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Abstract. Large-sample datasets containing hydrometeoro-
logical time series and catchment attributes for hundreds of
catchments in a country, many of them known as “CAMELS”
(Catchment Attributes and MEteorology for Large-sample
Studies), have revolutionized hydrological modelling and
have enabled comparative analyses. The Caravan dataset
is a compilation of several (CAMELS and other) large-
sample datasets with uniform attribute names and data struc-
tures. This simplifies large-sample hydrology across regions,
continents, or the globe. However, the use of the Caravan
dataset instead of the original CAMELS or other large-
sample datasets may affect model results and the conclu-
sions derived thereof. For the Caravan dataset, the meteo-
rological forcing data are based on ERA5-Land reanalysis
data. Here, we describe the differences between the origi-
nal precipitation, temperature, and potential evapotranspira-
tion (Epot) data for 1252 catchments in the CAMELS-US,
CAMELS-BR, and CAMELS-GB datasets and the forcing
data for these catchments in the Caravan dataset. The Epot
in the Caravan dataset is unrealistically high for many catch-
ments, but there are, unsurprisingly, also considerable dif-
ferences in the precipitation data. We show that the use of
the forcing data from the Caravan dataset impairs hydrolog-
ical model calibration for the vast majority of catchments;
i.e. there is a drop in the calibration performance when using
the forcing data from the Caravan dataset compared to the
original CAMELS datasets. This drop is mainly due to the
differences in the precipitation data. Therefore, we suggest
extending the Caravan dataset with the forcing data included
in the original CAMELS datasets wherever possible so that
users can choose which forcing data they want to use or at
least indicating clearly that the forcing data in Caravan come
with a data quality loss and that using the original datasets

is recommended. Moreover, we suggest not using the Epot
data (and derived catchment attributes, such as the aridity in-
dex) from the Caravan dataset and instead recommend that
these should be replaced with (or based on) alternative Epot
estimates.

1 Large-sample datasets as a game-changer in
hydrological modelling studies

Starting with the CAMELS (Catchment Attributes and ME-
teorology for Large-sample Studies) dataset for the US (Ad-
dor et al., 2017a, b; Newman et al., 2014, 2015; in this pa-
per referred to as CAMELS-US), large-sample datasets have
been developed for several other countries (e.g. CAMELS-
CL for Chile – Alvarez-Garreton et al., 2018; CAMELS-BR
for Brazil – Chagas et al., 2020a; CABra for Brazil – Al-
magro et al., 2021; CAMELS-GB for Great Britain – Coxon
et al., 2020a; or CAMELS-CH for Switzerland – Höge et al.,
2023). We refer to these datasets, with time series of hy-
drometeorological measurements and information on catch-
ment attributes for hundreds of catchments, as the CAMELS
datasets. Because computational power had increased and
cloud-computing had advanced when these datasets became
available, hydrological models can now be run for hundreds
of catchments in a reasonable time frame. The CAMELS
datasets offer new opportunities for catchment modelling and
comparison studies because they minimize the effort that is
needed to compile and check the hydrometeorological data
from different datasets. This is great progress, not only for
individual studies but also for the comparability of different
modelling approaches because comparisons are easier when
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different research groups use the same data for the same sets
of catchments.

So far, the CAMELS datasets have been used for different
purposes. Examples are the exploration of the predictability
of hydrologic signatures (Addor et al., 2018), the use thereof
to cluster similar catchments and to explore their behaviour
(Jehn et al., 2020), and the analysis of the influence of catch-
ment characteristics on runoff processes (Mathai and Mu-
jumdar, 2022; McMillan et al., 2022). The datasets have also
been used to conceptualize models, e.g. to determine sub-
surface flow contributions to the hydrograph (Ranjram and
Craig, 2022), to assess the value of limited or alternative
data for regionalization (Pool et al., 2019, 2021) or hydro-
logical model calibration (Meyer Oliveira et al., 2023), and
to test the influence of changes in the meteorological forc-
ing data on model performance (van Beusekom et al., 2022;
Deng et al., 2024). They have, furthermore, been used to train
long short-term memory models (Gauch et al., 2021; Kratzert
et al., 2024; Lees et al., 2021).

The Caravan dataset (Kratzert et al., 2023a) goes further
than the CAMELS datasets. As indicated by the name, re-
ferring to a group of camels, it is a compilation of (subsets
of) large-sample datasets released at an earlier date. When
the Caravan dataset was released, it included the national
datasets CAMELS-US (Addor et al., 2017b), CAMELS-
BR (Chagas et al., 2020a), CAMELS-GB (Coxon et al.,
2020a), CAMELS-CL (Alvarez-Garreton et al., 2018), and
CAMELS-AUS (Fowler et al., 2021); the North American
dataset HYSETS (Arsenault et al., 2020); and the central Eu-
ropean dataset LamaH-CE (Klingler et al., 2021). The Cara-
van dataset not only combined parts of these existing datasets
but also solved issues related to the lack of comparability
among the different datasets and the lack of an index refer-
ring to human impacts for some of the datasets (Addor et al.,
2020). The use of the globally available ERA5-Land (Euro-
pean ReAnalysis) data (Muñoz-Sabater et al., 2021) for all
catchments in the Caravan dataset furthermore allows the ex-
tension of the dataset with catchments for which streamflow
data but no meteorological data are available. With this pos-
sibility, Caravan allows catchments in underrepresented (cli-
matic) regions to be included in a well-known large-sample
dataset. This is positive and may be a first step towards a
more equal representation of different regions and biogeo-
climatic zones in hydrological research. Because of the use
of reanalysis data for the forcing data, it is easier to up-
date the Caravan dataset with additional forcing data, or a
new version thereof, than when station data are used. An-
other advantage of the Caravan dataset as a standard resource
for catchment data is that some of the catchments added
by the community are not available as individual CAMELS
datasets; i.e. the attributes and hydrometeorological time se-
ries for these catchments can only be accessed via the Cara-
van dataset. Thanks to the open code and software, the Cara-
van dataset can be extended by the community. The number
of catchments in the Caravan dataset had already grown to

almost 13,000 (not counting duplicates) in February 2024.
Acquiring data from Caravan is the easiest way to get started
for large-sample model studies. However, we argue that us-
ing the Caravan dataset instead of the individual CAMELS
datasets may have disadvantages despite the obvious advan-
tage of the convenience of using one large dataset instead of
the individual datasets.

Following the Caravan philosophy of using the same data
source for all catchments for all climatic variables, the me-
teorological forcing data in the original CAMELS datasets
were replaced by reanalysis data from ERA5-Land. ERA5-
Land (Muñoz-Sabater et al., 2021) is a component of the
Copernicus Climate Change Service (C3S). With ERA5-
Land, global time series of the water and energy cycle over
land are described with 50 different variables. Compared to
the earlier products ERA5 (31 km; Hersbach et al., 2020) and
ERA-Interim (80 km; Dee et al., 2011), the spatial resolu-
tion (9 km) and the representation of the water cycle are im-
proved for ERA5-Land (Muñoz-Sabater et al., 2021). How-
ever, ERA5-Land tends to overestimate potential evapotran-
spiration (Epot) considerably (Klingler et al., 2021; Xu et al.,
2024). Epot is computed differently in ERA5-Land than in
ERA5 (as per rectification in the ERA5-Land data documen-
tation (2024) on 18 November 2021). In ERA5, vegetated
land is set to “crops/mixed farming”, and it is assumed that
there is no soil moisture limitation for the computation of
Epot. In ERA5-Land, evaporation from an open-water sur-
face (i.e. pan evaporation) is computed. The atmosphere is
assumed to be unaffected by the evaporation for both ERA5
and ERA5-Land.

In this paper, we describe the differences between
the meteorological forcing data for the catchments in
three CAMELS datasets (CAMELS-US, CAMELS-BR, and
CAMELS-GB) and the ERA5-Land data in the Caravan
dataset. We, furthermore, assess the consequences of the
substitution of largely station-based data in the CAMELS
datasets with the reanalysis data in the Caravan dataset for the
calibration of a bucket-type rainfall–runoff model. It is im-
portant to raise awareness of these differences and their con-
sequences on model results because the well-organized data
structure and ease of access make it very tempting to use the
Caravan dataset instead of the original CAMELS datasets,
especially when conducting studies across multiple countries
or geographic regions.

2 Caravan forcing data based on ERA5-Land

In the original CAMELS (and other large-sample) datasets,
the forcing data were selected with respect to data availability
for the region of interest. They were mainly based on station
data, but for some regions, they also included satellite data or
reanalysis data (Table 1). In most cases, several forcing data
time series were included to allow the user to choose the most
suitable one or to allow a comparison between different data
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inputs. When a catchment is added to Caravan, all forcing
data are replaced with data from the ERA5-Land reanalysis
dataset (Muñoz-Sabater et al., 2021).

Several studies have assessed the ERA5-Land reanalysis
data by comparing them to station data. ERA5-Land tem-
perature and precipitation data were found to better match
the observations for flatter regions than for regions with
complex terrain (Almeida and Coelho, 2023; Gomis-Cebolla
et al., 2023; Tan et al., 2023). Temperature data from ERA5-
Land were considered to be good for Portugal (Almeida
and Coelho, 2023), northeastern Brazil (Araújo et al., 2022),
the Chinese Qilian Mountains (Zhao and He, 2022), and
Italy (Vanella et al., 2022). For Türkiye, ERA5-Land un-
derestimated the daily temperature, but represented temper-
ature trends well (Yilmaz, 2023). For the Kelantan basin in
Malaysia, the daily maximum temperatures were underesti-
mated, and the daily minimum temperatures were overesti-
mated (Tan et al., 2023). In their evaluation of ERA5-Land
data for Italy, Vanella et al. (2022) found that the variables of
ERA5-Land can be used to estimate evapotranspiration. Re-
garding precipitation, Gomis-Cebolla et al. (2023) found that
ERA5-Land represented the spatial and temporal precipita-
tion patterns well for Spain but also that there were some dif-
ficulties in representing complex precipitation patterns. They
furthermore found that ERA5-Land tended to overestimate
light-precipitation events and underestimated heavier precip-
itation. This was also observed for the Tibetan Plateau (Wu
et al., 2023) and the Kelantan basin in Malaysia (Tan et al.,
2023). For the Tibetan Plateau, the overestimation of light
precipitation led to an overestimation of annual precipitation
(Wu et al., 2023). ERA5-Land also overestimated precipi-
tation for China (Xie et al., 2022), but there were regional
differences. ERA5-Land represented precipitation for north-
eastern China better than for southwestern China (Xie et al.,
2022).

A number of previous studies have analysed the advan-
tages and disadvantages of the gridded products of the ERA
family when used as forcing data in hydrological models. For
example, Beck et al. (2017) included ERA-Interim data in
a comparison of different precipitation products with gauge
data. They found a reasonable agreement between the ERA-
Interim data and the gauged data for all regions of the world,
except for northern South America, Africa, Central Asia, and
Southeast Asia. Essou et al. (2016, 2017) compared differ-
ent reanalysis products (including ERA-Interim) for North
America and found that the datasets had similar tempera-
ture data but that there was a bias in precipitation for the
humid continental and subtropical regions (i.e. for the east-
ern part of the US), and this led to a deterioration in model
performance (Essou et al., 2016). However, the reanalysis
data performed better than gridded data for large and moun-
tainous catchments, where the density of weather stations is
low (Essou et al., 2017). Based on these findings, they sug-
gested using reanalyses as meteorological forcing data when
observational data are missing or limited. Similarly, Tarek

et al. (2020) tested ERA5 temperature and precipitation data
for hydrological modelling in North America. They found a
clear improvement in model performance compared to ERA-
Interim data and that the model performance was similar to
that achieved with observational data, except for the eastern
half of the US. They concluded that ERA5 data are use-
ful, especially when observational data are lacking. Baez-
Villanueva et al. (2021) compared ERA5 precipitation data
and three other precipitation products for Chile and found
a similar model performance for ERA5 data and some of
the gauge-corrected precipitation products. However, they
also reported some difficulties with ERA5 data for snow-
dominated catchments.

3 Assessment of the differences between CAMELS and
Caravan forcing data

3.1 Choice of catchments and climate variables

We compared the precipitation, temperature, and potential
evapotranspiration (Epot) data for 1252 catchments in the
Caravan dataset with the original forcing data from the
CAMELS-US, CAMELS-BR, and CAMELS-GB datasets.
We chose precipitation, temperature, and Epot data for the
comparisons because they are the most relevant for hy-
drological modelling. From the different CAMELS forcing
datasets, we chose those with the highest spatial resolution
(see Table 1), except in the case of precipitation for the
Brazilian catchments (as described below). The period for
the comparisons ranged from April 1983 to March 2013 for
the Brazilian catchments (Southern Hemisphere) and from
October 1983 to September 2013 for the catchments in the
US and Great Britain (Northern Hemisphere) to account for
the differences in the water year for the two hemispheres.

For each catchment, we compared the mean annual pre-
cipitation, the mean daily temperature, and the mean an-
nual Epot. We only compared the mean annual values, even
though there are other components of the time series, such as
the timing of the rainfall events, that are also crucial for hy-
drological modelling. To account for differences in the data
apart from the mean values, we used a hydrological mod-
elling approach (see Sect. 4) that implicitly takes into account
all the features of the forcing time series through the simula-
tion of streamflow. For hydrological modelling, the temper-
ature data per se (i.e. when not considered to be the driver
of Epot) are mainly relevant for snow-related processes, i.e.
to determine if precipitation is falling as snow (and is thus
stored in the catchment) and if the precipitation that accumu-
lated as snow is melting. Hence, the accuracy of the temper-
ature data is relevant for only a few days per year for catch-
ments where snow is an essential component of the water
balance. In other words, the temperature plays a minor role in
hydrological modelling compared to the accuracy of the pre-
cipitation or Epot data (cf. Tarek et al., 2020). Still, we com-
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Table 1. Meteorological source datasets from the CAMELS datasets and the Caravan dataset used for comparison.

Region Variable(s) Dataset Spatial resolution References

US Precipitation,
temperature

Daymet v2
(based on station data)

1 km Thornton et al. (2014, 2021)

BR Precipitation MSWEP v2.2
(based on station, satellite,
and reanalysis data)

0.1° Beck et al. (2019)

BR Temperature CPC
(based on station data)

0.5° NOAA (2019)

BR Epot GLEAM v3.3a
(Priestley–Taylor method based
on satellite data)

0.25° Martens et al. (2017); Miralles et al. (2011)

GB Precipitation CEH-GEAR
(based on station data)

1 km Keller et al. (2015); Tanguy et al. (2016)

GB Temperature CHESS-met
(based on station data)

1 km Robinson et al. (2017a)

GB Epot CHESS-PE
(Penman–Monteith based on
CHESS-met data)

1 km Robinson et al. (2016, 2017b)

US, BR, GB Precipitation,
temperature,
Epot

ERA5-Land
(Penman–Monteith based on
reanalysis data)

9 km Muñoz-Sabater et al. (2021)

pared the temperature data for all catchments and focused
on the mean daily temperature (rather than, for example, the
number of days with temperatures below or above 0 °C).

When we compared the two datasets, we always subtracted
the value of the CAMELS dataset from the value of the Car-
avan dataset (i.e. a positive difference indicates a larger value
for the Caravan dataset, and a negative difference indicates a
smaller value for the Caravan dataset). To determine the rela-
tive differences (for the mean annual precipitation and Epot),
we divided this difference by the value from the CAMELS
dataset and report it as a percentage. As the catchment char-
acteristics that depend on the meteorological data also differ
for the Caravan and CAMELS datasets, we furthermore com-
pared the differences in the aridity index (Epot/P).

3.2 Choice of CAMELS forcing data

The CAMELS forcing data that we used for comparison had
a spatial resolution of 1 km for CAMELS-US and CAMELS-
GB, and a coarser resolution for CAMELS-BR (Table 1).
For the US catchments, we used the Daymet v2 data (Thorn-

ton et al., 2014, 2021) for precipitation and temperature (the
mean daily temperature was estimated from the average of
the daily minimum and maximum temperature). As Epot data
are not available in the CAMELS-US dataset, we calculated
Epot with the Priestley–Taylor formula (Priestley and Taylor,
1972) based on the input data from Daymet v2. This is in
line with the suggestion by Newman et al. (2015) and is sim-
ilar to the approach used in earlier studies with CAMELS-
US data (e.g. Seibert and Vis, 2016; Addor et al., 2018).
As input data for the Epot calculations, we used the eleva-
tion and latitude of each catchment, the time series of the
day of the year, day length, minimum and maximum tem-
perature, vapour pressure, and solar radiation. The Priestley–
Taylor coefficient was set to 1.26 (see Priestley and Taylor,
1972) for all catchments. For the catchments in Brazil (BR),
we used the MSWEP v2.2 precipitation data (Beck et al.,
2019), the CPC temperature data (NOAA, 2019), and the
GLEAM v3.3a Epot data (Martens et al., 2017; Miralles et al.,
2011), which are based on the Priestley–Taylor formula with
satellite-derived radiation and air temperature data. We chose
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MSWEP v2.2 data for the precipitation instead of CHIRPS
(Funk et al., 2015) because the MSWEP v2.2 daily time se-
ries are based on a data point every 3 h, and the ones from
CHIRPS are based on one data point every 5 d, disaggregated
to daily values via reanalysis. For the catchments in Great
Britain (GB), we used the CEH-GEAR precipitation data
(Keller et al., 2015; Tanguy et al., 2016), the CHESS-met
temperature data (Robinson et al., 2017a), and the CHESS-
PE Epot data (Robinson et al., 2016, 2017b), which are based
on the Penman–Monteith formula, with meteorological data
obtained from stations.

3.3 Differences between ERA5-Land data in the
Caravan dataset and forcing data in the CAMELS
datasets

3.3.1 Differences in mean annual precipitation

The mean annual precipitation in the Caravan dataset differed
between −53 % and 101 % from the one in the CAMELS
datasets; i.e. taking the CAMELS data as a reference, the
mean annual precipitation was underestimated by up to 53 %
and overestimated by up to 101 % in the Caravan dataset.
For 583 of the 1252 catchments (47 %), the deviation was
within ± 10 %, and for 968 catchments (77 %), it was within
± 20 % (Fig. 1). The mean annual precipitation in the Cara-
van dataset was lower than in the CAMELS-US dataset for
the catchments in the eastern part of the US and on the West
Coast. For some catchments in the centre of the US, the mean
annual precipitation in the Caravan dataset was much higher
(> 40 %) than in the CAMELS-US dataset. For the southern
part of Brazil, the mean annual precipitation in the Caravan
dataset was almost consistently higher (and sometimes much
higher) than in the CAMELS-BR dataset, while for the north-
ern part of Brazil, it tended to be lower than in the CAMELS-
BR dataset. For the catchments in the eastern part of Great
Britain, the mean annual precipitation was slightly higher in
the Caravan dataset than in the CAMELS-GB dataset, while
for the catchments in the western part of Great Britain, the
mean annual precipitation was lower in the Caravan dataset
than in the CAMELS-GB dataset.

3.3.2 Differences in mean daily temperature

The mean daily temperature data in the Caravan and
CAMELS datasets were relatively similar. In the most ex-
treme cases, the mean daily temperature in the Caravan
dataset was 4 °C less (i.e. colder) and 2.8 °C higher (i.e.
warmer) than in the CAMELS datasets. For 961 of the
1252 catchments (77 %), the temperature difference was less
than ± 1 °C (Fig. 2). For the catchments in the eastern part
and the southern part of the West Coast of the US, the
mean daily temperature in the Caravan dataset tended to be
slightly higher than in the CAMELS-US dataset. For the
catchments in the Pacific Northwest and most of the west-

ern US, the mean daily temperature in the Caravan dataset
was lower than in the CAMELS-US dataset. In the snow-
dominated Rocky Mountain region, the mean daily temper-
ature in the Caravan dataset was up to 2.8 °C lower than in
the CAMELS-US dataset. For Brazil, the mean daily temper-
ature in the Caravan dataset was almost always lower than in
the CAMELS-BR dataset (i.e. it was higher for only eight
catchments), and this difference was often substantial. For
246 Brazilian catchments (65 %), the mean temperature dif-
fered by at least −1 °C. For the catchments in Great Britain,
the temperature data were similar, with differences between
the two datasets varying between −0.9 and 0.5 °C.

3.3.3 Differences in mean annual potential
evapotranspiration

The Epot data derived from ERA5-Land in the Caravan
dataset are unrealistically high for most catchments in the
US, Brazil, and Great Britain (Fig. 3), confirming the results
of Klingler et al. (2021) for central Europe and the results
of Xu et al. (2024) for China. The minimum mean annual
Epot in the Caravan dataset was higher than the maximum
mean annual Epot in the CAMELS datasets for each of the
three regions; i.e. the ranges of the Epot data did not overlap.
The relative differences between the mean annual Epot in the
Caravan dataset and the mean annual Epot in the CAMELS
datasets varied between 46 % and 913 % (median: 462 %)
for the US catchments, between 58 % and 523 % (median:
121 %) for the Brazilian catchments, and between 52 % and
337 % (median: 120 %) for the catchments in Great Britain.

Even though the use of Epot from the ERA5-Land data
is consistent with the other variables in the Caravan dataset,
the high (and often unrealistic) Epot values are problematic.
Kratzert et al. (2023a) mention the high Epot values in a ta-
ble caption. However, hydrologists using the Caravan dataset
under the assumption that the data are ready for use may end
up with wrong conclusions. The high Epot values influence
not only model simulation results (see Sect. 4.2) but also the
catchment attributes based on these values. For the 30 years
considered here, the mean annual Epot was larger than the
mean annual precipitation (i.e. the aridity index was larger
than 1.0) for 1059 of the 1252 catchments (85 %) based on
the Caravan data, whereas this was the case for only 167
catchments (13 %) based on the CAMELS data (Fig. 4).

To provide a possible alternative, we calculated time se-
ries of Epot using the formula given by Adam et al. (2006)
based on Droogers and Allen (2002). This formula is based
on the Hargreaves formula (Hargreaves and Samani, 1982)
and was used for one of the Epot products included in the
CAMELS-AUS dataset (Fowler et al., 2021). The relatively
low data requirement for this method allowed us to calcu-
late Epot time series based on the ERA5-Land precipitation
and temperature data only, i.e. not violating the philosophy
of Caravan regarding the use of globally available data only.
More specifically, it takes only the location and temperature
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Figure 1. Relative difference in the mean annual precipitation (calculated for a 30-year period: 1983–2013) for each catchment in the
Caravan dataset compared to the mean annual precipitation for each catchment in the CAMELS datasets. The brown colours indicate less
precipitation in the Caravan dataset than in the CAMELS dataset, and the blue colours indicate more precipitation in the Caravan dataset
than in the CAMELS datasets. Note that the colour scale was cut at ± 50 %, but the histograms cover the full range of differences (at 5 %
intervals). For 1 catchment, the difference was less than−50 %, and for 12 catchments, it was more than 50 %. The scale bars refer to the map
centre and are different for each country. The base maps with the country outlines were obtained from Natural Earth (naturalearthdata.com).

Figure 2. Difference in the mean daily temperature (calculated for a 30-year period: 1983–2013) for each catchment in the Caravan dataset
and the CAMELS datasets. The blue colours indicate a lower mean daily temperature in the Caravan dataset than in the CAMELS datasets,
and the red colours indicate a higher mean daily temperature in the Caravan dataset than in the CAMELS datasets. Note that the colour scale
was cut at ± 3 °C, but the histograms cover the full range of values (at 0.2 °C intervals). For three catchments, the difference was below
−3 °C. There was no catchment with a difference larger than 3 °C.

into account and additionally adjusts the Epot estimates based
on the monthly precipitation as a proxy for humidity. As in-
put data, we used the latitude of each catchment, as well as
the time series of the day of the year, daily mean temperature,
the difference between the mean daily maximum temperature
and the mean daily minimum temperature for each month,

and the monthly precipitation sums (see the code repository
linked in the “Code and data availability” section for the cal-
culations). We refer to this Epot data as “Hargreaves Epot”.

The Hargreaves Epot data resulted in a mean annual Epot
that was similar to the one of the CAMELS datasets (Ta-
ble 1). For the US, the ratio between the mean annual Har-
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Figure 3. Mean annual Epot (calculated for a 30-year period: 1983–2013) for the CAMELS datasets (Brazil, Great Britain) or calculated
with the data from the CAMELS dataset (US) (a–c) and for the Caravan dataset (d–f). Note that the colour scale ends at twice the maximum
Epot value reported in the CAMELS datasets. The number of catchments for which the Epot in the Caravan dataset was higher than this
cutoff value (2653 mma−1, shown in light pink) was 385 for the US (80 % of the US catchments), 115 for Brazil (31 %), and 0 for Great
Britain.

Figure 4. Histograms of the aridity index values based on the mean annual evapotranspiration (Epot) and precipitation (P ) from the CAMELS
and Caravan datasets (calculated for a 30-year period: 1983–2013). Note that 39 US catchments (8 %) and 4 Brazilian catchments (1 %) were
not included in the histograms because the aridity index values for the Caravan data plot beyond the x-axis limits. The maximum calculated
aridity index values were 20.2 for the US, 8.1 for Brazil, and 2.2 for Great Britain.

greaves Epot and the mean annual Epot in the CAMELS-US
dataset varied between 0.6 and 1.4 (median: 0.9). This range
was 0.6 to 1.3 for the catchments in Brazil (median: 1.0) and
0.5 to 1.1 for the catchments in Great Britain (median: 0.9).
The catchments in the US and Great Britain for which the
Hargreaves Epot values were (too) low were mainly located
at the higher latitudes. As a comparison, the ratio between
the mean annual Epot in the Caravan dataset and the mean
annual Epot in the CAMELS datasets varied between 1.5 and

10.1 (median: 5.6) for the US, between 1.6 and 6.2 (median:
2.2) for Brazil, and between 1.5 and 4.4 (median: 2.2) for
Great Britain (Fig. 5).

Of course, there are a variety of other ways to obtain daily
Epot values for the Caravan dataset and to provide an alter-
native to the current Epot data in the Caravan dataset, e.g. the
Hargreaves–Samani equation without the adjustment for hu-
midity (Hargreaves and Samani, 1982) or the Thornthwaite
equation (Thornthwaite, 1948) with a scaling for daily val-
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Figure 5. Violin plots showing the ratio between the mean annual Epot of either the ERA5-Land data in the Caravan dataset or the Hargreaves
Epot data based on input data from the Caravan dataset and the mean annual Epot in the CAMELS datasets for the catchments in the US,
Brazil, and Great Britain. The CAMELS Epot refers to the Epot data calculated with the Priestley–Taylor equation for the CAMELS-US
dataset and the Epot data included in the CAMELS-BR and CAMELS-GB datasets (see Table 1). Note that the y axis is logarithmic.

ues. While it is an open question as to which method leads
to the best results, the Hargreaves-based method used here
provides a straightforward solution to avoid the problematic
ERA5-Land-based Caravan Epot data.

4 Effect of the differences in the forcing data on
hydrological model results

4.1 Description of modelling experiments

To assess the overall effect of the differences in the forcing
data for the CAMELS and the Caravan datasets on hydrolog-
ical model performance, we conducted a series of modelling
experiments. Even though a compensational effect of the
model parameters can be expected, i.e. to adjust for possibly
inaccurate or biased forcing data, we consider the model per-
formance (i.e. how well the streamflow observations could
be represented with a certain combination of forcing data) as
an aggregated measure of data quality.

We calibrated the bucket-type HBV model (Bergström,
1992; Lindström et al., 1997) in the version HBV-light (Seib-
ert and Vis, 2012) with a genetic algorithm (Seibert, 2000),
optimizing the Kling–Gupta efficiency (KGE; Gupta et al.,
2009) for the daily streamflow simulations. A detailed de-
scription of the model routines can be found elsewhere (e.g.
Seibert and Vis, 2012).

We created seven different combinations of forcing data,
varying the data source for the precipitation, temperature,
and Epot time series (Table 2), and calibrated the model for
each of these datasets. We did this for each of the 1252
catchments for which we also compared the forcing data (see
Sect. 3.3). These are all the catchments from CAMELS-US,
CAMELS-BR, and CAMELS-GB that were included in the
Caravan dataset, except for 14 catchments from CAMELS-
GB, for which more than 20 % of the streamflow data were
missing for the simulation period. We divided each catch-
ment into elevation zones of 200 m, whereby each elevation

zone had to make up at least 5 % of the catchment area (if
not, the elevation zones were merged with the neighbouring
elevation zone). This division is relevant for the snow routine
of the HBV model. We used the EarthEnv-DEM90 digital el-
evation model (Robinson et al., 2014) and the shapefiles con-
tained in the Caravan dataset to derive the elevation zones.

For the catchments in the US and Great Britain, we used
1 October 1988 to 30 September 2013 as the simulation pe-
riod, and for the catchments in Brazil, we used 1 April 1988
to 31 March 2013 as the simulation period. The preceding
5 years were used as a warm-up period. Note that we did not
distinguish between a calibration and validation period (i.e.
we used the simulation period for calibration and evaluation)
because we are interested in the influence of the different data
types on model performance (cf. Tarek et al., 2020).

To account for equifinality, we calibrated the model for
each scenario and catchment 100 times. From these 100 op-
timized parameter sets and their corresponding simulated
hydrographs, we calculated the ensemble mean hydrograph
based on the arithmetic average of the 100 simulated stream-
flow values for each day. We compared this simulated hydro-
graph to the observed hydrograph to obtain one KGE value
per data scenario for each catchment.

4.2 Results

4.2.1 Model performance with CAMELS and Caravan
data

Using the CAMELS forcing data for model calibration (sce-
nario I) led to good model performance for most catchments
(Figs. 6 and 7). For the US catchments, the KGE ranged from
0.12 to 0.96 (median: 0.85), and for 20 of the 482 catchments
(4 %), it was below 0.6. For the Brazilian catchments, the
KGE ranged from −0.85 to 0.94 (median: 0.77); it was neg-
ative for 2 catchments and below 0.6 for 52 of the 376 catch-
ments (14 %). For the catchments in Great Britain, the KGE
ranged from −2.27 to 0.98 (median: 0.92); it was negative
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Table 2. Overview of the seven combinations of calibration data used for the different scenarios of the modelling experiment. In addition to
the forcing data from the Caravan and the CAMELS datasets (see Sect. 3.2 and Table 1 for details), we also used the Hargreaves-based Epot
values based on Caravan data as an alternative to the unrealistically high Epot data in the Caravan dataset (see Sect. 3.3.3).

Scenario Scenario description Precipitation Temperature Epot

I CAMELS CAMELS CAMELS CAMELS
II Caravan Caravan Caravan Caravan
III CAMELS but with Caravan precipitation data Caravan CAMELS CAMELS
IV CAMELS but with Caravan temperature data CAMELS Caravan CAMELS
V CAMELS but with Caravan Epot data CAMELS CAMELS Caravan
VI CAMELS but with Hargreaves Epot data CAMELS CAMELS Hargreaves
VII Caravan but with Hargreaves Epot data Caravan Caravan Hargreaves

Figure 6. Boxplots illustrating the model performance (KGE values for the ensemble mean hydrograph) for all scenarios (see Table 2 for
a description) for all catchments in the US (n= 482), Brazil (BR; n= 376), and Great Britain (GB; n= 394). The lower limit of each box
represents the 25th percentile, the upper limit represents the 75th percentile, and the line represents the median. The whiskers end at the most
extreme data point within 1.5 times the interquartile range. The dots represent outliers. Note that the y axis was limited to positive KGE
values. The KGE values were negative for 46 cases.

for 3 catchments and below 0.6 for 13 of the 394 catchments
(3 %). For the five catchments with a negative KGE, the sim-
ulated streamflow was higher than the observed streamflow,
but the observed streamflow was less than expected based on
the precipitation and Epot data.

Compared to calibration with the CAMELS data, calibra-
tion with the Caravan data (scenario II) decreased the KGE
for 1134 of 1252 catchments (91 %; Figs. 6 and 8, Table 3).
The KGE for the calibration with Caravan data was below
0.6 for 488 of the 1252 catchments (39 %, i.e. 403 catchments
more than for scenario I – CAMELS data). However, the Car-
avan forcing data led to a positive KGE for all catchments,
i.e. also for the five catchments in Brazil and Great Britain
for which the KGE for the calibration with the CAMELS
data was negative. For these five catchments, the simulated
streamflow was overestimated with the CAMELS forcing
data and was lower for the Caravan forcing data and, thus,
was more similar to the observed streamflow.

For the catchments in the US, the KGE mainly decreased
for the catchments east of the 100° W meridian and along the
West Coast. For the remainder of the western part of the US,
the KGE did not change considerably. For the catchments in
Brazil, the KGE tended to decrease most for the more south-
ern catchments, but there were also some catchments in the
eastern part of Brazil for which the KGE decreased quite
strongly. The KGE increased for a few Brazilian catchments.
For the catchments along the western coast of Great Britain,
the KGE decreased strongly. The decrease was less strong
for catchments in the southern part. For some catchments in
southern England, the KGE increased (Fig. 8). This included
a cluster of catchments for which the KGE was compara-
bly low when calibrated with the CAMELS data (scenario I,
Fig. 7).
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Figure 7. Model performance (KGE values) for scenario I (CAMELS forcing data) for the catchments in the US, Brazil, and Great Britain
for the period April 1988 to March 2013 (Brazil) or October 1988 to September 2013 (US, Great Britain). Note that the lower limit of the
scale was cut at 0. The KGE was negative for five catchments. The KGE values were rounded to one significant figure for the histograms.

Figure 8. Difference in model performance when using the Caravan forcing data (scenario II) and the CAMELS forcing data (scenario I).
The pink colours indicate a lower KGE when calibrating with the Caravan data, and the green colours indicate a higher KGE when calibrating
with the Caravan data. Note that the colour scale was cut at a difference in KGE of ± 0.5 and that the y axes of the histograms were cut at a
difference in KGE of ± 1. The 1KGE values were rounded to one significant figure for the histograms.

4.2.2 Effect of differences in precipitation data

Model performance was better when CAMELS precipitation
data were used for model calibration than when Caravan pre-
cipitation data were used (Fig. 6). Using the Caravan pre-
cipitation data (scenario III) instead of the CAMELS pre-
cipitation data (scenario I) decreased the KGE for 1169 of
the 1252 catchments (93 %) (Table 3). The pattern of the ef-
fect of the Caravan precipitation data on the KGE values was
similar to the pattern of the effect of all the Caravan forcing

data (Fig. 8). Indeed, the median difference between the KGE
achieved with scenario II and scenario III for all 1252 catch-
ments was −0.03; i.e. scenario III performed only slightly
better than scenario II. The median difference was −0.09 for
the US catchments, 0.06 for the Brazilian catchments (where
scenario II performed better than scenario III; see Fig. 6 and
Table 3), and −0.07 for the catchments in Great Britain. In
other words, the difference in the precipitation data explained
most of the effect of replacing the forcing data from the
CAMELS datasets with the forcing data from the Caravan
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Table 3. The effect of differences in all forcing data (i.e. comparison of scenarios II and I), precipitation data (scenarios III and I), temperature
data (scenarios IV and I), and Epot data (scenarios V and I) from the CAMELS and Caravan datasets on model performance (i.e. KGE values),
as well as the effect of using Hargreaves Epot data instead of the Epot data from the CAMELS datasets (scenarios VI and I) or the Caravan
dataset (scenarios VII and II) on model performance for all catchments together and each region. The stars indicate statistical significance
according to the one-sided Wilcoxon test: ∗∗ indicates a p value < 0.001, and ∗ indicates a p value < 0.01. For all tests, except that for the
effect of using the Hargreaves-based Epot data instead of the Epot data from the Caravan dataset, we tested for a significant decrease in model
performance; for the latter, we tested for a significant increase in model performance (last column).

Effect of differences: All data Precip. Temp. Epot Epot Epot
Comparison of scenarios: II–I III–I IV–I V–I VI–I VII–II

Median 1KGE
and significance

All (n= 1252) −0.17∗∗ −0.14∗∗ −0.00∗∗ −0.02∗∗ −0.00∗∗ 0.04∗∗

US (n= 482) −0.25∗∗ −0.14∗∗ −0.00∗∗ −0.05∗∗ 0.00 0.10∗∗

BR (n= 376) −0.11∗∗ −0.19∗∗ −0.03∗∗ −0.00∗ −0.01∗∗ −0.02
GB (n= 394) −0.17∗∗ −0.11∗∗ 0.00 −0.02∗∗ −0.01∗∗ 0.08∗∗

Number and
percentage of
catchments with
1KGE > 0.1

All (n= 1252) 39 (3 %) 23 (2 %) 3 (0 %) 61 (5 %) 9 (1 %) 423 (34 %)
US (n= 482) 7 (1 %) 3 (1 %) 2 (0 %) 9 (2 %) 0 (0 %) 245 (51 %)
BR (n= 376) 17 (5 %) 10 (3 %) 1 (0 %) 28 (7 %) 2 (1 %) 17 (5 %)
GB (n= 394) 15 (4 %) 10 (3 %) 0 (0 %) 24 (6 %) 7 (2 %) 161 (41 %)

Number and
percentage of
catchments with
1KGE < 0

All (n= 1252) 1134 (91 %) 1169 (93 %) 757 (60 %) 855 (68 %) 786 (63 %) 433 (35 %)
US (n= 482) 434 (90 %) 443 (92 %) 293 (61 %) 385 (80 %) 205 (43 %) 84 (17 %)
BR (n= 376) 333 (89 %) 349 (93 %) 339 (90 %) 200 (53 %) 275 (73 %) 255 (68 %)
GB (n= 394) 367 (93 %) 377 (96 %) 125 (32 %) 270 (69 %) 306 (78 %) 94 (24 %)

Number and
percentage of
catchments with
1KGE <−0.1

All (n= 1252) 873 (70 %) 770 (62 %) 34 (3 %) 236 (19 %) 26 (2 %) 172 (14 %)
US (n= 482) 375 (78 %) 287 (60 %) 0 (0 %) 160 (33 %) 4 (1 %) 21 (4 %)
BR (n= 376) 208 (55 %) 265 (70 %) 34 (9 %) 50 (13 %) 16 (4 %) 115 (31 %)
GB (n= 394) 290 (74 %) 218 (55 %) 0 (0 %) 26 (7 %) 6 (2 %) 36 (9 %)

dataset. Furthermore, the effect of the difference in the pre-
cipitation data was larger than the effect of the difference in
the temperature data and was also larger than the effect of the
large difference in the Epot data (see Sect. 4.2.3 and 4.2.4).

4.2.3 Effect of differences in temperature data

The effect of using temperature data from the Caravan
dataset (scenario IV) instead of temperature data from
the CAMELS datasets (scenario I) was comparably small
(Fig. 6). However, when considering all 1252 catchments,
as well as when considering only the US catchments or only
the Brazilian catchments, the KGE values still decreased sig-
nificantly in scenario IV compared to in scenario I (Table 3;
p < 0.001). Only in Great Britain, where the mean daily tem-
perature data in the Caravan dataset were very similar to the
mean daily temperature data in the CAMELS-GB dataset for
most catchments (Fig. 2), there was no significant decrease
in the KGE values found when scenario IV was compared to
scenario I (p= 1.0); i.e. replacing the temperature data from
the CAMELS-GB dataset with the temperature data from
the Caravan dataset did not have a significant effect. There
was no indication that the replacement of the temperature
data had a stronger influence on the KGE in snow-dominated
(mountainous) catchments than in other catchments, as may
have been expected.

4.2.4 Effect of differences in potential
evapotranspiration data

Using the Epot data from the Caravan dataset (scenario V)
instead of the Epot data from the CAMELS datasets (sce-
nario I) significantly decreased the KGE (Table 3; p < 0.01
for the Brazilian catchments and p < 0.001 for the catch-
ments in the US and Great Britain or when taking all catch-
ments together). The decrease was particularly pronounced
for the catchments in the US, where the differences between
the mean annual Epot from the Caravan dataset and the mean
annual Epot from the CAMELS-US dataset were especially
large (Figs. 3 and 5). However, compared to the KGE de-
crease when all forcing data were taken from the Caravan
dataset (scenario II) or when only precipitation data were
taken from the Caravan dataset (scenario III), the effect of
the unrealistic Epot data from the Caravan dataset was rela-
tively small (Fig. 6).

The model performance drop compared to scenario I
tended to be smaller when the model was calibrated with
the Hargreaves Epot data (scenario VI) than when the model
was calibrated with the Epot data from the Caravan dataset
(scenario V). For the US catchments, there was no signifi-
cant decrease in KGE when the Epot data calculated with the
Priestley–Taylor equation for the CAMELS-US dataset were
replaced with the Hargreaves Epot data (compare scenario VI
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to scenario I; p= 0.987; Table 3); however, this was the case
when replacing the Epot data from the CAMELS datasets
with the Hargreaves Epot data for Brazil and Great Britain
(p < 0.001).

Similarly, we tested whether replacing the ERA5-Land
Epot data in the Caravan dataset with the Hargreaves Epot
data (scenario VII) significantly improved the model perfor-
mance compared to when all forcing data from the Caravan
dataset were used (scenario II). This was indeed the case
(p < 0.001) when all catchments, all US catchments, or all
catchments in Great Britain were considered (Table 3, last
column). However, for the Brazilian catchments, the effect
was the opposite; i.e. the unrealistic Epot data from the Cara-
van dataset led to significantly better results than the alterna-
tive Hargreaves Epot data (p < 0.001).

A positive effect of the Hargreaves Epot data instead of the
Epot data from the Caravan dataset on the model performance
could especially be observed for regions for which the use of
Caravan forcing data (scenario II) instead of CAMELS forc-
ing data (scenario I) had a strong negative impact (Figs. 8
and 9). In the US, this was mainly the case for the catch-
ments in the eastern part of the country and along the West
Coast. The few catchments in Brazil for which the model
performance increased due to the Hargreaves Epot data were
located in the southern part of the country, as well as along
the eastern coast. In Great Britain, the increases tended to be
stronger for the western part of the country (Fig. 9).

4.3 Discussion of the difference in model performance
for CAMELS and Caravan data

Streamflow modelling with the forcing data included in the
three CAMELS datasets worked well for most catchments.
An unsuitable model structure, errors in the CAMELS data,
or human impacts on streamflow are possible explanations
for the poor model performance for some of the catchments.
For example, the catchments in the arid regions of the US
for which the model performance was low were identified
as being more difficult to model in earlier studies as well
(Knoben et al., 2020; Kollat et al., 2012). Based on the com-
parison of different models, Knoben et al. (2020) found that
there are model structures that can simulate the streamflow in
these catchments successfully. Similarly, the low model per-
formance for some catchments in southeastern Great Britain
may be attributed to complex groundwater systems (as iden-
tified earlier by Lane et al., 2019; Seibert et al., 2018).
A more suitable model structure accounting for subsurface
losses would lead to a better model performance (Kiraz et al.,
2023). However, looking at the model results as an aggre-
gated measure of data quality, the good model fits indicate
a high data quality in the CAMELS-US, CAMELS-BR, and
CAMELS-GB datasets.

The overall deterioration in model performance for cali-
bration with the Caravan dataset indicates that the quality of
the forcing data from ERA5-Land is lower than the quality

of the data that are available for the US, Brazil, and Great
Britain. As the ERA5-Land data are coarser than most data in
the CAMELS datasets (Table 1), this was, to a certain extent,
expected. Furthermore, the negative effect of the Caravan
forcing data on model performance may be smaller for mod-
els that are less sensitive to errors in the input data and that
can adapt more flexibly. However, a user who decides to use
the Caravan dataset instead of different CAMELS datasets
out of convenience may not be aware of the considerable
degradation of the input data and the potentially severe ef-
fects on the model performance.

Even though the Epot data in the Caravan dataset are unre-
alistically high for many catchments (Fig. 3), the analysis of
the isolated effects of the Caravan forcing data showed that
differences in the precipitation (Fig. 1) were responsible for
most of the decrease in model performance for the Caravan
forcing data (Fig. 6, Table 3). As precipitation is the main
driver of streamflow, the strong influence of precipitation is
not surprising. The fact that the model performance dropped
so much indicates more than a small bias; rather, it shows a
lower plausibility of the reanalysis-based precipitation data
(cf. Beck et al., 2017; Tarek et al., 2020; Wang et al., 2023a).

The spatial differences in how the model performance was
affected by the Caravan precipitation data may be related to
both the spatial patterns in the errors and the catchment char-
acteristics. For example, the Caravan precipitation data led
to a much stronger deterioration in model performance for
catchments in the eastern part of the US than in the west-
ern part. This pattern was also observed in earlier studies that
tested the value of reanalysis data for hydrological modelling
in North America (Essou et al., 2016; Tarek et al., 2020). Es-
sou et al. (2016) mainly attributed this issue to the convective
summer storms in the eastern part of the US that are poorly
represented in the reanalysis data.

These results mean that one should be cautious when us-
ing the Caravan precipitation data instead of more reliable
(e.g. station-based) precipitation data because the conclu-
sions may be affected by the lower data quality of the forcing
data in the Caravan dataset. In our opinion, ERA5-Land pre-
cipitation data should only be used for catchments for which
there are no alternative data (so that these catchments can
still be included in large-sample studies). This is in line with
the conclusions of Essou et al. (2016, 2017) and Tarek et al.
(2020), who stated that reanalysis data can serve as a proxy
for meteorological data for regions with little or no weather
station data.

Considering the large bias in the Caravan Epot data (Figs. 3
and 5), the effect on the model performance was surpris-
ingly small and was clearly smaller than the effect of the
precipitation data (Fig. 6, Table 3: III–I versus V–I). This
is in line with earlier studies that showed that Epot data af-
fect model performance less than precipitation data (Oudin
et al., 2006; Paturel et al., 1995) because the model can com-
pensate for a systematic overestimation of Epot. Thus, an
overestimation of Epot is less severe than an underestima-
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Figure 9. Difference in KGE values for the model calibration with precipitation and temperature data from the Caravan dataset and the
Hargreaves-based Epot data (scenario VII) and when all Caravan forcing data were used (scenario II). The pink colours indicate a lower
KGE value when the Hargreaves-based Epot data were used compared to the calibration with all Caravan data, and the green colours indicate
a higher KGE value with the Hargreaves-based Epot data. Note that the colour scale was cut at a difference in KGE of ± 0.5 and that the y

axes of the histograms were cut at a difference in KGE of ±1. The 1KGE values were rounded to one significant figure for the histograms.

tion (Jayathilake and Smith, 2022). Indeed, additional sensi-
tivity analyses with artificially biased Epot data, not shown
here for the sake of brevity, showed that the HBV model
compensated for the overestimated Epot data from the Car-
avan dataset mainly by adjusting the values of the param-
eters of the soil routine to reduce evapotranspiration. This
allowed the model to simulate an actual evapotranspiration
that was more realistic and of a similar order of magnitude
to the actual evapotranspiration simulated with the Epot data
from the CAMELS datasets. Thus, even though the model
performance may have not changed considerably, the pro-
cesses were represented differently due to the compensation.
This is problematic, especially when the calibrated parame-
ter values are subsequently used to characterize a catchment
(Bouaziz et al., 2022).

The few cases for which the model performance was better
with the Epot data from the Caravan dataset can either be at-
tributed to some exceptional cases where the CAMELS data
are even more erroneous than the Caravan data or to the com-
pensation effects of biased variables (Wang et al., 2023b).
Possible explanations for the catchments for which the unre-
alistically high Epot data led to an increase in model perfor-
mance may be a wrong representation of the processes that
coincidentally led to a better model performance (Kirchner,
2006) or errors in the water balance data for the CAMELS
dataset and thus an improvement thanks to the high (but
still wrong) Epot data. A compensation for the wrong wa-
ter balance with overestimated Epot data may also explain
why many catchments in Brazil did not profit from the more
realistic Hargreaves-based Epot data (Fig. 9).

The low sensitivity of the hydrological model to the wrong
Epot data indicates that validating meteorological forcing
data with a hydrological model approach, as we did in this
study, may not be the most suitable way to investigate the
quality of Epot data but that this works fine for precipitation
data. Thus, other approaches or simple plausibility tests may
be more useful for the validation of Epot data and the indices
calculated thereof.

5 Suggestions for the use of the Caravan dataset

For the vast majority of the catchments, using the forcing
data from the Caravan dataset deteriorates model results and
impacts the conclusions drawn from them. In our opinion,
the model performance was affected so strongly by the use
of the reanalysis data in the Caravan dataset that this cannot
be considered to be an inconsequential trade-off between the
use of homogeneous data and a drop in model performance.
Even though we agree that the use of ERA5-Land data for
all catchments has advantages, such as comparability and the
possibility of extending the Caravan dataset to other catch-
ments, the loss in data quality for this standardization is a
hefty price tag.

Because the Caravan dataset is easy to acquire, is well-
organized, and offers opportunities for catchments in under-
represented regions to be included in large-sample studies in
hydrology, there are clear advantages of using reanalysis data
for some studies and, in particular, for catchments for which
the forcing data would otherwise not be available. The use of
the Caravan dataset as the standard resource for large-sample
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hydrology would also facilitate the comparison of model re-
sults. However, the quality of the meteorological data that are
used for hydrological model calibration is lower for the Car-
avan dataset than for the original CAMELS datasets. Thus,
in our opinion, the Caravan forcing time series are not the
most suitable dataset for all studies, in particular for catch-
ments for which higher-quality data are available. Therefore,
we provide two suggestions to improve the Caravan dataset.

5.1 Extension with forcing data from the original
datasets

To make researchers aware that they are using lower-quality
data when downloading the data from the Caravan dataset
(compared to when they would use the CAMELS datasets),
we suggest extending the Caravan dataset by also adding the
forcing data that were originally included in the national and
regional large-sample datasets when these are available. In
this way, users would be able to decide if either global com-
parability or the use of the best possible data is more im-
portant for their study. Including both data types in the Car-
avan dataset would also lead to more transparency regard-
ing the differences between the forcing data in the CAMELS
datasets and the reanalysis data in the Caravan dataset. For
catchments for which no other data are available apart from
those from ERA5-Land (i.e. for which the ERA5-Land data
are state of the art), no extension would be necessary. Of
course, users already have this choice since the CAMELS
datasets are available in their own repositories. Still, it would
be much more convenient for the users to find them in Car-
avan in order to facilitate their use and the comparison with
the ERA5-Land data.

Until the Caravan dataset is extended in such a way, we
highly recommend that users assess thoroughly whether they
want to use the Caravan dataset or if they prefer the data
that were originally included in the CAMELS datasets. Es-
pecially if a study is limited to catchments for which bet-
ter data are available, it may be valuable to go the more
tedious way and download the different CAMELS datasets
separately. Even though the CAMELS data are also not per-
fect, their quality is better than that of the standardized data
currently available in the Caravan dataset.

There are, of course, also situations in which the global
comparability (and thus the reliance on input data that was
generated uniformly for all catchments) is most important.
In such cases, using the Caravan forcing data is the best pos-
sible solution (at least currently), and we suggest using the
Caravan data as they are (for all variables except Epot; see
Sect. 5.2), even though this may mean a loss in data quality
and model performance (which is larger for some catchments
than for others). However, in most applications, we think that
it is better to use the best possible data, as one would do in
every other situation in life.

As an alternative or an addition to the extension of the Car-
avan dataset with the original CAMELS data, a clear warning

regarding the loss of data quality due to the standardization
of the meteorological forcing data in the Caravan dataset is
needed to avoid the Caravan dataset being used instead of
the original CAMELS datasets without the user being aware
of the consequences. Such a warning would avoid duplicat-
ing already-existing data and still enable the user to make an
informed decision.

It can be considered a general lesson learned from this
study that new large-sample datasets need to clearly state
their advantages compared to already-existing datasets but
also need to inform users about possible drawbacks. With
ERA6, the next generation of reanalysis data is currently be-
ing developed. Considering the development of reanalysis
data so far, it is expected that the quality will increase. This
could change the appropriateness of reanalysis data as forc-
ing data in hydrological models. However, if the limitations
of a new dataset are already known beforehand, a disclaimer
section in the accompanying publication should be added,
and the users should be informed about the limitations in the
database itself. Furthermore, if issues with some of the data
only become clear at a later point in time, this information
should be added to the database. With that, it can be pro-
moted that the right datasets are used for the right purposes.

5.2 Replacement of the ERA5-Land-derived potential
evapotranspiration data

The comparison of the Epot data included in the Caravan
dataset with the Epot data from the CAMELS-US, CAMELS-
BR, and CAMELS-GB datasets showed that the Caravan
Epot data are systematically too high and are not reliable
for any hydrological application. Because hydrological mod-
els can cope with some errors in the Epot input data (An-
dréassian et al., 2004; Bai et al., 2016; Oudin et al., 2006),
we expect that this large difference is mainly problematic
for the attributes based on these Epot data, such as the arid-
ity index (see Fig. 4). Therefore, we suggest replacing the
Epot data from ERA5-Land with an alternative method and
recalculating the values of the catchment attributes that in-
clude the Epot data. The Hargreaves-based approach (see
Sect. 3.3.3) is a possible alternative for the Epot data that
could be included in the Caravan dataset. The advantages are
that these data are realistic and can be calculated based on
the other ERA5-Land-derived data (temperature and precipi-
tation) that are already in the Caravan dataset. However, there
are also other methods to estimate Epot and different global
datasets containing Epot estimates, such as the dataset pre-
sented by Singer et al. (2021) resulting from the application
of the FAO’s Penman–Monteith equation based on ERA5-
Land meteorological variables. With Caravan being a com-
munity effort, making a suitable choice for new Caravan Epot
data can be considered a task of the large-sample hydrol-
ogy community. Aside from replacing the current Epot data
with other globally available Epot data, our suggestion of in-
cluding the forcing data from the original CAMELS datasets
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where possible as an alternative to the standardized global
data (see Sect. 5.1) also applies for Epot data.

6 Conclusions

Currently, the Caravan dataset is the most comprehensive
large-sample dataset available in hydrology. It provides
the community with hydrometeorological information and
catchment attributes for many catchments in the world and
offers the opportunity to extend the dataset with catchments
for which streamflow data (but potentially no meteorolog-
ical data) are available. It, furthermore, allows the forcing
data to be comparably easily updated. Therefore, the Caravan
dataset brings large-sample hydrology to the next level. How-
ever, there are considerable differences between the forcing
data included in the Caravan dataset and the forcing data
in the original large-sample datasets, as shown here for the
CAMELS-US, CAMELS-BR, and CAMELS-GB datasets.
The goal of this paper is to make researchers aware of these
differences and to show that these differences cause a re-
duction in model performance for most catchments. The im-
pact of the lower-quality data on model results may lead to
wrong conclusions – for example, regarding the suitability
of a model or its parameterization. It can also affect conclu-
sions regarding the suitability of regionalization approaches
and the value of data for the calibration of otherwise un-
gauged catchments. Therefore, we suggest that the standard-
ized global forcing data in the Caravan dataset are extended
with the higher-quality forcing data from the original data
sources where available. We also suggest using other Epot
data, e.g. calculated from the temperature data included in
the Caravan dataset, as the ERA5-Land Epot data are unreal-
istically high for many catchments. Even though this does not
affect the model calibration results as much as the differences
in the precipitation data, it can lead to wrong parameteriza-
tions and affects the catchment attributes (and thus catchment
comparisons). We are sure that these relatively easy changes
will increase the value of the Caravan dataset further and sup-
port its establishment as the main resource for large-sample
hydrology.

Code and data availability. The Caravan dataset is available from
Zenodo (https://doi.org/10.5281/zenodo.7944025, Kratzert et al.,
2023b). The CAMELS-US dataset is available from Geoscience
Data Exchange (https://doi.org/10.5065/D6G73C3Q, Addor et
al., 2017a; https://doi.org/10.5065/D6MW2F4D, Newman et al.,
2014). The CAMELS-BR dataset is available from Zenodo
(https://doi.org/10.5281/zenodo.3964745, Chagas et al., 2020b).
The CAMELS-GB dataset is available from the NERC Environ-
mental Information Data Centre (https://doi.org/10.5285/8344e4f3-
d2ea-44f5-8afa-86d2987543a9, Coxon et al., 2020b).

The HBV model (HBV-light version) is available from the Uni-
versity of Zurich (https://www.geo.uzh.ch/en/units/h2k/Services/

HBV-Model/HBV-Download.html, University of Zurich, Depart-
ment of Geography, 2023)

An R script for the calculation of the Hargreaves-
based Epot values is available from Zenodo
(https://doi.org/10.5281/zenodo.10784701, Clerc-Schwarzenbach,
2024).

All colour maps used in this paper are scientific colour maps from
Crameri (2023, https://doi.org/10.5281/zenodo.8409685), accessed
via the scico R package, version 1.5.0 (https://CRAN.R-project.org/
package=scico, Pedersen and Crameri, 2023).

Other R packages used for this study are circlize, ver-
sion 0.4.15 (Gu et al., 2014); hydroGOF, version 0.4-
0 (https://doi.org/10.5281/zenodo.839854, Zambrano-
Bigiarini, 2023); vioplot, version 0.4.0 (https://github.com/
TomKellyGenetics/vioplot, Adler et al., 2022); rworldmap,
version 1.3-6 (South, 2011); rworldxtra, version 1.01 (https:
//CRAN.R-project.org/package=rworldxtra, South, 2012); and
maps, version 3.4.1 (https://CRAN.R-project.org/package=maps,
Becker et al., 2022).
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