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Table S1. Water balance and constitutive equations of distributed hydrological model

Reservoirs Water balance Constitutive equations
i Prgin = P,whenT > T, (S10)
Interception % = Proin — Ei — Pre (S4) E; = min(Evai/dt) (S11)
Bre = max((S; — Simax)/dt, 0) (S12)
Piowe = P,when T, < T, (S13)
S dSsnow S Pinow = Z Baow,e " We (S14)
= — 5
now ar~ Tonow = Monow B) Moo = min(Crere * (T, = T), S o/dt) when T, > T, (S15)
Mpow = Z Msnow,e A (516)
Po = Pe + Mgnow (S17)
];orest/ Grass: P = Su/Sumax (S18)
S p—E,~R,~R (S6)
dc ¢ e Tw pere E, = (E, — E;) *min(p/C,, 1) (S19)
Unsaturated C,=1-(1-p) (S20)
reservoir R,=(1-C)*P, (S21)
Wetland: .
dsi an Rperc = min (Cymay * p, Sy /dt) (S22)
—“ =P, —E,— Ry +Regp (87) S
dt Rcap = min (Cpmax * (1 - P)rd_; * PHRU) (823)
Ryref = (1—D) *R, (S24)
Forest/ Grass:
Ry =D *R, (S25)
Fast reservoir dsy R, —Q (S8)
g N TS :
dt Wetland: (S26)
Rf =R,
Q; =K, *5; (527)
Rperctot = Z Rperc " Pyry (S28)
ds. - .
Slow reservoir d_ts = Rperctot T Rpreftot — Reaptor — Qs (89) Rprefror = Z Ryrer * Prru (S29)
Rcaptot = Z Rcap * Pyry (S30)
Qs =K, * S, (S31)




Table S2. Model parameters and their prior distributions in Borgz MOEA method.

Parameters Unit Description Parameter Constraints Prior distributions References
T, << Threshold temperar;ui;ef;ﬁ split snowfall and -2.5-2.5 (Gao et al., 2014; Hrachowitz et al., 2013)
Global Crneit mm <T! Melt factor 1-5 (Prenner et al., 2018)
. - Evapotranspiration coefficient 0.1-0.7 (Gao et al., 2017)
K d! Recession coefficient of slow response reservoir 0.002-0.2 (Prenner et al., 2018)
Simaxr mm Interception capacity Simaxr>SimaxG 0.1-5 (Gao et al., 2014)
Sumaxr mm Root zone storage capacity Sumaxr>SumaxG 50-500 (Gao et al., 2014)
Forest Yr - Shape parameter 0.1-5 (Gao et al., 2014)
D - Splitter to fast and slow response reservoirs 0-1 (Gao et al., 2014)
CpmaxF mm d! Percolation capacity 0.1-4 (Prenner et al., 2018)
Kep d’! Recession coefficient of fast response reservoir Ker>K 0.2-5 (Hrachowitz et al., 2013)
SimaxG mm Interception capacity 0.1-5 (Gao et al., 2014)
Sumaxc mm Root zone storage capacity SumaxcSumaxw 50-500 (Gao et al., 2014)
Grassland Y - Shape parameter 0.1-5 (Gao et al., 2014)
CpmaxG mm d-! Percolation capacity 0.1-4 (Prenner et al., 2018)
K d! Recession coefficient of fast response reservoir Ke>K 0.2-5 (Hrachowitz et al., 2013)
Sumaxw mm Root zone storage capacity Sumaxw < Sumaxc 50-500 (Gao et al., 2014)
Wetland Yw - Shape parameter 0.1-5 (Gao et al., 2014)
Crmax mm d-! Percolation capacity 0.1-4 (Gao et al., 2014)

Table S3. The prior parameter ranges and the ranges of the pareto optimal solutions from two calibration cases (Scenarios 1 —2) are shown here.

Parameter

Prior range

Posterior distribution

Scenario 1

Scenario2

T (1953-2022)

t1 (1953-1972)

2 (1973-1992)

3 (1993-2012)

t4 (2013-2022)

T (°C)
Cunert (mm°C'd™)
Ca(-)

K (dh)
Simaxr (mm)
Sumaxk (mm)
e (-)
D()
Cpmaxr (mm d™)
K (d7)
Simaxg (mm)
Sumaxg (mm)
Y6 (-)
Cpmarg (mm d™)
Ko (d)
Sumaxw (Mm)
yw ()
Crmax (mm d)

2525 0.40(-0.80-0.64) -0.08(-2.46-0.88)
1-5 4.46(3.14-4.87) 2.75(1.79-4.35)
0.1-0.7 0.66(0.43-0.68) 0.51(0.41-0.62)
0.002-0.2 0.03(0.02-0.07) 0.03(0.03-0.07)
0.1-5 1.55(1.55-2.87) 2.54(2.00-4.82)
50-200 158(138-167) 148(114-165)
0.1-5 3.43(0.58-4.51) 1.02(1.02-4.18)
0-1 0.09(0.04-0.21) 0.06(0.01-0.43)
0.1-4 2.15(1.97-2.83) 1.83(0.53-2.53)
0.2-5 0.41(1.48-3.19) 0.62(0.22-4.45)
0.1-5 0.97(0.70-1.30) 1.06(0.19-1.25)
50-200 94.6(71.4-123) 68.0(66.2-124)
0.1-5 4.61(.033-4.34) 1.93(0.77-4.48)
0.1-4 0.87(0.87-3.37) 1.85(1.76-3.67)
0.2-5 0.22(0.22-1.53) 0.23(0.21-2.12)
50-200 60.9(49.1-68.0) 55.0(27.2-69.0)
0.1-5 0.35(0.14-2.40) 0.50(0.37-4.46)
0-4 1.05(0.76-2.17) 0.98(0.32-2.80)

-0.08(-2.19-0.97)
1.77(1.29-4.55)
0.60(0.49-0.67)
0.05(0.03-0.15)
2.43(1.93-4.76)

149(130-174)
2.02(1.22-4.46)
0.33(0.07-0.77)
0.21(0.92-2.95)
0.30(0.30-4.94)
1.24(0.44-1.50)

115(88.5-123)
0.87(0.11-1.89)
3.14(2.83-3.78)
0.25(0.23-4.56)
68.6(38.1-66.7)
3.84(0.22-4.65)
1.13(0.41-2.11)

0.19(-1.31-1.69)

1.97(1.58-4.30)
0.61(0.39-0.67)
0.04(0.03-0.18)
1.82(1.79-4.69)
120(100-159)
0.69(0.39-4.14)
0.41(0.10-0.72)
0.92(0.91-3.47)
0.25(0.23-4.63)
0.93(0.09-1.25)
93.2(67.9-119)
2.76(0.57-4.52)
3.11(2.61-3.90)
0.23(0.23-4.98)
51.3(20.3-58.9)
1.26(0.17-4.73)
1.33(0.09-2.51)

1.18(-1.42-2.49)
3.08(1.24-3.95)
0.67(0.42-0.63)
0.03(0.01-0.05)
3.03(1.75-3.82)
125(122-169)
0.44(0.54-3.43)
0.27(0.25-0.97)
0.12(0.35-3.42)
0.53(0.21-3.95)
0.41(0.01-1.02)
102(86.4-141)
4.58(0.62-4.04)
2.62(1.66-3.96)
0.21(0.24-4.11)
68.5(14.5-73.5)
0.63(0.09-3.66)
0.03(2.34-3.76)




Table S4. The performance metrics for the most balanced solution (out of the backet) and the the 5"-95™ percentile of all performance metrics (inside of the
backet) for the full set of pareto optimal solutions for the multi-objective calibration cases (Scenarios 1 — 2) with Symax caiare shown here.

Scenario 1 Scenario 2
T (1953-2022) t1 (1953-1972) 2 (1973-1992) 3 (1993-2012) t4 (2013-2022) t1 (1953-1972) 2 (1973-1992) 3 (1993-2012) 4 (2013-2022)
NSEq 0.59(0.06-0.55) 0.60(0.09-0.57) 0.58(0.07-0.55) 0.60(0.09-0.56) 0.57(0.11-0.53) 0.60(-0.16-0.57) 0.57(0.02-0.54) 0.59(-0.32-0.52) 0.56(-0.61-0.50)
NSEiog@ 0.67(0.34-0.64) 0.65(0.36-0.62) 0.68(0.37-0.65) 0.66(0.30-0.63) 0.70(0.32-0.66) 0.69(0.23-0.62) 0.65(0.30-0.59) 0.63(-0.33-0.53) 0.72(-0.77-0.66)
NSEknciog@ 0.96(0.92-0.99) 0.93(0.89-0.98) 0.95(0.90-0.99) 0.98(0.93-0.99) 0.97(0.91-098) 0.96(0.94-0.99) 0.98(0.88-0.99) 0.98(0.58-0.99) 0.97(0.16-0.99)
NSEc: 0.90(0.86-0.91) 0.86(0.84-0.88) 0.91(0.89-0.93) 0.90(0.88-0.92) 0.91(0.87-0.91) 0.86(0.84-0.89) 0.91(0.86-0.93) 0.90(0.87-0.92) 0.89(0.63-0.92)
NSEac 0.99(0.56-0.97) 0.94(0.45-0.96) 0.98(0.55-0.96) 0.98(0.62-0.98) 0.82(0.11-0.91) 0.98(0.21-0.94) 0.87(0.47-0.96) 0.95(0.27-0.94) 0.90(0.07-0.97)
REcr,summer 0.83(0.82-0.89) 0.80(0.79-0.90) 0.83(0.81-0.90) 0.85(0.83-0.89) 0.85(0.83-0.87) 0.90(0.81-0.90) 0.89(0.79-0.90) 0.87(0.77-0.89) 0.84(0.69-0.88)
REcr,winter 0.91(0.89-0.91) 0.89(0.87-0.89) 0.93(0.92-0.93) 0.91(0.89-0.91) 0.92(0.90-0.92) 0.88(0.88-0.90) 0.92(0.92-0.93) 0.90(0.89-0.91) 0.91(0.82-0.92)
DE 0.78(0.54-0.76) 0.77(0.53-0.76) 0.79(0.56-0.77) 0.79(0.55-0.77) 0.78(0.53-0.74) 0.79(0.39-0.76) 0.78(0.51-0.73) 0.78(0.27-0.72) 0.79(0.01-0.75)

Table S5. The performance metrics for the most balanced solution(out of the backet) and the the 5"-95™ percentile of all performance metrics (inside of the
backet) for two cases (Scenarios 1 —2) with S, ws are shown here.

Scenario 1 Scenario 2
T (1953-2022) t1 (1953-1972) 2 (1973-1992) 3 (1993-2012) 4 (2013-2022) t1 (1953-1972) 2 (1973-1992) 3 (1993-2012) 4 (2013-2022)
NSEq 0.59(0.06-0.55) 0.60(0.06-0.56) 0.58(0.03-0.54) 0.60(0.06-0.56) 0.56(0.09-0.53) 0.60(0.04-0.56) 0.58(0.06-0.55) 0.59(0.04-0.55) 0.56(0.08-0.53)
NSEiog@ 0.66(0.33-0.64) 0.64(0.34-0.62) 0.67(0.34-0.65) 0.65(0.28-0.63) 0.69(0.29-0.65) 0.64(0.33-0.61) 0.68(0.36-0.65) 0.64(0.25-0.62) 0.68(0.28-0.65)
NSErnciog(@ 0.96(0.92-0.99) 0.94(0.89-0.98) 0.95(0.90-0.99) 0.98(0.93-0.99) 0.97(0.91-0.98) 0.94(0.90-0.98) 0.95(0.91-0.99) 0.98(0.93-0.99) 0.97(0.90-0.98)
NSEc, 0.89(0.87-0.91) 0.85(0.83-0.88) 0.91(0.88-0.93) 0.90(0.88-0.92) 0.91(0.87-0.91) 0.85(0.83-0.88) 0.91(0.89-0.93) 0.90(0.88-0.92) 0.91(0.87-0.91)
NSEac 0.98(0.60-0.97) 0.93(0.40-0.96) 0.98(0.56-0.96) 0.97(0.60-0.98) 0.84(0.16-0.91) 0.91(0.37-0.96) 0.98(0.53-0.96) 0.96(0.58-0.98) 0.85(0.21-0.92)
REcr,summer 0.83(0.82-0.89) 0.80(0.79-0.89) 0.83(0.81-0.89) 0.84(0.83-0.89) 0.85(0.83-0.87) 0.80(0.78-0.89) 0.83(0.82-0.89) 0.84(0.83-0.89) 0.85(0.83-0.87)
REcr,winter 0.91(0.90-0.91) 0.89(0.88-0.89) 0.93(0.92-0.93) 0.91(0.89-0.91) 0.92(0.90-0.92) 0.90(0.88-0.89) 0.93(0.92-0.93) 0.91(0.89-0.91) 0.92(0.90-0.92)
DE 0.78(0.54-0.76) 0.77(0.51-0.76) 0.78(0.54-0.76) 0.78(0.53-0.76) 0.78(0.52-0.75) 0.77(0.49-0.76) 0.79(0.55-0.77) 0.78(0.51-0.76) 0.77(0.52-0.75)
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Figure S1. The mean monthly streamflow for four sub-time periods t;-t4 based on two scenarios ( (a)-(d): scenario 1, (e)-(h):
scenario 2). The blue lines indicate the observed streamflow. The dashed lines and shaded areas show the most balanced
solution and 5th— 95th percentiles based on the pareto front solutions retained as feasible.
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Figure S2. The mean monthly actual evaporation E4 for four sub-time periods t;-t4 based on two scenarios ( (a)-(d): scenario
1, (e)-(h): scenario 2). The dashed lines and shaded areas show the most balanced solution and 5th— 95th percentiles based on
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Figure S3. The mean monthly unsaturated zone storage S, for four sub-time periods t;-t4 based on two scenarios ( (a)-(d):
scenario 1, (e)-(h): scenario 2). The dashed lines and shaded areas show the most balanced solution and 5th— 95th percentiles
based on the pareto front solutions retained as feasible.
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Figure S4. The mean monthly groundwater storage Ss (active storage) for four sub-time periods t;-t4 based on two scenarios
( (a)-(d): scenario 1, (e)-(h): scenario 2). The dashed lines and shaded areas show the most balanced solution and 5th— 95th
percentiles based on the pareto front solutions retained as feasible.
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