-
ments and to be influenced by irrigation (Dari et al., 2022b;
Stisen et al., 2021). We also used a SMOS (the Soil Mois-
ture and Ocean Salinity mission) soil moisture dataset down-
scaled by the DISPATCH algorithm (Merlin et al., 2013) that
has been evaluated and used within an SM-based inversion
framework to quantify irrigation amounts and patterns within
the study area (Dari et al., 2020, 2021).

The MODIS 16 ET product estimates ET at 500 m spatial
resolution as an 8 d total flux (mm) of soil-canopy evapo-
ration and plant transpiration. The estimates are vegetation-
based as the surface energy balance is constrained by both
meteorological reanalysis data and MODIS vegetation prop-
erties, albedo, and land cover (Cleugh et al., 2007) as input
within the Penman–Monteith equation (Monteith, 1965). The
ET fluxes were aggregated from 8 d to monthly estimates by
multiplying the mean daily flux for each month by the num-
ber of days.

The SMOS product estimates soil moisture at a 35–
50 km spatial resolution as a daily volumetric water storage
(m3 m−3) of the topsoil (Kerr et al., 2012). The estimates
are based on the soil emissivity of microwaves that depend
on the soil moisture content due to the large dielectric dif-
ference between dry soil and water (Kerr et al., 2001). The
SMOS product has been downscaled by using soil evapo-
rative efficiency (SEE) at 1 km resolution, estimated from
MODIS normalized difference vegetation index (NDVI) and
land surface temperature (LST), to disaggregate the original
SMOS pixel by redistributing the values according to SEE
but maintaining the original volumetric water content by av-
eraging the downscaled product to SMOS’s native resolution
(Merlin et al., 2013). Due to its low resolution, the original
SMOS dataset cannot effectively capture the irrigation sig-
nal (Kumar et al., 2015), which was first introduced through
the DISPATCH downscaling algorithm. The original SMOS
DISPATCH near-surface soil moisture was used, and a root
zone soil moisture estimate was derived by applying a recur-
sive exponential filter equation proposed by Albergel et al.
(2008). To convert the product from volumetric water storage
to water depth, we assumed a constant sensing depth of 5 cm
(Kerr et al., 2001). The soil moisture products were used at a
daily resolution to quantify irrigation, although this was less
robust than a monthly resolution because the aggregation of
the daily soil moisture storage, compared to ET flux, proved
to be very uncertain.

3.2 Hydrological models

The grid-based mesoscale Hydrological Model (mHM; Ku-
mar et al., 2013; Samaniego et al., 2010; Thober et al., 2019)
version 5.11.0 (Samaniego et al., 2021) was used to model
rainfed ET and soil moisture baselines. mHM yields consis-
tent spatial parameter distributions across scales using the

multiscale parameter regionalization technique (Schweppe
et al., 2022) that, via nonlinear transfer functions, links pa-
rameter distributions at an intermediate model scale to a fine-
scale variability in spatially distributed catchment attributes.
Seamless model parameter distributions are connected to a
low number of global parameters that allow for a simple and
powerful calibration (Samaniego et al., 2021, 2017). For this
study, the hydrological models were calibrated and executed
at 500 m spatial resolution for the period 2016–2017, using
a 1 km gridded meteorological forcing and 250 m morpho-
logical input data. The soil moisture for each model layer
is calculated as the effective precipitation minus the actual
evaporation from open waterbodies and infiltration to deeper
layers or recharge to groundwater. The actual ET is deduced
from a reduction in PET (potential evapotranspiration) by the
Feddes soil water stress factor (Feddes et al., 1976) and a root
fraction distribution factor over the defined number of soil
layers.

Precipitation data were acquired from ERA5-Land
(Muñoz Sabater, 2019); the daily average air temperature was
acquired from E-OBS (Cornes et al., 2018); and potential ET
was calculated by the Hargreaves equation (Hargreaves and
Samani, 1985) from E-OBS daily average, minimum, and
maximum air temperature and downscaled to model resolu-
tion by monthly climatologies of leaf area index (retrieved
from MODIS MCD15A2H.v006) (Demirel et al., 2018). The
Hargreaves equation was chosen to estimate potential ET
due to its simplicity and based on results from Dari et al.
(2022b), who found Hargreaves to be a good approxima-
tion, compared to the more complex Penman–Monteith equa-
tion when estimating actual ET from irrigation. All mete-
orological forcing data were resampled to a spatial resolu-
tion of 1 km using a bilinear function. The DEM was ac-
quired from NASA’s Shuttle Radar Topography Mission data
(Jarvis et al., 2016), and soil texture was acquired from the
SoilGrid® database (ISRIC, 2020) for six horizons (layer
thickness from top: 5, 10, 15, 30, and 40 cm and 1 m). All
morphological data were resampled to a spatial resolution of
250 m using the mean function. Land use, classified as per-
vious, impervious, and forest, was acquired from CORINE
land use and Copernicus Land monitoring imperviousness
datasets from https://land.copernicus.eu/pan-european (last
access: 1 March 2022) (© European Union, Copernicus Land
Monitoring Service 2018, European Environment Agency,
EEA) and was resampled to a spatial resolution of 250 m us-
ing the mode function.

3.3 Calibration strategy

The calibration framework is designed to obtain hydrological
models that simulate robust baselines of rainfed ET and soil
moisture. The Optimization Software Toolkit (OSTRICH;
Matott, 2017) includes a Pareto archived dynamically dimen-
sioned search (PADDS) algorithm (Asadzadeh and Tolson,
2009) that was used to calibrate the four hydrological base-
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line models. An initial sensitivity analysis determined that 10
parameters were needed to be included in the one model cal-
ibration solely against ET, and 14 parameters were needed in
the three other model calibrations that were either partly or
fully calibrated against soil moisture. The three calibrations
with soil moisture as the target included the same 10 param-
eters as the ET calibration and an additional four parameters
related to soil and root fraction characteristics.

The objective functions were used to target the magnitude
and temporal dynamics of ET and soil moisture over rain-
fed cropland. The rainfed cropland used as calibration target
area was mapped in two steps: first, separate temporal sta-
bility analyses (Vachaud et al., 1985) were performed on the
MODIS 16 ET and SMOS DISPATCH products to map ar-
eas drier than average (rainfed cropland), and second, the two
maps were compared and pixels appearing as rainfed crop-
land in both maps were included as calibration target areas.
Results from the temporal stability analysis can be found
in the Supplement (Fig. S1 in the Supplement). Only year-
round rainfed cropland was included in the calibration be-
cause some irrigation is known to occur in the irrigation dis-
tricts in between the main irrigation season. First, the mag-
nitude was targeted by minimizing the mean absolute error
(MAE) over all rainfed cells for each time step during the
entire 2-year calibration period (Eq. 1).

MAE=
∑n
i=1|xi − yi |

n
, (1)

r = ρ(x,y), (2)

where xi and yi represent observed and simulated values at
cell i and n is the number of observations. MAE varies be-
tween an optimal value of 0 to positive infinity. Second, dy-
namics were targeted by maximizing Pearson’s correlation
coefficient (r) on mean monthly quantities (Eq. 2), where
x and y denote observed and simulated values. Pearson’s cor-
relation coefficient varies between an optimal value of −1
to 1. To select the best parametrization from the Pareto
front, the solution with the lowest normalized sum, concern-
ing best-performing solutions, of the objective functions was
chosen.

For the soil-moisture-based and joint soil moisture and
ET-based approaches, the soil moisture model outputs were
rescaled within each iteration of the calibration by first sub-
tracting the modeled mean soil moisture content and then
adding the satellite reference mean soil moisture content.
This was done to account for the systematic differences in
how satellites with varying sensing depths and the hydro-
logical model with a fixed top layer depth may respond to
precipitation (Brocca et al., 2013; Zaussinger et al., 2019).
The rescaling also shifts the focus of the model calibration
towards parameters controlling the soil moisture variation
rather than the average content; this is further important for
reasons discussed in Sect. 4.2.

3.4 Estimation of irrigation within a baseline
framework

The hypothesis is that soil moisture and ET residuals be-
tween a remote-sensing model and a hydrologically mod-
eled rainfed baseline can be used to quantify irrigation (Koch
et al., 2020; Zaussinger et al., 2019). The hydrological model
parameters are calibrated for rainfed cropland, and the seam-
less parameter fields generated by the parameter regionaliza-
tion technique in mHM allow for a meaningful parameter
transfer, which enables the model to simulate a robust rainfed
baseline for irrigated cropland.

When calculating irrigation volumes, both ET and soil
moisture residuals must be considered, as none of the two
components alone can fully capture the irrigation input. Ear-
lier studies using the same baseline framework have been fo-
cusing on the quantification of net irrigation from ET residu-
als, which is the irrigation water loss to the atmosphere (Koch
et al., 2020; Kragh et al., 2023). The total irrigation amount
cannot be quantified from ET residuals alone as some of
the water is bound within the soil column. Moreover, some
irrigation water potentially infiltrates to deeper soil layers,
recharges to groundwater, or generates overland flow. This,
however, is thought to be a minor part of the total irrigated
water amount, demonstrated by Dari et al. (2020) from the
SM-based inversion framework and therefore not considered
in this framework. Zaussinger et al. (2019) used the soil water
balance equation to quantify irrigation by assuming all terms
to be equal when comparing soil moisture changes from a
rainfed hydrological model with a satellite reference except
for the irrigation input measured by the satellite system. The
method underestimated the irrigation amounts, which could
be a consequence of ignoring the fact that the actual ET is
enhanced under irrigated conditions, thus missing a part of
the irrigation signal.

This study proposes an extension of the baseline frame-
work to quantify irrigation as the sum of soil moisture and ET
residuals by subtracting rainfed model baselines from satel-
lite references (Eq. 3).

Irrigation= (SMsatellite reference−SMrainfed baseline)

+ (ETsatellite reference−ETrainfed baseline), (3)

where SM and ET denote soil moisture water depth and
ET flux in millimeters, respectively. For the ET component,
monthly irrigation amounts are estimated by calculating the
mean across-grid-specific ET residuals for each district. For
the soil moisture component, monthly irrigation amounts are
estimated, by first calculating daily mean soil moisture for
each district (days with less than 50 % coverage were ex-
cluded), followed by calculated daily district-specific soil
moisture residuals, and then summing the mean daily soil
moisture residuals to monthly estimates. The spatial distri-
bution of the soil moisture component is calculated by sum-
ming daily to monthly residuals to extract irrigation patterns,
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which are then rescaled to the monthly estimates for each
district. Soil moisture and ET processes are interconnected,
and summing both components in Eq. (3) may cause a dou-
ble counting of water when estimating irrigation, leading to
an overestimation of irrigation. However, due to the conver-
sion from near-surface to root zone soil moisture and the
spatial aggregation of soil moisture, described in more de-
tail below, we have alleviated the effect of double counting.
Moreover, with the available benchmark data, described in
Sect. 2, we have the possibility of evaluating the estimated
irrigation amounts, which allows us to rule out a substantial
deterioration of the estimated irrigation by double counting.

In theory, the SMOS DISPATCH near-surface soil mois-
ture residuals capture most of the irrigated water use as most
of the water will pass the soil surface before returning to the
atmosphere. However, near-surface soil moisture is difficult
to represent via hydrological modeling because satellite ob-
servations simply provide a “snapshot” of the hydrological
state, which could have been measured during or just after
a rainfall event. In the case of a satellite overpass just after
a rainfall event, most of the soil water will be present in the
near-surface, and during the following days, it will separate
into deeper infiltration or evapotranspiration. Similarly, when
a hydrological model simulates soil moisture during a rain-
fall event, the model will distribute the input between all soil
layers and outgoing fluxes within a single time step (1 d in
our study), which makes it challenging to directly compare
model estimates with satellite observations.

We addressed this limitation by converting the SMOS
DISPATCH near-surface soil moisture observation to a root
zone estimate as proposed by Albergel et al. (2008), which
is an attempt to account for the temporal processes that af-
fect the distribution of soil moisture. Consequently, this will
make the satellite observation more comparable with the hy-
drological model. During this conversion, we have removed
around 40 % of the summed near-surface soil moisture in-
creases. Since evaporative losses from the near-surface soil
layer are being removed from the SMOS DISPATCH dataset,
we additionally need to consider ET contributions in Eq. (3).
Further, due to the spatial aggregation of daily mean soil
moisture residuals at the district scale, the soil moisture com-
ponent will represent a more conservative estimate of the ap-
plied irrigation. This is because the districts are not uniformly
irrigated at the same time, and at the grid level, daily soil
moisture residuals can be both negative and positive. Also
considering negative soil moisture residuals in the calcula-
tion of the soil moisture component in Eq. (3) to some degree
captures the interconnection between soil moisture and evap-
otranspiration. Due to the substantial removal of near-surface
soil moisture input (40 %) from the conversion to root zone
soil moisture and the spatial district aggregation, we do not
expect that our irrigation estimates will be severely affected
by double counting of water through the joint analysis of ET
and soil moisture residuals. We do acknowledge that if this
method were to be used in an area with known over-irrigation

issues, drainage, and overland flow, terms would need to be
added to Eq. (3) to fully represent irrigation water use.

As a stand-alone approach, to quantify irrigation volumes
solely from soil moisture residuals, a hydrological base-
line model calibrated on near-surface soil moisture was also
tested. The hypothesis for using near-surface soil moisture
instead of root zone soil moisture is that by preserving the
original raw observations that potentially contain all wa-
ter entering the soil, we can calculate the irrigation volume
from soil moisture residuals without having to consider the
ET component.

3.5 Other irrigation estimates and frameworks

Three irrigation estimates from an SM-based inversion
framework (Brocca et al., 2018) are included, which use
soil moisture observations from DISPATCH downscaled ob-
servations from SMOS and SMAP satellites (SMOS_if and
SMAP_if) (Dari et al., 2020) and first-order radiative trans-
fer (RT) modeling (Quast et al., 2019, 2023) of Sentinel-1
backscatter (S1RT_if) (Dari et al., 2023) (Table 1). Within
both studies (Dari et al., 2021, 2023), the soil moisture obser-
vations were referred to as surface soil moisture. In this study,
we refer to all soil moisture observations filtered with the
recursive exponential filter equation proposed by Albergel
et al. (2008) as root zone soil moisture and original observa-
tions as near-surface soil moisture. These studies took place
at the same study site and are a display of already published
datasets.

Here, is a short description of the SM-based inversion
framework as a foundation to understand the irrigation es-
timates, and we refer to Dari et al. (2020, 2023) for in-depth
method descriptions. First, the SM-based inversion frame-
work builds on rearranging the soil water balance equation
to enable the backward calculation of total water input (pre-
cipitation plus irrigation) from soil moisture observations
and isolate the irrigation signal from the estimated total wa-
ter input by subtraction of precipitation. The prevailing part
of the total water input in the SM-based inversion frame-
work is expressed by changes in soil moisture storage and
ET flux, which are the same two components describing the
irrigation-induced residuals between reference and baseline
models within the baseline framework.

In both Dari et al. (2020, 2023) calculations of water input
from changes in soil moisture storage and drainage are sim-
ilar but differ regarding the ET flux term. Dari et al. (2020)
follow guidelines provided by the FAO paper 56 (Allen et al.,
1998) and use crop coefficients that incorporate the influence
of soil moisture stress on transpiration. Dari et al. (2023)
follow a soil-moisture-limiting approach and combine the
soil moisture index and a bias correction factor to estimate
ET from PET. To calibrate the SM-based inversion frame-
work, Dari et al. (2020) calibrated the soil parameters of
the three algorithms against precipitation at rainfed cropland
and transferred the median of spatially distributed parame-
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Table 1. Overview of investigated frameworks and approaches.

Abbreviation Framework/approach Calibration target

RZ_SM_bf baseline framework/soil moisture root zone soil moisture (from SMOS DISPATCH)
joint_bf baseline framework/soil moisture and ET root zone soil moisture (from SMOS DISPATCH) and MOD16 ET
ET_bf baseline framework/ET MOD16 ET
NS_SM_bf baseline framework/soil moisture original SMOS DISPATCH near-surface soil moisture
SMOS_if inversion framework/soil moisture root zone soil moisture (from SMOS DISPATCH)
SMAP_if inversion framework/soil moisture root zone soil moisture (from SMAP DISPATCH)
S1RT_if inversion framework/soil moisture root zone soil moisture (from Sentinel-1 RT)

Table 2. Calibration results for four baseline frameworks. Statistics are calculated over rainfed cropland for the period 2016–2017.

Calibration results RZ-SM_bf Joint_bf ET_bf NS-SM_bf

MAE 2.8 mm soil moisture d−1 2.4 mm soil moisture d−1 7.1 mm ET per month 2.8 mm soil moisture d−1

8.1 mm ET per month

Pearson correlation 0.84, soil moisture 0.82, soil moisture 0.84, ET 0.76, soil moisture
0.82, ET

ters to irrigated cropland. Conversely, Dari et al. (2023) im-
plemented an iterative strategy to obtain spatially distributed
soil parameter values calibrated against rainfall and a fixed
value for the ET-adjusting factor calibrated by considering,
as a benchmark, rainfall plus irrigation over selected sites.

4 Results and discussion

4.1 Calibration results

The analysis of soil moisture and ET approaches within
the rainfed baseline framework builds upon results from
four approaches: the ET approach by calibration against
MOD16 ET (ET_bf), two approaches representing the soil
moisture approach by calibration against SMOS DISPATCH
near-surface (NS-SM_bf) and root zone soil moisture (RZ-
SM_bf), and one approach representing a joint root zone soil
moisture and ET approach (joint_bf) calibrated against both
references (Table 1). All models were separately calibrated
for rainfed cropland conditions. Based on the four Pareto
fronts, the four solutions with the lowest normalized sum
were selected (Table 2).

The joint_bf baseline has a similar ET performance as
ET_bf but has better soil moisture performance than the NS-
SM_bf and RZ-SM_bf baselines because it benefits from tar-
geting both the soil moisture and ET references that enable
the model to better simulate soil moisture dynamics. The NS-
SM_bf baseline has the lowest Pearson correlation because
the NS-SM_bf reference has more day-to-day variation that
cannot be simulated by the hydrological model compared to
the RZ-SM_bf reference, which has a smoother trajectory.

In general, all baseline models exhibit the poorest per-
formance during winter and early spring, and it is known

from other irrigation studies that irrigation estimation is more
uncertain during rainy periods, which makes the separation
between precipitation- and irrigation-induced changes more
difficult (Brocca et al., 2018; Dari et al., 2020; Jalilvand et al.,
2019; Koch et al., 2020). Time series from the model cal-
ibrations of rainfed cropland can be found in the Supple-
ment (Figs. S2–S6) together with bias measures of mean er-
ror (ME) and the standard derivation of rainfed residuals (Ta-
ble S1 in the Supplement).

4.2 Soil moisture and ET approaches within a rainfed
baseline framework

The four approaches produce irrigation estimates that over-
all match the benchmark (Fig. 3). In 2016, irrigation esti-
mates are linked with precipitation by showing low irriga-
tion supply when precipitation is high and vice versa during
summer. In 2017 the irrigation estimates steadily increased
over a prolonged period due to the uniform precipitation in-
put throughout the year. Thus, the timing and intensity of the
irrigation estimates seem to be affected more by precipitation
variability than the benchmark and show that large amounts
of precipitation counteract the irrigation requirements. This
coupling between irrigation estimates and precipitation gives
confidence to the applied framework’s ability to create robust
baselines able to separate precipitation-related changes from
a remote-sensing reference.

The joint_bf estimate (stacked graph, Fig. 4) is character-
ized by the soil moisture storage increase in 2016 due to ir-
rigation, followed by a storage decrease as ET rapidly de-
pletes the root zone soil moisture storage. In 2017, soil mois-
ture storage and ET simultaneously increased and decreased
due to the meteorological conditions that did not support the
same rapid depletion of the root zone as in 2016. The joint_bf
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Figure 3. Irrigation estimates from the four approaches within the baseline framework. Estimates are shown for each of the four irrigation
districts for the period 2016–2017 and compared with the benchmark. The gray shaded area shows the benchmark with and without irrigation
water losses due to irrigation efficiency. Dark blue bars show precipitation amounts. Light red areas mark missing benchmark observations.

is overall close to the benchmark and captures the different
aspects of the hydrological cycle that cannot be captured by
a stand-alone analysis of soil moisture or ET.

The NS-SM_bf estimate (black graph, Fig. 4) matches the
average timing and intensity of the joint approach in 2016 as
it captures both soil moisture storage and ET flux changes in-
duced by irrigation. In 2017 the irrigation estimate is a little
lower than the joint approach, possibly because of the pre-
cipitation input that causes an overestimation of the baseline,
thus underestimating irrigation during the irrigation season
and estimating almost no irrigation in between irrigation sea-
sons. To address this, further work is needed on the calibra-
tion of near-surface rather than root zone soil moisture. How-

ever, the NS-SM_bf estimate points towards a methodology
to quantify irrigation solely based on soil moisture storage
changes.

The distribution of irrigation water is more complex than
direct allocation from the main reservoirs to the fields
(benchmark data) as smaller reservoirs also exist within the
districts, which means that there might not be temporal con-
sistency between the allocation and field practice as water
can be stored for days or months in between irrigation sea-
sons. Still, the benchmark provides an upper limit when eval-
uating irrigation estimates, which could be done on accumu-
lated benchmark volumes over longer periods to account for
the delay between the allocation and timing of irrigation.
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Figure 4. Mean area irrigation estimates from the four approaches within the baseline framework. Estimates are shown for all four irrigation
districts for the period 2016–2017 and separate the estimates between soil moisture (SM) and evapotranspiration (ET) contributions. The gray
line represents a weighted area average benchmark data with losses due to irrigation efficiency. Dark blue bars show precipitation amounts.

In the Algerri Balaguer district (Fig. 3), the spring irriga-
tion increases above the benchmark in 2016 and 2017, which
also can be seen in the Urgell, Algerri Balaguer, and south
Catalan Aragonese districts during autumn in 2017 when pre-
cipitation was low. These results suggest that water stored
during the current season or from last season is used for ir-
rigation. Irrigation estimates from radar soil moisture also
suggest that water storage within the districts could play a
significant role in this context (Dari et al., 2023).

In 2016, the irrigation estimates were lower than the
benchmark (Fig. 3) in the Urgell and north and south Cata-
lan Aragonese districts because the rainfed baselines, linked
to the spring precipitation (183 mm), explain most of the ob-
served flux and storage changes. The benchmarks from 2016
and 2017 have very similar timing and intensity, although
the precipitation patterns are very different. In 2016 the pre-
cipitation input was high during winter and spring, low dur-
ing summer, and high during autumn, whereas 2017 lacks
the expected seasonality with 25 mm per month precipitation
on average besides a wet March. This could suggest that the
reservoirs might work according to a relatively fixed sched-
ule or that not all of the benchmark water might be allocated
to irrigation but simply is balancing the reservoir water level.

The baseline framework offers a solution to both sep-
arately or jointly utilize soil moisture and ET in calibra-
tions to extract consistent and robust rainfed baselines. The
calibration targets were similar for both soil moisture and
ET to keep the approaches inter-comparable, although soil
moisture is more challenging to calibrate compared to ET.
This challenge arises because the hydrological model and the
satellite-derived products react differently to precipitation as
it implies that the modeled baseline must be rescaled to the
reference mean content, which limits the calibration of sen-

sitive soil parameters to only satisfy the fit to the seasonal
amplitude.

The SMOS DISPATCH product is characterized by low
mean soil moisture content and high seasonal amplitude,
which poses an issue due to a positive relationship between
mean content and amplitude within the mHM model. This
pushes the baseline calibrated for root zone soil moisture
(RZ-SM_bf) to simulate a mean soil moisture content that is
10 mm higher than SMOS DISPATCH to fit the amplitude,
whereas the baseline solely calibrated against ET (ET_bf)
simulates a mean soil moisture content only 2 mm higher
than SMOS DISPATCH but underestimates the amplitude.
This creates a seasonal bias that underestimates irrigation es-
timates during summer and overestimates them during winter
(Fig. 4). By contrast, the ET baselines are more comparable
between the three approaches because the relationship be-
tween the field capacity and wilting is scaled according to
the modeled amplitude, which yields similar soil water stress
factors used to estimate actual ET.

The RZ-SM_bf and ET_bf results represent the highest
and lowest irrigation estimates during the main irrigation sea-
son, respectively (Fig. 4), mainly due to large differences in
the soil-moisture-based component of the irrigation estima-
tion. This is supported by comparing mean monthly coeffi-
cients of variation (CV) of the ET (CV= 0.14) and soil mois-
ture (CV= 0.45) components between ET_bf, RZ-SM_bf,
and joint_bf. This shows that the soil moisture baselines are
difficult to estimate without a soil moisture calibration tar-
get as compared to the ET baselines, which can be estimated
fairly accurately only with a soil moisture calibration target.
This also calls for further work on how to improve soil mois-
ture calibration by targeting attributes such as field capacity,
wilting point, amplitude, or other soil moisture characteris-
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tics as proposed by Araki et al. (2022). Only one combination
of soil moisture and ET references was used in a joint calibra-
tion, and further testing by ensemble analysis is required to
establish guidelines on how to combine different references
and fully understand what specific attributes from soil mois-
ture and ET need to be targeted to extract valid baselines.

4.3 Irrigation frameworks, their strengths, and
weaknesses

The comparison of frameworks for irrigation quantification
is based on our four baseline framework estimates (ET_bf,
RZ-SM_bf, NS-SM_bf, and joint_bf) and three SM-based
inversion framework estimates (SMOS_if, SMAP_if, and
S1RT_if).

Mean irrigation estimates for the entire irrigated cropland
(Fig. 5) show that all estimates capture the irrigation sea-
sonality that is expected to peak during summer. The dy-
namics of the four baseline framework estimates are similar
because they are based on the same references and meteo-
rological forcing – likewise SMOS_if and SMAP_if. These
six estimates use similar DISPATCH downscaled references
and meteorological forcing and therefore produce generally
similar spatiotemporal irrigation patterns. The S1RT_if es-
timate seems to vary more with precipitation than SMOS_if
and SMAP_if (Fig. 5), which is probably an effect of the spa-
tially distributed soil parameters that are fitted for each pixel
to the precipitation and benchmark input. As mentioned in
Sect. 4.1, the S1RT_if estimates suggest the use of stored
irrigation water within the districts around May, seen as a
peak each May in Fig. 5, but based on the reoccurring irriga-
tion peaks each May, within each district, this could also be
explained by the reoccurring influence of vegetation that is
known to influence radar signals (Meyer et al., 2022). How-
ever, the temporal correlation is high between all seven esti-
mates, ranging between 0.69 and 0.97. Results from a tem-
poral and spatial correlation analysis are presented as a cor-
relogram in Fig. 6.

One of the apparent differences among the estimates
is a weaker response between precipitation and irrigation
amounts in the SM-based inversion framework compared to
the baseline framework as pointed out in Sect. 4.2, which
for SMOS_if and SMAP_if could be a consequence of sim-
plifying the ET calculation by implementing a water-based
limitation approach or maybe relate to the PET product used
as input. Dari et al. (2020) analyzed the contribution from
soil moisture and ET components of the SMAP_if estimate,
which showed a larger ET contribution during spring (when
precipitation and soil moisture content are high) than what is
estimated by the baseline frameworks in this study (Fig. 4).
The main purpose of using a rainfed hydrological model is to
estimate how much of the observed ET can be explained by
the precipitation input and thereby is embedded within the
baseline, making sure that when larger amounts of precipita-
tion input are available, the irrigation estimates will be low if

the baseline is well calibrated. PET estimates can vary sub-
stantially between readily available remote-sensing datasets
or estimates from meteorological data, which ultimately can
have a profound impact on the irrigation components if not
accounted for in the calibration (Kragh et al., 2023).

Overall, there is a tendency to underestimate irrigation
(Table 3), either suggesting that the rainfed baselines are too
high, that total input estimates are too low, or that the irri-
gation loss might be even larger. Underestimation is how-
ever expected to some degree for the SM-based inversion
framework estimates as each daily satellite overpass does not
provide full coverage. The RZ-SM_bf and joint_bf estimates
differ the least from the benchmark, in total underestimating
irrigation with 6 and 2 mm yearly and overestimating with
47 and 37 mm on a seasonal basis (Table 3). The S1RT_if
estimate differs the most from the benchmark because it es-
timate much lower irrigation in between irrigation seasons,
and in addition, the S1RT_if also underestimates irrigation
during the main irrigation season. Yearly S1RT_if differs by
−375 mm, but both show better performance on a seasonal
basis by −285 mm (Table 3). As mentioned in Sect. 4.2, a
question may arise as to whether the benchmark in between
irrigation seasons does represent water used for irrigation.
The ET_bf, NS-SM_bf, SMOS_if, and SMAP_if estimates
differ yearly by −154, −143, −112, and −135 mm, respec-
tively. ET_bf and SMOS_if perform slightly worse on a sea-
sonal basis by −208 and −144 mm, respectively (Table 3)
because they tend to overestimate irrigation in between irri-
gation seasons, which compensates for the underestimation
during the main irrigation season. SMAP_if performs the
same on a seasonal basis by −138 mm. NS-SM_bf performs
better on a seasonal basis by−76 mm because it behaves rea-
sonably well during the main irrigation on a more similar
level to the RZ-SM_bf and joint_bf approaches.

When comparing irrigation patterns from the baseline
framework with aerial photos the irrigation patterns match
the surface greenness (Figs. 1 and 7), which is incorporated
through the MODIS vegetation products by the ET reference,
DISPATCH downscaling, and model vegetation input. The
baseline framework estimates are very similar as they are
produced by the same conceptual model (even though the
calibration parameters are different), meaning that most of
the spatial distribution of the irrigation estimates is locked
within the model inputs.

The similarities between the SMOS_if, SMAP_if, and the
baseline framework estimates are high, which is not that sur-
prising as they all use the same SMOS DISPATCH refer-
ence or a similar SMAP DISPATCH reference. The spatial
distribution of S1RT_if irrigation is different from the other
estimates. However, by closer comparison, there are similar
large-scale features between all seven estimates which, gives
confidence in the S1RT_if estimate. An initial analysis within
the study area of the DISPATCH downscaled products and
the soil moisture datasets they originate from showed that the
irrigation signal was forced into the soil moisture reference
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Figure 5. Mean area irrigation estimates from the four baselines and three SM-based inversion frameworks. Estimates are shown for all four
irrigation districts for the period 2016–2017. The gray shaded area shows a weighted area average benchmark with and without irrigation
water losses due to irrigation efficiency. Dark blue bars show precipitation amounts.

Table 3. Yearly and seasonal (April–October) irrigation estimates (mm) for different approaches and frameworks. The italic values show
the under- or overestimation of irrigation compared to a weighted area average benchmark in the last column. ∗ Benchmark data are without
observations from September to December 2017 for comparison with SMOS_if and SMAP_if estimates.

Estimates RZ-SM_bf Joint_bf ET_bf NS-SM_bf SMOS_if SMAP_if S1RT_if Benchmark

2016 year 553 (+25) 535 (+10) 477 (−46) 465 (−49) 495 (−37) 436 (−96) 375 (−157) 532
2017 year 576 (−19) 576 (−8) 467 (−108) 455 (−94) 409 (−75) 445 (−39) 386 (−217) 603 484∗

sum year 1128 (+6) 1111 (+2) 944 (−154) 920 (−143) 905 (−112) 881 (−135) 760 (−375) 1135 1016∗

2016 season 460 (+37) 437 (+16) 328 (−94) 396 (−21) 367 (−56) 323 (−100) 318 (−105) 423
2017 season 504 (+10) 502 (+21) 366 (−114) 402 (−55) 314 (−88) 364 (−38) 320 (−180) 499 401∗

Sum season 963 (+47) 939 (+37) 694 (−208) 799 (−76) 681 (−144) 687 (−138) 638 (−285) 922 824∗

by downscaling, which is another reason why the Sentinel-1
RT product is an interesting reference to include and further
investigate.

The uncertainty introduced by using a daily soil moisture
reference is not only an issue within the baseline framework
but is something that also needs to be handled within the
SM-based inversion framework. The SMOS_if and SMAP_if
estimates are temporally aggregated from daily to 5 d es-
timates, which in addition to the lower spatial resolution
(1 km) than the baseline estimates will result in a smoother
irrigation pattern when compared to the baseline framework
estimates (Fig. 7). For the S1RT_if estimate, aggregation
of daily irrigation is less of a limiting factor because the
soil parameters for each irrigated cell are calibrated against
precipitation and benchmark data, thus accounting for fine-
scale soil moisture heterogeneity, which may lead to an over-
parametrization.

The main advantage of the baseline framework is the con-
sistency between the soil moisture and ET baselines mak-
ing it unlikely that one component will control the calibra-
tion. For example, if the PET estimate used in the SM-based
inversion framework is too high, the contribution from the

soil moisture and drainage components will need to be very
low to correctly simulate the precipitation input, since ET
will dominate. Thus, adjusting the calibration parameters
will mostly be controlled by the ET component (Dari et al.,
2022b). However, the calibration of a hydrological model is
not trivial as it includes many parameters to correctly split the
precipitation input into the observed spatiotemporal patterns
of rainfed soil moisture and ET, compared to the SM-based
inversion framework that needs fewer parameters and uses
the soil moisture balance equation to directly convert the ob-
served changes into a total of precipitation and irrigation.

The soil moisture component within the SM-based inver-
sion framework is easier to handle as changes are directly
converted to a volume based on calibrated soil parameters
that contain information about soil layer depth and poros-
ity. This eliminates the main issue within the baseline frame-
work that arises from the mismatch between the unknown
remote-sensing depth of investigation and the static topsoil
layer depth of a conceptual model (López et al., 2017; Re-
ichle and Koster, 2004), which makes it difficult to fully cal-
ibrate all sensitive soil parameters when rescaling is needed.
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Figure 6. Correlogram between four baseline and three SM-based
inversion frameworks. The analysis is separated between the spatial
correlation (red area) of irrigation maps (Fig. 7) and the temporal
correlation (green area) of monthly irrigation amounts (Fig. 5).

The ET component on the other hand is easier to handle
within the baseline framework because the term can be ad-
justed to rainfed conditions through calibration, which is not
a possibility within the SM-based inversion framework used
in Dari et al. (2020) as the term does not contain any calibra-
tion parameters causing the ET component to dominate how
the total input is separated between the terms based on the
PET estimate used. In Dari et al. (2023) the ET component is
calibrated through the adjustment of a bias correction factor
to account for PET uncertainties, but the calibration target
changes from rainfed to irrigated conditions. Nevertheless,
this circumstance does not represent a limiting factor for the
algorithm applicability, as it can also be implemented where
reference irrigation data for calibration are not available by
accepting a higher degree of uncertainty.

4.4 Influence of uncertainty

Based on the structure of the frameworks and their calibra-
tion strategies, the influence of various uncertainty sources
can have different impacts on the irrigation estimates. This
section aims to provide a brief overview of the main un-
certainty sources and how much they impact the considered
frameworks (Table 4).

Precipitation uncertainties have an indirect effect on the
baseline framework which can potentially be mitigated by
the calibration of soil moisture and ET baselines in the hy-
drological model (Kragh et al., 2023). In the soil-moisture-
based inversion framework, the influence is more direct as
precipitation is used both as a calibration target and refer-
ence for quantifying irrigation water input as a residual (Dari
et al., 2020).

ET uncertainties mainly become very apparent due to
large differences across different remote-sensing-based ET
retrievals. The baseline framework addresses this uncertainty
through model calibration to compensate for satellite biases
(Kragh et al., 2023), whereas the soil-moisture-based inver-
sion framework can compensate by introducing a correction
factor (Dari et al., 2023).

Soil moisture uncertainties mainly relate to the un-
known sensing depth of the satellite systems. The soil-
moisture-based inversion framework addresses this uncer-
tainty through the calibration of a model parameter represent-
ing the water capacity of the soil layer (Brocca et al., 2018),
where the baseline framework applies the rescaling of model
estimates of soil moisture to account for differences between
model and satellite responses to precipitation. Overall, the
comparison of model estimates and satellite observations of
soil moisture remains a challenge (López et al., 2017), which
is avoided in the soil-moisture-based inversion framework by
directly converting observed soil moisture changes into irri-
gation. Overall, a common source of uncertainty related to
soil moisture concerns its spatiotemporal resolution, which
should match the spatiotemporal dynamics of irrigation (i.e.,
the spatial extent and the frequency) to catch the irrigation
signal (Dari et al., 2022a; Zappa et al., 2022).

The uncertainties in the spatial resolution mainly relate to
how well it allows the model domain to be classified into
rainfed and irrigated cropland. The baseline framework is
very dependent on a good classification of rainfed and ir-
rigated cropland to be used in the calibration (Koch et al.,
2020), whereas the soil-moisture-based inversion framework
is less sensitive since it can use both rainfed and irrigated
cropland in the calibration (Dari et al., 2020, 2023). The
uncertainties originating from the temporal resolution re-
late more to the calibration strategy and framework. The
baseline framework works better with more robust mean
monthly observations compared to uncertain daily observa-
tions, whereas the soil-moisture-based inversion framework
requires a higher temporal resolution for the calibration.

The uncertainties in model parameters relate to how they
are defined and spatially distributed. The baseline model
has well-described physically based parameters that are dis-
tributed based on spatially distributed catchment character-
istics using the multiscale parameter regionalization frame-
work (Schweppe et al., 2022), whereas the soil-moisture-
based inversion framework applies coefficients describing
processes either homogeneously or spatially distributed by
extensive calibration of pixel-based coefficients (Dari et al.,
2023). Dari et al. (2020) found that parameter uncertainty
was low for the soil-moisture-based inversion framework
within a restricted region with homogeneous soil texture.
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Figure 7. Mean monthly main irrigation season maps for 2016 and 2017 from four baseline and three SM-based inversion frameworks. The
main irrigation season is assumed to be April–October.

Table 4. Overview of how different uncertainty sources affect the two frameworks. The +, ++, and +++ symbology represents to what
degree the framework may be influenced by an uncertainty source, where (+) is not much influenced and (+++) is more influenced.

Framework Precipitation ET Soil moisture Resolution Parameters

Soil moisture inversion ++ +++ ++ +++ +

Baseline + ++ +++ +++ +

5 Conclusion

This study aimed to compare the different state-of-the-art ap-
proaches and frameworks to quantify irrigation at a regional
scale. To assess the strengths and limitations of irrigation
estimates, we compared four separate and joint calibrations
against soil moisture and ET references within a common
baseline framework. Additionally, we compared three irriga-
tion estimates derived from the SM-based inversion frame-
work.

This study underlines the advantage of considering both
soil moisture and ET residuals in a joint approach, by esti-
mating irrigation during the main irrigation season (April–
October) with an error of 37 mm to the benchmark (922 mm)
over 2 years from 2016–2017. Through correlation analysis,
we found that the baseline and SM-based inversion frame-
works were able to produce similar spatial and temporal ir-
rigation patterns with a correlation between 0.51–0.64 and
0.69–0.97, respectively, when using the same reference. The
spatial correlation with irrigation estimates from the S1-
RT_if was lower compared to the other estimates. However,
the Sentinel-1 RT product used was the only independent soil
moisture product in the inter-comparison and produced tem-
poral irrigation dynamics that correlated well with all other
estimates (0.69–0.86), making it an interesting product to in-
vestigate further. The study also highlighted the importance

of calibration strategies being tailored to both soil moisture
and ET targets to estimate the right magnitudes of contri-
bution from soil moisture and ET changes induced by irriga-
tion to ultimately form more robust estimates. Also, the base-
line framework was able to account for precipitation patterns
through the rainfed baselines, which resulted in more plausi-
ble temporal dynamics of the irrigation estimates than what
was expected from the benchmark observations. This is an il-
lustrative example of how we can gain knowledge about the
hydrological system through hydrological models.

We found that uncertainty from daily soil moisture obser-
vations must be accounted for to quantify irrigation, either
through the calibration or aggregation of estimates. We also
found that the near-surface soil moisture approach could have
the potential to estimate irrigation solely from soil moisture
residuals, but further work on model calibration of a near-
surface soil moisture baseline is needed.

Data availability. Irrigation estimates from the SM-based inver-
sion framework using Sentinel-1 RT soil moisture (Dari et al., 2023)
are freely available from https://doi.org/10.5281/zenodo.7341284
(Dari et al., 2022c). The four irrigation estimates from the baseline
framework are available upon personal request (sjk@geus.dk).
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