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Abstract. Lakes are directly exposed to climate variations
as their recharge processes are driven by precipitation and
evapotranspiration, and they are also affected by groundwa-
ter trends, changing ecosystems and changing water use.

In this study, we present a downward model development
approach that uses models of increasing complexity to iden-
tify and quantify the dependence of lake level variations on
climatic and other factors. The presented methodology uses
high-resolution gridded weather data inputs that were ob-
tained from dynamically downscaled ERA5 reanalysis data.
Previously missing fluxes and previously unknown turning
points in the system behavior are identified via a water bal-
ance model. The detailed lake level response to weather
events is analyzed by calibrating data-driven models over dif-
ferent segments of the data time series. Changes in lake level
dynamics are then inferred from the parameters and simula-
tions of these models.

The methodology is developed and presented for the ex-
ample of Groß Glienicker Lake, a groundwater-fed lake in
eastern Germany that has been experiencing increasing wa-
ter loss in the last half-century. We show that lake dynamics
were mainly controlled by climatic variations in this period,
with two systematically different phases in behavior. The in-
creasing water loss during the last decade, however, cannot
be accounted for by climate change. Our analysis suggests
that this alteration is caused by the combination of regional
groundwater decline and vegetation growth in the catchment
area, with some additional impact from changes in the local
rainwater infrastructure.

1 Introduction

One of the most visible effects of climate change in recent
years has been the decline in surface water levels, especially
in lakes (Woolway et al., 2020). However, not all lakes react
to changes in climate in the same way; some are more ex-
posed to climate variations, while others are more exposed
to anthropogenic effects (Mason et al., 1994). Understand-
ing the drivers of lake level dynamics and their importance is
thus essential for the development of mitigation measures or
conservation strategies.

The response of lake levels to changing meteorological
conditions has been a focus of research for many decades,
but in recent years, an increased interest in water availability
has broadened this research topic, with more and more cases
waiting for practical solutions (Kebede et al., 2006; Schulz et
al., 2020; Getachew et al., 2021; Woolway et al., 2020). This
broadened interest often comes with the challenge of limited
data availability, especially in remote areas or at the begin-
ning of research campaigns (Woolway et al., 2020; Altunkay-
nak, 2007; Solomatine and Ostfeld, 2008). Hence, a practical
approach that can work in such conditions is needed.

Here, we revisit the downward model development ap-
proach of Sivapalan et al. (2003) as a way of tailoring hy-
drological models to the data availability. Downward model
development starts from large-scale, low-complexity mod-
els and then progresses to the smaller-scale processes (Hra-
chowitz and Clark, 2017). We demonstrate that such a down-
ward model development approach is suitable for lake system

Published by Copernicus Publications on behalf of the European Geosciences Union.



4332 M. Somogyvári et al.: A hybrid data-driven approach to analyze the drivers of lake level dynamics

understanding, with the goal of identifying the key drivers of
lake level dynamics. In our case, these drivers may be cli-
matic variations or changes in natural water fluxes due to
land cover changes or groundwater trends but could also be
changes in water use and water infrastructure. We propose
a hybrid data-driven methodology, where the system under-
standing gained at a specific level of model complexity is
used for the design of the higher-complexity models. We start
with a water balance model, which then informs the develop-
ment of a linear regression model operating at a higher tem-
poral resolution. The development may then continue with
non-linear models (e.g., artificial neural networks) or with
the higher-temporal-resolution or spatially distributed mod-
els of the catchment. The downward modeling can also fit
organically into the development of process-based models,
as will be shown.

Water balance modeling, as in our case, is often an initial
step in understanding hydrological systems. Water balance
models do not require a complete system understanding to
function properly (Xu and Singh, 1998) but can capture very
well the macro-scale behavior of the system based on a set of
influxes and outfluxes. On a monthly timescale, these models
only need a handful of hydrological variables and, hence, will
often work in limited-knowledge cases.

Mason et al. (1994) used water balance modeling to sim-
ulate the responses of the largest closed lakes around the
globe and showed that lakes act as natural low-pass filters
over any sudden variation in aridity. Crapper et al. (1996)
used such models to predict future levels of Lake Goran in
Australia by taking the cumulative sum of the predicted stor-
age change from the model. Kebede et al. (2006) used a
monthly water balance model at Lake Tana and identified
that the main driver of lake level change was the variation
in rainfall and not human-induced activities. Schulz et al.
(2020) showed that variations in the levels of Lake Urmia
were mainly driven by climate, while local agricultural wa-
ter extraction had little effect on the overall trend. However,
the authors also showed that, even without affecting the trend
or even some dynamic variations, the abstractions weakened
the resilience of the lake in relation to climatic changes and
that the lake levels could be stabilized by limiting abstraction
rates.

The main issue in water balance modeling comes from its
highly simplified nature; while these models are robust and
easy to model with, they are very general and can overlook
some of the details that could be relevant to the hydraulic
system. One such issue is how to handle any time lag be-
tween the inputs and the lake level changes. This issue is
well known; Langbein (1961) already suggested incorporat-
ing the time lag with geometric weight functions into a wa-
ter balance model. However, most studies tend to overlook
this issue by simply modeling on coarser timescales (e.g.,
monthly, yearly).

At the other end of the complexity spectrum, process-
based models are constructed via simulating the individual

hydrological (physical) processes that affect the lake dynam-
ics, including spatially and temporally differentiated inflows
and outflows, lake bathymetry, weather effects, and thermal
or chemical forcing (Beletsky et al., 2013; Laval et al., 2003;
Valipour et al., 2023). Process-based models can resolve the
behavior of the lakes at greater spatial and temporal reso-
lutions and can help to study and predict the hydrological
evolution of lakes even under complex environmental condi-
tions. Lake models can be expanded to include further phys-
ical and biochemical processes such as water quality; hence,
their application range is very broad.

Lake Erie, for example, has been subject to extensive mod-
eling work to support adaptive management (Arhonditsis et
al., 2019). Getachew et al. (2021) combined water balance
and process-based modeling in a prediction framework for
lake levels at Lake Tana. The process modeling of these stud-
ies focused on the recharge dynamics using the Soil Water
Assessment Tool (SWAT), but there is also extensive liter-
ature using groundwater modeling software such as MOD-
FLOW that can better handle lake–groundwater interactions
(Lu et al., 2022; Dehghanipour et al., 2019). The downside of
process-based models is their time-intensive setup, their large
number of parameters requiring extensive data and their large
computational costs. This is critical in situations where avail-
able data and prior knowledge are limited. In the absence of
comprehensive data to run and parameterize process-based
models, their theoretical superiority over simple water bal-
ance models vanishes.

As models of intermediate complexity, data-driven mod-
els are based on readily available observations of the inves-
tigated system, while the internal system mechanics are ap-
proximated using statistical methods. The underlying system
behavior is thus approximated from the mathematical rela-
tions between the system input and output data (Souza et al.,
2016).

In hydrology, data-driven methods are typically used for
prediction or management, for which they are frequently em-
bedded into a system dynamics model framework that goes
beyond natural science hydrology (Hassanzadeh et al., 2012;
Alifujiang et al., 2017). The term data-driven modeling is of-
ten used as an overarching term for a wide variety of novel
machine learning methods (Zhu et al., 2020b; Elshorbagy et
al., 2010a) but usually excludes methods, such as time series
analysis or regression, that are also data-driven by design.

Time series analyses methods often only consider the lake
level time series themselves, predicting them based on their
own past values. Şen et al. (2000) analyzed the time series
of Lake Van in Turkey with linear and non-linear trends
and combined them with a Markov model to predict future
lake levels. Ebtehaj et al. (2019) based a linear prediction on
the spectral decomposition of time series. Multiple studies
showed the applicability of autoregressive integrated moving
average (ARIMA) models in the context of lake water man-
agement. ARIMA models use linear regression combined
with moving averages and are suitable for short-term time se-
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ries predictions. Hence, the approach is very popular for pre-
diction applications in hydrology (Ghashghaie and Nozari,
2018; Irvine and Eberhardt, 1992; Montanari et al., 1997).
However, simple time series approaches are limited as they
do not use any weather forcing as input, as pointed out by
Kakahaji et al. (2013). Kakahaji et al. (2013) compared mul-
tiple prediction methods based on the Lake Urmia dataset,
including water balance modeling, linear predictor models
and different machine learning approaches (multi-layer per-
ceptron and fuzzy networks). The authors concluded that, in
data-scarce scenarios linear approaches, are preferred, while
non-linear machine learning methods could only outperform
them when properly trained.

Linear regression has been widely used to model the re-
sponses of hydrological systems to rainfall (Clarke, 1973;
Tasker, 1980). Linear regression assumes a linear relation-
ship between the model input and output, with the linear co-
efficients calibrated based on the misfit of the model (usually
by the ordinary least-squares method). As this is an easy-to-
use and robust methodology, it has been the standard data-
driven approach in geosciences for decades. Linear models
are usually fitted deterministically, but they are also suitable
to be implemented within Bayesian frameworks for sensitiv-
ity analysis and uncertainty quantification (Kroll and Song,
2013). In more recent studies, linear regression is still widely
used as the reliable baseline to compare other more advanced
methodologies. For example, Elshorbagy et al. (2010a, b)
compared the predictive capabilities of six different meth-
ods using linear models as a baseline. Linear models were
similarly used by several studies to show the advantages of
machine learning methods (Heuvelmans et al., 2006; Sahoo
and Jha, 2013).

Machine learning applications are gaining increasing pop-
ularity in hydrological practice, for example, for rainfall–
runoff modeling (Kratzert et al., 2019; Sahoo et al., 2019;
Klotz et al., 2022), water resources management (Oyebode
and Stretch, 2019), drought prediction (Li et al., 2021) or
lake level prediction (Kisi et al., 2012; Demir and Yaseen,
2023). Machine learning methods provide black-box solu-
tions with a non-linear internal mathematical structure. They
can be used as predictors based on the lake level variation
data only (Zhu et al., 2020a), or they can be used to predict
dynamics based on forcing data (Páliz Larrea et al., 2021).
Machine learning models typically have a very large num-
ber of parameters. Proper calibration of parameters requires
large datasets, which again limits the applicability of these
approaches. An even larger issue regarding the context of our
study is the black-box nature of machine learning methods:
it is very challenging to analyze individual processes when
the black-box method is designed to mimic the overall be-
havior of the system (McGovern et al., 2019). This is also
true for most other data-driven approaches as they are de-
signed for prediction rather than understanding, but models
of lower complexity, e.g., regression-type models, could still
be analyzed with relative ease.

In this paper we present a case of limited prior knowledge
where a process-based model cannot yet be set up with the re-
quired level of confidence, although predictions of lake level
change and an assessment of potential drivers are increas-
ingly demanded by policymakers and stakeholders. We use
the case of Groß Glienicker Lake, a groundwater-fed lake at
the outskirts of Berlin, Germany, that has experienced dras-
tic water losses over the last decades. This loss is not sys-
tematically observed in all lakes of the region (Lischeid et
al., 2021); hence, further drivers beyond climatic changes
need to be examined, e.g., water infrastructure and land use
changes.

We follow the downward model development approach as
follows: by means of a monthly water balance analysis, we
identify and quantify missing water fluxes in the hydraulic
system and use this as a baseline to identify any turning
points and changes over the investigated period. This informs
a daily data-driven linear model that can unfold the lake level
responses to specific events in more detail. By identifying the
main drivers of the lake level dynamics and system changes,
our study will support the development of a future process-
based model, while the results can already be used in local
water management initiatives.

2 Methodology

In this study, we propose a top-down model development ap-
proach (Sivapalan and Young, 2005; Hrachowitz and Clark,
2017) to understand the lake level dynamics, starting from
simple water balance models and moving to more complex
data-driven approaches, with an outlook toward what we can
learn from these for even more complex process-based mod-
eling. We propose a hybrid data-driven modeling framework,
consisting of the following steps:

1. monthly water balance modeling to quantify fluxes

2. identifying the main turning points in the system using
the water balance residuals

3. daily linear regression modeling between the turning
points

4. model response analysis to isolated weather forcings

5. further analysis of steps 3 and 4 with non-linear ap-
proaches of increasing complexity (if needed)

6. triangulation of findings using independent data.

Our proposed methodology requires the development of
multiple models. First, a water balance model is created on
the monthly scale that helps in quantifying the fluxes of the
hydraulic system and that helps in identifying any major
turning points during the investigation periods. The evolu-
tion of the water balance residuals can indicate systematic
changes, like increases in outflow from the catchment.
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Next, daily-scale data-driven models calibrated over the
periods between the turning points are compared in order to
analyze the differences in their lake level responses. We start
this analysis using linear regression models due to their sim-
plicity and transparency. The model responses to the different
weather forcings (precipitation, evapotranspiration) are com-
pared separately as well to understand the system in detail.

If linear models cannot capture the system behavior suf-
ficiently, we propose increasing the model complexity using
non-linear models, such as artificial neural networks. In our
study, the linear approach provided good fits and enough in-
sights into system understanding based on the available data
– the fact that the system seems to behave linearly is in it-
self an interesting result. As the last step, the findings are
validated against independent information. In the following,
first we present the meteorological forcing data and the way
these were obtained. Then, we present the methodologies of
the water balance and linear regression approaches.

2.1 Forcing meteorological data

The proposed methodology relies on local meteorological
data from the investigated lake catchment, which is achieved
by using data from the second version (v2) of the Central
European Refined analysis (CER) (Jänicke et al., 2017), a
gridded meteorological dataset for central Europe with a fo-
cus on the region of Berlin–Brandenburg. As with its pre-
decessor, CER v1, the CER v2 dataset has been produced
by means of an observation-based model approach. Global
ERA5 reanalysis data have been dynamically downscaled
using the Weather Research and Forecasting (WRF) model
and validated against 211 weather stations. The methodolog-
ically has been comprehensively described and successfully
applied in different regions of the world – for instance, in
High Asia (Wang et al., 2021; Maussion et al., 2014). The
CER v2 dataset covers the time period from 1980 to 2022
(with continuous updates for the most recent years) using a
convection-resolving approach at the highest spatial resolu-
tion of 2 km horizontal grid spacing. Data from 2002 to 2022
have been used in this study since the CER v1 dataset, which
dates back only to 2002, was used to test the robustness of
our methodology.

There are two advantages to using a dynamically down-
scaled gridded dataset instead of relying on interpolated sta-
tion data. First, such an approach provides an estimate of ac-
tual evapotranspiration for each grid point using land cover,
vegetation and soil data and dynamic data on soil moisture,
while station-based observations are typically restricted to
potential evapotranspiration (lysimeters or eddy flux towers
would be available at only very few locations). Second, this
approach explicitly takes into account mesoscale heterogene-
ity of weather systems, which is of particular importance for
precipitation and actual evapotranspiration with high vari-
ability at spatial scales of a few kilometers or less. When
we tested our lake models using weather station data, we

were unable to obtain the same model fit qualities as with the
CER v2 dataset. The largest differences happened after ex-
treme rainfall events, where, due to the spatial variations, the
recorded amount of rainfall could differ a lot from the rainfall
at other locations. Because summer storms have a strong im-
pact on the lake levels, we could not close the water balance
models only using weather station data.

2.2 Water balance modeling

In groundwater-fed lake systems without any surface wa-
ter connections, the lake level dynamics will be mainly
dependent on the inflow from the groundwater. This flow
is controlled by the groundwater level–lake level relation.
Hence, the groundwater dynamics and lake level dynamics
are strongly related, and the lake level changes can be used as
an indicator for the groundwater level changes in the catch-
ment. The water balance equation for a groundwater-fed lake
system can be formulated as follows:

1Slake(t)= Plake(t)−EA,lake(t)+Fin(t)−Fout(t)+ ε, (1)

where 1Slake is the change in lake water storage, Plake is the
total precipitation over the lake, and EA,lake is the total lake
evaporation. Fin and Fout are, in this case, the subsurface in-
flow and outflow of water to the lake, which can be combined
into the net subsurface water inflow (1F ). The final term, ε,
explains any remaining errors and uncertainties in the data. If
there were any surface water connections to the lake, an extra
net surface water inflow would have to be accounted for. All
terms in Eq. (1) are expressed in units of volume over time
(e.g., in m3 d−1 or m3 month−1), with fluxes being integrated
over the lake surface area.

Precipitation (Pcatchment) and actual evapotranspiration
(ETA,catchment) over the (subsurface) catchment area, and not
just over the lake, strongly influence subsurface flow pro-
cesses that feed the lake. However, these effects show some
time delay. Therefore, the water balance equation for the
catchment reads as follows:

1S(t)=

∫ t

t−τ∗
Pcatchment(τ )dτ

−

∫ t

t−τ∗
ETA,catchment(τ )dτ +1F ′(t)+ ε.

(2)

Here, the first integral sums precipitation over the catchment
back over time until a precipitation event ceases to cause
an inflow into the lake at time t , while the second integral
does the same for actual evapotranspiration. We denote this
time interval with τ ∗, which we can also call the hydraulic
memory of the system, which is sometimes called the lake
response time in the literature (Mason et al., 1994; Gong et
al., 2015). Here, 1S denotes the change in storage over the
whole catchment, which is mainly the change in groundwater
storage. With this assumption, storage changes in the unsat-
urated zone are neglected. In the model, this time represents
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the time water spends traveling through the unsaturated zone
and then the pressure impulse traveling through the system.
The hydraulic memory of the system is estimated from the
observed data.

In Eq. (2), precipitation over the lake is included in the
precipitation of the catchment, and evaporation is included
in the catchment evapotranspiration term. The modified wa-
ter balance equation leaves1F ′ to account for any remaining
net subsurface inflow unaffected by climatic forcing – for in-
stance, water abstractions, in which case1F ′ would be nega-
tive – or diverging regional groundwater flows. If these flows
are approximately constant over the investigated time period,
they will not appreciably affect the lake level dynamics.

Considering the discrete nature of daily input data, the in-
tegrals can be substituted by sums:

1S(t)=
∑τ∗

i=1
Pcatchment(t − i)

−

∑τ∗

i=1
ETA,catchment(t − i)+1F

′
+ ε.

(3)

The complete water balance can then be used to esti-
mate the changes in catchment storage. To use such model
for the lake level dynamics, the catchment storage change
(1S) needs to be converted to lake level change (1z). Lake
level change can be estimated from lake storage change us-
ing a bathymetric model, but this approach is not suitable
for catchment storage. Hence, we used an assumption that
lake level changes are linearly related to catchment storage
changes. We based this assumption on the fact that lake level
changes are relatively small compared to the scale of the
catchment and that the catchment geometries are simple in a
lowland, sedimentary geological setting. The catchment stor-
age change–lake level change relation reads as follows:

1z(t)= α1S(t)+β. (4)

The slope (α) and intercept (β) can be estimated by opti-
mizing the fit between the observed and modeled lake level
changes. In simpler hydrological systems (such as our case),
α could equal to 1, and β could be equal to zero. The unit of
α is one over area (m−2) to account for the conversion from
the change in volume to the change in depth, while the unit
of β is the same depth over time as for 1z (e.g., md−1 or
mmonth−1).

The water balance equation is closed by calibrating the
1F value, aiming to ensure the best fit between the observed
and modeled lake level changes. To characterize the fit qual-
ity, we use the R2 score metrics, i.e., the coefficient of de-
termination. The calibration is done via a simple grid search
by testing a series of values with reasonably small intervals
between them.

After the water balance equation is closed, the remaining
residuals (ε) are analyzed to identify any systematic trends
or turning points in the system. Turning points can be identi-
fied as the starting point of a continuous increase or decrease
in the residual values (see Fig. 5 for example). To quantify

these effects, transient fluxes can be introduced to the water
balance, with constant values within certain time intervals.
The calibration of such fluxes is done similarly, using a grid
search.

2.3 Data-driven modeling

Data-driven models use the statistical relationship between
the model input data and the observed outputs. Based on
the modified discrete water balance equation (Eq. 3), we can
frame the general modeling problem as follows:

1z(t)=

f
(
P(t − τ ∗), . . .P (t),ETA(t − τ

∗), . . .ETA(t)
)
+ ε.

(5)

This means that we are looking for the functional relation-
ship between the meteorological input data (fluxes in units of
mmd−1 considering a daily timescale) and the observed lake
level changes (in md−1). This equation can be amended by
additional input data, like data on water abstraction (if such
data are available).

The simplest function that can be used in this model is a
linear function, which would read as follows:

1z(t)=a+ bP,−τP(t − τ
∗)+ bP,−τ+1P(t − τ

∗
+ 1)

+ ·· ·+ bP,0P(t)+ bET,−τET(t − τ ∗)+ ·· ·
+ bET,0ET(t)+ ε,

(6)

where a is the intercept of the linear function, bP,−τ+i are the
linear coefficients for precipitation for the time steps τ + i
in the past, and bET,−τ+i are the respective coefficients for
actual evapotranspiration. Although this is a relatively sim-
ple formula, the function could have a high dimensionality,
which increases with the memory τ ∗ and the number of in-
put features F (f : RFτ∗→ R). This is often referred to as a
multilinear problem in the literature (Sahoo and Jha, 2013).

The linear model can be split into two sub-models to in-
vestigate the individual responses to precipitation and evap-
otranspiration:

1zP (t)= bP,−τP(t − τ
∗)+ ·· ·+ bP,0P(t), (7)

1zET(t)= bET,−τET(t − τ ∗)+ ·· ·+ bET,0ET(t). (8)

Optionally, input data might be filtered prior to the anal-
ysis. In this study, we used Butterworth filters from the
scipy.signal Python package. For the autocorrelation analy-
sis in Sect. 4.1, a band-stop filter was used, which removes
the 365 d period signal from the lake level data. For the plots
of the linear regression analysis (Figs. 6–9), a low-pass filter
was used over the lake level data, with a cutoff frequency of
20 d. This was necessary for the visualization in Fig. 7, where
the higher-frequency components would appear as noise over
the coefficients. A comparison plot of the filtered and unfil-
tered data is shown in Fig. S1 in the Supplement.

To make the linear model coefficients more comparable
for the different input types, the input data may be standard-
ized as well. Standardization rescales the input time series to
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have a zero mean and a standard deviation of 1. Standardiza-
tion may also be necessary for non-linear machine learning
approaches.

The linear model is fitted using ordinary least-squares re-
gression from the scikit-learn Python library (Pedregosa et
al., 2011). The method minimizes the sum of squared errors
between observed and simulated data using an explicit for-
mula of a projection matrix.

The lake response time and/or system memory can be es-
timated in multiple ways; in this, study we used two separate
methods. First, the k-lag autocorrelation of the lake level data
was calculated.

AC(τ )= corr(z(x),z(x− τ)) (9)

The k-lag autocorrelation shows the time dependence of the
lake level data and gives a good indication of the ideal mem-
ory time frame for the modeling (Seeboonruang, 2015). A
second approach, which is often used in rainfall runoff mod-
els, is fitting and evaluating a series of linear regression mod-
els with different memory windows. With this approach, the
fit qualities of the different models are compared to identify
the lake response time.

3 Study site and data

We applied this method to Groß Glienicker Lake, a
groundwater-fed lake system at the border of Berlin and the
federal state of Brandenburg in Germany. Like several lakes
in the region, Groß Glienicker Lake has shown a drastic loss
in lake levels over the last half century, with an increasing
rate over the last decade (Fig. 1b).

The lake catchment delineated from topographic data
spans over 33 km2, mainly consisting of forest (20 km2),
cropland (6 km2) and urban area (4 km2). The main recharge
area is the heathland west of the lake dominated by sandy
soils. The regional groundwater flow direction points south-
east, toward the Havel River, a major tributary of the river
Elbe, but due to the lack of groundwater wells and low gra-
dients, the exact groundwater flow system is currently not
known.

Two lakes are located within the catchment, i.e., Sacrower
Lake and Groß Glienicker Lake. The latter has been chosen
for this study because it is a focus of the local concerns. The
lake nevertheless is representative of declining lake levels
that are widespread in the Berlin–Brandenburg region and
beyond. Both lakes are groundwater fed, with no active sur-
face water connections, similarly to many other lakes in the
region (Lischeid, 2021). A connection between the two lakes
used to exist, but it has been closed since 1996 due to the
declining levels in both lakes.

Groß Glienicker Lake has been extensively studied from
a hydrochemical point of view because, between 1970 and
1990, a large amount of untreated sewage was regularly dis-
charged into the lake from a nearby army base, leading to

eutrophication. To mitigate the effects of this pollution, a
restoration campaign started in the early 1990s, which is well
documented (Wolter, 2010; Kleeberg et al., 2012; Heinrich et
al., 2022). There are, however, only a limited number of stud-
ies that focused on lake level dynamics, although the contin-
uous decrease in lake levels has been a concern for the local
communities and authorities for a while.

The lake is located on the administrative boundary of
the German federal states of Berlin and Brandenburg. This
makes the accessibility of infrastructural and water manage-
ment data complicated. From the Berlin side, data regarding
water supply, wastewater management and canalization maps
are available on the city web page for a period of multiple
years. From the Brandenburg side, geological information,
as well as limited information on the rainwater infrastructure
(e.g., manhole cover locations), is available. The lake levels
are monitored by an automatic measurement station at the
south side of the lake operated by the city of Berlin. Daily
lake level data starting from January 1970 are openly avail-
able on the website Wasserportal Berlin. The hypsographic
curve based on the bathymetric model of the lake shows a lin-
ear relation between the lake volumes and lake levels (Jahn
and Witt, 2002, p. 66), but note that this relation cannot be
used to link the lake levels to the catchment storage.

The catchment shown in Fig. 1a was delineated using sur-
face topography data; hence, it represents the surface catch-
ment. This is used throughout the analysis instead of the un-
known groundwater catchment. Due to the integrative nature
of our analysis and the focus on the lake level dynamics, this
is not a big issue, but it could cause uncertainties when the
exact quantification of the hydrological fluxes is needed (see
Sect. 4.2). The catchment is located in a lowland area, with an
elevation range of 40 m. The unsaturated zone depth is up to
15 m (Geoportal Brandenburg – Detailansichtdienst, 2024).

The Central European Refined analysis (Jänicke et al.,
2017) provides atmospheric data for the investigation region
of Berlin–Brandenburg on a spatial grid of 2 km and at a tem-
poral resolution of hours. In this study, we used the daily ag-
gregated data of precipitation and actual evapotranspiration,
integrated over the catchment area of the lake. Actual evap-
otranspiration is calculated from atmospheric parameters us-
ing static land use data. The exact land use composition of
the catchment was estimated from the 2015 remote-sensing-
based land cover analysis of Pflugmacher et al. (2019). Fig-
ure 2 shows an overview of the CER v2 data over the study
time frame of 2002–2023.

4 Results

In Fig. 1, air temperature shows a very apparent increasing
trend over the last decades. Precipitation does not show any
long-term trends, only shorter-term variations. This is in line
with the climate analysis of the German Weather Service,
which forecasts a slow increase in precipitation in the Bran-
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Figure 1. (a) Catchment of Groß Glienicker Lake (© OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0.). (b) Overview of lake level changes in Groß Glienicker Lake together with concurrent time series of
temperature and precipitation. Key events potentially impacting the lake system are shown as background colors.

Figure 2. Weather forcing input data from the CER v2 dataset: (a) investigation period and (b) example year of 2009.

denburg region (DWD, 2019). It is also stated, however, that
extreme events are becoming more frequent and have pro-
vided a larger fraction of the annual precipitation in more
recent years.

Figure 2 shows how summer periods are dominated by
the extreme rainfall events in the catchment. These events
are isolated by drought periods, as seen during the example
year of 2009, plotted in Fig. 2b. The data also show that ac-
tual evapotranspiration has a much more periodic and regular
behavior, with similar patterns over the years. However, the
downscaled actual evapotranspiration data do not show any
increasing trend, which one might expect from the increasing
air temperatures (Fig. 1b). However, this would only happen
in energy-limited systems with unlimited water availability
(e.g., over open water bodies). While potential evapotranspi-
ration would follow such a temperature trend, actual evapo-
transpiration in water-limited regimes does not depend on air
temperature.

4.1 System memory (lake response time)

The memory of the hydraulic system is estimated by calcu-
lating the k-lag autocorrelation of the lake level data. A band-
stop filter is used over these data to remove the annual cycle,
which dominates the lake level periodicity and could distort
the analysis (see Fig. S1 for the filtered time series). The re-
sult is shown in Fig. 3a.

The autocorrelation plot in Fig. 3 shows a rapid decrease;
it reaches zero around 20 d, and it reaches its minimum
value around 30 d. Another method for estimating the opti-
mal memory time frame in hydrology (mainly in rainfall–
runoff modeling studies) is to compare linear models with
different memory lengths over the same data. This is shown
in Fig. 3b for a range from 1 to 100 d using the r2 metric.
The overall picture is very similar to the autocorrelation, with
a rapid increase in fit quality until about 20 d. Then the fit
quality increase slows down and stays at a high value of 0.8.
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Figure 3. Lake response time analysis: (a) autocorrelation of lake levels and (b) fit quality of linear models of the weather forcing–lake level
relations (Eq. 6) using different system memory time frames.

This large range of optimal fits indicates the robustness and
insensitivity of the linear regression method. Based on these
analyses, we will use 30 d as the lake response time or hy-
draulic memory throughout this study.

4.2 Water balance

The water balance model is built on a monthly scale (30 d
scale), as suggested by the system memory analysis. The
monthly precipitation (P(tm)) and actual evapotranspiration
(ETA(tm)) time series are generated via summing up the
daily values, and the lake level time series (which is used
for model validation) is averaged to monthly means. The
monthly weather values are then compared with the mean
lake level of the next month (1z(tm+1)).

1z(tm+1)= P(tm)−ETA(tm)+1F
′ (10)

Equation (10) shows the used water balance equation. All
terms in the equation are in units of millimeters per month
(mmmonth−1).

Figure 4 shows the two main steps of the water bal-
ance estimation. First, the water availability is calculated
by subtracting actual evapotranspiration from precipitation
monthly. By taking the cumulative sum of the water avail-
ability, we can see that if only these two processes would
affect the lake, the lake levels would increase over the inves-
tigation period.

To obtain a more realistic picture of the water level
changes, an additional loss term needs to be introduced (1F ′

in Eq. 10). In this case, a constant outflow equivalent of
4.5 mmmonth−1 was necessary to bring the water balance
curve as close to the lake levels as possible. This flux was
estimated via a grid search through maximizing the r2 score
and can be attributed to the net groundwater outflow of the
system.

There is a clear breaking point between the modeled and
the observed data around 2015, where the two curves start
to diverge from each other. Before this turning point, the ob-
tained fit was maximal at 0.76. This means that, until this
point in time, 76 % of the lake level variations can be ex-
plained solely by the variations of the meteorological inputs.
After this point in time, the difference between the curves
significantly increases, as is shown by the misfit curve in
Fig. 5.

It is clear from Fig. 5 that the residual variations cannot
be explained by a single missing water balance component
but with some system change. Until 2015, the model was
in good agreement with the lake level observations despite
some short-term variations in each direction.

Between 2015 and 2022, the lake levels exhibit a down-
ward trend (Fig. 4) which is not captured by the model. By
2015, we see a systematically widening overestimation of
the observed lake levels (Fig. 5). The difference is a rainfall
equivalent of 10 mm every month, given that the catchment
size is around 4× 106 m3 yearly. Because this change in the
water balance happens very quickly, the time of change is
very identifiable for 2015, which is a strong turning point in
the hydrological system.

4.3 Linear model

To investigate the changes in the hydrological system in more
detail, two data-driven linear models were constructed. The
two models are set up identically, both taking daily precipi-
tation and actual evapotranspiration data as input, with a 30 d
long memory into the past (Eq. 6). The lake level data are fil-
tered using a Butterworth filter with a 20 d cutoff frequency.
The only difference is the calibration period used. The 2004
model uses a 7-year period after 2004 for calibration, which
is a relatively steady period according to the previous analy-
sis, while the 2015 model uses the last 7 years of the dataset
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Figure 4. Water balance modeling: (a) cumulative sum of water availability and (b) observed and estimated lake levels.

Figure 5. Differences between the observations and the water bal-
ance model (non-climatic water balance anomaly). At positive val-
ues, there is surplus water in the lake compared to the model; at
negative values, the lake shows a water deficit that is unaccounted
for by the model.

from 2015, after the previously identified turning point. The
calibrated models are then run for the complete available
time series, adjusting the start of each calibration period to
the actual lake levels that day. The results are shown in Fig. 6.

The results in Fig. 6 clearly show the different dynam-
ics of the two investigated time periods. The 2004 model,
trained on the earlier period, depicts a very similar behav-
ior compared to the water balance model. An overall good
fit is seen in the first 12 years, with some larger deviations
in more extreme years like 2007, which was exceptionally
dry. After 2015, the model systematically overestimates the
lake level, and, hence, an increasing gap opens between the
observed and modeled lake levels. The gap is very similar to
the water balance model. As the linear model was calibrated
independently from that model, its similar result provides a
validation for the chosen water balance parameters.

The output of the 2015 model is very much the opposite.
It calibrates so as to capture relatively well the final steep de-
crease in the lake levels (the fit is even better than the first

model), but when this modeled trend is extrapolated over the
first half of the dataset as well, it overestimates the lake lev-
els.

These results support the conclusion that the lake system
behavior changes systematically around 2015. To diagnose
these changes further, we now look into the calibrated mod-
els, their mathematical structure and their response behavior.
Note that, as these models are purely data-driven, any miss-
ing process in the data is compensated for by adjusting the
coefficients for P and ET.

To make the estimated effects of the different input fea-
tures comparable (the effects of different predictors), the in-
put data are first standardized for this analysis. The model co-
efficients thus give a good indication of the importance of the
different inputs over the model’s memory framework. The
results for the two investigated time periods are compared in
Fig. 7.

Figure 7 shows the coefficient values of the two models
over different time lags. For example, the precipitation coef-
ficient at time lag 5 is the weight with which the precipitation
of 5 d ago enters the calculation of today’s lake level change
(see Eq. 6). This plot shows that the lake reacts to precipi-
tation and evapotranspiration in a different manner and that
this difference changes depending on the calibration period
due to the hypothesized system changes. The effect of pre-
cipitation is detectable immediately, and days in the past are
becoming less and less relevant. In the 2004 model, the rain-
fall importance is generally higher than in the 2015 model,
where it decreases rapidly after the first 10 d.

These findings can be explained with the following con-
ceptualization: after rainfall, as rainwater reaches the ground-
water table, it creates a hydraulic gradient, and the hydraulic
signal reaches the lake very rapidly. The impact of the rainfall
is still visible a few days later as some of the water takes more
time to seep through the soil. This impact decays over time
continuously. Actual evapotranspiration, on the other hand,
has a delayed influence on lake level changes with a variable
but, on average, constant importance of past days after 5–10 d
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Figure 6. Daily lake levels modeled with a linear model using different time periods for calibration (marked by blue shading): (a) 2004
model and (b) 2015 model.

Figure 7. Model coefficients for precipitation and actual evapotranspiration: (a) 2004 model, with calibration period of 2004–2011, and
(b) 2015 model, with calibration period of 2015–2022.

in the 2004 model and an increasing importance of past days
after 10–15 d in the 2015 model. The overall importance of
actual evapotranspiration is also higher in the second model
(34 % vs. 42 %).

To further analyze the model behavior, we created two
sub-models according to Eqs. (7) and (8). Here, we sepa-
rated the lake level response for the two input features of
precipitation and actual evapotranspiration, i.e., simulating
the lake level responses that would result from only precip-
itation or actual evapotranspiration as predictors. We used
non-standardized inputs and outputs for this analysis. This
way, we can directly compare the differences between the
two models in terms of the different effects of the two inputs.
This is shown exemplarily in Fig. 8.

In this plot, we zoom into two different parts of the dataset
to compare the two models directly in detail, focusing on
typical weather events. The first time period in Fig. 8a is
the late summer of 2006, which saw many days without pre-
cipitation but high evapotranspiration and single-day rainfall
events with relatively high amounts of rainfall. During this
time period, the 2015 model shows a systematically stronger

response to actual evapotranspiration (Fig. 8e), which leads
to a larger simulated lake level drop. The offset is not just ver-
tical; there is a time lag of 5–10 d between the two responses
(as expected based on the coefficients in Fig. 7).

The precipitation response is a bit more complex: the 2004
model gives a much stronger response to the larger rainfalls
but a weaker one to the lack of rain (Fig. 8c). This balances
out the two curves over this time period, resulting in a similar
precipitation response.

The models behave differently during the calmer spring
season of 2016 (Fig. 8b). Here, both the two evapotranspira-
tion responses (Fig. 8f) and precipitation responses (Fig. 8d)
run close to each other with small differences.

Therefore, the general offset between the two models is
systematic. Between September and June, the models be-
have similarly; this is a period with regular rainfall without
many dry days or extreme rainfall events. The discrepancy
in these periods, however, is usually not that high; hence, the
two models stay relatively close to each other.

This result shows that the main difference in the system
between these two time periods is coming from the differ-
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Figure 8. Modeled hydraulic responses to different weather patterns: (a) summer weather input with high-intensity storms, (b) spring weather
input with light rain, (c) model response to precipitation in summer, (d) model response to precipitation in spring, (e) model response to actual
evapotranspiration in summer, and (f) model response to actual evapotranspiration in spring.

ence in evapotranspiration during the summer periods. The
seasonality of the model differences is shown in more detail
in Fig. 9, where the median of the lake level response dif-
ferences for the two inputs is plotted over the months of the
year.

The median difference in precipitation response in Fig. 9
shows that, over the long run, the differences in rainfall re-
sponse between the two models are canceled out. We can see
some small positive anomalies in the spring and fall, but this
effect is much smaller than what is visible in evapotranspira-
tion.

Evapotranspiration response also shows a small positive
anomaly during these periods, keeping the two models close
during the winter. Figure 9b nicely shows that the main dif-
ference between the two models originates from the summer
evapotranspiration difference. This difference is very consis-
tent over the years, indicated by the narrow confidence in-

terval – which is not surprising as rainfall shows the bigger
variability over the years.

5 Discussion

The water balance model shows a 4×106 m3 yearly deficit in
terms of the climatic water balance since 2015. We take the
two linear models as representing the system behavior dur-
ing the relatively stable period between 2002 and 2015 and
between 2015 and 2022, respectively. The change in system
behavior between these two periods is projected onto differ-
ences in the responses to precipitation and actual evapotran-
spiration in these simple models, while, in reality, a number
of other processes will be responsible. However, the changes
in the responses can still be analyzed to hypothesize about
the actual processes at work. In this section, we discuss some
of these hypotheses.
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Figure 9. Yearly dynamics of the model discrepancies (2015 model− 2004 model): (a) median difference in precipitation response with
confidence intervals and (b) median difference in evapotranspiration response with confidence intervals.

5.1 Water management

A possible factor responsible for the accelerated decrease in
lake water levels since 2015 that has been put forward by
local stakeholders is an increase in water abstractions at the
nearby water supply wells. Our analysis, however, does not
support this hypothesis. There was no reported change in the
abstraction rate of the local waterworks in this period, and an
increased abstraction rate would hardly explain the change in
the short-term system dynamics – it would appear as a con-
stant shift in water loss instead. Nevertheless, groundwater
abstractions could affect the resilience of the lake to climate
change effects, as was shown by Schulz et al. (2020) for Lake
Urmia. Based on process-based modeling, their study did not
find a direct correlation between the abstractions and water
level variability of Lake Urmia as the lake could buffer the re-
duced inflow. However, in forecast scenarios, they achieved
higher lake levels with reduced abstraction rates.

Abstractions by local households directly from the lake or
from the groundwater could also have an effect as people
tend to use these water sources for gardening. To calculate
an upper bound for such private abstractions, we assume that
all 5000 residents of Groß Glienicke (on the Brandenburg
side of the lake) use 7 % for gardening (Schleich and Hillen-
brand, 2009) out of the 200 L daily average water consump-
tion (OECD averages), which would amount to 26 250 m3

abstraction over the year. This is significantly less than the
estimated water deficit.

Another local water utility is a former sewage farm (Rie-
selfeld Karolinenhöhe) north of the catchment. Here, large
volumes of untreated wastewater were infiltrated into the
groundwater system up until 2010. The effects of this facil-
ity have been extensively studied (Haacke et al., 2018; Liese
et al., 2004), but no direct link has been found between the

sewage farm and the lake’s catchment as the infiltrated water
flew directly into the Havel Rriver. The sewage farm stopped
its operation in 2010, well before the identified turning point.

Another infrastructural change that happened in the area
was an upgrade of the sewage system. The most notable ex-
ample is the former British air force base (General Steinhoff
Kaserne) east from the lake. Here, an almost 500 000 m2 area
got connected to the rainwater canalization system between
2012 and 2017, and the new system now leads the collected
rainwater to the Havel River outside the catchment (Dölle-
feld et al., 2021). Assuming that 90 % of this water would
have previously reached the groundwater or the lake (an as-
sumption based on the urban evapotranspiration fraction of
the CER dataset), this could account for up to 225 000 m3 of
the missing fluxes from the catchment.

Dialog with the local community also suggested that
this canalization upgrade extended beyond the former air
base and that it also might have included the sewage sys-
tem. Unfortunately, no reports or studies are available, but,
similarly to the private abstractions, we can estimate the
sewage production of the districts around the lake. Esti-
mating 20 000 residents living in the area, with an average
sewage production of 120 Lyr−1 (Umweltbundesamt, 2023),
we arrive at an estimate of 900 000 m3. This could be used
as an upper bound for the potential effect of the infras-
tructure change if, before all of this, water had been dis-
charged into the catchment directly. This, however, is most
likely a big overestimation as the area is shown to be con-
nected to the Berlin canalization system in documents from
2012 and before (https://www.berlin.de/umweltatlas/wasser/
regen-und-abwasser/2012/literatur/, last access: 11 Septem-
ber 2024). The upgrade most likely affected the rainwater
canalization only, which has a reported average yearly flux
of around 100 000 m3.
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Still, this amount could have affected the hydrological sys-
tem in some way (see Fig. 11) but cannot explain the ob-
served misfit. In particular, the lack of infiltrated water in
the catchment would not explain the observed seasonality in
the misfits (Fig. 9). Further analysis of this issue is limited
because the lake is located on the administrative boundary
of the two German states of Berlin and Brandenburg, which
means that some of the relevant information is only available
on one side of the lake.

5.2 Vegetation increase

A significant part of the lake catchment area west of the lake
is covered by forests and heathlands (Fig. 1a). Satellite im-
agery reveals an increasing trend in the normalized difference
vegetation index (NDVI) between 2002 and 2018 (Fig. 10a).
This suggest a general increase in vegetation over the past
decades within the catchment area, likely to be attributable
to an increase in forest canopy density and an expansion of
woody vegetation.

Comparing these data with the water balance gap shows
striking similarities. In Fig. 10b, we calculated the cumula-
tive sum of the NDVI anomaly relative to the 2002–2015 pe-
riod average and obtained a similar trend to the water bal-
ance anomaly. This suggests a possible connection between
the two trends.

A denser canopy intercepts more rainfall available for
evaporation, and more mature trees have higher transpiration
rates; hence, a denser canopy reduces groundwater recharge.
The model discrepancies in Fig. 8 are most pronounced in
the growing season, where the tree canopies are most devel-
oped. This analysis supports the hypothesis that the forest in
the catchment has a strong effect on the hydrological system.

The land cover analysis also shows that our modeling
could be improved if we could account for the heterogeneous
land cover in the catchment when calculating evapotranspi-
ration. Beside the observed 10 % increase in NDVI, MODIS
evapotranspiration data show a 5 %–15 % increase in forest
evapotranspiration in the region (see Fig. S2 in the Supple-
ment). The impact of this change over the lake levels is equiv-
alent to a yearly flux of 800 000 m3.

This amount could partly explain the water balance deficit,
and the increase in evapotranspiration would also explain
why the two linear models differ most during the grow-
ing season. However, to gain a more precise understand-
ing of the effects of vegetation cover changes, a more de-
tailed process-based analysis would be required, including
biophysical modeling of the trees and detailed modeling of
the recharge process.

5.3 Regional groundwater trends

Another hypothesis relates the change in lake dynamics to
a larger-scale, regional groundwater trend. Lischeid (2021)
analyzed lake and groundwater level time series in the region

Figure 10. Analysis of vegetation trends: (a) yearly average NDVI
values integrated over the catchment and (b) comparison of the
yearly non-climatic water balance anomaly and the cumulative
NDVI anomaly of the catchment. The NDVI anomaly is calculated
relative to the average NDVI of the 2002–2015 period, before the
expected turning point.

with principal component analysis. The authors concluded
that lakes situated on the higher parts of this lowland region
are more sensitive to falling water levels than lakes in the val-
ley bottoms because lakes situated higher are prone to losing
their direct connection with the groundwater.

The larger region of Brandenburg has a negative climatic
water balance, with water flowing in from areas with a posi-
tive budget either as groundwater or surface water flow. This
system, however, is currently under stress not only due to cli-
mate change but also due to the reduced flows of the Spree
River, which are caused by the closure of open-pit mines
in the Lausitz region (Habel et al., 2023). Therefore, over
the last decades, in multiple parts of the region, decreasing
groundwater levels have been visible. As a result, multiple
lakes that are mainly groundwater fed show similarly de-
creasing levels (e.g., Groß Seddiner Lake, Großer Wumm-
see).

The exact effect of groundwater trends cannot be quanti-
fied without groundwater modeling. Still, some signs of de-
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viation between the lake and groundwater levels can be seen
after 2015, though these are not decisively clear. We also can-
not attribute the seasonality in the differences between the
two periods to this explanation.

5.4 Environmental tipping point

Ultimately, it seems most plausible that the observed lake
level behavior is the result of a combination of the above-
mentioned explanations.

Figure 11 shows a comparison between the estimated im-
pacts of all potential explanations of the non-climatic wa-
ter balance anomaly considered here. It shows that none of
the anthropogenic or ecological factors alone are enough to
explain the water deficit completely (even when their maxi-
mum potential impact is considered). Note that the effect of
regional groundwater trends cannot be estimated; hence, we
just used it to explain the missing water flux after the other
explanations were applied.

Based on these results, we could not single out one rea-
son that could explain the sudden change in water balance
in 2015, but we found multiple processes that probably all
contribute to the loss of water. Due to their combined effect,
the hydrological system could have reached a tipping point
around 2015 that altered the water balance. This tipping point
could have been a critical groundwater level that was reached
due to the infrastructural and environmental changes, below
which the surface water–groundwater connection got dis-
rupted. The lake bed morphology or subsurface catchment
geometry could be a reason for the existence of this critical
level.

Another explanation is that the increase in vegetation on
the west side of the catchment reduced the groundwater lev-
els locally so that it altered the groundwater flow regime. The
gradient of the groundwater table in this area is very small
(3× 10−4 mm−1); hence, a local decrease in recharge could
divert the groundwater flow and modify the subsurface catch-
ment size. This explanation is in line with our finding that the
difference in the hydrological system appears mainly during
the growing season. However, to analyze these explanations
further, more detailed process-based modeling is required.

6 Conclusions

In this paper, we have shown how a systematic downward
model development approach, using water balance and data-
driven models, could help with the investigation of a rela-
tively under-studied lake system.

Water balance and data-driven models are well-applicable
in such cases as they mainly rely on observed data, which
are generally more available than system knowledge (process
understanding). In the current information age, this imbal-
ance is expected to shift to be even more in favor of data-rich
problems. The presented methodology is well-transferable to

similar groundwater-fed lowland lakes and can be used to
identify the major drivers behind the lake level dynamics.
The methodology can be adapted for systems with surface
water connections through expanding the models with fur-
ther features: a net surface water inflow term for the water
balance model and an additional feature for the surface water
dynamics in the data-driven model. With the help of high-
resolution weather forcing data and lake level observations,
we have identified a relation between the climatic and lake
level variations. Water balance modeling helped to estimate
the inflows and outflows of the system and to reveal any long-
term dynamics. Data-driven modeling could then give a more
detailed picture of the short-term lake system behavior, in-
cluding responses to different weather patterns. This set of
methods provided an effective toolset for understanding lake
level changes and their drivers in a case where prior hydro-
logical system and process knowledge was limited.

The developed water balance and data-driven models pro-
vided very good fits with lake level observations, which
shows not just the potential of the modeling approaches but
also the applicability of the CER v2 weather dataset. The ap-
proach revealed the main drivers of the lake level dynamics
and provided insights into systemic changes in the hydrolog-
ical system, which led to hypotheses regarding the lake level
loss.

However, the presented methodology was not able to
clearly identify the exact reason behind the non-climatic lake
level loss, and the proposed hypotheses can only be proved or
disproved with additional experiments and/or process-based
modeling.

Another drawback of the presented methodology is the
strong reliance on good-quality data. Closing the water bal-
ance or obtaining a good fit with the linear model were
possible only because of the high accuracy of the weather
dataset. Due to the spatial variability of precipitation, replac-
ing it with weather station data would lead to a significant
drop in model accuracy. Hence, in data-scarce regions, ro-
bust process-based approaches might be a better solution as
they are capable of transferring knowledge from other com-
parable catchments, although without data they would oper-
ate with large uncertainties.

Our results showed that the lake level variations of Groß
Glienicker Lake between 2002 and 2015 can be explained by
the variations in net precipitation, i.e., by precipitation and
actual evapotranspiration over the catchment. We have iden-
tified a change in the hydraulic system around 2015, which
not only resulted in a loss of 4× 106 m3 wateryr−1 but also
changed the hydraulic response of the lake to the climatic
inputs.

Increased evapotranspiration from the maturation of a for-
est in the catchment could explain the altered system dynam-
ics, and the change in the vegetation cover is well aligned
with the observed hydrological trend. Therefore, the water
loss can be at least partly attributed to the growth of the for-
est. Another likely reason is the continuous sinking of the
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Figure 11. Potential impacts of the different explanations of the non-climatic water balance anomaly.

groundwater levels in Brandenburg due to climate change,
which is suggested to disrupt the connection of surface wa-
terbodies to the groundwater, increasing their outflow. Re-
gional studies show similar lake level trends in several lakes
of the area.

Ultimately, the most likely explanation is the combination
of the aforementioned processes, which made the hydrolog-
ical system cross a tipping point during the investigation pe-
riod. Further analysis of this explanation requires more de-
tailed modeling of the individual processes and the develop-
ment of a groundwater model.

The findings of this paper will be used to help the devel-
opment of such a model. Our main recommendation is the
inclusion of a dynamic land cover model that can account
for the changes in vegetation and the benefits of gridded me-
teorological forcing data. While we would still suggest in-
cluding the water work wells into the model (for which data
series are available), we have shown that the effect of private
abstractions is negligible, while the effect of infrastructural
changes can be significant. Finally, we have emphasized the
importance of the regionally observed changes of groundwa-
ter levels that need to be considered in any physically based
modeling efforts.
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