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1. Regime classification Circular statistics are computed on daily streamflow station observations to

FROSTBYTE/notebooks/1_RegimeClassification.ipynb identify nival basins. We then sub-select nival basins with at least 20 years
N of overlapping SWE and Q data.
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2. Streamflow pre-processing 1% Jan - 30" Sep volume
FROSTBYTE/notebooks/2_StreamflowPreprocessing.ipynb 15t Feb — 30t Sep volume
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Daily streamflow timeseries are aggregated to seasonal volumes.
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3. SWE pre—processing SWE station timeseries are gap filled using a combination of linear
FROSTBYTE/notebooks/3_SWEPreprocessing.ipynb interpolation and quantile mapping from neighbour SWE and P stations.
Donor station selected for each new gap to fill if:
s v" Donor station has data for the gap +/- 7 days.
2 v Donor station has a CDF for this DOY +/- 7 days.
35 v Correlation between the donor and target stations is
£ the highest across all other donor stations and = 0.6.
© If these conditions are met, a target value is obtained
time through quantile mapping.
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4. Forecasting New ensemble volume hindcasts

are generated on the 1%t of each
month between Jan. and Sep. using
Principal Component Regressions.

FROSTBYTE/notebooks/4_Forecasting.ipynb
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5. Hindcast verification Deterministic and probabilistic verification metrics are computed to measure
FROSTBYTE/notebooks/5_HindcastVerification.ipynb various aspects of the forecast qua|lty, with bOOtStrappmg'
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