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Abstract. The uncertainty of hydrological forecasts is
strongly related to the uncertainty of the rainfall field due to
the nonlinear relationship between the spatio-temporal pat-
tern of rainfall and runoff. Rain gauges are typically consid-
ered to provide reference data to rebuild precipitation fields.
However, due to the density and the distribution variability
of the rain gauge network, the rebuilding of the precipita-
tion field can be affected by severe errors which compromise
the hydrological simulation output. On the other hand, re-
trievals obtained from remote sensing observations provide
spatially resolved precipitation fields, improving their repre-
sentativeness. In this regard, the comparison between simu-
lated and observed river flow discharge is crucial for assess-
ing the effectiveness of merged precipitation data in enhanc-
ing the model’s performance and its ability to realistically
simulate hydrological processes. This paper aims to inves-
tigate the hydrological impact of using the merged rainfall
fields from the Italian rain gauge network and the NASA
Global Precipitation Measurement (GPM) IMERG precipita-

tion product. One aspect is to highlight the benefits of apply-
ing the cellular automata algorithm to pre-process input data
in order to merge them and reconstruct an improved version
of the precipitation field.

The cellular automata approach is evaluated in the Tanaro
River basin, one of the tributaries of the Po River in Italy.
As this site is characterized by the coexistence of a variety
of natural morphologies, from mountain to alluvial environ-
ments, as well as the presence of significant civil and indus-
trial settlements, it makes it a suitable case study to apply the
proposed approach. The latter has been applied over three
different flood events that occurred from November to De-
cember 2014.

The results confirm that the use of merged gauge–satellite
data using the cellular automata algorithm improves the per-
formance of the hydrological simulation, as also confirmed
by the statistical analysis performed for 17 selected quality
scores.
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1 Introduction

Hydrological models are important tools for flood early
warning systems and the management of water resources un-
der climate change conditions. The accurate estimation of
precipitation and its spatial variability within a watershed is
crucial for reliable discharge simulations: the relationship be-
tween the distribution of precipitation and the calculated flow
discharge is not linear; therefore, the precipitation patterns
strongly influence the calculation of the runoff (e.g. Goodrich
et al., 1997; Singh and Kumar, 1997; Cristiano et al., 2017).

As far as the operational activity is concerned, the hydro-
logical models are usually forced with both observed and
forecasted rainfall data, and the uncertainty of hydrological
forecasts is strongly related to the uncertainty of the input
rain field. Therefore, forcing the hydrological models with
observed precipitation data that are as realistic as possible
is essential to reduce the hydrological simulation uncertainty
related to the forecasted rainfall field.

The rain gauge data are typically used as the main source
of information (Nikolopoulos et al., 2010) to produce an
areal precipitation estimate (hereafter APE), even if the re-
produced rainfall spatial pattern can be affected by several
errors. Furthermore, rain gauges, being in situ instruments,
can only be considered highly accurate over a limited area
surrounding the instrument itself. Consequently, they have
a reduced capability to represent the spatial distribution in
highly variable precipitation fields, such as over complex ter-
rain, that are typically poorly gauged and where orographic
precipitation effects are prevalent. Increasing the density of
the network can be a way to improve the representativeness
of precipitation derived from rain gauges. WMO has estab-
lished standard rules in terms of the minimum density needed
to build precipitation measurement networks (Sevruk, 1992;
WMO, 1994; Liang et al., 2012). However, such a stan-
dard cannot always be strictly followed for practical reasons
(e.g. geomorphological characteristics, environmental condi-
tions and the micro-climatic variability of the considered re-
gion). Accordingly, several regional, national and private rain
gauge networks are generally not sufficiently distributed to
fully satisfy the hydrological needs.

Nevertheless, the rain gauges still represent the main
source of information to spatialize precipitation. The spatial-
ization process considers the horizontal correlation structure
of rain, leading to the definition of a correlation length or
radius of influence through which rain gauge measurements
are extended over unobserved (i.e. ungauged) surrounding
areas (e.g. Duque-Gardeazábal et al., 2018). However, the
rain gauge radius of influence may depend on location, time,
event type (e.g. convective or stratiform) and network den-
sity (Gandin, 1970), as well as the interpolation method im-
plemented (Xu et al., 2013; Chacon-Hurtado et al., 2017;
Andiego et al., 2018), thus leading to large uncertainties in
the final APE and consequently to a reduced ability to model
hydrological processes.

Remote sensing observations can represent a valuable gap-
filling tool, complementing the above-mentioned limitations
related to the APE. In particular, since satellite observations
are spatially resolved, it lends itself to the more direct use of
satellite-based rainfall estimation (hereafter SRFE) (Li et al.,
2021) in hydrological models. In this work, the role of the
APE from rain gauges and SRFE in hydrological models is
investigated. Indeed, it is well recognized that the accuracy
of the results of many hydrological calculations depends on
those of the APE (see Nemec, 1986). The usage of SFRE
for hydrological applications depends upon the type of ap-
plication, the accuracy, and the spatial and temporal reso-
lution, as well as the latency of the estimates: different ap-
plications have different data requirements. Kidd and Lev-
izzani (2011) demonstrated that hydrological requirements
for precipitation estimates can be divided into two main cat-
egories: high- and lower-resolution estimates for short- and
longer-lived events, respectively. Flash flood events with a
rapid catchment response necessitate a fine spatial and tem-
poral resolution, together with timely delivery of estimates.
Fluvial flooding and water resources are characterized by
relatively long lead times, and therefore some requirements
can be relaxed. As a matter of fact, it has been shown that
SFRE’s measurement uncertainties are associated with the
intensity, the duration and the scale of the event, showing
an uncertainty decrease with higher rain rates, larger do-
mains and longer integration time: the more the precipitation
tends toward a deep convection regime, the more accurate the
satellite estimates are (Maggioni and Massari, 2018, 2019).
High-mountain regions are among the most challenging en-
vironments for remote-sensing-based precipitation measure-
ments due to extreme topography and large weather and cli-
mate variability. These regions are typically characterized by
a lack of in situ measurements and are hit by devastating
flash floods (Dinku et al., 2007; Hong et al., 2007; Kub-
ota et al., 2009; Tian and Peters-Lidard, 2010; Hirpa et al.,
2010; Yong et al., 2010; Ghulami et al., 2017; Guo et al.,
2017; Saouabe et al., 2020). In this regard, satellite sensors
provide global coverage and observations in regions where
in situ data are unavailable or sparse. Because of this avail-
ability, the use of satellite data for hydrological applications
has gained increasing interest, also given the significant ac-
tivity of space-based precipitation estimation techniques in
the past few decades (Guetter et al., 1996; Tsintikidis et al.,
1999; Wilk et al., 2006; Hughes, 2006; Su et al., 2008; Col-
lischonn et al., 2008; Thieming et al., 2013; Jiang and Wang,
2019; Darko et al., 2021). However, limitations associated
with the use of satellite rainfall estimates for hydrological
applications related mainly to the error structure of satellite
rainfall estimates (McCollum et al., 2002; Gebremichael and
Krajewski, 2004; Hossain and Anagnostou, 2006; Ebert et
al., 2007; Dinku et al., 2007; Kirstetter et al., 2013; Maggioni
et al., 2011, 2014; Falck et al., 2021) and to the rainfall er-
ror propagation through the hydrological model (Nijssen and
Lettenmaier, 2004; Hossain and Anagnostou, 2005; Hong et
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al., 2006; Mei et al., 2017; Solakian et al., 2020; Camici et
al., 2020, 2022; Brocca et al., 2020; Tramblay et al., 2023)
should be considered.

The error propagation of satellite rainfall through hydro-
logical simulation is related to many factors, such as specifi-
cations of the satellite rainfall product, basin size, spatial and
temporal hydrological resolution, the hydrologic model used,
and geomorphological characteristics of the area (Mei et al.,
2016). Dembélé et al. (2020) highlighted that although satel-
lite products are characterized by uncertainties, their most
reliable key feature is the spatial patterns’ representation,
which is a unique and relevant source of information for dis-
tributed hydrological models. Their results demonstrate that
there are benefits of using satellite datasets when suitably in-
tegrated in a robust model parametrization scheme. Data in-
tegration was also recognized by Shi et al. (2020) to be a key
point: this work suggests that hydrological simulation results
using an appropriate method for precipitation merging data
can provide valuable spatially distributed rainfall, leading to
a more rational flood flow simulation.

Several techniques to merge different datasets and reduce
uncertainties in rainfall estimation are available based on
physical approaches or statistical algorithms (e.g. French and
Krajewski, 1994; Todini, 2001; Li and Shao, 2010). Blending
of precipitation data from different sources involves a deep
understanding of the source of the observations, their char-
acteristics and their limits.

This paper aims to achieve two main objectives: (1) to vali-
date the cellular automata (hereafter CA) algorithm (Packard
and Wolfram, 1985) in order to obtain a satisfactory synthe-
sis of rain gauge data and a satellite rainfall product, focusing
on small- to medium-scale river basins, and (2) to assess the
possible benefits of combining the rain gauges and SFRE to
overcome the limitations provided by in situ measurements
alone.

The basin studied in this work is characterized by a
uniformly distributed altimetry profile, with about 27 % of
the mountain area, allowing valuable testing of satellite
data. The considered area is one of the hydrological oper-
ational activity domains of forecasting severe events. The
data source used is hourly rain gauge data, obtained from
352 rain gauge stations in the selected domain, distributed
by the DEWETRA platform (Italian Civil Protection De-
partment and CIMA Research Foundation, 2014) and the
Global Precipitation Measurement (GPM) Integrated Multi-
satellitE Retrievals for GPM, half-hourly 0.1°× 0.1° rainfall
data (roughly 10 km× 10 km).

These data sources are used to generate different rainfall
datasets, with mutual correction of their implicit error char-
acteristics. To merge the data into a single rain field, the
CA algorithm (Packard and Wolfram, 1985) has been im-
plemented in the CETEMPS Hydrological Model (hereafter
CHyM) (Coppola et al., 2007; Verdecchia et al., 2008), and
it is then used to test hydrological response to different in-
put rain fields. Finally, the error evaluation deals with scor-

ing metrics in terms of comparison between simulated and
observed flow discharge.

The paper is organized as follows: the geographical frame-
work of the study area is described in Sect. 2; in Sect. 3 a
detailed description of the field data collection is presented,
whereas methods are presented in Sect. 4. Then, in Sect. 5 the
application of the proposed approach applied to three differ-
ent case studies is discussed, and conclusions are drawn in
Sect. 6.

2 Study area

In the Piedmont region, in the north-western part of Italy,
the Tanaro River is among the main right-bank tributaries
of the Po River in terms of catchment length (276 km) and
drainage basin size (8.324 km2), with an average flow dis-
charge of 123 m3 s−1. The river flows eastward across north-
ern Italy, starting in proximity of the France border at Monte
Saccarello (2201 m) in the Ligurian Alps (Fig. 1).

According to Degiorgis et al. (2013), the river is charac-
terized by morphological variability. Three main areas as-
sociated with very different characteristics were defined:
(1) the mountain zone, with a mean slope of about 6 %, deep
riverbeds and very steep catchments; (2) the mild zone, with
a mean 1 % slope, mildly steep catchments and shallower
riverbeds; and (3) the alluvial zone, with very small slope
values.

The Tanaro is the only river among the right-bank tribu-
taries of the Po, and it has an Alpine origin, although the
low elevation of the Ligurian Alps and their proximity to the
sea do not allow for the formation of snowpack or glaciers
large enough to provide a constant source of water during
the summer; moreover, the Alpine zone constitutes only part
of the basin drained by the Tanaro River. For this reason, un-
der standard seasonal conditions, the flow discharge is sub-
ject to great seasonal variations with a regime more typical
of an Apennine stream and a maximum flow discharge that
can reach 1700 m3 s−1 in spring and autumn and a very low
flow rate in summer. The natural flow discharge of the Tanaro
River is strongly affected by the anthropic impact due to the
fragmentation of the river channels, with dams and water
regulation causing diversions between basins and irrigation.
Some artificial sections intersect natural branches, and some
of these sub-basins are used for hydropower generation. The
artificial basins along the river and its tributaries are also used
for flood control.

The river is exposed to severe events: it was affected by at
least 136 floods in 200 years (from 1801 to 2001). The most
significant of these events occurred in November 1994, when
the entire river valley was damaged (Marchi et al., 1995;
Luino, 2002), and the sensor at Montecastello, located at the
outlet of the river, recorded a maximum flow discharge peak
of 4350 m3 s−1 (Po River Basin Authority, 2023).
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Figure 1. North-west domain of the Italian main drainage network (blue line); the Tanaro River basin is highlighted in yellow. The num-
bers represent the basin flow discharge stations selected: Montecastello (7956 km2 drained), Masio (4535 km2 drained), Asti (4123 km2

drained), Alba (3385 km2 drained), Piantorre (500 km2 drained), Mondovì – Ellero (180 km2 drained), San Damiano d’Asti – Borbore
(85 km2 drained) and Ponte di Nava (149 km2 drained). The red triangles are the rain gauges available for this study. DEM data are accessi-
ble at https://land.copernicus.eu/imagery-in-situ/eu-dem/ (last access: August 2023). The drainage network and boundaries of the basin are
accessible at https://www.hydrosheds.org/ (last access: August 2023).

3 Observed data

Precipitation data are recorded for the 2014 period on an
hourly basis. The precipitation datasets are discussed be-
low and include the gauge dataset, the satellite-only dataset
and the flow discharge data from selected point stations dis-
tributed along the Tanaro River basin.

3.1 Rain gauge data

It is common to attribute an area of influence to a network of
rain gauges: in detail, the gauge is in the centre of its circular
area of influence, defined as the radius of influence; Shi et
al. (2020) suggest that the radius of influence, also consid-
ered the average distance between stations, can be computed
as

R =

√
S

N
, (1)

where S is the area of the smallest circle, which can cover all
the rain gauges and the considered basin, whereas N is the
number of rain gauges considered. Reasonable station cov-
erage means that the average radius associated with the rain

gauge network should be at least comparable to the value as-
sociated with the rain bandwidth. In this study, S is the area
of the Tanaro basin, and N is the number of rain gauges in
the basin (73 in the basin): the average distance of the next
station is about 11 km, but the stations are not distributed reg-
ularly. As will be discussed later, different values of R are
selected for the different hydrological simulations. As dis-
cussed in Sect. 2, since the Tanaro basin is divided into three
territorial sectors, the average rain gauge distance is com-
puted for each of them (see Table 1).

3.2 Satellite-based rainfall estimates

The satellite precipitation product used in this study is the
Global Precipitation Measurement (GPM) Integrated Multi-
satellitE Retrievals for GPM (IMERG). The products pro-
vide quasi-global (60° N–60° S) precipitation estimates com-
bining measurements from passive microwave (PMW) ra-
diometers comprising the GPM low-Earth-orbit (LEO) satel-
lite constellation and infrared (IR) geostationary (GEO) sen-
sors. The IMERG product is also available in the form of
post-real-time research data, i.e. IMERG Final, after monthly
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Table 1. Rain gauge network characteristics of the Tanaro catchment; R∗ is the Cressman radius of influence.

Network characteristics

Region type Area Gauge Network Average Gauge- Gauge- Gauge-
size numbers density gauge covered covered covered

(km2) (km2 per distance area area area
gauge) (km) (R∗ = 5 km) (R∗ = 3 km) (R∗ = 1 km)

Mountain (> 700 m) 2241 22 102 10 0.79 0.26 0.006
Hill (700 m≤H ≤ 300 m) 3032 32 95 9.74 0.74 0.26 0.008
Flat (< 300 m) 3153 19 166 13 0.51 0.16 0.004
Tanaro catchment 8426 73 115 10.74 0.68 0.22 0.006

rain gauge analysis is received and considered (Huffman et
al., 2018; O et al., 2017). Note the IMERG Final product is
considered for demonstrative purposes because such a prod-
uct is not available in near-real time, and therefore it cannot
be used in an operational context that requires near-real-time
constraints. In this study, IMERG version 5 Final (IMERG-
F) uncalibrated (UNCAL) and calibrated (CAL; where the
monthly rain gauge data are used for bias correction), half-
hourly 0.1°× 0.1° (roughly 10 km× 10 km) rainfall rate es-
timates have been used. It is worth noting that in this study
IMERG V05 is used, while a new version (V07) is ready to
be issued at the time of the publication of our study. How-
ever, the methodological value of the combination approach
shown should not be affected by the product version updates,
although quantitative checks could merit attention in a future
work.

3.3 Observed flow discharge data

Flow discharge data (m3 s−1) are used to evaluate the hy-
drological model output in response to different precipitation
inputs. However, several issues must be considered when the
evaluation of deterministic hydrological models is used, in-
cluding the need to validate them with very long observed
flow discharge data time series. These data are not always
available, especially for small seasonal streams that are usu-
ally not instrumented. Furthermore, data on artificial wa-
ter management are not available. Hence, the hydrological
model validation may encounter difficulties when dealing
with heavily regulated basins, as it simulates the natural river
flow rate without accounting for artificial facilities. In addi-
tion, estimates of river discharge data are associated with sig-
nificant uncertainties due to various conditions such as rating
curve interpolation, extrapolation, unsteady flow condition
and seasonal variations in river roughness (Di Baldassarre
and Montanari, 2009; Di Baldassarre and Claps, 2011).

Eight stations with long time series of flow discharge,
available for the year 2014, are selected for this study. The
stations are distributed over the basin, as shown in Fig. 1
(blue numbers), and they are representative of the different
sub-basins contained in the Tanaro River basin.

4 Methodology

The workflow methodology is shown in Fig. 2. It includes
three main tasks: precipitation gridding and assimilation
data, precipitation merging data and hydrological model sim-
ulations, and analysis and error score metrics’ calculation.
Different combinations of precipitation are tested as input to
the hydrological model, and error scores are calculated ac-
cordingly in terms of flow discharge. The proposed technique
for merging different measured rainfall at different spatial
scales is based on the concepts of data assimilation (Bouttier
and Courtier, 1999) with particular emphasis on the trans-
formation of point data to areal data. Observed satellite and
rain gauge data are gridded respecting the resolution set-up
of the hydrological model: each value of rain data (satellite or
gauge) is associated with a grid point ith of coordinates (l,m)
of the selected domain. Different rain scenarios are produced
using the original datasets or merged rainfall data; the hydro-
logical model has been forced with different rebuilt hourly
rain fields to simulate flow discharges and to evaluate each
scenario.

4.1 Precipitation data gridding

In hydrological modelling, precipitation data gridding is es-
sential to accelerate numerical processing. It involves cre-
ating an initial estimate of the precipitation field at the
hydrological scale, known as the precipitation background
field (PBF; Coppola et al., 2007), on a regular grid. The
Cressman algorithm (Cressman, 1959) is commonly used to
initialize rain field grid points within the designated domain.
Due to its simplicity, the Cressman method serves as a prac-
tical starting point for this initialization process (Bouttier and
Courtier, 1999).

The accuracy of the merged field significantly depends
on the choice of kernel function, as highlighted by Li and
Shao (2010). Selecting an appropriate kernel function in-
volves defining a rain radius. The radius of influence, denoted
as R, plays a crucial role in determining the smoothness of
the estimated field and controlling the spread of the kernel
function: a smaller R results in a more rugged estimated field
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Figure 2. Numerical experiment workflow, consisting of three main tasks: (1) precipitation gridding and assimilation data, (2) precipitation
merging data and hydrological model simulations, and (3) analysis and error score calculation. Different combinations of precipitation are
tested as input to the hydrological model and error scores calculated accordingly in terms of flow discharge. Eight different simulations have
been carried out for each case studies, using the eight different rain input settings.

with higher variance, while a larger R yields a smoother sur-
face. Thus, the selection of the radius of influence is critical
in determining the overall quality and characteristics of the
estimated precipitation field in hydrological modelling ap-
plications.

Based on these considerations, given a discontinuous
background field, the rainfall for each grid point of the se-
lected domain is estimated as follows:

P i =

∑
j

1−
(
rij/R

)2
1+

(
rij/R

)2 P j , (2)

where P i is the estimated rain value at the ith grid point;
P j denotes the rainfall measurements available within the
radius of influence, R; and rij is the distance between the
rain gauge location j and the grid point i.

Selecting a suitable value for R poses the initial challenge
in the estimation process. Figure 3 illustrates the area cov-
erage by the rain gauge network when employing a radius
of influence, R, equal to 5 km. Under the optimal condi-
tions, using observed data available for every grid point in the
selected domain without significant errors, employing a di-
rect merging method such as the Cressman objective analysis
scheme would still result in considerable bias at the bound-
ary (Li and Shao, 2010; Duque-Gardeazábal et al., 2018).
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Figure 3. Tanaro basin rain gauge density and distribution. The red circles represents the rain gauge coverage area using a radius of influence
of 5 km. The blue line represents the Tanaro basin extent. © Google Earth 2022.

This indicates that while a smaller value of R may mitigate
bias, it would only affect a smaller area around the bound-
ary. However, adjusting R does not fully address the issue
of boundary bias, as the rain bandwidth tends to be large in
cases where observed points are irregularly distributed. The
boundary bias issue arises from the discontinuity of the back-
ground field due to field discretization, while non-parametric
merging methods can only generate continuous surfaces.

To overcome this issue, a double-smoothing merging
method is applied. It is used to reduce the boundary bias (Li
and Shao, 2010; Duque-Gardeazábal et al., 2018), as better
explained in the next section. Furthermore, a strategy used
by the work to avoid boundary effects is to extend the spa-
tial domain well beyond the studied basin: this strategy is
useful for a better reconstruction of the precipitation field
(Fig. 1). Many data used, although redundant, lead to a bet-
ter reconstruction of the rain field. A smaller amount of data
would probably be enough, but the work uses everything
that the national rainfall network has available. Future stud-
ies could lead to identifying, given their distribution, enough
rain gauges outside the basin deemed useful to overcome the
boundary effect.

4.2 Precipitation data interpolation and merging: the
cellular automata technique

The CA technique is used in this work as a double-smoothing
estimation. It is a simple mathematical idealization of natural
systems according to Packard and Wolfram (1985), based on
the behaviour that every single element of a natural system
can assume. In CA, natural systems are idealized as discrete
sites on a lattice, with each grid point evolving based on de-
terministic rules and influenced by the states of neighbouring

cells at discrete time steps. This approach provides a struc-
tured framework for dynamic systems’ modelling, reflecting
the intricate interplay of elements in nature.

In the hydrological model code, a CA-based algorithm has
been developed and implemented. Following CA theory, the
input grid is conceptualized as an aggregate of cellular au-
tomata, where the status of each grid point represents the
value of a smoothed precipitation field.

The evolution of the precipitation status in the ith grid
point of the lattice (P (new)

i ) is updated according to the fol-
lowing rule:

P
(new)
i = P i +α

(
8∑
i=1

βj
(
P j −P i

))
, (3)

where P
(new)
i is carried out over all eight surrounding cells.

The coefficients βj allow us to consider the different dis-
tances between the cells. As an example, for a regular equally
spaced lattice, we assume a value of 1 for the cells in the
north, east, south and west locations and a value of 1/

√
2 for

the cells located in the north-east, north-west, south-east and
south-west direction with respect to the ith cell.

The coefficient α assumes a small value, typically ranging
from 0.1 to 0.9, ensuring a gentle smoothing of the origi-
nal matrix. All grid points are updated synchronously, and
the smoothing continues until stability is achieved, signify-
ing minimal changes in the calculated matrix. Notably, the
grid point associated with the rainfall value available in the
considered database remains unaltered by the algorithm. This
process enables the hydrological model to refine and stabi-
lize the precipitation data while preserving the integrity of
observed rainfall values.
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Therefore, the rule in Eq. (3) can be written as follows:

P t−1
= P t +α

8∑
k=1

1
rk
P tk , (4)

where rk is the distance between the considered cell and the
neighbouring grid point. The value of rainfall in the cells is
serially modified (Eq. 4), and the sum is computed using only
the neighbouring grid points. The CA method facilitates the
assimilation and spatialization of rainfall fields, proving ad-
vantageous in achieving the high resolution required in hy-
drological simulations and in integrating different precipita-
tion data sources.

In this study, to test the assimilation of satellite rainfall
data in the presence of sparse gauge stations, the CA algo-
rithm has been implemented in the hydrological model, using
two different assimilation approaches: NoModular and Mod-
ular. In the NoModular approach, a high-resolution lattice is
filled with both the satellite rainfall data and the rain gauge
data, used simultaneously at each time step, prioritizing the
rain gauge data. To define a PBF, the approach uses an R of
10 km, which corresponds to the satellite spatial resolution,
the lowest resolution to cover the whole considered domain;
the CA technique is then applied. In the Modular approach,
a hierarchical sequence of modules is used to assimilate the
different datasets, making it possible to consider the differ-
ent nature of the data. Therefore, the lattice of the considered
domain can be divided into as many subdomains as the data
sources’ type. Each subdomain can be defined as a set of
grid points that have at least one rainfall value in a selected
radius, R, whose value depends on the density of the avail-
able data. Three different radii of influence were selected in
this study to allow for different coverage of rain gauge data
compared to the satellite data.

Using the CA technique, this study aims at identifying how
different input data settings can affect the hydrological model
performance and if merging rain gauge and satellite rainfall
data improves hydrological outputs. The degrees of freedom
of the input data settings are as follows: (1) the type of data
sources – variation in the sources of input data, such as rain
gauge data, satellite rainfall data or a combination of both;
(2) the data merging approach – comparison between two
merging approaches, i.e. (i) NoModular, where rain gauge
and satellite data are simultaneously incorporated, prioritiz-
ing rain gauge data, and (ii) Modular, which employs a hier-
archical sequence of modules to assimilate different datasets
independently; (3) the radius of influence, R – exploration
of different values for the radius of influence, which deter-
mines the coverage area of rain gauge data before applying
the CA technique; and (4) satellite data type – evaluation of
hydrological model performance using both uncalibrated and
calibrated satellite rainfall data. By systematically varying
these input data settings, the study aims to provide insights
into their respective impacts on the hydrological model’s per-
formance. This analysis will contribute to understanding the

effectiveness of data assimilation techniques in improving
the accuracy and reliability of hydrological simulations.

4.3 Hydrological modelling: CETEMPS Hydrological
Model

CHyM has been applied for climatological studies (Coppola
et al., 2014; Sangelantoni et al., 2019), but it has mainly
been used as an operational tool for early warning systems
(Tomassetti et al., 2005; Ferretti et al., 2020; Colaiuda et al.,
2020; Lombardi et al., 2021).

CHyM is a distributed, physically based hydrological
model; hydrological processes (surface runoff, infiltration,
evapotranspiration, percolation, melting and return flow) are
explicitly simulated. In addition to being used to acquire dif-
ferent data sources or rebuild the spatial distribution of pre-
cipitation at hydrological model scale, the CA algorithm al-
lows the model to simulate the hydrologic cycle of any de-
fined geographic domain and at any fixed spatial resolution
up to the digital elevation model (DEM) resolution (90 m
in the current version). The choice of spatial resolution is
mainly related to the validity of the numerical schemes used
to simulate hydrological processes (such as the shallow water
kinematic wave used to solve the continuity equation, which
is considered a good approximation at a horizontal resolution
of a few hundred metres). The hydrological simulation spa-
tial resolution is also related to the different simulated basins:
in areas with very small basins close to each other, the res-
olution must be higher, even up to a few hundred metres; in
detail, in this work the spatial resolution used is 900 m. Us-
ing CHyM, the spatial domain is extended well beyond the
investigated basin. This approach is useful to avoid boundary
effects and to have better rebuilding of the precipitation field.
Furthermore, CHyM is a valid tool to investigate the rebuild-
ing of the rainfall field, given that the resulting flow discharge
value is linked exclusively to the rainfall; in fact the effects
related to the base flow discharge are not visible, since the
model does not reproduce them, given the short simulation
spin-up time. The hydrological model is not specifically cali-
brated over the Tanaro basin. However, in this work we refer
to the calibration accomplished by Coppola at al. (2014) on
the northern part of the Po River, which also includes the
whole of the Tanaro basin.

4.4 Error score metrics

To assess the fit between the observed and simulated flow
discharge time series, objective functions were selected. Tra-
ditional performance indicators have been used, such as the
Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970)
and bias percentage (PBIAS), measuring the average ten-
dency of the simulated values to be larger or smaller than
the observed ones. The optimal value of PBIAS is 0.0,
with low-magnitude values indicating accurate model sim-
ulations. Furthermore, the following scores were consid-
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ered: root mean square error (RMSE); mean absolute rel-
ative error (MARE), which is sensitive to extreme values
(i.e. outliers) and to low values; original Kling–Gupta effi-
ciency (KGE; Gupta et al., 2009); modified Kling–Gupta ef-
ficiency (KGEprime; Kling et al., 2012); and non-parametric
Kling–Gupta efficiency (KGEnp; Pool et al., 2018).

According to Mathevet et al. (2006), KGE and NSE can
be calculated in a bounded version: bounded Nash–Sutcliffe
efficiency (NSEc2m), bounded original Kling–Gupta effi-
ciency (KGEc2m), bounded non-parametric Kling–Gupta ef-
ficiency (KGEmp_c2m) and bounded modified Kling–Gupta
efficiency (KGEprime_c2m). The analysis is carried out us-
ing an open-source evaluator for flow discharge time se-
ries (Hallouin, 2019). In addition to the conventional scores,
other indicators were selected to obtain a more objective
analysis, independent of the limits of the scores commonly
used for hydrological analyses, for a total of 17 quality
scores. The idea is to consider the river flow discharge profile
as a signal, and for this reason, indicators, commonly used in
generic signal studies, have been used.

The match correlation (MC) is the relationship between
the auto-correlation curve and the cross-correlation curve
(observed vs simulated) and allows us to understand the over-
lap of the two curves: the best value obtained will be close
to 1.

MC= ∫
AutoCorrelation_of_Observed_values∫

CrossCorrelation_of_Index_values_VS_Observed_values
(5)

Cross-correlation (CC) is typically used in signal theory for
the assessment of similarity between two signals (Rabiner
and Gold, 1975; Rabiner and Schafer, 1978; Benesty et al.,
2004). The correlation time delay (CT_D, Lombardi et al.,
2021) represents an estimation of time shift between two se-
ries:

CT_D= CC(L). (6)

The value of time lag L maximizes the product obtained
in the CC calculation. Therefore, this quality score is suit-
able for measuring the effectiveness of the signal provided
by hydrological simulations. The time peak delay (TP_D) is
a timing score and represents the hourly delay of the esti-
mated maximum peak flow discharge compared to the ob-
served one.

The percentage error (E%) at the peak value of the flow
discharge was calculated as follows:

E =
DSim−DObs

DObs
, (7)

where Dsim indicates the simulated flow discharge, and
DObs represents the observed flow discharge.

Dynamic time warping (DTW; Berndt and Clifford, 1994;
Keogh and Ratanamahatana, 2005; Maier-Gerber et al.,
2019; Di Muzio et al., 2019) finds the similarity between two

sequences by looking for the best alignment. For theN -by-M
matrix, built using two discrete series x(i) and y(j) ofN and
M components, respectively, a “warping” path W is defined
as a contiguous set of L matrix elements, and the measure of
misalignment d for the path W is given by

d(W)=

∑
i,j

V(i,j)

1
2L(L− 1)

, (8)

where the sum in the numerator is carried out over all
the elements belonging to the warping path W . Each ele-
ment V(i,j) represents the Euclidean distance between the
ith element of the first sequence and j th element of the sec-
ond sequence.

The denominator is used to normalize different length se-
quences. The DTW index is then calculated as the minimum
value of d(W), considering all the possible paths W .

DTW= d(W) (9)

The optimal path will be the N diagonal elements of ma-
trix V, if the two considered sequences are aligned and have
the same number of components (N =M). The DTW tech-
nique, however, could lead to wrong results in finding the
optimal alignment because a feature (e.g. a local peak or
minimum) in one sequence is higher or lower than the cor-
responding feature in the other sequence. To overcome this
issue, Keogh and Pazzani (2001) proposed the computation
of warping using the local derivative of the time series to be
compared: derivative dynamic time warping (DDTW). The
first derivative was calculated for each time series as follows:

D(x[i])=
(x[i] − x[i− 1])+ ((x[i+ 1] − x[i− 1])/2

2
. (10)

The main limitation linked to both analyses is defined singu-
larities (Sakoe and Chiba, 1978; Keogh and Pazzani, 2001);
i.e. the algorithm may try to explain variability in the Y axis
by warping the X axis. This can lead to nonintuitive align-
ments where a single point in one time series maps onto a
large subsection of another time series. To overcome these
limits, we used the Windowing method (Berndt and Clifford,
1994). Allowable elements of the matrix can be restricted to
those that fall into a warping window defined according to
the following rule:

|i− (n/(m/j))|< ω, (11)

where i and j are the allowable points of the n×m matrix,
constrained to fall within a given warping window, and ω is a
positive integer window width. In this work, ω is equal to 10,
and this allows us to mitigate the effects linked to the base-
flow discharge.

5 Analysed case studies

One of the effective strategies for the validation of satellite
rainfall data is an indirect method through a hydrological as-
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sessment. It is worth noting that data on artificial water man-
agement are not available for the case study (CS) considered;
thus, a preliminary screening is carried out to minimize any
anthropogenic impact in our analysis.

In this study, the hydrological simulation ranges from
1 November to 31 December 2014. Since the purpose of this
work is to investigate the performance according to the dif-
ferent rain scenarios (model forcing), November and Decem-
ber represent the most suitable period from the climatic point
of view: in fact, according to the authors’ experience, the suc-
cession of rainfall events in the autumn reduces the anthropic
impact. In late autumn–early winter, dams and reservoirs are
often at the limit of their capacity, allowing the water to lami-
nate, and the river flow discharge is comparable to the natural
one, which is simulated by CHyM. Three time series, related
to the three different flood events, have been studied:

– Case study 01, 10 November 00:00 UTC–14 Novem-
ber 2014 23:00 UTC;

– Case study 02, 15 November 00:00 UTC–20 Novem-
ber 2014 23:00 UTC;

– Case study 03, 29 November 00:00 UTC–3 Decem-
ber 2014 23:00 UTC.

Figure 4a shows the synoptic charts of the fifth-generation
ECMWF reanalysis (ERA5) 500 hPa geopotential height and
sea level pressure (Hersbach et al., 2023), related to the first
analysed case study (12 November 2014 00:00 UTC). The
European scenario was mainly characterized by the presence
of a deep depression area located in the North Atlantic and
by a persistent blocking system of high pressure in the east-
ern continental sector. A trough associated with the oceanic
depression was slowly moving toward the eastern Mediter-
ranean by rotating its axis. This configuration caused insta-
bility conditions in northern Italy, with widespread precipita-
tion, especially in the north-western sectors, and cumulated
rainfall of up to 250 mm in 120 h (10 November 00:00 UTC–
14 November 23:00 UTC) in the area of interest (Fig. 4d).

The synoptic scenario for the second case study
(16 November 2014 00:00 UTC) resulted from a slow evolu-
tion of that described above. As shown in Fig. 4b, the circu-
lation was slowed down by a high-pressure system located in
eastern Europe, extending from Anatolia up to the North Sea,
blocking the shift of the Oceanic trough toward the east. The
most intense precipitation was recorded in the Italian north-
western sectors, with cumulated rainfall up to 250 mm in
120 h (15 November 00:00 UTC–19 November 23:00 UTC)
in the area of interest (Fig. 4e).

Figure 4c shows the synoptic situation related to the third
case study (1 December 2014 00:00 UTC). In this period, the
typical western Mediterranean weather conditions were af-
fected by the evolution of a deep cut-off low. On 29 Novem-
ber, it was centred on Morocco, and in the following days, it
moved eastward, advecting subtropical warm and moist air

towards north-western Italy. The flux produced intense pre-
cipitation in the Ligurian territory, with cumulated rainfall up
to 150 mm in 120 h (29 November 00:00 UTC–3 December
23:00 UTC) in the area of interest (Fig. 4d).

Eight different hourly simulations were carried out for
each case study, using the eight different rain input set-
tings (Table 2). Hourly hydrological simulations are pos-
sible thanks to the availability of the observed data: the
temporal resolution of the hydrological simulations, espe-
cially for small hydrological basins that have very short
recharge times, is very important, given that satellite data
are provided every half hour; they are essential for devel-
oping operational monitoring and forecasting tools for flood
early warning systems. Therefore, UNCAL and CAL sim-
ulations only use satellite data (IMERG-F uncalibrated and
IMERG-F calibrated, respectively), while the GAUGE sim-
ulation uses the local rain gauge data, and the GAUGE-
UNCAL simulation uses the combined gauge and satel-
lite data using the NoModular approach. MODGAUGE-
UNCAL1, MODGAUGEUNCAL3 and MODGAUGEUN-
CAL5 are the simulations where the hydrological model has
been forced using the Modular approach and different radii
of influence related to rain gauge data that constitute merged
gauge and uncalibrated satellite data (the number at the end
of the simulation name is related to the gauge radius of influ-
ence: 1, 3 and 5 km), whereas the last hydrological simula-
tion, MODGAUGECAL5, is carried out in the same way but
using the calibrated satellite data.

6 Results: hydrological simulation analysis

The experiment uses an indirect validation technique of pre-
cipitation data, through an analysis of the flow discharge sim-
ulated by CHyM, where the model has been forced with eight
rainfall scenarios. The APE produced using IMERG F un-
calibrated (UNCAL) and calibrated (CAL) and rain gauge
data (GAUGE), separately, is based on different R values for
each dataset, as defined in Eq. (1). Note that in the case of
satellite data, R is fixed to 10 km (the IMERG products’ res-
olution). In the case of GAUGE, R has been set at 30 km, as
in the CETEMPS hydrological operational set-up (Colaiuda
et al., 2020), to have a coverage of all the points of the grid in
the considered domain. Therefore, even if the number of rain
gauges that fall in the analysed basin, according to Eq. (1),
gives an average distance of the next station of about 11 km,
in order to have a total coverage of the entire simulated do-
main (defined by the coordinates: 43.9≤ latitude≤ 46.59 and
6.49≤ longitude≤ 9.18) and to account for the rain gauge
spatial distribution, R cannot be lower than 30 km.
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Figure 4. Case studies’ synoptic analysis: (a) CS 01 (12 November 2014 00:00 UTC), (b) CS 02 (16 November 2014 00:00 UTC), (c) CS 03
(1 December 2014 00:00 UTC) 500 hPa geopotential height and sea level pressure using the fifth-generation ECMWF reanalysis (ERA5),
(d) CS 01, (e) CS 02, and (f) CS 03 120 h cumulated rain rebuilt using rain gauge data.

Table 2. Input data sources and settings for each simulation.

Simulation Input data sources Radius of
influence

UNCAL IMERG F UNCAL 10 km

CAL IMERG F CAL 10 km

GAUGE Rain gauge 30 km

GAUGEUNCAL (NoModular) Rain gauge+ IMERG F UNCAL 10 km

MODGAUGEUNCAL1
Rain gauge 1 km
IMERG F UNCAL 10 km

MODGAUGEUNCAL3
Rain gauge 3 km
IMERG F UNCAL 10 km

MODGAUGEUNCAL5
Rain gauge 5 km
IMERG F UNCAL 10 km

MODGAUGECAL5
Rain gauge 5 km
IMERG F CAL 10 km

Figure 5 shows the CHyM-rebuilt rain field for Case
study 01. In detail, Fig. 5a represents 120 h accumulated rain
rebuilt by the GAUGE simulation, obtained by forcing the
hydrological model with rain gauge data; Fig. 5b and c, re-
spectively, represent CAL and UNCAL simulations, where
CHyM has been forced using GPM IMERG Final CAL
and GPM IMERG Final UNCAL, respectively. Figure 5d
shows the 120 h cumulated rain related to the MODGAUGE-

UNCAL5 simulation, obtained by forcing the hydrological
model with rain gauge data, using a radius of influence equal
to 5 km, merged with GPM IMERG Final UNCAL.

The preliminary comparisons related to Case study 01 be-
tween observed and simulated flow discharge data with the
different rainfall scenarios are shown: in Fig. 6 Alba Tanaro
and Ponte di Nava sections were selected for this quick com-
parison. The hydrometric stations are in sections draining
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Figure 5. CS 01 areal precipitation estimation: the rain field rebuilt using rain gauge data (a), GPM IMERG Final CAL (b) and GPM IMERG
Final UNCAL (c). Panel (d) shows the rain field obtained by forcing the hydrological model with rain gauge data, using a radius of influence
equal to 5 km, merged with GPM IMERG Final UNCAL.

3385 and 145 km2 upstream, respectively. From a first sub-
jective analysis, the model appears to perform better with
the GAUGE (cyan line), compared to the use of satellite
data only, both UNCAL (grey line) and CAL (yellow line)
(Fig. 6a and c), consistently with the literature: rain gauges
can be considered the most accurate approach for measure-
ments. A series of sensitivity tests have been carried out, and
the most significant are reported (Fig. 6b and d). The tests
refer to (i) the approach used, i.e. NoModular or Modular;
(ii) the value of R, i.e. 5, 3 and 1 km for the rain gauge data
and 10 km for satellite data, respectively; and (iii) the satel-
lite data used, i.e. GPM IMERG Final UNCAL and GPM
IMERG Final CAL.

From the analysis of Fig. 6, it can be deduced that
the best performances are obtained for MODGAUGE-
CAL5, although comparable performances are obtained us-
ing MODGAUGEUNCAL5 (indeed, given the small differ-
ence between the two results, the two curves are graphically
superimposed). In these cases, the background rain field of

the rain gauge data with R = 5 km (a coverage of 68 % of the
surface of the considered basin, Table 1), smoothed with CA,
is merged with the remaining part of the surface covered
by the satellite data, where its background areal coverage
is first created with R = 10 km, filling the grid points left
uncovered (32 %) and then applying a definitive smoothing
with CA. The scores also confirm the best performances ob-
tained by the simulation using the merged data. As an exam-
ple, for CS 01 at the Alba section of the river, the KGE as-
sumes values ranging from −1.16 (UNCAL), −0.95 (CAL),
−0.703 (MODGAUGEUNCAL1), −0.366 (GAUGEUN-
CAL) and 0.066 (GAUGE) passing to 0.209 (MODGAUGE-
UNCAL3) and up to 0.584 (MODGAUGEUNCAL5) and
0.585 (MODGAUGECAL5).

Figure 7 shows the box plots for KGE and RMSE related
to all case studies and all river sections and confirms what
has been shown so far: certainly, the rain gauge data allow
for better performance than using the satellite data alone,
but the best results are obtained when the two data sources

Hydrol. Earth Syst. Sci., 28, 3777–3797, 2024 https://doi.org/10.5194/hess-28-3777-2024



A. Lombardi et al.: On the combined use of rain gauges and GPM IMERG satellite rainfall products 3789

Figure 6. Intercomparison between observed and simulated flow discharge data with the different rainfall scenarios for CS 01. The simulation
analysis is related to Alba Tanaro (a, b) and Ponte di Nava (c, d) river sections.

are merged, especially using the MODGAUGECAL5 setting,
which is comparable to MODGAUGEUNCAL5.

To obtain an objective evaluation, the statistical analysis
has been performed using different quality scores, evaluating
their overall average (AVG) related to the three case studies
and all stations (Table 3). Table 3 is divided into two parts,
and the various settings have been placed following the or-
der of increasing performance. In the first part of Table 3,
an improvement corresponds to increasing values, while in
the second part, an improvement corresponds to decreas-
ing values. All scores confirm the results obtained from the
comparison between observed and simulated flow discharges
(Fig. 6), showing better performance using the rain gauge
data only (GAUGE) compared to satellite data only. Simul-
taneously, the calibrated satellite data (CAL) allow the model
to perform better than the uncalibrated data (UNCAL). There
is an evident improvement in the results obtained by merging

the different sources of observed data (gauge and satellite)
compared to simulations that use only satellite data.

The KGE score, for example, shows the above statement:
an AVG ranging from−1.41 for UNCAL to 0.11 for GAUGE
to 0.40 for MODGAUGECAL5 (Table 3). MODGAUGE-
UNCAL3 has comparable performance, although it is less
well performing, with respect to GAUGE (only rain gauge
data) and to MODGAUGEUNCAL5 and MODGAUGE-
CAL5, where the rain gauge data have a coverage of 68 %.
Although they do not improve compared to GAUGE, this is
encouraging, suggesting that even with a lower rain gauge
density, the performance of the hydrological simulation can
be guaranteed. MODGAUGEUNCAL1 has been used to test
the minimum bandwidth of rain gauge size in the basin. Not
all results are satisfactory; for example, the NSE, a classic
skill score in hydrology, is a convenient and popular (al-
beit gross) indicator of the model’s ability (there has been
a long and lively discussion about its eligibility; Gupta et
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Figure 7. The box plots show the summary of KGE and RMSE obtained from the CHyM simulation using the eight APE fields as input,
related to all three case studies and all river sections.

Table 3. Average statistical scores for all three case studies and all river stations obtained from the CHyM simulations using the eight APE
fields as input (AVG). The first block of the table shows all the quality scores, where the best performances are identified by a value equal
to 1. In the second block of the table, the best performances are identified by values close to zero.

UNCAL CAL MOD- GAUGE- MOD- GAUGE MOD- MOD-
GAUGE- UNCAL GAUGE- GAUGE- GAUGE-
UNCAL1 UNCAL3 UNCAL5 CAL5

KGE −1.414 −1.425 −1.029 −0.408 0.069 0.116 0.407 0.403
NSE −15.618 −12.739 −10.425 −4.570 −1.775 −0.997 −0.104 −0.104
KGEprime −0.711 −0.989 −0.565 −0.139 −0.070 0.186 0.242 0.239
KGEnp 0.090 −0.056 0.178 0.427 0.514 0.568 0.604 0.604
NSEc2m −0.462 −0.482 −0.392 −0.210 −0.101 −0.037 0.126 0.128
KGEc2m −0.164 −0.175 −0.097 0.036 0.179 0.181 0.327 0.325
KGEprime_c2m −0.150 −0.199 −0.112 0.034 0.069 0.202 0.251 0.250
KGEnp_c2m 0.173 0.156 0.218 0.336 0.363 0.428 0.446 0.447
MC 0.548 0.622 0.572 0.579 0.774 0.598 0.798 0.797
RMSE 297.038 277.595 257.797 200.080 159.440 149.397 128.757 129.549
MARE 1.163 1.299 1.055 0.778 0.630 0.586 0.464 0.464
PBIAS −53.840 −57.306 −43.956 −25.297 8.220 −13.323 15.662 15.383
CT_D −2.750 −2.750 −2.125 −1.042 −1.042 0.750 0.625 0.625
TP_D −4.083 −4.833 −3.375 −1.958 −1.875 3.875 3.750 3.792
E% 1.543 1.318 1.176 0.716 0.261 0.275 −0.021 −0.019
DTW 50.829 40.878 33.380 15.190 6.978 4.346 2.674 2.660
DDTW 5.436 3.043 3.274 1.481 0.668 0.257 0.192 0.192

al., 2009). The simulation efficiency can be considered sig-
nificant if the results are greater than 0: if the study results
do not respect these conditions, they are negative or at most
close to zero. Despite the results, our aim is to verify which
APE obtained with the different settings improves the per-
formance of the hydrological model, and the results obtained
with the NSE test confirm it: the score goes from−15.618 for
the UNCAL simulation (the worst performance) to −0.104
for MODGAUGEUNCAL5 and MODGAUGECAL5 simu-
lations. Figure 8 shows the AVG values, listed in Table 3, of
some of the considered scores. In detail, Fig. 8a shows some

of the scores where the best performances are identified by a
value equal to 1: KGEnp, NSEc2m, KGEc2m and MC.

In the second part of Table 3, the error is measured in terms
of RMSE, MARE and PBIAS. In the case of RMSE and
MARE, the trend of the results confirms what has been veri-
fied with the other quality scores. Concerning PBIAS, the re-
sults are slightly different. The low magnitude of PBIAS in-
dicates an accurate model simulation, where positive values
indicate overestimation, and negative values indicate model
underestimation. In this case, the best performances are evi-
dent for MODGAUGEUNACAL3, GAUGE, MODGAUGE-
UNCAL5 and MODGAUGECAL5 simulations, although
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Figure 8. The histograms summarize the statistical analysis performed for the different scores, evaluating their average (AVG) and the
standard deviation (SD). Panel (a) shows the quality scores (KGEnp, NSEc2m, KGEc2m and MC), where the best performances are identified
by a value equal to 1. In panel (b) (MARE, CT_D, E% and DDTW), the best performances are identified by values close to zero.

their interpretation is not as straightforward as for other
scores. In detail, the overall PBIAS AVG values are 8.22 for
MODGAUGEUNACAL3, −13.33 for GAUGE, and about
15 for MODGAUGEUNCAL5 and MODGAUGECAL5
simulations. Also, in this case, as shown in Table 3 and
Fig. 8b by CT_D, TP_D, E%, DTW and DDTW, an improve-
ment in performance is confirmed with a clear decrease in the
trend.

The comparison between the different Modular settings
was necessary to verify if the CA technique could overcome
the limit of the satellite rain data calibration. In fact, using a
5 km rain gauge radius of influence, the results are compara-
ble both for calibrated and uncalibrated satellite data.

Regardless of the setting of the different runs, an improve-
ment in results is obtained by merging rain gauges and uncal-
ibrated satellite data compared to using only calibrated GPM
IMERG; an improvement was also found by merging the data
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Table 4. Standard deviation of the statistical scores for all three case studies and all river stations obtained from the CHyM simulations using
the eight APE fields as input (SD).

UNCAL CAL MOD GAUGE MOD GAUGE MOD MOD
GAUGE UNCAL GAUGE GAUGE GAUGE

UNCAL1 UNCAL3 UNCAL5 CAL5

KGE 2.914 2.617 2.386 1.536 1.003 0.701 0.445 0.448
NSE 42.912 25.613 28.062 12.344 5.752 2.480 1.226 1.228
KGEprime 1.126 1.439 1.029 0.795 0.802 0.609 0.634 0.637
KGEnp 0.854 1.333 0.779 0.402 0.173 0.224 0.138 0.137
NSEc2m 0.414 0.415 0.433 0.482 0.401 0.435 0.340 0.341
KGEc2m 0.383 0.387 0.388 0.392 0.321 0.342 0.268 0.272
KGEprime_c2m 0.298 0.315 0.298 0.298 0.297 0.316 0.332 0.333
KGEnp_c2m 0.313 0.327 0.306 0.261 0.153 0.200 0.143 0.142
MC 0.266 0.335 0.260 0.217 0.282 0.166 0.242 0.243
RMSE 366.182 289.936 324.530 244.503 191.808 167.846 159.119 164.644
MARE 0.984 1.437 0.898 0.521 0.318 0.306 0.186 0.187
PBIAS 101.932 151.940 94.248 53.677 34.796 34.535 23.365 23.417
CT_D 12.477 12.804 12.221 9.154 9.370 2.933 3.080 3.107
TP_D 14.180 14.020 14.041 12.614 12.204 3.756 3.711 3.730
E% 3.166 2.295 2.451 1.650 1.101 0.640 0.533 0.533
DTW 126.770 70.688 81.781 34.897 15.763 6.349 3.024 3.020
DDTW 20.408 10.338 12.362 5.263 2.326 0.562 0.371 0.372

Table 5. Median of the statistical scores for all three case studies and all river stations obtained from the CHyM simulations using the eight
APE fields as input (MED).

UNCAL CAL MOD GAUGE MOD GAUGE MOD MOD
GAUGE UNCAL GAUGE GAUGE GAUGE

UNCAL1 UNCAL3 UNCAL5 CAL5

KGE −0.558 −0.473 −0.299 0.097 0.402 0.299 0.537 0.537
NSE −3.140 −3.609 −2.083 −0.637 −0.264 0.046 0.341 0.331
KGEprime −0.485 −0.585 −0.308 0.030 0.116 0.362 0.532 0.529
KGEnp 0.392 0.375 0.500 0.606 0.523 0.657 0.611 0.619
NSEc2m −0.604 −0.643 −0.508 −0.240 −0.116 0.028 0.207 0.199
KGEc2m −0.218 −0.182 −0.129 0.051 0.251 0.176 0.368 0.367
KGEprime_c2m −0.195 −0.225 −0.133 0.015 0.062 0.221 0.362 0.360
KGEnp_c2m 0.244 0.231 0.333 0.435 0.354 0.489 0.440 0.448
RMSE 167.351 169.794 144.205 108.312 113.309 104.219 83.801 84.676
MARE 0.915 0.845 0.817 0.635 0.531 0.533 0.457 0.467
PBIAS −30.560 −20.430 −17.750 −4.952 20.578 −1.279 20.597 21.030
CT_D 0.535 0.560 0.570 0.585 0.765 0.570 0.750 0.750
TP_D 2.000 1.000 1.500 1.000 1.000 0.000 0.500 0.500
E% 0.100 0.500 1.100 2.200 2.100 4.000 3.500 3.500
DTW 0.630 0.605 0.605 0.230 −0.075 0.075 −0.220 −0.220
DDTW 9.940 11.605 7.000 2.255 3.020 1.945 2.000 2.005
RMSE 0.140 0.145 0.125 0.065 0.045 0.040 0.040 0.040

compared with using only rain gauge data. Thus, the Modu-
lar approach with R = 1 km (MODGAUGEUNCAL1) pro-
vides a less-well-performing hydrological simulation than
the NoModular approach (GAUGEUNCAL), while a strong
performance improvement is evident with the Modular ap-
proach, where rain gauges have R = 5 km (MODGAUGE-
UNCAL5 and MODGAUGECAL5), compared with the sim-

ulation using only rain gauge data (GAUGE). All the other
scores reflect the expected trend: the performance of the
model improves by merging the data, but above all, using this
approach, whether calibrated or uncalibrated satellite data
are used, the performances are comparable. In addition to
using the average values (AVG) of the scores, the overall
median (MED) and the overall standard deviation (SD) for
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the different runs have been computed, and they are reported
in Tables 4 and 5. A general increase in performance using
merged data is also obtained for MED and for SD.

7 Conclusions

Hydrological models are crucial aids for flood early warn-
ing systems and water resource management, particularly in
the context of climate change. The accuracy of the results
of many hydrological calculations depends on the accuracy
of the areal precipitation estimation (APE): a more realis-
tic rainfall distribution is as important as the correct esti-
mation of the cumulative rainfall maxima, especially when
severe weather events affect areas with a complex drainage
network and characterized by small- to medium-sized river
basins in close proximity to each other. Accurate estima-
tion of the APE using rain gauge measurement interpolation
is widely used, although the use of radar and satellite data
is increasingly common. To correct spatial errors caused by
variability in precipitation over short distances, different data
sources are necessary. As these errors are linked to the den-
sity and distribution of rain gauges, they impact the stream-
flow simulation model’s performance. In fact, the arrange-
ment of rain gauges in the monitoring network may not meet
the minimum density standard set by the WMO, as in the se-
lected domain, particularly in areas with diverse topography.
Consequently, the use of modern remote sensing techniques,
including radar or satellite data, is indispensable in regions
with scarce or non-existent rain gauges.

The study highlights the benefit of using satellite-based
rainfall estimation precipitation products for hydrological
simulations, especially in those areas where there is no ho-
mogeneous distribution of rain gauges, and it is a detailed
analysis of the potential usage of the cellular-automata-based
algorithm developed and implemented in the CHyM code to
merge different rainfall data inputs.

This work supports the relevance of using different data
sources simultaneously as well as providing methodologies
for dealing with them (rain gauges and satellite rainfall es-
timates): different data sources are used to obtain a mutual
correction of the implicit error typical of different sources.
An important aspect is choosing the right methodology for
using the data. The main aim of this work is to validate the
CA technique as a tool for creating the APE using rain gauge
and satellite rainfall data. The temporal resolution of these
data sources (rain gauge is provided every hour instead of
satellite data every half hour) is essential for developing oper-
ational monitoring and forecasting tools for flood early warn-
ing systems.

Eight different simulations have been carried out, where
the hydrological model has been forced with different CA-
based APE scenarios.

For the comparison between observed and simulated flow
discharge time series, objective functions were selected. Tra-

ditional performance indicators have been used: KGE, NSE
and the bounded version (KGEprime, KGEnp, NSEc2m,
KGEc2m, KGEprime_c2m, KGEnp_c2m). RMSE, MARE
and PBIAS were also considered. In addition, typical sig-
nal theory indicators (MC, CT_D, TP_D, E%, DTW and
DDTW) were selected to obtain a more objective analysis,
independent of the limits of the scores commonly used for
hydrological analyses.

Three different case studies have been selected, and the
statistical analysis has been performed using different qual-
ity scores, evaluating their overall average related to the three
case studies and all station time series. The results show
an improvement in the performance of hydrological simula-
tions when satellite and rain gauge data are merged. In detail,
all scores confirm better performance using only rain gauge
data (GAUGE) compared to satellite data (UNCAL, CAL),
with results ranging from negative KGE values, −1.414 and
−1.425, respectively, for the UNCAL and CAL simulations
(as reported in Table 3), to the value 0.116 of the GAUGE
simulation. Considering that in the case of the KGE score
the best performances are identified by values close to 1,
the best performances are associated with the model outputs
forced with the APE obtained by starting from a rain gauge
background rain field characterized by radius of influence
of R = 5 km (i.e. when 68 % coverage of the Tanaro basin
is associated with the rainfall estimated through the gauge
data), and the remaining part of the area is covered by the
rainfall field rebuilt using the GPM IMERG product (cali-
brated or uncalibrated), which has a KGE value of approx-
imately 0.4. Less-well-performing results than the GAUGE
simulation are obtained with the other settings. Obviously,
the objective of this work is not to verify the perfect perfor-
mance of the hydrological model but to demonstrate how dif-
ferent rainfall fields can improve hydrological simulations.

The same performances are confirmed if the typical sig-
nal theory indicators are used, where the best performances
are identified by values close to zero: DDTW takes val-
ues ranging from 5.43 to 3.043 for UNCAL and CAL, re-
spectively, to 0.257 for the GAUGE simulation. Also, in
this case the MODGAUGEUNCAL5 and MODGAUGE-
CAL5 simulations are comparable to each other, with a
value of 0.192, and perform better than the other simula-
tions. Regarding the timing indices, CT_D and TP_D, the
results are comparable in all simulations. Only a few hours
of shifting compared to the observed data makes the perfor-
mances reliable for all simulations, regardless of the rain-
fall field. In any case, the CT_P confirms the best perfor-
mances for the MODGAUGEUNCAL5 and MODGAUGE-
CAL5 simulations with a score value of 0.625 compared to
the worst results obtained with the UNCAL and CAL sim-
ulations with a score value of −2.75. The results for TP_D
are different, where the best performances are obtained with
the MODGAUGEUNCAL3 simulation, with an average ad-
vance of the maximum peak of approximately 2 h compared
to the observed data. The same result is also obtained for
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the PBIAS score, measuring the average tendency of the
simulated values to be larger or smaller than the observed
ones, where the best average performances are obtained in
the MODGAUGEUNCAL3 simulation.

In the future, this method will be tested on a larger number
of case studies and different river basins, as well as on other
satellite products (available at different spatial and temporal
resolution and shorter latency) to investigate the advantage
of the proposed approach in an operational setting for near-
real-time hydrological applications.
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