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Abstract. Water resources managers need to make decisions
in a constantly changing environment because the data re-
lating to water resources are uncertain and imprecise. The
Robust Optimization and Probabilistic Analysis of Robust-
ness (ROPAR) algorithm is a well-suited tool for dealing
with uncertainty. Still, the failure to consider multiple un-
certainties and multi-objective robustness hinders the appli-
cation of the ROPAR algorithm to practical problems. This
paper proposes a robust optimization and robustness prob-
abilistic analysis method that considers numerous uncertain-
ties and multi-objective robustness for robust water resources
allocation under uncertainty. The copula function is intro-
duced for analyzing the probabilities of different scenarios.
The robustness with respect to the two objective functions
is analyzed separately, and the Pareto frontier of robustness
is generated. The relationship between the robustness with
respect to the two objective functions is used to evaluate
water resources management strategies. Use of the method
is illustrated in a case study of water resources allocation
in the Huaihe River basin. The results demonstrate that the
method opens a possibility for water managers to make more
informed uncertainty-aware decisions.

1 Introduction

Water is a natural resource necessary for human survival
(Chen et al., 2017) but also a driving force for social and
economic development (Dong and Xu, 2019). Due to the
increasing population and rapid growth of the economy, a
contradiction between the supply and demand of water re-
sources is becoming more acute, water quality problems are
becoming more prominent, and water resources have grad-
ually become a bottleneck for socio-economic development
(Zhuang et al., 2018). This phenomenon is particularly ev-
ident in rapidly urbanizing and vital agricultural and indus-
trial production watersheds (Yang et al., 2017). In this cat-
egory of watersheds, agricultural production and industrial
production pose a massive challenge to water resources man-
agement (WRM) due to accelerated urbanization and rapid
socio-economic development (Sun et al., 2019). River basin
managers must consider water sources in an integrated man-
ner and decide how to allocate water resources between dif-
ferent water-using sectors and cities within the basin (Xiong
et al., 2020).

Multi-objective optimization (MOO) is an effective
method for improving water resources allocation (WRA)
schemes (Lu et al., 2017; Abdulbaki et al., 2017). MOO
can provide decision-makers with WRA options based on
their preferences for objectives, which makes it a well-suited
decision-making method for WRM. Ashofteh et al. (2013)
constructed a bottom-line-based multi-objective optimiza-
tion model to calculate WRA schemes. Habibi Davijani
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et al. (2016) presented a multi-objective optimal allocation
model of water resources in arid areas based on maximum
socioeconomic benefits. However, WRM is not only a multi-
stage and multi-objective problem but also a complex prob-
lem involving uncertainties and risk management (Yu and
Lu, 2018). WRM departments often need to face decision
challenges under uncertain conditions (Hassanzadeh et al.,
2016; Ren et al., 2019). Climate change and human activities
have led to an increase in uncertainties in rainfall and water
demand in the basin and hence to uncertainty in managing
water resources systems (Jin et al., 2020; Ma et al., 2020;
Zhu et al., 2019). Uncertain factors may lead to a risk of wa-
ter shortage in the basin, so the existing WRA schemes may
not be longer applicable (Keath and Brown, 2009). There-
fore, it is important to study WRA under uncertainty.

Previously, several methods were introduced to analyze
uncertainty in WRM. Scenario building and analysis is re-
garded as an effective method for considering possible future
events and analyzing future uncertainties (Zeng et al., 2019).
The fuzzy logic theory is one of the methods to deal with
uncertainty, which describes uncertainty by fuzzifying the
decision variables (Nikoo et al., 2013). Two-stage stochas-
tic programming (TSP) is also an available planning method
in optimization under uncertainty (Li et al., 2020). However,
these approaches do not explicitly evaluate the robustness of
the WRA options, although they take into account the uncer-
tainties in WRA.

Robust multi-objective optimization (RMOO) is an effec-
tive method for forming robust WRA schemes. In relation to
water, RMOO was actively applied in the field of water sup-
ply system (Kapelan et al., 2005, 2006). In the last decade,
RMOO has been gradually applied to other areas of WRM.
Yazdi et al. (2015) and Kang and Lansey (2013) applied ro-
bust optimization to design wastewater pipes by consider-
ing uncertainties such as climate change, urbanization, and
population change. Marchi et al. (2016) formed stormwater
harvesting schemes under variable climate conditions using
RMOO. It should be pointed out, however, that in the men-
tioned approaches the robustness is often “hidden” in the ob-
jective function or constraints, and then a common MOO
problem is solved that forms a single Pareto front. This is
indeed an effective method to create a solution set which
in a certain sense is robust. However, this approach does
not explicitly show the relationship between the solution and
the uncertainty variables, which prevents the decision-maker
from clearly understanding the impact of uncertainty, which
can influence their decision. To respond to this limitation,
the Robust Optimization and Probabilistic Analysis of Ro-
bustness (ROPAR) procedure was developed; it was first pre-
sented in Solomatine (2012). The method will generate mul-
tiple Pareto fronts, each corresponding to a sample of uncer-
tain variables so that the statistical characteristics of the un-
certainty of the solution can be analyzed. ROPAR has been
applied in the design of urban stormwater drainage pipes
(Solomatine and Marquez-Calvo, 2019) and for water qual-

ity management in water distribution (Marquez Calvo et al.,
2019; Quintiliani et al., 2019).

To the best of our knowledge, the presented versions of the
ROPAR methodology have the following limitations:

1. The ROPAR method has not been applied to the field of
WRA.

2. The ROPAR method only considers a single source of
uncertainty: if there are two sources, then the joint prob-
ability of these sources needs to be considered.

3. The ROPAR method only analyzes the variability of
one objective under conditions where the other objec-
tive function level is fixed.

4. Although the ROPAR method can provide decision-
makers with a robust solution under certain conditions,
it does not take into account the relationship between
the two objective functions.

Based on the above analysis, although the ROPAR method
has proven to be suitable for dealing with uncertainty, it still
needs improvement. In this study, we propose the Copula
Multi-objective Robust Optimization and Probabilistic Anal-
ysis of Robustness (CM-ROPAR) procedure under multiple
uncertainties for WRA. The proposed new procedure of the
ROPAR family considers the joint probability distribution
of uncertainties (in this case, inflows) and enables decision-
makers to check the robustness of the two objective functions
separately.

The text is structured as follows. First, Sect. 2 presents
the methodology of the paper. It mainly includes the method
of the copula function, the method of the CM-ROPAR algo-
rithm, the definition of robustness, and the construction of the
water resources allocation model. Then, Sect. 3 introduces
the overview of the study area. Then, Sect. 4 introduces the
application examples of the CM-ROPAR algorithm; this pa-
per is an example of water resources allocation in the Huaihe
River basin. Finally, the last section introduces the conclu-
sions of the paper.

2 Methodology

2.1 Method of the copula function

Sklar (1959) proposed copula theory in 1959, in which
he decomposed an N -dimensional joint distribution func-
tion (JDF) into a copula function and N marginal distribu-
tion functions (MDFs), which are not required to be the same
distribution for N variables and can be used to describe the
correlation between arbitrary variables. Nelsen et al. (2008)
discussed the basic properties and some of the main applica-
tions of copula functions in 1999. The copula function is the
function that connects the JDFs with their respective MDFs.
Copula functions can be expressed as

Cθ (u1,u2 . . .un)= Cθ [F1 (x1) ,F2 (x2) . . .Fn (xn)] , (1)
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where x1, x2 . . . xn are random vectors, u1 = F1(x1), u2 =

F2(x2) . . .un = Fn(xn) are the MDFs of the random vectors,
and θ is the parameter or the parameter vector of copula func-
tion.

The basic copula functions are mainly classified into
Archimedean, elliptic, and quadratic types. Among them,
Archimedean copula functions have been widely applied
in the field of hydrology (Salvadori et al., 2007). The
Archimedean copula multidimensional joint distribution
models are the following:

1. the G–H copula joint distribution model,

Cθ (u1,u2 · · ·un)=exp

−( n∑
i=1

(− lnui)
θ

) 1
θ


(θ > 1); (2)

2. the Clayton copula joint distribution model,

Cθ (u1,u2 · · ·un)=

[
1+

n∑
i=1

(
u−θi − 1

)]− 1
θ

(θ ∈ [−1,∞)\{0}); (3)

3. the Frank copula joint distribution model,

Cθ (u1,u2 · · ·un)=−
1
θ

ln

1+

n∏
i=1

(
e−θu1 − 1

)
(
e−θ − 1

)n−1


(θ ∈ R\{0}). (4)

In a river basin, there may be different drought or wet condi-
tions between different intervals of inflow, so the probability
of drought and wet encounters between different intervals of
inflow needs to be investigated. According to the analysis in
Sect. 2.1, it is known that the copula function can be used to
construct the multivariate joint distribution function. There-
fore, this paper adopts copula function theory to construct the
joint distribution and analyze the drought and wet encounter
probability. The steps of copula-function-based wet–dry en-
counter analysis are as follows:

1. Fit and select the MDF. The widely applied probability
distribution functions are mainly Pearson type-3 distri-
bution (P-III), T distribution, and normal distribution,
etc. The MDF can be fitted by the maximum likelihood
estimation (MLE) method, and the goodness-of-fit test
can be performed using the Kolmogorov–Smirnov test
(K–S test) and the root mean square error value (RMSE
value).

2. Fit and select the copula distribution function. Based
on the MDF fitted in the first step, construct the cop-
ula function and select the fitted copula function by the
Akaike information criterion (AIC) and the Bayesian in-
formation criterion (BIC).

Figure 1. Flowchart of CM-ROPAR.

3. Calculate the probability of dry and wet encounters be-
tween different interval inflows.

2.2 The CM-ROPAR method

A basic flowchart of the CM-ROPAR algorithm is shown in
Fig. 1. Firstly, the multi-objective optimization problem is
defined, and the uncertainty variables are clarified; secondly,
the copula function is used to analyze the relationship be-
tween the two sources of uncertainty; and finally, through
sampling and multi-objective optimization calculations, the
robustness of each solution is identified, and the one with the
most comprehensive robustness is selected.

https://doi.org/10.5194/hess-28-3739-2024 Hydrol. Earth Syst. Sci., 28, 3739–3753, 2024



3742 J. Zhang et al.: Robust multi-objective optimization under multiple uncertainties

The specific process of optimal water allocation under
runoff uncertainty based on the CM-ROPAR algorithm is as
follows:

– Part 1 – analyzing the wet–dry encounters.

a. Analyze the inflow wet and dry encounters. If the
basin has k inflows, then there are 3k wet–dry
scenarios. For example, suppose there is one in-
flow in the upper and one in the middle reach of
the basin. In that case, there are nine scenarios:
wet–medium, wet–wet, medium–wet, medium–
medium, medium–dry, dry–wet, dry–medium, and
dry–dry.

b. Choose a scenario from 1 to 3k .

– Part 2 – sampling inflow.

3. Based on the recorded annual inflow data Q, it is
assumed that Q is not a definite value but that

Q= iuncertainty ·Q (5)

iuncertainty ∼N
(
µ,σ 2

)
, (6)

where iuncertainty follows a normal distribution.
4. For i = 1 . . . np, sample the inflow.
5. Sample u (inflow). As mentioned before, the un-

certainty variable is obtained from the normal
distribution N(µ,σ 2). Assuming that the uncer-
tainty variable follows N(1,0.0025), this repre-
sents a 99.74 % probability of the uncertainty vari-
able falling within the interval [0.85, 1.15] and
the inflow sample falling within the interval [0.85 ·
Q,1.15 ·Q].

– Part 3 – forming the optimal solution set through
np Pareto fronts.

7. Select an ideal solution (IS) in each Pareto front Fr
based on the distance to the origin point, forming
the optimal solution set (set S).

– Part 4 – evaluate the robustness of each solution.

8. Select a solution si (i = 1 . . . np) from the solution
set S.

9. Put the inflow case ur (r = 1 . . . np) into si , and
calculate Pr(ursi) and WDr(ursi), respectively, to
form 1200 values of Pr and WDr (r = 1 . . . np).

10. Select the robustness evaluation criteria, RC1, RC2,
RC3, and RC4.

11. For each si (i = 1 . . . np), calculate RC1, RC2,
RC3, RC4, and SRI (system robustness indicator)
corresponding to Pr and WDr, respectively. Plot the
corresponding graphs, and find the Pareto front of
each graph.

12. Find the solution with the highest robustness.

2.3 Defining the robustness criteria

According to the general definition of robustness, four com-
mon robustness criteria (RC) were used in this study (Beyer
and Sendhoff, 2007). These must be minimized to achieve
the maximum robustness of the solution, so the lower the cri-
teria, the higher the robustness.

For the four RC, two MOO are implicitly defined, and op-
timization can be named the “two-layer multi-objective op-
timization of robustness criteria” (TL-MOORC). It is worth
noting that TL-MOORC differs from the problem’s MOO. A
one-layer MOORC is a solution that may not be minimized
at all four RC simultaneously. This problem can be solved by
aggregating the four RC into one, for example, using a linear
weighted combination. The second layer of MOORC is that
for the two objective functions of a solution, the RC for both
objective functions may not be minimized at the same time.
Therefore, a trade-off must be made between the RC for the
two objective functions.

The first of the RC is the expected value of each objective
function, denoted as RC1. It reflects the fact that we want to
find a solution that is good on average across all uncertainties
and can be represented by

RC1(s)=
∫

N(s,u)

f (s,u)p(u)du, (7)

where p(u) is the probability density function of the uncer-
tain variable u; it is the neighborhood of the solution s.

The second of the RC is the “worst case” (or “minimax”
case), denoted as RC2. This robustness criterion is related
to robustness because we want to find a solution s such that
the value of each objective function in the worst case is the
minimum possible. It can be presented as follows:

RC2(s)=min((f (s,u))). (8)

The third of the RC is the standard deviation of each objec-
tive function, denoted as RC3. RC3 is related to the robust-
ness of each objective function because we want to find a
solution s such that the value of the objective function would
not vary too much due to uncertainty. It can be expressed as
follows:

RC3(s)=

√√√√ ∫
N(s,u)

(f (s,u)− f (u))2p(u)du. (9)

The fourth of the RC is the “probabilistic threshold”, denoted
as RC4. We want to find a solution s that minimizes the prob-
ability that the objective function is higher than the threshold
of interest q. This criterion is usually associated with the re-
liability of the system. It can be expressed as follows:

RC4(s)= Pr(f (s,u) > q|s). (10)
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In order to evaluate the integrated robustness of the water re-
sources allocation scheme, the weighted sum of the four nor-
malized RC (NRCi) in this study was used as the integrated
robustness criteria. In this study, we consider the four RC
to be of equal importance, so all four indicators are given a
weight of 1

4 .

SRI=
1
4

NRC1+
1
4

NRC2+
1
4

NRC3+
1
4

NRC4. (11)

(Of course, other methods of aggregation can be considered
as well.)

2.4 Construction of the WRA model

2.4.1 Objective function

1. The availability of water for all sectors is an impor-
tant social goal, so it is important to calculate the water
deficit (WD):

min f1(Q)=

J∑
j=1

K∑
k=1


Djk −

T∑
t=1

I∑
i=1
Qijkt

Djk


2

, (12)

where Djk denotes the water demand of the water con-
sumption department k of the city j , and Qijkt is the
water supply quantity of the water source i to the water
consumption department k of the city j in the period t .

2. As an ecological goal, pollution (P ) is calculated as fol-
lows:

min f2(Q)=

J∑
j=1

K∑
k=1

djkpjk

I∑
i=1

T∑
t=1

Qijkt , (13)

where djk denotes the representative pollutant discharge
per unit of wastewater of the water department k of
the calculation unit j (t m−3), and pjk represents the
sewage discharge coefficient of the water consumption
department of the calculation unit. Qijkt is the water
supply quantity of the water source i to the water con-
sumption department k of the calculation unit j in the
period t .

2.4.2 Constraints

1. The water demand constraint is calculated by

I∑
i=1

T∑
t=1

Qijkt ≤Djk. (14)

2. The water supply capacity constraint is calculated by

K∑
k=1

J∑
j=1

T∑
t=1

Qijkt ≤ Ui . (15)

3. The water resources constraint is calculated by

J∑
j=1

K∑
k=1

Qijk ≤WRi . (16)

3 Study area overview

The Huaihe River basin is located in the eastern part of
China, and as shown in Fig. 2, the midstream and up-
stream flow through 15 cities of Henan Province and Anhui
Province. This is an important agricultural and industrial pro-
duction base in China (Xu et al., 2019). As shown in Fig. 3,
the inflow of the Huaihe River basin varies significantly be-
tween different years and between different regions, and the
water demand is uneven among cities. In this study, water de-
mand is calculated using the quota method commonly used
in the field of water resources. In addition, due to the dis-
charge of pollutants, the contradiction between supply and
demand of water resources in the middle and upper reaches
of the Huaihe River basin has become increasingly strong.
Therefore, it is meaningful to study the optimal allocation of
water resources and propose a robust water resources alloca-
tion scheme based on the wet–dry encounters in the Huaihe
River basin.

4 Results and discussion

4.1 Identification of marginal distribution functions

According to the first part (step 1–2) of the CM-ROPAR pro-
cess, we need to construct the joint probability distributions
for the upstream and midstream inflow and generate nine
inflow scenarios via the copula function. Therefore, before
constructing the JDF, we need to construct the MDF for the
upstream and midstream inflows, respectively. As shown in
Table 1, based on the K–S test results and RMSE value, we
found that the best-fitting distributions for the upstream and
midstream were the Weibull and P-III distributions, respec-
tively.

4.2 Analysis of upstream and midstream dry and wet
encounters

The optimal copula function is selected by comparing the
Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC) values shown in Table 2. It can be
concluded that the joint distribution function of the upper and
middle reaches of the Huaihe River basin is consistent with
the joint distribution of the Clayton copula function.

Substituting the multi-year annual inflow for the upper and
middle reaches of the Huaihe River basin into the Clayton
copula function, respectively, the following results were ob-
tained.
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Figure 2. Overview of watershed water supply.

Figure 3. Water demand proportion and inflow historical data.

As shown in Fig. 4, the joint distribution of the annual in-
coming water in the upper and middle reaches of the Huaihe
River basin has symmetry. In addition, the joint distribution
of annual water in the upper and middle reaches has a tail
correlation, which indicates a higher probability of simulta-
neous wetness or drought in the upper and middle reaches.

As shown in Table 3, the probability of drought–wetness
synchronization in the upper and middle reaches of the
Huaihe River basin is 58.3 %, while the probability of asyn-
chrony is 41.7 %. The former is 16.6 % higher than the latter,
indicating that the upper and middle reaches are less able to

complement each other. The joint distribution has a maxi-
mum probability of 27.7 % that the upstream and midstream
are both wet, and the risk of water scarcity is minimal under
this scenario. The joint distribution has the second-highest
probability of both upstream and midstream reaches being
dry at 24.1 %, with the highest risk of water scarcity under
this scenario.
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Figure 4. Clayton copula function.

Table 1. MDF goodness-of-fit test results. Bold values indicate the
distribution function with the best fit for this metric.

Distribution Up- Mid-
type stream stream

inflow inflow

p value

Normal 0.3341 0.8637
Lognormal 0.5175 0.5703
P-III 0.7674 0.7599
Weibull 0.5758 0.9658
Rayleigh 0.6123 0.2173

D value

Normal 0.13721 0.086144
Lognormal 0.11821 0.1152
P-III 0.0958 0.0965
Weibull 0.1129 0.0708
Rayleigh 0.1096 0.1533

RMSE

Normal 0.0345 0.0522
Lognormal 0.1391 0.1152
P-III 0.0306 0.0358
Weibull 0.0929 0.0306
Rayleigh 0.0529 0.1736

Table 2. AIC and BIC values for copula functions. Bold values in-
dicate the distribution function with the best fit for this metric. t
denotes the t distribution.

Gaussian t Clayton Gumbel Frank

AIC −20.86 −18.34 −22.69 −12.47 −20.03
BIC −19.06 −14.73 −20.88 −10.67 −18.22

Table 3. The probabilities of nine scenarios.

Wet and dry encounters (%) Upstream

Wet Medium Dry

Midstream
Wet 27.7 7.8 5.3
Medium 11.6 6.5 4.6
Dry 4.6 7.8 24.1

4.3 Considering solutions for the uncertainty of inflow
through CM-ROPAR

In this study the situation when the upper and middle reaches
are both wet is regarded as a case study. For deterministic
optimization, we opted for the NSGA-II algorithm, which is
widely used and has good historical performance (Reed et al.,
2013). Inflow uncertainty is modeled by sampling 1200 in-
flows, as shown in Fig. 5. In this study, the NSGA-II algo-
rithm is used for multi-objective function solving. For algo-
rithm parameterization, the population size is 100, generation
is 1000, the cross rate is 0.9, and the mutation rate is 0.2.

Figure 6a shows that 1200 Pareto fronts were calculated
for each sampled inflow, through steps 3–6 of CM-ROPAR.
Figure 6b shows 1200 ideal solutions s, selected based on
their distance to the ideal solution (step 7 of CM-ROPAR).

4.4 Assessing robustness of the solutions found by
CM-ROPAR

Four robustness criteria are calculated for each solution s
in the solution set S. Given the solution s to be evalu-
ated, it is necessary to calculate WD(s, IFr)(r = 1 . . . np) and
P(s, IFr)(r = 1 . . . np) in order to calculate the four robust-
ness criteria, where IFr is the rth sample of inflow. r depends

https://doi.org/10.5194/hess-28-3739-2024 Hydrol. Earth Syst. Sci., 28, 3739–3753, 2024
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Figure 5. Inflow samples.

Table 4. Optimal solution numbers for different robustness criteria.

RC1 RC2 RC3 RC4 SRI

WD 535 361 361 361 361
P 876 876 876 876 876
IS 629 84 84 915 84

on the number of samples; in this study, 1200 samples were
taken, so np is 1200.

As shown in Table 4 and Fig. 7, RC1, RC2, RC3, RC4, and
SRI for WD and P can be calculated for each solution
in S, and the solutions corresponding to the smallest value
in each RCi and the solutions corresponding to the smallest
value in SRI can be identified, respectively. In addition, we
also feed 1200 samples to the deterministic solution and cal-
culate RC1, RC2, RC3, RC4, and SRI for WD and P .

Figure 7 shows the performance of 1200 robust model
solutions (red dots) and one deterministic model solution
(black ×), for the four robustness criteria. From Fig. 7, four
Pareto fronts can also be found, which indicate the compet-
itive relationship between water deficit and pollution emis-
sions for each robustness criterion dimension. As shown in
Fig. 7a, we can observe an interesting phenomenon that the
left-most extreme solution (red dot) has the smallest robust-
ness index RC1 for water deficit but the highest robustness
index RC1 for pollution; the right-most extreme solution (red
dot) has the largest robustness index RC1 for water deficit but
the smallest robustness index RC1 for pollution. Similarly,
this phenomenon can be also observed for the robustness cri-
teria RC2, RC3, and RC4. More importantly, as shown in
Table 4, the extreme solutions and the solutions closest to
the origin point may differ for different robustness criteria.
Specifically, for RC1, solution no. 535 is the most robust for
water deficit, and solution no. 876 is the most robust for pol-

lution; for RC2, RC3, and RC4, the most robust solution for
water deficit is solution no. 361, and the most robust solution
for pollution is solution no. 876.

Because there are many non-inferior solutions in the
Pareto frontier, decision-makers must choose among them.
Decision-makers need not only to choose among the non-
inferior solutions but also to evaluate the trade-off between
different robustness criteria or to choose the best one by com-
bining the criteria. This study takes the distance to the origin
as the basis for such a choice. As shown in Table 4, for RC1,
RC2, RC3, and RC4, the closest points to the origin are so-
lution no. 629, solution no. 84, and solution no. 915, respec-
tively.

4.5 Comparing solutions found by deterministic and
robust approaches

To see a more general relationship between the 1201 solu-
tions (i.e., 1200 from the robust optimization solution and
1 from the deterministic optimization solution), the perfor-
mance of each solution for water deficit and pollution for
each of the four robustness criteria (sorted from smallest to
largest) is plotted in Figs. 8 and 9.

As shown in Fig. 8, for water scarcity, the robust so-
lution performed significantly better than the determinis-
tic solution. Specifically, for the four robustness criteria,
the robust solution outperforms 63.1 %, 85.6 %, 92.7 %, and
77.7 % of the solutions, respectively, while the determinis-
tic solution outperforms only approximately 1 % of the so-
lutions. To analyze the robust and deterministic solutions
more accurately and intuitively, this study applied the ratio
of RC(Det)/RC(Rob) to compare the robustness of the two
solutions. The ratios of RC(Det)/RC(Rob) are 1.53, 1.59,
2.62, and 12.67 in the four robustness criteria dimensions.
This means that, regarding water deficit, the deterministic
model solution may lead to 53 %, 59 %, 162 %, and 1167 %
more variability in the four robustness criteria dimensions.

However, as shown in Fig. 9, the deterministic solution
slightly outperforms the robust solution for pollution. Specif-
ically, for the four robustness criteria, the deterministic solu-
tion outperforms 96 % of the solutions, respectively, while
the robust solution outperforms about 40 % of the solutions.
Similarly, we compare the two solutions by the ratio of
RC(Rob)/RC(Det). We find that the RC(Rob)/RC(Det) ra-
tio is about 1.17 for RC1 to RC3 and 2.37 for RC4. This
means that, in terms of pollution, the robust solution may
lead to 17 % more variability for RC1 to RC3 and 137 %
more variability for RC4.

In order to analyze the comprehensive performance of
each solution, rather than just the robustness of a single ob-
jective, this study reflects the comprehensive implementation
of each solution in terms of the distance from the solution to
the origin. As shown in Fig. 10, the comprehensive perfor-
mance of the robust solution for RC1 to RC4 is significantly
better than that of the deterministic model solution. Specifi-
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Figure 6. (a) 1200 Pareto fronts (f1, water deficit, and f2, pollution) and (b) 1200 ideal solutions (f1, water deficit, and f2, pollution) selected
based on their distance to the ideal solution.

Figure 7. Performance of the robustness of solutions. (a) RC1, (b) RC2, (c) RC3, and (d) RC4 robust model solutions (red dots); deterministic
model solution (black cross); solution closest to origin for RCi (black plus symbol); and solution closest to origin for SRI (black dot). The
horizontal axis represents the performance of the robustness for WD. The vertical axis represents the robustness performance for P .
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Figure 8. Robustness of water deficit for (a) RC1, (b) RC2, (c) RC3, and (d) RC4. The horizontal coordinate represents the number of
solutions, and the vertical coordinate represents the robustness of the solution.

cally, the robust solution outperforms 90.3 % and 62.2 % of
the solutions in RC1 and RC4, respectively, and outperforms
all solutions in RC2 and RC3, while the deterministic solu-
tion performs exceptionally poorly in all four robustness cri-
teria. According to the ratio of Dis(Rob)/Dis(Det), we find
that the robust solution is 16.8 %, 19.8 %, 39.2 %, and 7.3 %
more robust than the deterministic solution in the four robust-
ness dimensions, respectively.

As shown in Fig. 11, for water scarcity, the integrated cri-
teria of the robust solution are clustered at approximately 0.5
and are significantly more robust than the deterministic so-
lution; for pollution, the integrated index of the robust solu-
tion is significantly higher than that of the deterministic solu-
tion, but the span of the integrated index of the two solutions
is similar, so the robustness of the deterministic solution is
slightly better than that of the robust solution.

Similarly, as shown in Fig. 12, there is also a Pareto front
for the composite robustness criteria. For water deficit, the
robustness of the robust solution is better than the determin-
istic solution; for pollution, the robustness of the determin-
istic solution is better than the robust solution. Specifically,
for water deficit, the robust solution outperforms 85.3 % of

the solutions, while the deterministic solution outperforms
only about 1 % of the solutions; for pollution, the determin-
istic solution outperforms 96 % of the solutions, while the
robust solution outperforms only 39.6 % of the solutions. Ac-
cording to the ratio of SRI(Rob)/SRI(Det), the determinis-
tic solution is about 130 % more uncertain than the robust
solution for water deficit; for pollution, the robust solution
is about 37.7 % more variable than the deterministic solu-
tion. The distance of each solution to the origin can reflect
the comprehensive performance of the robustness of each
solution. For the robustness composite index, the ratio of
Dis(Rob)/Dis(Det) is 0.655, which means that the compos-
ite robustness of the robust solution is 52.6 % higher than the
robustness of the deterministic solution.

For the robustness composite, the robust solution outper-
forms all the solutions, while the deterministic model solu-
tion outperforms only about 3.2 % of the solutions. Compar-
ing the distance to the origin of the robust solution and the
deterministic solution, we find that the robustness of the ro-
bust solution improves by 27.8 % over the deterministic so-
lution.
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Figure 9. Robustness of pollution for (a) RC1, (b) RC2, (c) RC3, and (d) RC4. The horizontal coordinate represents the number of solutions,
and the vertical coordinate represents the robustness of the solution.

4.6 Analysis of specific water resources allocation
schemes

First, as shown in Fig. 13, we analyzed the proportion of wa-
ter supply for each city. We find that the water supply share
for the scheme most robust to water deficit rates is signif-
icantly higher than that for the scheme with the most ro-
bust pollutant emissions. This is because an increase in water
supply leads to an increase in pollutant emissions, which in
turn leads to a decrease in the robustness of pollutant emis-
sions. For specific cities, the least robust allocation scheme
for water deficit reduces the water supply in City 3, City 7,
City 10, City 12, and City 15 compared to the most robust al-
location scheme for pollutant emissions. Interestingly, these
cities have the most water demand in the basin (as shown
in Fig. 3). Therefore, basin managers can increase the water
supply to these cities if they need to improve the water deficit
robustness of the water resources allocation scheme.

Then we analyze specifically the distribution of water re-
sources between sectors. An interesting phenomenon is ob-
served. As shown in Fig. 13, although the scenario with the
best robustness in terms of pollutant emissions has a lower

water supply than the scenario with the best robustness in
terms of water deficit, the reduction is mainly in the agricul-
tural sector. Water for domestic and industrial production did
not change much. The reason for this may be that agricul-
tural water use causes more pollution and may create more
uncertainty. Therefore, now watershed managers hope that
improving the robustness of pollutant discharge can reduce
water supply to the agricultural sector.

5 Conclusion

In this study, we propose a multi-objective robustness analy-
sis method considering multiple uncertainties (CM-ROPAR
approach) based on the robust optimization method for un-
certainty perception (ROPAR approach). To verify the supe-
riority and practicality of the CM-ROPAR approach, four ro-
bustness criteria are selected, and we compare the robust so-
lution calculated by the method with the optimal solution of
the deterministic model. In the studied case, there is a com-
petitive relationship between the robustness of the two ob-
jective functions, which can form a Pareto frontier. For the
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Figure 10. Comprehensive robustness for four indicators, (a) RC1, (b) RC2, (c) RC3, and (d) RC4. The horizontal coordinate represents the
number of solutions, and the vertical coordinate represents the robustness of the solution.

Figure 11. The integrated robustness index distribution of the robust and deterministic solution.
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Figure 12. Comprehensive robustness criteria performance. (a) Performance of comprehensive robustness criterion. (b) Comprehensive
robustness of robust solutions and deterministic solution. (c, d) Comprehensive robustness criteria for water deficit and pollution.

Figure 13. Specific water resources allocation schemes.

water deficit rate, the robust solution outperforms the deter-
ministic solution by 53 %, 59 %, 162 %, and 1167 % for the
four robustness criteria, respectively; for the pollutant emis-
sion, the deterministic solution outperforms the robust solu-
tion by only 17 % for RC1–RC3 and outperforms the robust

solution by 137 % for RC4. For the composite robustness,
the robust solution outperforms the deterministic solution by
52.6 %; CM-ROPAR finds a more robust solution.

The CM-ROPAR approach shows how uncertainty is han-
dled, to be able to analyze how uncertainty is transmitted to
the Pareto frontier and to perform the corresponding proba-
bilistic analysis. The novelty of the new method compared
to existing ROPAR methods is reflected in two aspects. First,
the ROPAR method only considers uncertainty at a single
point. In contrast, the CM-ROPAR method considers mul-
tiple uncertainties through the joint probability distribution
of two points, which is closer to the actual situation and
more general. Second, the new method analyzes the robust-
ness of two objective functions of the solution instead of fix-
ing one objective function to analyze the robustness of the
other objective function. The CM-ROPAR method is more
comprehensive and can identify the robustness of both ob-
jective functions, giving decision-makers more information
for decision-making.

One of the limitations of this study is that the CM-ROPAR
approach is applicable to problems with two uncertainties
and two objective functions; however, there are more uncer-
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tainties and more objective functions (e.g., the uncertainty
of inflow between multiple tributaries) in water allocation.
In future research, we will focus on more complex objective
functions and multi-objective optimization problems with at
least three objective functions.
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