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Abstract. Evapotranspiration plays a key role in the terres-
trial water cycle, climate extremes, and vegetation function-
ing. However, the understanding of spatio-temporal variabil-
ity of evapotranspiration is limited by a lack of measure-
ment techniques that are low cost and that can be applied
anywhere at any time. Here we investigate the estimation
of evapotranspiration and land surface energy-balance parti-
tioning by only using observations made by smartphone sen-
sors. Individual variables known to effect evapotranspiration
as measured by smartphone sensors generally showed a high
correlation with routine observations during a multiday field
test. In combination with a simple multivariate regression
model fitted on observed evapotranspiration, the smartphone
observations had a mean RMSE of 0.10 and 0.05 mm h−1

during validation against lysimeter and eddy covariance ob-
servations, respectively. This is comparable to an error of
0.08 mm h−1 that is associated with estimating the eddy co-
variance ET from the lysimeter or vice versa. The results sug-
gests that smartphone-based ET monitoring could provide a
realistic and low-cost alternative for real-time ET estimation
in the field.

1 Introduction

In most climates, more rainfall returns to the atmosphere via
evapotranspiration than ends up in rivers. Evapotranspiration
(commonly referred to as ET) also modulates near-surface
climate by limiting the amount of direct warming by sensible
heat fluxes. Under conditions of low soil moisture, reduced

ET reflects ecosystem water stress, reduced carbon uptake,
and a loss of agricultural production, as well as enhanced
atmospheric warming through a shift in the land surface en-
ergy balance reflected in enhanced land surface temperatures.
This makes ET a key indicator of environmental conditions
and global change (Seneviratne et al., 2010; Denissen et al.,
2022). In spite of its importance, only a few, if any, gov-
ernment agencies are tasked with the routine monitoring of
ET. In addition, important gaps exist in our current ability
to monitor ET, in particular limiting our understanding of
how ET interacts with droughts and heatwaves (Teuling et
al., 2013; Miralles et al., 2019; Lansu et al., 2020). Enhanced
ET observation is key to filling those gaps.

Traditionally, ET has been measured through the mass-
balance principle applied to catchments or lysimeters. While
this approach is generally accurate (Allen et al., 2011; Senay
et al., 2011), it provides limited spatial and/or temporal de-
tail. Flux towers equipped with eddy covariance sensors also
measure ET through turbulent moisture transport, but such
sites are expensive to maintain; current tower locations are
typically chosen for their relevance to the carbon balance
(e.g. bias towards wetter sites with high carbon uptake) rather
than to soil-moisture–temperature coupling, and the foot-
print varies with wind conditions. ET can alternatively be
estimated from Earth observation (EO), typically using the
thermal infrared atmospheric window of the electromagnetic
spectrum (Derardja et al., 2024). While such approaches give
valuable insight into the spatial distribution of ET, they rely
on available satellite overpasses, cloud-free conditions, and
ET inference models (Amani and Shafizadeh-Moghadam,
2023). Most ET inference models and more classical poten-
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tial ET-based methods have been developed in times when
actual ET observations were scarce. Due to increasing avail-
ability of observations in hydrology, but also ET in particular,
machine learning approaches now often outperform existing
models due to their ability to optimally utilize the informa-
tion in observations (Kratzert et al., 2019). This calls for the
development of new observation methods to close the obser-
vational blind spot – methods that are low cost and flexible,
operate in real time at high spatial and temporal resolutions,
and make use of machine learning where appropriate.

Over the past decade, the application of mobile phone
technology to measure the terrestrial part of the hydrologi-
cal cycle and associated meteorological variables has been
gaining traction. It has been shown that precipitation, for
instance, can be estimated from microwave links used in
commercial cellular communication networks (Messer et al.,
2006; Overeem et al., 2013a). Several free and commercial
apps exist that can be used to monitor river discharge of-
ten based on water level and/or surface velocity estimates
(Kampf et al., 2018; Fehri et al., 2020; Damtie et al., 2023).
Air temperature can be estimated from sensors that mon-
itor phone battery temperatures (Overeem et al., 2013b);
incoming radiation can be estimated from a phone’s cali-
brated light sensor (Al-Taani and Arabasi, 2018; Hukseflux,
2023); and external sensors have been developed for wind
speed, temperature, pressure, and humidity, which are nor-
mally provided by weather stations. However, all these esti-
mates based on mobile phone technology would at best com-
plement routine estimates of temperature, precipitation, or
discharge made by dedicated government agencies. Measur-
ing ET directly by smartphone has remained elusive.

Ongoing advances in sensor developments now provide
new opportunities. In particular, thermal infrared imagers
have become more compact and affordable, allowing them to
be integrated into a smartphone. In combination with other
built-in or external handheld sensors for relevant meteoro-
logical variables, this allows for direct inference of evapo-
transpiration through the land surface energy balance. This
procedure is conceptually similar to evapotranspiration esti-
mation from Earth observation but with the added benefits
that it can be done in real time, based on local meteorolog-
ical conditions, and independent of cloud cover and satellite
overpasses. This setup can be used to measure the temporal
evolution of surface energy-balance partitioning at a specific
location or for spatial patterns of flux partitioning, particu-
larly in areas with high spatial variability such as urban envi-
ronments.

While smartphones can potentially monitor all variables
relevant for ET, the question is if these estimates, when com-
bined, provide enough information for accurate ET estima-
tion under field conditions. Therefore, the primary goal of
this feasibility study is to investigate how well smartphone-
based estimates of surface fluxes from measurements of indi-
vidual meteorological variables validate against routine mea-
surements made by lysimeters and eddy covariance. To this

end, two main research questions are addressed: (1) do hand-
held sensors provide robust estimates of standard meteoro-
logical variables relevant for ET estimation, and (2) can a
simple multivariate regression model fitted to smartphone
observations provide accurate ET estimates? These questions
are addressed using observations made during field testing at
a measurement site equipped with standard meteorological
instrumentation, a large weighing lysimeter, and an eddy co-
variance tower to allow for validation of the individual mete-
orological variables as well as flux estimates.

2 Methods and data

Figure 1 illustrates how smartphone-based ET monitoring
might look in practice. In this study, a smartphone (model
CAT S62 Pro, referred to as S62 from hereon) was used to
record surface temperature (Ts) using its built-in Teledyne
FLIR Lepton 3.5 thermal sensor. Because we focus on veg-
etated conditions, we assume that emissivity does not differ
from unity. Global radiation was estimated using the S62’s
built-in light sensor, where the sensor was covered with 2
layers of standard paper in order to avoid sensor saturation
when the sensor was exposed to direct sunlight. This proce-
dure is similar to Hukseflux (2023). Because a phone’s lens
typically does not capture light from all angles equally, lu-
minance (I ) measurements were taken with the phone held
straight up, perpendicular to the sun, and the readings were
later corrected for the solar angle using the phone’s pitch
(φ, the angle between a plane parallel to the device’s screen
and a plane parallel to the ground). Both luminance from the
light sensor and pitch were recorded using the “Sensors” app.
A WeatherFlow WEATHERmeter, connected to the S62 via
Bluetooth, was used to simultaneously record air temperature
(Ta), pressure, relative humidity (RH), and wind speed (ws).
To prevent bias, the WEATHERmeter was kept in a shaded
and ventilated place between measurements. The measure-
ment principle is illustrated in Fig. 1.

The field data were collected during daytime under rain-
less conditions from 10–13 September 2023 at the Büel
meteorological station (Gähwil, St Gallen, Switzerland),
which is located within the pre-Alpine Rietholzbach catch-
ment. Data from this site have been used for numerous hy-
dro(meteoro)logical studies (Teuling et al., 2010; Senevi-
ratne et al., 2012; Hirschi et al., 2017; Michel and Senevi-
ratne, 2022). The site was chosen because ET is measured in-
dependently by a large weighing lysimeter (area 3.14 m2 and
depth 2.5 m) and eddy covariance. Hourly values for standard
meteorological variables, eddy covariance fluxes of sensible
and latent heat, and lysimeter evapotranspiration were used
to complement and validate the smartphone observations.
The smartphone and Büel observations are available from
Teuling et al. (2024). An overview of the conditions during
the data collection is given in Fig. 2, revealing a wide range
of temperature and radiation conditions. It also illustrates the
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Figure 1. Principle of smartphone-based monitoring. Due to the
cooling effect of evapotranspiration, surface temperature reflects the
partitioning of global radiation into evapotranspiration and sensible
heat. Both the global radiation and the surface temperature can be
measured by a phone’s internal sensors, while an external sensor
can provide meteorological variables that affect evapotranspiration
and surface energy-balance partitioning. The colour bar indicates
surface temperature (°C) as seen on screen. Picture taken on 5 Au-
gust 2022 by Janneke Remmers on the Wageningen campus amid
the 2022 summer drought (ambient air temperature 21 °C).

Figure 2. Overview of conditions during the Rietholzbach field
campaign. Smartphone temperature observations (Ts and Ta) and
Buël global radiation during the field campaign. Over the course of
the 4 d campaign, measurements were taken at 36 moments.

temporal dynamics of the difference between surface and air
temperature, which is largest near the daily global radiation
peak, reflecting the strongest turbulent heat fluxes. Over the
course of the 4 d campaign, measurements were taken at 36
moments. During the field campaign, estimating one direct
ET observation (lysimeter or eddy covariance) by the other

resulted in an RMSE of 0.084 mm h−1, which for this site
can be seen as a practical upper limit for errors associated
with ET estimation in these conditions since it reflects the in-
herent uncertainty between two state-of-the-art methods. The
sum of latent and sensible heat fluxes over the field campaign
explained 98.7 % of the net radiation, so a lack of energy-
balance closure likely does not explain this uncertainty.

From both theoretical considerations and observational ev-
idence, it is known that ET depends on a range of environ-
mental variables. It is often assumed that these dependencies
take a linear form, and many field studies have confirmed the
validity of this assumption for different systems (Maes et al.,
2019; Lansu et al., 2020; Jansen et al., 2022). For our ini-
tial testing and given the limited amount of data available for
this study, we used the following simple multiple linear re-
gression (MLR) instead of a more complex machine learning
(ML) algorithm to estimate the instantaneous evapotranspi-
ration:

ETphone = αI × I × cosφ+αRH×RH+αTa × Ta

+αTs × Ts+αws ×ws+ c. (1)

This model calculates the individual contribution of each
variable to the total observed ET after calibration of the α
coefficients and intercept c. For example, when αI > 0, the
illuminance will add to the ET budget. If the coefficient is
negative, the component (coefficient multiplied with vari-
able) will be subtracted from the ET budget. For the local
application and validation in this study, the coefficients are
calibrated such that the calculated ET resembles observed
ET best. For a more general application, more complex ML
models trained with a more extensive dataset or integration
of EO models with smartphone data should be considered,
though it should be noted that the performance of EO mod-
els for ET estimations is not necessarily high when evaluated
at smaller local scales that are the focus of this study (e.g.
Pardo et al., 2014; Cheng et al., 2021). From the collected
data, two-thirds were randomly selected to calibrate the re-
gression models for ETphone, while the remainder were used
to validate the obtained model. For ETphone, this procedure
was repeated 2000 times, and validation error statistics were
calculated as the mean over the resulting sample. For many
practical applications, the interest would be on daily rather
than instantaneous (or hourly) ET values. Various upscaling
methods are available from the Earth observation literature
to do this (see Jiang et al., 2021), but these are not used in
this study since our method is not limited to available satel-
lite overpasses, and multiple observations can be taken for a
more robust estimation of the daily mean.

3 Results

Instantaneous observations from individual variables by
smartphone sensors generally showed a good correlation
with hourly values recorded at Buël. Air temperature

https://doi.org/10.5194/hess-28-3799-2024 Hydrol. Earth Syst. Sci., 28, 3799–3806, 2024



3802 A. J. Teuling et al.: Technical note: Smartphone evapotranspiration

(R2
= 0.88), relative humidity (R2

= 0.80), and air pressure
(R2
= 0.98) showed the highest correlations. Wind speed

showed a satisfactory correlation (R2
= 0.57), likely because

of its higher temporal variability, the low wind conditions
during the field campaign, and the discrepancy between the
instantaneous smartphone-based observations and the hourly
average values at Buël. Global radiation could not be mea-
sured directly, but instead a linear model for its estima-
tion was calibrated on the subset of the pitch-corrected il-
luminance values. Validation for the remaining part of the
dataset revealed a high correlation (validation R2

= 0.97; see
Fig. 3a). Besides information on meteorological conditions
and energy driving the land–atmosphere exchange, it is clear
that the measurements also reflect key land–atmosphere ex-
change processes. This is illustrated by the high correlation
between the smartphone surface–air temperature difference
and the observed sensible heat flux (validationR2

= 0.90; see
Fig. 3b).

In a next step, we estimated the evapotranspiration
as observed by lysimeter and eddy covariance by fitting
Eq. (1) solely with smartphone observations. Validation
of this model reveals a good performance, with relatively
small mean RMSE values of 0.102 mm h−1 (lysimeter) and
0.050 mm h−1 (eddy covariance) across the 2000-member
ensembles. Figure 4a illustrates the performance for ensem-
ble members that are representative for the mean perfor-
mance. These values present the expected error of the pro-
posed smartphone method when fitted on a small site-specific
dataset. Interestingly, the errors are considerably smaller
(eddy covariance) and only slightly larger (lysimeter) in com-
parison to the uncertainty arising from a direct compari-
son between the two state-of-the-art methods (Fig. 4b). This
suggests that even with limited site-specific calibration, the
method might perform as well as other standard methods.

In the MLR model, it was found that most observations
contributed information to ETphone (Fig. 5). Surface temper-
ature, air temperature, and relative humidity were found to
contribute most information, while wind speed was found to
play a negligible role. It should be noted that wind was gener-
ally light during the field campaign, which might explain its
small contribution. In spite of the site being well known for
having an energy-limited evapotranspiration regime (Teuling
et al., 2013; Michel and Seneviratne, 2022) and global or net
radiation generally being a sufficient sole predictor for daily
ET under these conditions (Maes et al., 2019), the illumi-
nance term (as a proxy for global radiation) on average con-
tributed less to the ET budget than temperature and humid-
ity. This can be explained by the strong cross-correlations
between states at or near the land surface and radiation, in
particular at hourly timescales, combined with the relatively
short length of the calibration data. It should be noted that
the magnitude of the offset term (intercept c) is directly re-
lated to the units used for the variables in combination with
the linearity of their relation to ET. In addition, the relative
contribution of the different terms, in particular the temper-

ature and RH terms, showed considerable spread. Nonethe-
less, this analysis shows that hourly ET estimation benefits
from having observations of all relevant variables.

4 Discussion and outlook

In this research, we presented the first results of a feasibil-
ity study aimed at monitoring evapotranspiration solely us-
ing smartphone-based sensors. Based on observations made
during a short field campaign at a well-instrumented site in
the Swiss pre-Alps, we conclude that most meteorological
variables relevant to ET estimation are monitored with good
to sufficient accuracy by smartphone sensors. When a simple
machine learning algorithm is fitted on a subset of the ob-
servations, validation on independent lysimeter and eddy co-
variance observations shows mean RMSE values in the range
of 0.05–0.11 mm h−1. This is comparable to the difference
between these two state-of-the-art techniques during the field
campaign (RMSE 0.08 mm h−1) and similar to errors found
in a comparison between large-scale estimates and eddy co-
variance (RMSE 0.04–0.14 with median 0.07 mm h−1; see
Bayat et al., 2024). Analysis of the machine learning algo-
rithm outputs showed that for this short feasibility study ob-
servations of radiation, temperature (both surface and air),
and humidity all provided information, but wind less so.
While these results show that smartphone ET estimation can
give accurate values after local calibration, they do not pro-
vide information on the performance at other sites where no
calibration data are available.

In order to investigate the transferability of the method
to other sites, a second measurement campaign was con-
ducted on 2 d in April 2024 at the TERENO lysimeters lo-
cated in the Rollesbroich hydrological observatory (Qu et
al., 2016). Direct application of the model (Eq. 1) cali-
brated to subsets of the Büel observations as described ear-
lier gave a satisfactory model performance with a median
RMSE of around 0.10 mm h−1 for each of the six lysime-
ters. This performance, however, increased considerably af-
ter local calibration following the same procedure as used
earlier for Büel, with median RMSE values in the range of
0.06–0.07 mm h−1. This shows that the general methodology
works at different sites, but best results are obtained after cal-
ibration. A closer look into the difference between the mod-
els calibrated on Büel vs. Rollesbroich data (Fig. 6) provides
an explanation for the poorer model performance. Besides
warmer temperatures encountered at Büel, wind speeds were
lower during the Rietholzbach campaign (order 0.5–1 m s−1)
than during the Rollesbroich campaign (4–5 m s−1). As a re-
sult, the gradient between surface and air temperature was
much smaller at Rollesbroich, and wind becomes a more
important predictor in the model (Fig. 6) at the expense of
temperature (see the difference between these constituents in
Figs. 5 and 6). This shows that for future application a more
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Figure 3. Smartphone monitoring and calibration of radiation and heat fluxes. (a) Impact of pitch adjustment on estimation of global radiation
from smartphone-measured illuminance. (b) Relation between sensible heat flux from eddy covariance and smartphone-measured Ts− Ta.

Figure 4. Illustration of ET prediction performance. (a) Illustration of ETphone vs. ET observed by lysimeter and eddy covariance. The two
models used for ETphone (for lysimeter and eddy covariance) were each selected out of a 2000-member ensemble because of their RMSE
values being close to the mean across all sets and thus represent an average model outcome. Shown RMSE values are for validation points
only, whereas the graph shows all data. (b) Relation between ET as observed by lysimeter and eddy covariance as reference.

complex model that is trained on a more complete range of
weather conditions is needed.

The technology used in this study can be considered
low cost at a current price tag of around EUR 750 (i.e.
EUR 650 for phone and EUR 90 for WEATHERmeter). Most
common smartphones can be equipped with an external ther-
mal camera for around EUR 230. It should be noted that the
sensors in these phones, in particular the light sensor and
its lens, have not been optimized for the current application.
Further future improvements should thus be possible. This
is also true for the algorithm. The flux data from Büel used
here reflect humid conditions over grassland as evidenced by
a Bowen ratio of 0.22 based on average fluxes during the field
campaign. In the future, a more complex machine learning
algorithm should be trained with more data from a range of
climatological, geographical, and land cover conditions. The
current study was designed as a feasibility study, where ET

was estimated in hindsight. Ideally, in future applications a
dedicated app would receive input from the various sensors
in real time and directly infer ET from those using a further-
optimized algorithm. Such an algorithm could for instance
also use additional information on albedo (Leeuw and Boss,
2018), time, location, and land cover that was not used in this
study. We did not yet investigate how sensitive the results
are to the choice for a particular sensor or how this would
affect the need for calibration. This will be the focus of fu-
ture work. The same principle used here on smartphone data
could potentially be applied to the combination of a cheap
weather station and IR temperature sensor for a more auto-
mated monitoring at a single location. However, this would
require post-processing on the computer, while a dedicated
smartphone app could do the same on the fly.

The prospect to measure evapotranspiration using an af-
fordable handheld device marks a watershed moment in hy-
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Figure 5. Distribution of the contributions to the ET budget in the MLR model fitted to subsets of the Büel data. Each distribution contains
2000 values (see the “Methods and data” section) of the matching terms in Eq. (1). Note that the distribution of values for the intercept c is
not shown.

Figure 6. Distribution of the contributions to the ET budget in the MLR model fitted to subsets of the Rollesbroich campaign data. Each
distribution contains 2000 values (see the “Methods and data” section) and is shown separately for each of the six lysimeters. Note the
contribution of wind which is nearly absent in the Rietholzbach case (Fig. 5).

drology. For the first time, hydrologists might be able to mea-
sure evapotranspiration anywhere and anytime. We hope this
first feasibility study will lead the community to embrace this
opportunity, by developing and calibrating algorithms, pos-
sibly aided by the latest generation of precision lysimeters
and online data, that will translate the observations into a
real-time ET imagery. Such new data sources would comple-

ment current ET monitoring by filling the existing blind spot,
thereby not only helping science but moreover directly sup-
porting operational water management, spatial planning, and
irrigation scheduling. With smartphone-based ET monitor-
ing linked to crowdsourcing-based data acquisition, it will be
possible to monitor future droughts and their impacts quickly
and in unprecedented detail.
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Code and data availability. Smartphone obser-
vations and matching observations at Ri-
etholzbach/Büel and Rollesbroich are available at
https://doi.org/10.4211/hs.4f88a4b06bc846a1b948d06fe9145223
(Teuling et al., 2024). The Python scripts used for anal-
ysis and creating the figures are available at https:
//github.com/JasperLammers99/Handheld_Evapotranspiration (last
access: 16 August 2024; https://doi.org/10.5281/zenodo.13328321,
Lammers, 2024).
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