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Abstract. Machine learning (ML) has played an increasing
role in the hydrological sciences. In particular, Long Short-
Term Memory (LSTM) networks are popular for rainfall–
runoff modeling. A large majority of studies that use this
type of model do not follow best practices, and there is one
mistake in particular that is common: training deep learn-
ing models on small, homogeneous data sets, typically data
from only a single hydrological basin. In this position paper,
we show that LSTM rainfall–runoff models are best when
trained with data from a large number of basins.

1 Machine learning requires different intuitions about
hydrological modeling

Regionalizing rainfall–runoff models across multiple water-
sheds is a long-standing problem in the hydrological sciences
(Guo et al., 2021). The most accurate streamflow predictions
from conceptual and process-based hydrological models gen-
erally require calibration to data records in individual water-
sheds. Hydrology models based on machine learning (ML)
are different – ML models work best when trained on data
from many watersheds (Nearing et al., 2021). In fact, this is
one of the main benefits of ML-based streamflow modeling.

Because ML models are trained with data from multi-
ple watersheds, they are able to learn hydrologically diverse
rainfall–runoff responses (Kratzert et al., 2019b) in a way
that is useful for prediction in ungauged basins (Kratzert
et al., 2019a). However, prediction in ungauged basins is not
the only reason to train ML models on data from multiple wa-

tersheds. Models trained this way have better skill even in in-
dividual, gauged watersheds with long training data records,
and they are also better at predicting extreme events (Frame
et al., 2022).

The purpose of this paper is to effect a change in intu-
ition. ML requires a top-down modeling approach in con-
trast to traditional hydrological modeling that is usually
most effective with a bottom-up approach. We do not mean
top-down vs. bottom-up in the sense discussed by Hra-
chowitz and Clark (2017), who use these terms to differenti-
ate between lumped, conceptual (top-down) vs. distributed,
process-based (bottom-up) models. Instead, we mean that
traditional hydrology models (both lumped, conceptual mod-
els and process-based models) are typically developed, cal-
ibrated, and evaluated at a local scale, ideally using long
and comprehensive data records. Then, in this bottom-up ap-
proach, after a model is developed, we might work on region-
alization strategies to extrapolate parameters and parameter-
izations to larger areas (e.g., Samaniego et al., 2010; Beck
et al., 2016). In contrast, with ML modeling, the best ap-
proach is to start by training on all available data from as
many watersheds as possible and then start fine-tuning mod-
els for individual catchments. The effort then goes into local-
izing large-scale models instead of regionalizing small-scale
models.

This paper focuses on rainfall–runoff modeling with Long
Short-Term Memory (LSTM) networks because this is cur-
rently the most common type of ML model used in surface
hydrology. The use of LSTM networks for rainfall–runoff
modeling is motivated by the fact that LSTM networks are
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Figure 1. Number of hydrological publications related to rainfall–
runoff modeling with LSTM networks over time based on data re-
trieved from Google Scholar in April 2024.

state–space models and are therefore structured similarly to
how hydrologists conceptualize watersheds (Kratzert et al.,
2018). The use of LSTM networks in hydrology research has
increased exponentially in the last several years (see Fig. 1).
We see no reason to suspect that the lessons learned about big
data with this type of model are not general, and we have sev-
eral reasons to suspect that they are; namely, it is important
to recognize that, across application domains, machine learn-
ing models trained on large training data sets out-perform
smaller, more specialized models (Sutton, 2019).

To understand the current state of practice with LSTM-
based rainfall–runoff modeling, we collected papers returned
by a keyword search on Google Scholar for “rainfall–runoff
modeling LSTM streamflow”, sorted by relevance. From
this search, we surveyed the top 50 papers per year for the
years 2021, 2022, and 2023 and skipped papers that did not
involve training models or developing systems for training
models. Of those 150 papers surveyed, 122 trained models
on individual catchments, and 28 trained models on multiple
catchments (of which 4 were co-authored by one or more au-
thors of this paper) (Fig. 2). We collected these 150 papers
for review in April 2024, more than 4 years after the origi-
nal regional LSTM rainfall–runoff modeling papers (Kratzert
et al., 2019a, b) had been published. The list of 150 papers is
included in the data repository released with this paper.

It is important to recognize that there is usually no reason
in practice to train LSTM streamflow models using data from
only a small number of watersheds. There is enough publicly
available streamflow data to train robust ML models – for
example, the various CAMELS data sets such as CAMELS-
US (Newman et al., 2015), the Global Runoff Data Center
(BAFG, 2024), or the Caravan data set and its extensions
(Kratzert et al., 2023). It is possible to fine-tune large–sample
models to individual locations and/or for specific purposes
(e.g., Ma et al., 2021); however fine-tuning is outside the
scope of this paper. It is sufficient for our purpose to show
that training large-scale ML models is better than training

Figure 2. Fractions of 50 peer-reviewed research article papers per
year (starting 1 year after the original LSTM regional-modeling
papers were published Kratzert et al., 2019a, b) that train LSTM
rainfall–runoff models on single vs. multiple basins, based on arti-
cles retrieved from Google Scholar in April 2024.

small-scale ML models for streamflow prediction and that
fine-tuning would only widen this difference.

In summary, the large majority of LSTM papers published
in hydrology journals train models on small data sets from
single catchments. This is unfortunate because it does not
leverage the primary benefit of machine learning, which is
the ability to learn and generalize from large data sets. The
rest of this paper illustrates how and why that is a problem
when using LSTM networks specifically for rainfall–runoff
modeling.

2 Skill gaps between local and regional models

Figure 3 shows differences in performance between models
trained on single basins vs. multiple basins (regional). Fig-
ure 3a shows this comparison for two traditional hydrology
models, and Fig. 3b shows the comparison for LSTM mod-
els. Notice that, in Fig. 3a, single-basin models perform bet-
ter than regional models, and in Fig. 3b, this is reversed.

Figure 3a shows cumulative density functions (CDFs)
over Nash–Sutcliffe efficiencies (NSEs) for 489 CAMELS
basins from a conceptual model (mHM) and a process-based
model (VIC). These models were calibrated and run by other
research groups without our involvement, and the data from
these models were borrowed from the benchmarking study
by Kratzert et al. (2019b). The fact that conceptual and
process-based hydrological models perform worse when re-
gionally calibrated is, to our knowledge, a consistent finding
across hydrological-modeling studies (e.g., Beck et al., 2016;
Mizukami et al., 2017).

Figure 3b shows the same NSE CDFs for LSTM mod-
els. We tuned the hyperparameters and trained an ensemble
of 10 single-basin LSTM models separately for each of the
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Figure 3. Cumulative density functions (CDFs) of Nash–Sutcliffe efficiencies (NSEs) of simulated volumetric discharge over watersheds in
the CAMELS data set for models trained on individual basins (basin – orange lines) vs. on multiple basins (regional – blue lines). Subplot
(a) shows a conceptual model (mHM) and a process-based model (VIC), both calibrated using data from 489 watersheds by (different)
research groups that are familiar with each model – VIC single basins: Newman et al. (2017), VIC regional: Mizukami et al. (2017), mHM
single basins: Mizukami et al. (2019), and mHM regional: Rakovec et al. (2019). Subplot (b) shows the same NSE CDFs from LSTM
networks trained in two ways: regional LSTM networks (blue) were trained using data over the training period from all 531 CAMELS
basins, and single-basin LSTM networks (orange) were trained using data over the training period from each CAMELS basin individually.
An ensemble of 10 LSTM models were trained in all cases, where randomness in the LSTM repetitions is due to randomness in the initial
weights prior to training. We recommend averaging hydrographs from this kind of repetition, as was done by Kratzert et al. (2019a, b).

531 basins in the CAMELS data set (Newman et al., 2015;
Addor et al., 2017) using a standard training–validation–
test data split, with approximately 10 years of data in each
split. We similarly trained an ensemble of 10 LSTM regional
models with data from all 531 CAMELS catchments simul-
taneously using hyperparameters taken from Kratzert et al.
(2021). Details about how LSTM models were hyper-tuned,
trained, and tested can be found in Appendix A.

The choice to use 531 CAMELS basins for training and
testing LSTM networks comes from the suggestion by New-
man et al. (2017), who selected these basins from the full
CAMELS data set for model benchmarking. We use this set
of CAMELS benchmark gauges for the remainder of this
study. Figure B1 shows the same comparison as Fig. 3, but
subpanel b in that figure shows NSE CDFs only for the 489
CAMELS basins with mHM and VIC runs.

The takeaway from Fig. 3 is that, whereas traditional hy-
drological models are more accurate when calibrated to a sin-
gle watershed, LSTM models are more accurate when trained
on data from many watersheds. Other hydrological metrics
are reported in Appendix E; however, the main point of our
argument holds regardless of which metric is used for evalu-
ation.

3 Why this matters for extreme events

Training on large-sample data sets with hydrologic diver-
sity means that the training envelope is larger, making it less
likely that any new prediction will be an extrapolation. In-
tuitively, the training envelope refers to the ranges of data
where model performance is well-supported by the train-

ing process. If the training set includes a very humid basin
then the model is more likely to have seen large precipitation
events so that a new extreme precipitation event seen during
inference is less likely to be outside of the training envelope.
As an example of this, Nearing et al. (2019) discussed how
watersheds can move within the training envelope as (e.g.,
climate) conditions within a catchment change and how this
causes changes in the modeled rainfall–runoff response in in-
dividual watersheds.

We can look at the target data to see an example of how this
diversity in training data helps. The LSTM models used by
Kratzert et al. (2019a) and Kratzert et al. (2019b) have a lin-
ear “head” layer that produces a scalar estimate of streamflow
at each time step by taking a weighted sum of the values of
the LSTM hidden state. The weights for this weighted sum in
the head layer are parameters that are tuned during training.
The LSTM hidden state is a real-valued vector in (−1, 1) and
has a size equal to the number of cell states or memory states
in the LSTM model (for a hydrologically centered overview
of the structure of an LSTM model, please see Kratzert et al.,
2018), which means that the maximum (limiting) value of the
scalar streamflow estimate from the model is defined by the
sum of the absolute values of weights in the head layer (see
also Appendix C). More diversity in training data (here, train-
ing targets) causes the model to expand the range of weights
in the head layer to accommodate higher flow values.

This effect can be seen in Fig. 4, which shows the theoret-
ical maximum prediction from each of the 531 single-basin
LSTM models and from a single LSTM model trained on all
531 CAMELS basins. During inference (test period), there
is a total of 10 streamflow observations across all 531 catch-
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Figure 4. Theoretical maximum streamflow prediction of an LSTM model with a linear head layer when trained per basin (blue dots) and
for all 531 CAMELS basins together (blue line). Orange dots represent the maximum streamflow values per basin in the training period (a)
and test period (b). In the test period, there are 10 flow values above the maximum prediction of the regional model, while there are more
than 6346 flow values above the theoretical maximums of their respective single-basin models across all basins.

Figure 5. Observed and simulated hydrographs from the test period (1989–1999) in a particular basin (13011900). Notice how the high-flow
effect outlined in Fig. 4 manifests in the differences between hydrographs predicted by a regional LSTM model (a) vs. a single-basin LSTM
model (b). This example was chosen to highlight this effect (not chosen randomly); however, the effect is similar in most basins. This gauge
is on Lava Creek in Wyoming, with a drainage area of 837 km2, and exhibits a strong seasonal flow pattern.

ments that are above the regional model’s theoretical max-
imum when trained on data from all 531 watersheds. How-
ever, when separate models are trained per catchment, there
are more than 6000 streamflow observations that are above
the theoretical maximums for each model in its respective
catchment. Figure 5 shows how this effect manifests in an
example hydrograph from one particular basin (not chosen
at random). More examples are given in Appendix D. No-

tice that no model captures all of the extreme events, even in
the training data set (which is common for physically based
models as well; Frame et al., 2022).

In summary, training on a larger data set means that the
model is able to adapt internal weights and biases to account
for more extreme events.
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Figure 6. Median NSE scores of simulated volumetric discharge over 531 CAMELS basins for LSTM models trained and tested on splitting
the 531 CAMELS basins into different groupings for training and testing. All models were tested on the same basins where they were trained
(during different time periods). The blue line represents basin groupings of different sizes chosen randomly without replacement so that all
531 basins were modeled exactly once for each grouping size. Orange and green lines show results from grouping the 531 basins into sets
based on USGS hydrological unit codes (orange) and k-means clustering of basin attributes (green). Dots on the orange and green lines
indicate the sizes of the (18 and 6) basin groups used in those splits since there are a different number of CAMELS basins in each HUC and
a different number of basins in each attribute cluster. Blue dots and solid orange and green lines represent the median model performance
over 531 basins, while blue error bars and dashed orange and green lines represent the standard deviation of this median over a 10-member
ensemble.

4 How many basins are necessary?

Figure 6 shows how test period performance increases as
more basins are added to the training set. The blue line in
this figure was created by grouping 531 CAMELS basins into
differently sized training and test groups randomly without
replacement. This was done using k-fold cross-validation so
that all models were tested on the same basin(s) where they
were trained (during different time periods) and so that every
basin was used as a test basin exactly once in each grouping
size. For example, the 531 basins were grouped into, e.g.,
five disjointed groups (each with around 107 basins), follow-
ing which the data from the training period (1999–2000) of
one group were used to train an ensemble of 10 LSTM mod-
els, and data from the test period (1980–1989) of the same
group were used to evaluate that ensemble of trained LSTM
models. This procedure was repeated for each of the remain-
ing four groups, and a similar procedure was used for each
different size of basin grouping, shown along the x axis of
Fig. 6. Figure 6 plots the average (over 10 ensemble mem-
bers) of the median (over 531 CAMELS basins) test period
NSE for various basin groupings. More details about basin
groupings can be found in Appendix A3.

The blue line in Fig. 6 shows performance (median NSE)
increasing as the size of the training data set increases. This
effect continues up to the maximum size of the CAMELS
data set (531 basins). In other words, it is better to have more
basins in the training set, and even these 531 basins are most

likely not to be enough to train optimal LSTM models for
streamflow.

5 Is hydrological diversity always an asset?

There are at least two factors to consider when choosing
training data: volume and variety. Volume refers to the to-
tal number of data used for training (more is always better,
as far as we have seen), and variety refers to the (hydrologic)
diversity of data. Diversity might be in the form of different
geophysical catchment attributes, different types and magni-
tudes of events, or different hydrological behaviors.

Figure 6 provides examples of training on less hydrolog-
ically diverse basin groups. The orange line in Fig. 6 shows
the mean (over 10 ensemble members) of the median NSE
(over 531 CAMELS basins) from training and testing models
on basins grouped by USGS hydrological unit codes (HUCs).
There are 18 HUCs represented in the CAMELS data set,
with between 2 and 79 basins per HUC. The green line in
Fig. 6 shows the mean (over 10 ensemble members) of the
median NSE (over 531 CAMELS basins) from training and
testing models on basin groups derived from k-means clus-
tering on static catchment attributes. The CAMELS data set
includes catchment attributes related to climate, vegetation,
pedology, geology, and topography, and we clustered using
25 catchment attributes, described in Table A1. We selected
a k-means clustering model based on a maximin criterion
based on silhouette scores, which resulted in a model with
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six clusters ranging from 59 to 195 basins per cluster. De-
tails about how models were trained and tested on HUCs and
attribute clusters can be found in Appendices A4 and A5.

Figure 6 provides evidence that there might be ways to
construct training sets that could potentially result in bet-
ter models than simply training on all available streamflow
data. This conclusion is hypothetical because in all the ex-
amples shown in Fig. 6, models trained on any subset of
the 531 CAMELS basins performed worse, on average, than
models trained on all 531 CAMELS basins. However, sep-
arating the training set into hydrologically similar groups
of basins results in models that perform better than models
trained on random basin groups of similar size. It is an open
question as to whether a larger data set than CAMELS (e.g.,
Kratzert et al., 2023) might be divisible into hydrologically
similar groups that individually perform better than a model
trained on all available data. This could happen if, for exam-
ple, the curve in Fig. 6 becomes asymptotic at some point
beyond the size of the CAMELS data set and if the perfor-
mance of models trained on hydrologically informed basin
groups continues to increase with sample size. Note that this
analysis does not account for the value of hydrologic diver-
sity for prediction in ungauged basins.

The takeaway is that, even if enough basins exist to divide
your training data into hydrologically informed training sets,
one is likely to be better off simply training a single model
with all available data. At least, one should perform an anal-
ysis like that which is shown in Fig. 6 to understand whether
splitting the training set helps or hurts. We are interested in
seeing (through future work) what these trade-offs look like
with larger training sets.

6 Are bigger models better everywhere?

Even though the best model, on average, is the model trained
on all 531 CAMELS basins, it is not the case that the model
trained on all 531 CAMELS basins is better in every basin.
Figure 7 shows the number of basins for which models
trained on each grouping (size, HUC, attributes cluster) per-
form statistically better than (green) – and not statistically
differently to (orange) or statistically worse than (blue) – the
regional model trained on all 531 basins. These statistical
tests were done using a two-sided Wilcoxon signed-rank test
over 10 repetitions of each model, with a significance level
of α = 0.05. All models perform worse than the full regional
model in more basins than they perform better in.

We have not found a way to (reliably) predict which model
will perform best in any particular basin. It is not possible
to use metrics from the training period or validation period
to (reliably) choose the best model in the test period. Ad-
ditionally, we have tried extensively to construct a separate
predictor model that uses catchment attributes and/or hydro-
logical signatures to predict whether one model will perform
better or worse than other models in specific basins. We have

Figure 7. Counts of basins for which models trained on each group-
ing (sizes, HUC, attributes cluster) perform statistically better than
(green) – and not statistically differently to (orange) or statistically
worse than (blue) – the regional model trained on all 531 basins.
Significance was assessed using a two-sided Wilcoxon signed-rank
test over 10 repetitions of each model, with a significance level of
α = 0.05.

not been able to construct a model that performs well at this
task. Details of these predictability experiments are out of
the scope of this paper, but a relevant example was given by
Nearing et al. (2024).

7 Conclusion

The main point that we would like readers to take from this
opinion paper is that training LSTM networks for rainfall–
runoff modeling requires using data from many basins. We
have seen a number of papers that train large ML mod-
els (LSTM models or similar) on very small data sets, and
many of these papers then go on to test some type of adap-
tations that seem to offer improvement. Of course, it is triv-
ial (but most likely uninteresting) to beat improperly trained
models. It would be interesting to show that adding physics
to a well-trained ML model adds information – so far, to
our knowledge, all attempts to add physics to (properly
trained) streamflow LSTM models in hydrology have pro-
duced lower-performing models.

Whatever goal a researcher might have for training an ML-
based rainfall–runoff model, there is no reason not to train the
model with a large-sample data set. There is enough publicly
available streamflow data that there should never be an ex-
cuse not to use at least hundreds of basins for training. This
is true even if the focus of a particular study is on one water-
shed or a small number of watersheds.
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Appendix A: Hyperparameter tuning, training, and
testing

All models in this paper were trained using data from the
CAMELS data set (Newman et al., 2015; Addor et al., 2017).
Building on the community benchmarking experiment pro-
posed by Newman et al. (2017) and used by many LSTM
modeling studies (e.g., Kratzert et al., 2019a, b, 2021; Frame
et al., 2021, 2022; Klotz et al., 2022; Nearing et al., 2022), we
trained and tested models on 531 CAMELS basins using time
periods for training (1 October 1999 through 30 Septem-
ber 2008), validation (1 October 1980 through 30 Septem-
ber 1989), and testing (1 October 1989 through 30 Septem-
ber 1999). All models were trained and evaluated using Neu-
ralHydrology v.1.3.0 (Kratzert et al., 2022) with an NSE loss
function. All LSTM models consist of a single-layer LSTM
with a linear head layer.

A1 Regional LSTM model

The regional LSTM model uses hyperparameters from
Kratzert et al. (2021). The most important hyperparameters
are as follows: hidden size (256), dropout (40 % dropout
in the linear output layer), optimizer (Adam), number of
epochs (30), learning rate (initial learning rate 1× 10−3,
reduced to 5× 10−4 at epoch 20 and further reduced to
1×10−4 at epoch 25), sequence length (365), and loss func-
tion (adapted NSE loss; see Kratzert et al. (2019b)).

After training, we picked the weights from the epoch with
the highest validation metric (median NSE across all basins)
and evaluated the model with these weights on test period
data from all 531 CAMELS catchments. Validation curves
for all 10 regional models over 30 training epochs are shown
in Fig. A1.

A2 Single-basin LSTM models

Single-basin LSTM models were trained for each basin indi-
vidually and used the same basic architecture as described
in Sect. A1: a single-layer LSTM followed by a linear
head layer. Hyperparameters were tuned specifically for each
basin for the experiments in this paper using the two-step
procedure outlined below. Both steps were done with a grid
search.

First step. We used three repetitions of each hyperparam-
eter setting for each basin (n= 531) with different random
seeds for initializing the weights. All models were run for
100 epochs using the Adam optimizer with a learning rate of
5× 10−3 and a batch size of 256. During training, the model
was validated after every four epochs on validation period
data. Hyperparameters were chosen using the model settings
with the highest median NSE scores over the three repetitions
in any validation epoch (hidden size: (8, 16, 32); dropout rate
on the head layer: (0.0, 0.2, 0.4, 0.5)).

Figure A1. Validation scores of all 10 repetitions of the regional
model over training epochs.

For all models, we used the same sequence length (n=
365) as for the regional model.

Second step. Using the hyperparameters chosen from the
first step, we tuned the learning rate and batch size in a simi-
lar way, maximizing over the median NSE over three model
repetitions: learning rate of (5× 10−3, 1× 10−3, 5× 10−4,
1× 10−4) and batch size of (128, 256, 512).

For each basin, separately, we picked model weights from
the best validation epoch of the model with the highest NSE
score over all validation epochs from all models in each
basin.

Final training and evaluation. Given the set of per-basin
optimized parameters, we trained 10 models per basin, each
with a distinct random seed. All statistics reported in this pa-
per for all models are from test period data, except where
otherwise noted.

A3 Random basin splits of different sizes

Models reported in Fig. 6 were tuned (hyperparameters cho-
sen), trained, and tested in a way that is similar to the single-
basin LSTM models described in Appendix A2. For random
basin splits, we divided the 531 CAMELS basins into ran-
dom sets without replacement using six different sizes of split
that were chosen by (approximately) dividing the full 531-
basin group into basin groups of [50, 20, 10, 5, 3, and 2].
An example of one of these random splits with five groups
(approximately 107 basins per split) is shown in Fig. A2.

Choosing hyperparameters was done as described in Ap-
pendix A2, except that, for these splits, we did not use
three random repetitions and only trained up to 30 epochs
to reduce computational expense. We also expanded the hy-
perparameter search slightly due to our experience in training
larger models – the hyperparameter ranges for the two grid
search stages were as outlined below.

First step. This was characterized by a hidden size of (8,
16, 64, 128, 256) and a dropout rate on the head layer of (0.0,
0.2, 0.4, 0.5).
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Figure A2. Basin location of random split with five groups of approximately 107 basins per group.

Figure A3. Spatial location of basins split by USGS hydrological unit code 02.

Second step. In the second stage, we always used a batch
size of 256 (as with the regional model) and tuned over the
following multi-stage learning rates, where the index is the
epoch during which the learning rate switched to the listed
value:

– 0: 5× 10−3, 10: 1× 10−3, 25: 5× 10−4

– 0: 1× 10−3, 10: 5× 10−4, 25: 1× 10−4

– 0: 5× 10−4, 10: 1× 10−4, 25: 5× 10−5

– 0: 1× 10−4, 10: 5× 10−5, 25: 1× 10−5.

A4 Hydrological-unit-code splits

The orange curve in Fig. 6 shows median NSE scores over
CAMELS basins that result from LSTM models trained on
basin groups defined by USGS HUCs. Figure A3 shows the
locations of the 531 CAMELS basins by HUC region. The
set of 531 basins was divided according to these geographical
regions, and a separate model was trained on all basins from
each. Hyperparameter tuning was done as described in Ap-
pendix A3. Testing was done as described in Appendix A2.
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Figure A4. Spatial location of basins split by k-means clustering based on the basin attributes.

Table A1. Table of catchment attributes used in this experiment. Description taken from the data set of Addor et al. (2017).

p_mean Mean daily precipitation.
pet_mean Mean daily potential evapotranspiration.
aridity Ratio of mean PET to mean precipitation.
frac_snow_daily Fraction of precipitation falling on days with temperatures below 0 °C.
high_prec_freq Frequency of high-precipitation days (≥ 5 times mean daily precipitation).
high_prec_dur Average duration of high-precipitation events (number of consecutive days with ≥ 5 times mean daily precipitation).
low_prec_freq Frequency of dry days (< 1 mm d−1).
low_prec_dur Average duration of dry periods (number of consecutive days with precipitation< 1 mm d−1).
elev_mean Catchment mean elevation.
slope_mean Catchment mean slope.
area_gages2 Catchment area.
forest_frac Forest fraction.
lai_max Maximum monthly mean of leaf area index.
lai_diff Difference between the max. and min. mean of the leaf area index.
gvf_max Maximum monthly mean of green-vegetation fraction.
gvf_diff Difference between the maximum and minimum monthly mean of the green-vegetation fraction.
soil_depth_pelletier Depth to bedrock (maximum 50 m).
soil_depth_statsgo Soil depth (maximum 1.5 m).
soil_porosity Volumetric porosity.
soil_conductivity Saturated hydraulic conductivity.
max_water_content Maximum water content of the soil.
sand_frac Fraction of sand in the soil.
silt_frac Fraction of silt in the soil.
clay_frac Fraction of clay in the soil.
geol_permeability Surface permeability (log10).

A5 Attribute cluster splits

The green curve in Fig. 6 shows median NSE scores over
CAMELS basins that result from LSTM models trained on
basin groups defined by k-means clustering based on static
catchment attributes. The catchment attributes used for clus-
tering are described in Table A1. These are almost the same

attributes that were used by Kratzert et al. (2019b) but with-
out the carbonate-rock fraction and the seasonality of precip-
itation (the former is often zero, and the latter is categorical,
both of which make clustering slightly more difficult).

We performed k-means clustering on these 25 basin at-
tributes (all attributes were normalized) using 300 iterations
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and 10 random initializations. Using a maximin criterion
based on silhouette scores for between 3 and 100 clusters,
we chose to divide basins into six groups with sizes of 83,
195, 67, 61, 66, and 59 basins. These clusters are mapped in
Fig. A4.

Appendix B: Regional vs. single-basin model
comparison

Figure 3 illustrates a difference between how LSTM models
and conceptual models behave when trained regionally vs.
locally (on single basins). Specifically, the LSTM performs
best when trained regionally, while traditional models per-
form best when trained locally.

Figure B1 illustrates the same comparison, but where
the LSTM NSE CDFs in Fig. B1b only consider the same
489 CAMELS basins that are used in the mHM and VIC
NSE CDFs in Fig. B1a. This is a more direct comparison
than what is shown in Fig. 3; however, the results of the com-
parison are qualitatively identical.

Figure B1. This figure is identical to Fig. 3 except that (b) uses all 531 CAMELS basins that Newman et al. (2017) recommended using for
model benchmarking and which were used in all other experiments reported in this study.

Appendix C: Theoretical prediction limit

Figure 4 shows the theoretical maximum prediction limits
for regional and single-basin LSTM models. To understand
how those limits were derived, it is important to understand
how the output of the LSTM layer is computed and how this
output translates into the model prediction.

The output of the LSTM layer, ht , is computed according
to the following equation:

ht = ot � tanh(ct ) , (C1)

where ot is the output gate at time step t , tanh( ) is the hyper-
bolic tangent function, and ct is the LSTM cell state of time
step t . The output gate is computed according to the follow-
ing equation:

ot = sigmoid(Wxt +V ht−1+ b), (C2)

where sigmoid( ) is the logistic function; xt are the input fea-
tures of time step t ; ht−1 is the hidden state (or LSTM out-
put) from the previous time step t − 1; and W , V , and b are
learnable model parameters.

Finally, in the case of our model architecture, the output
of the LSTM is passed through a linear layer that maps from
the hidden size of the LSTM to 1, the model prediction. More
formally, the model prediction ŷt at time step t is computed
according to the following equation:

ŷt =Wht + b, (C3)

where W and b are another set of learnable model parame-
ters, specific to this linear layer. Since our model maps to a
single output value, W is of shape [hidden size, 1]. With ht
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of shape [hidden size], we can write Eq. (C3) as follows:

ŷt = b+

n∑
i=0

Wi ·hi,t . (C4)

Knowing that each element of ht is in (−1, 1) and thatW and
b are fixed after training, the maximum possible value a
trained LSTM (of our architecture) can predict can be com-
puted by

upper limit= b+
n∑
i=0

abs(Wi) , (C5)

where abs( ) is the function that returns the absolute value.
Note that this value is in the space of training labels, and if
the labels were normalized for training, the upper limit needs
to be re-transformed into discharge space to get the upper
limit in, e.g., millimeters per day.

Appendix D: Example hydrographs

Figure 5 shows an example of simulated vs. observed hydro-
graphs for one of the 531 CAMELS basins. Basin 13011900
shown in Fig. 5 is on Lava Creek in Wyoming and has a
drainage area of 837 km2. This basin has highly seasonal
flow patterns.

Figures D1 and D2 show similar hydrographs for other
basins with different hydrological behaviors. One of these is
a small basin on the Salt Creek in Kansas and has a flashy
flow pattern. The other is on the Sauk River in Washing-
ton and has non-flashy behavior but with significant (non-
seasonal) peak flows.

Additionally, the code and data repositories released with
this paper contain everything necessary to plot simulated and
observed hydrographs for any of the 531 CAMELS basins.
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Figure D1. Observed and simulated hydrographs from the test period (1989–1999) in a particular basin (06876700). This gauge is on the
Salt Creek in Kansas with a drainage area of 1052 km2, and it represents a relatively flashy basin.

Figure D2. Observed and simulated hydrographs from the test period (1989–1999) in a particular basin (12189500). This gauge is on the
Sauk River in Washington, with a drainage area of 1849 km2, and represents a basin with high peaks that are not dominated by a seasonal
flow pattern.
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Appendix E: Other hydrological metrics

There is a large number of metrics that hydrologists use to as-
sess hydrograph simulations (Gupta et al., 2012; Gauch et al.,
2023). Several of these metrics are described in Table E1,
including bias, correlation, Nash–Sutcliffe efficiency (NSE)
(Nash and Sutcliffe, 1970), Kling–Gupta efficiency (KGE)
(Gupta et al., 2009), and metrics related to hydrograph peaks.
Figure E1 shows differences between regional and single-
basin models for these metrics, similarly to the NSE com-
parison shown in Fig. 3.

The takeaway from this figure is that the main message of
this paper (do not train a rainfall–runoff LSTM model on data
from a single basin) holds regardless of the metric(s) that we
focus on. The skill differences are in correlation-based met-
rics (NSE, KGE, and Pearson R), as well as variance-based
metrics (alpha-NSE). The latter is an artifact of what we saw
in Fig. 4, showing that training on a greater number of more
diverse data improves the ability of the model to predict high
flows. Figure E1 shows only small improvements in the tim-
ing and capture of hydrograph peaks (the missed-peaks met-
ric measures whether a peak in the hydrograph was captured
at all and not whether the magnitude of the peak was pre-
dicted accurately). Furthermore, we see little or no difference
in the two bias metrics (beta-NSE, beta-KGE), meaning that
improvements to catchment-specific mean discharge are not
strongly affected by using training data from multiple catch-
ments (i.e., we do not strongly bias one type of catchment by
using other types of catchments in training).

Figure E1. Comparisons between CDFs over 531 CAMELS basins of regional vs. single-basin LSTM models. This is similar to Fig. 3 but
for the hydrograph metrics listed in Table E1.
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Table E1. A selection of standard hydrograph evaluation metrics.

Name Description Reference

NSEi Nash–Sutcliffe efficiency Eq. (3) in Nash and Sutcliffe (1970)
KGEi Kling–Gupta efficiency Eq. (9) in Gupta et al. (2009)
Pearson Rii Pearson correlation Pearson (1895)
Alpha-NSEiii Ratio of standard deviations of observed and simulated flows From Eq. (4) in Gupta et al. (2009)
Beta-NSEiv Bias scaled by standard deviation of observations From Eq. (4) in Gupta et al. (2009)
Beta-KGEv Bias ratio: ratio of mean simulated and mean observed flow From Eq. (10) in Gupta et al. (2009)
Peak timingiv Mean time lag between observed and simulated peaks Appendix A in Gauch et al. (2021)
Missed peaksviii Fraction of hydrograph peaks that were missed Nearing et al. (2022)

i (−∞, 1], with values closer to 1 being desirable. ii
[−1, 1], with values closer to 1 being desirable. iii (0,∞), with values close to 1 being desirable.

iv (−∞,∞), with values close to zero being desirable. v (−∞,∞), with values close to 1 being desirable. vi (0, 1), with values close to zero being desirable.

Code and data availability. The run directories of all experiments,
including model weights, simulations, and pre-computed metrics,
are available at https://doi.org/10.5281/zenodo.10139248 (Kratzert,
2023). The code that was used for analyzing all the experiments and
to create all the figures, based on the run directories, can be found
at https://doi.org/10.5281/zenodo.13691802 (Kratzert, 2024). We
used the open-source Python package NeuralHydrology (Kratzert
et al., 2022) to run all the experiments. The forcing and stream-
flow data, as well as the catchment attributes, used in this paper are
from the publicly available CAMELS data set by Newman et al.
(2015) and Addor et al. (2017). The simulations from the two hy-
drological models that were used to create Fig. 3 are available
at https://doi.org/10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1
(Kratzert, 2019).
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