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Abstract. In semi-arid irrigated environments, agricultural
drainage is at the heart of three agro-environmental issues:
it is an indicator of water productivity, it is the main control
to prevent soil salinization and waterlogging problems, and
it is related to the health of downstream ecosystems. Crop
water balance models combined with subsurface models can
estimate drainage quantities and dynamics at various spa-
tial scales. However, such models’ precision (capacity of a
model to fit the observed drainage using site-specific cali-
bration) and accuracy (capacity of a model to approximate
observed drainage using default input parameters) have not
yet been assessed in irrigated areas. To fill the gap, this study
evaluates four parsimonious drainage models based on the
combination of two surface models (RU and SAMIR) and
two subsurface models (Reservoir and SIDRA) with vary-
ing complexity levels: RU-Reservoir, RU-SIDRA, SAMIR-
Reservoir, and SAMIR-SIDRA. All models were applied
over two sub-basins of the Algerri—-Balaguer irrigation dis-
trict, northeastern Spain, equipped with surface and subsur-
face drains driving the drained water to general outlets where
the discharge is continuously monitored. Results show that
RU-Reservoir is the most precise (average KGE (0%3) of
0.87), followed by SAMIR-Reservoir (average KGE (0%9)
of 0.79). However, SAMIR-Reservoir is the most accurate

model for providing rough drainage estimates using the de-
fault input parameters provided in the literature.

1 Introduction

In the context of ongoing global changes, semi-arid irrigated
areas, in particular, face multiple challenges. First, agricul-
tural water productivity is a critical issue in regions where
water resources are under increasing pressure (FAO, 2021).
Second, one-third of the world’s irrigated land is affected by
the soil salinization issue, which is likely to bring a signifi-
cant loss in terms of arable lands (Singh et al., 2019). Third,
non-point pollution is another issue in irrigated areas, with
return flows that may contain high concentrations of nutri-
ents (Garcia-Garizdbal and Causapé, 2010) and/or pesticides
(Abdi et al., 2021).

Agricultural drainage is at the heart of the above three
challenges (water productivity, soil salinization, and non-
point pollution). More than 20 % of the total irrigated lands
in the world are equipped with drainage systems, including
open ditches or buried drains (Schultz et al., 2007). Drainage
systems are generally installed to prevent waterlogging dur-
ing heavy rainfall (through a sudden rise in the water table),
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to facilitate salt leaching (particularly when the irrigation wa-
ter has high salt concentrations), and to maintain a low water
table to avoid salt accumulation by capillary rise in the root
zone (particularly when the groundwater has high salt con-
centrations). Moreover, the drained water quantity and qual-
ity are strong indicators of agricultural water productivity
and the possible impact of nitrates, salts, and pesticide con-
centration on downstream ecosystems (Blann et al., 2009).

Measuring drainage discharge is an effective way of mon-
itoring the quantity and quality of drainage to help address
the three challenges mentioned above. However, the propor-
tion of drained irrigation districts equipped with such instru-
ments is very low. In this context, estimating the drained
water in irrigated areas, including those not instrumented,
is of major importance. Some work has been done in this
regard over rainfed areas, focusing on modeling the quan-
tity and quality of the drained water discharged (e.g., Negm
et al., 2017) or on developing drainage scenarios that inte-
grate changes in agricultural practices (e.g., Tournebize et
al., 2004) or in climatic conditions (e.g., Golmohammadi et
al., 2020; Jeantet et al., 2022). However, only a few stud-
ies have dealt with the quantitative estimation of drainage in
semi-arid irrigated areas. At the field scale, Ale et al. (2013)
compared the ability of the physically based DRAINMOD
(Skaggs et al., 2012) and ADAPT (Gowda et al., 2012) mod-
els to simulate monthly drainage in a drip-irrigated plot in the
US. The determination coefficient between simulated and ob-
served drainage was 0.90 and 0.85 for ADAPT and DRAIN-
MOD, respectively, for data obtained over 7 years. More re-
cently, Feng et al. (2021) simulated the daily drainage with
the physically based Hydrus-2D model in a furrow-irrigated
plot and obtained a Nash—Sutcliffe model efficiency coeffi-
cient (NSE) value of 0.91 and 0.94 for the calibration and val-
idation years, respectively. At a larger spatial scale, Cavero et
al. (2012) simulated the monthly drainage of three Mediter-
ranean irrigated catchments (mainly surface irrigation) lo-
cated in Spain, Algeria, and Turkey, ranging from 4000 to
10000 ha. They used the crop water balance model APEX
(Gassman et al., 2010) coupled with DRAINMOD over 2
hydrological years and obtained root-mean-square deviation
(RMSD) values ranging from 3.4 to 25.3 mm per month. On
a much larger scale, Wen et al. (2020) simulated the monthly
drainage over 19 sub-basins in a 1.2 x 10% ha irrigation dis-
trict in northern China using an empirical approach based on
water table observations. The results showed a mixed per-
formance with an average NSE of 0.64 and a standard devi-
ation of 0.21 for the 2-year calibration period and an aver-
age NSE of 0.34 and a standard deviation of 0.44 for the 2-
year validation period. In the same irrigation district, Chang
et al. (2021) simulated the annual drainage discharge un-
der different management scenarios using the semi-empirical
SahysMod model (Oosterbaan et al., 2005).

Although the literature on agricultural drainage is still lim-
ited for semi-arid irrigated areas, there are many scientific
papers on drainage estimation in humid regions where water-
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logging problems are common. The vast majority of them use
physically based models such as DRAINMOD (Moursi et al.,
2022; Muma et al, 2017), RZWQM?2 (Ma et al., 2012; Xian
et al., 2017; Jiang et al. 2020), MACRO (Larsbo et al., 2005;
Jarvis and Larsbo, 2012), SWAP (van Dam et al., 2008), Hy-
droGeoSphere (De Schepper et al., 2015), and FLUSH (Tu-
runen et al., 2013; Nousiainen et al., 2015). Generally, these
models are implemented at the plot scale and represent the in-
termediate processes (e.g., macropore infiltration, deep seep-
age, water redistribution in the soil profile, rooting distribu-
tion, lateral flows) involved in drainage at a daily or hourly
time step. They rely on a lot of information for model pa-
rameterization, implying detailed knowledge of the studied
site and potentially numerous parameters to calibrate. For ex-
ample, Ma et al. (2012) recommend that, for the RZWQM?2
model, there be an independent measurement for 11 param-
eters and a calibration for 11 others out of a total of 24 pa-
rameters (with the 2 remaining ones being taken from the
literature). In fields where intensive measurement campaigns
have been conducted, these models can simulate the observed
drainage well at hourly, daily, weekly, or monthly scales.
However, the application of such models to poorly monitored
basins remains limited due to the need for site-specific cali-
bration (using drainage measurements) to set their relatively
numerous input parameters.

Henine et al. (2022) proposed a simple semi-empirical
drainage model, RU-SIDRA, to generalize a drainage model
for various agricultural conditions. It combines a surface
model (RU) to simulate the daily recharge and a subsurface
model (SIDRA) (Lesaffre and Zimmer, 1988; Bouarfa and
Zimmer, 2000) to convert the simulated recharge into daily
drainage discharge. RU is a water balance model based on a
simplified version of the FAO-56 method (Allen et al., 1998)
and relies only on a single sensitive parameter. SIDRA is
based on the resolution of a semi-analytical formula derived
from the Boussinesq physical equation (Boussinesq, 1904),
leading to two main sensitive parameters. The robustness of
RU-SIDRA was evaluated by Jeantet et al. (2021) on 22 non-
irrigated French fields and sub-basins over 200 hydrologi-
cal years. It was found that RU-SIDRA performs as well as
physically based models in reproducing daily drainage and
is as robust as the latter from one hydrological year to an-
other. However, Jeantet et al. (2021) emphasized a limita-
tion of RU-SIDRA associated with the empirical nature of
the RU model. Indeed, in RU, the start of drainage, occur-
ring in autumn in the non-irrigated sites studied by Jeantet
al. (2021), is not systematically well reproduced from year
to year. This is potentially due to its poor representation of
the processes governing the variations in the soil water stock
(e.g., root growth or evapotranspiration). Over irrigated ar-
eas, this difficulty is expected to be further exacerbated by
the impact of summer crops. In addition, as with the phys-
ically based models described previously, RU-SIDRA also
relies on a site-specific calibration step using rarely available
observed drainage data.

https://doi.org/10.5194/hess-28-3695-2024
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Finding the right balance between the simplicity required
for a drainage model to be easily applicable over large ar-
eas and the complexity needed to ensure sufficient realism in
terms of intermediate processes and, hence, the robustness of
drainage estimates in time remains challenging. In this con-
text, this study seeks to address the following questions:

— Can parsimonious models with different degrees of
complexity precisely reproduce the daily drainage in
a semi-arid irrigated context with site-specific calibra-
tion?

— Can such models with default calibration (with parame-
ter values provided in the literature) reproduce drainage
quantities and dynamics, even roughly?

In this context, we evaluated the precision and accuracy of
several parsimonious models based on the RU-SIDRA for-
malism. By precision and accuracy, we mean the capacity
of each model to predict the drainage after site-specific cal-
ibration (using drainage measurements) and by setting the
model input parameters to the default values found in the
literature (without using drainage measurements), respec-
tively. Precision evaluation aims to investigate the models’
strengths and weaknesses by calibrating and validating them
over the same period. The accuracy evaluation aims to deter-
mine (i) whether it is possible to estimate drainage when no
in situ drainage data are available for calibration (which is
the case for most irrigation districts), i.e., under non-optimal
calibration conditions, and (ii) which of the models evaluated
performs best under these conditions.

To cover a range of modeling complexities, we investigate
the SAMIR model (Simonneaux et al., 2009) as an alterna-
tive to the RU model. SAMIR is more complex than RU as
it simulates more processes (e.g., root growth, vegetation de-
velopment, evaporation, vegetation cover, specific crop water
needs, and stress resistance) while remaining parsimonious,
with only two parameters integrating most of the sensitivity
for the recharge simulation (Laluet et al., 2023). We also in-
vestigate the Reservoir model as an alternative to the SIDRA
model. Reservoir is a fully empirical model driven by a single
parameter. It is a simplified version of a module recently in-
corporated in the SASER (SAfran-Surfex-Eaudysee-Rapid)
hydrological model (Quintana-Segui et al., 2017; Vergnes
and Habets, 2018; David et al., 2011) by Cenobio-Cruz et
al. (2023), who showed its ability to satisfactorily reproduce
the low flows (groundwater discharge) observed at 53 hydro-
logical stations in France and Spain.

The combination of both recharge (RU and SAMIR) mod-
els and both subsurface (Reservoir and SIDRA) models gen-
erates four drainage models in the following order of increas-
ing complexity: RU-Reservoir (two main parameters), RU-
SIDRA (three main parameters), SAMIR-Reservoir (three
main parameters), and SAMIR-SIDRA (four main parame-
ters). In this study, the precision and accuracy evaluations of
the four drainage models are carried out in two sub-basins
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of the Algerri-Balaguer irrigation district located in the Ebro
basin in the northeast of Spain. These two sub-basins are in-
strumented with flow meters that continuously measure the
daily drainage discharge into the main drains.

2 Material and methods

The overall methodology to assess both the precision and ac-
curacy of RU-Reservoir, RU-SIDRA, SAMIR-Reservoir, and
SAMIR-SIDRA is presented in the flowchart of Fig. 1. First,
the study site and data used are presented (Sect. 2.1), fol-
lowed by a description of the four models (Sect. 2.2). The fol-
lowing sections describe the site-specific calibration strategy
used for evaluating the precision of the models (Sect. 2.3),
the selection of input parameter ranges used for evaluating
the accuracy of the models (Sect. 2.4), and their complexity
of use (Sect. 2.5).

2.1 Study area and data
2.1.1 Study area

The Algerri-Balaguer (AB) irrigation district is located in
northeastern Spain, 20 km north of Lleida. It is characterized
by a semi-arid continental Mediterranean climate with an av-
erage annual reference evapotranspiration (ETp) of 1027 mm
and precipitation of 380 mm (2000-2021). AB has an area
of 8100 ha of cropland with mainly corn, barley, wheat, fruit
trees, and alfalfa. A total of 6800 ha is equipped for irriga-
tion with sprinklers for annual crops and drip systems for
fruit trees. An overview of the AB area is shown in Fig. 2.
For an extensive description of the irrigation district in terms
of soil, geology, crops, irrigation, and drainage system, the
reader is referred to Altés et al. (2022).

In 1998, modernization works were carried out in the AB
district, including flattening the land for plot consolidation
and installing irrigation systems and a drainage network. The
drainage network consists of surface (open ditches) and sub-
surface (buried pipes) drains (Altés et al., 2022). Field drains
(underground perforated plastic pipes) are connected to col-
lectors (underground concrete pipes larger than field drains).
These collectors, in turn, are connected to main drains (ei-
ther larger underground concrete pipes or open ditches). The
main drains ultimately convey the water to general outlets
(green dots in Fig. 2). During irrigation implementation, the
collectors and the main drains were installed in the first few
years. Since then, field drains have been installed progres-
sively at the initiative of each farmer according to their needs.
We have no precise information on the surface that has been
equipped with field drains or on their spacing. From field ob-
servations, we know that the surface drains were dug at a
depth of approximately 2 m, as were the main drains.

Two of these main drains have been equipped with CTD-
10 sensors (Meter Group Inc., Pullman, WA, USA) that con-
tinuously measure the water level. They collect drainage wa-
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Figure 1. Flowchart of the proposed methodology for precision and accuracy evaluation of the drainage simulated by four parsimonious

models with different levels of complexity.

ter from areas of 116 and 2050 ha each, forming two sub-
basins, AB1 and AB2 (see Fig. 2). These areas correspond
to the topographic basins formed by the main drains at the
CTD-10 sensor locations and were computed using the QGIS
software with a 2 m resolution DEM provided by the Carto-
graphic and Geological Institute of Catalonia. Table 1 shows,
for AB, AB1, and AB2, the area and percentages of the main
crop types. Figure 2b shows the land cover of AB1 and AB2
for 2021.

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024

2.1.2 Description of the data used in this study

The water levels measured in the AB1 and AB2 outlets are
obtained hourly and are converted into daily discharge us-
ing the Manning—Strickler equation and the knowledge of the
main drain hydraulic characteristics (Altés et al., 2022). The
available drainage data used herein cover the period from
February 2021 to October 2022 (21 months) for AB1 and
from May 2021 to October 2022 (18 months) for AB2. The
observed drainage at AB1 was 29 mm in 2021 and 26 mm
in 2022, while it was 61 mm in 2021 and 46 mm in 2022 at
AB2. Figure 3 shows daily drainage data for AB1 and AB2
for the period May 2021 to October 2022.

https://doi.org/10.5194/hess-28-3695-2024



P. Laluet et al.: Drainage assessment of irrigation districts

Il Other crops
I Winter cereals
Il Summer cereals
[ Double crops
I Forage

[ Fruit trees
[ Nut fruits

[ Fallow

[ Horticulture
I Legums

[ Olives

3699

Figure 2. The AB irrigation district with the two monitored sub-basins, AB1 and AB2, and their outlets, as well as the location of the
pumping station for irrigation (coordinates: 41.829° N, 0.579° E; WGS84) (a). Zoom on the two sub-basins with their land use for the year

2021 and a picture of the inside the AB1 outlet, where water level is measured before being converted into drainage discharge (b).

Table 1. Irrigated surfaces of AB, AB1, and AB2 and the percentage of surface area occupied by their different crop types in 2021 and 2022.

Irrigated surface (ha)  Year

Percentage of surface occupied

Double crop (mostly
wheat or barley in winter
and maize in summer)

Summer cereal
(mainly maize)

Others (alfalfa,
winter cereals,
olives, fruit trees, etc.)

AB 6800 2021 58 % 8 % 34 %
2022 69 % 7% 24 %
AB1 116 2021 59 % 6 % 35%
2022 69 % 6 % 25 %
AB2 2050 2021 72 % 6 % 22 %
2022 78 % 4 % 18 %

https://doi.org/10.5194/hess-28-3695-2024
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The irrigation data consist of the daily flow of water
pumped from a river next to the AB district (see Fig. 2),
which is the only supply for the irrigation network. They are
provided by the Automatic Hydrological Information System
of the Ebro Basin (SAIH). Pumping flow data are aggregated
to the weekly scale to consider the potential delay of several
days between pumping and application in the field. A total of
5.8 % of the volume is removed to account for evaporation
loss and leakage based on a comparison between the water
pumped from the river and irrigation data from water meters
(Olivera-Guerra et al., 2023).

Soil texture is obtained from the 250 m resolution Soil-
Grids product (Hengl et al., 2017; Poggio et al., 2021). It is
relatively uniform over the AB area and corresponds to a silty
clay loam soil (Jahn et al., 2006).

Meteorological data are obtained from five stations be-
longing to the Catalan Meteorological Station Network. Two
are located within the AB district, and the three others are
located around the area at a maximum distance of 5 km. The
mean and standard deviation of the instantaneous measure-
ments of precipitation and ETy made by the five stations are
very low. Therefore, the spatial average of precipitation and
ETy measurements is used as forcing at the scale of the AB
sub-basins.

2.2 Description of the four models

The four models evaluated herein result from the combina-
tion of two water balance models (RU and SAMIR) and two
drainage discharge models (Reservoir and SIDRA). Their
main characteristics are listed in Table 2.

2.2.1 SAMIR

The SAMIR model (Simonneaux et al., 2009) is a FAO-
56 double-crop coefficient-based model (FAO-2Kc) (Allen
et al., 1998) designed to simulate the crop water balance
components for daily ET estimation and crop water require-
ments by considering the plant and soil water status. It uses
(i) meteorological forcing variables to calculate ETy (calcu-
lated using the Penman—Monteith equation); (ii) precipita-
tion; (iii) crop and soil parameters to calculate soil reservoir
properties, as well as plant and soil resistance to water stress;
and (iv) normalized difference vegetation index (NDVI) to
drive plant development, obtained from the Sentinel-2 satel-
lites with a resolution of 10 m and a revisit time of 5 d.

The daily water balance equation simulated with SAMIR
is as follows:

Dy =Dy, +ET,— P — I + Ry, (H
where D; is the root zone depletion, ET is the actual evap-
otranspiration, P is the precipitation, / is the irrigation, and

R is the underground recharge. Every term is expressed in
millimeters for the day ¢ (and t — 1 for Dy). ET is estimated

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024
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Figure 3. Bottom: daily drainage data of AB1 and AB2 from May 2021 to October 2022.

by multiplying two crop coefficients to ET¢ as follows:
ET, = (KCbt “Ksi+ Kes - Kr,t) -ETy,, 2)

where ETy - K¢ - K is the water transpired by plants (7,
mm), and ETy - K¢ - K; is the soil evaporation (E, mm). Ky,
(-) is the basal crop coefficient governing the potential crop
transpiration. It is estimated from a linear relationship with
NDVI. K (-) is the water stress coefficient reducing the po-
tential transpiration, K. (-) is the potential soil evaporation
coefficient, and K; (-) is the evaporation reduction coeffi-
cient.

K; is calculated with a pedotransfer function using clay
and sand fractions that were derived and evaluated over a va-
riety of sites (Lehmann et al., 2018; Merlin et al., 2016) and
recently implemented into SAMIR by Amazirh et al. (2021).

K is calculated based on the daily computation of the wa-
ter balance in the root zone layer as follows:

TAW, — Dy,

= AW, (1= p)’ @

s,t

where D is calculated from the daily water balance accord-
ing to Eq. (1), TAW (mm) is the maximum available water in
the root zone, and p (-) is the fraction of TAW that a crop can
extract without facing water stress. Allen et al. (1998) sug-
gest that p controls the water depth threshold below which
irrigation should be triggered to avoid crop water stress by
keeping D; smaller than TAW - p (and thus keeping K equal
to 1). TAW is estimated as follows:

TAW, = (SMgc — SMwp) - Z;;, 4

where SMgc (m? m™3) is the soil moisture at field capacity,
and SMwp (m> m—3) is the soil moisture at the wilting point,
both derived from the soil texture by applying the pedotrans-
fer function proposed by Roman-Dobarco et al. (2019). Z,
(mm) is the rooting depth that varies between a minimum
value (set to 100 mm for annual crops) and a crop-dependent
maximum value (reached at the maximum NDVI of the sim-
ulated field).

A spatialized version of SAMIR at the plot scale was
recently developed and is used in this study to simulate
recharge at AB1 and AB2. More details on the methodology
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behind this spatialization can be found in Olivera-Guerra et
al. (2023).

To simulate plot-scale irrigation using SAMIR, we used
the method proposed by Olivera-Guerra et al. (2023), which
consists of inverting two time-varying SAMIR irrigation pa-
rameters from the irrigation data measured at the pumping
station. By applying the inverted parameters to each irri-
gated field and aggregating the resulting simulations over
the entire AB district, the simulated irrigation volumes and
timing were close to those measured at the pumping sta-
tion (RMSD < 0.70 mm d~! on average for six irrigation sea-
sons). The values of the SAMIR irrigation parameters found
by Olivera-Guerra et al. (2023) for the AB district were used
herein for 2021 and 2022. The plot-scale irrigations simu-
lated by SAMIR are then averaged for AB1 and AB2 to be
used as forcing in the RU model (as RU is not spatialized).

222 RU

RU is a water balance model designed to simulate the
recharge of the water table. It is one of the components of
the RU-SIDRA model introduced by Henine et al. (2022). In
contrast to SAMIR, RU has not been designed to precisely
reproduce ET by simulating plant phenology or processes
related to evaporation. Its purpose is to reproduce the cor-
rect amount of recharge to be converted into drainage with
the SIDRA model. While a detailed description of the model
can be found in Henine et al. (2022), with its evaluation be-
ing found in Jeantet et al. (2021), only a general overview is
provided here.

RU uses as input precipitation, irrigation, ETy, and soil
texture type (for default parameter values). It comprises a
module simulating the net infiltration (Ppe;, mm) and a soil
reservoir module transforming Py into recharge R.

Ppet 1s calculated as follows:

Pyet, = P+ 1; — CET;, (5)

with CET (mm) being the corrected ET, which is computed
using

_SRFU=S:
ETg, -e S if S < Srru (©6)

CET; = )
ETy, if S; > Srru
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where S; (mm) is the current water level in the soil reservoir
on day ¢ and Sgry (mm) is a water level threshold triggering
the plant water stress limiting ETg. Srpy is 0.4 - Sinter, With
Sinter (mm) being a threshold in the soil reservoir that triggers
recharge, analogously to SMgc in SAMIR.

The soil reservoir module is designed to simulate recharge
(R) depending on the three stages related to the amount of
water in the soil reservoir (S):

Stage 1: S; < Sinter; R =0, @)
Stage 2 : S; € [Sinter; Smax]; Rt = B+ Puey, s (8)

with Spax (mm) being the water level below which recharge
occurs with a reduction coefficient 8 (), calculated using

Smax = Sinter + SIDSa (9)

where Sips (mm) is the intense drainage season reservoir
level, reached during the season period where drainage is
most important due to large amounts of precipitation and/or
irrigation (Jeantet et al., 2021). During this time, the level of
the reservoir is higher than that of Sj,er. Henine et al. (2022)
and Chelil et al. (2022) found that Sips and 8 are not sig-
nificantly sensitive. Based on the values used in Jeantet et
al. (2021), Sips was set to 20 mm, and S was set to 0.33.

Stage 3:S; > Smax; Rr = Pret, (10)

Note that RU is not spatialized, implying that a single simu-
lation is performed for AB1 and AB2 separately with average
forcings and parameters.

2.2.3 SIDRA

SIDRA is a physically based model designed to calculate
the drainage flow of a drained plot or sub-basin. It is based
on the resolution of a semi-analytical formula derived from
the Boussinesq equation, which leads to Egs. (11) and (12).
For a complete description of SIDRA, readers are referred to
Tournebize et al. (2004), Henine et al. (2022), and Zimmer et
al. (2023).

First, the water table level variation under the influence of
recharge (R) and drainage is computed as follows:

2

dh, R —K% dh,
- = —;hl‘-l—] th+_7

d; Cu d;
where / is the water table at the midpoint between drains
(m), K is the horizontal hydraulic conductivity (md~1), u
is the drainable porosity (m3>m™3), and C is a water table
shape factor (-) equal to 0.904; & is bounded between 0 and
1.5 (the average drain depth assumed at AB). Equation (11)
is based on the assumption that the water table is flat, which
is consistent with the flat topography of the AB district. The
drainage of the water table into buried pipes or open drains,
leading to drainage flow Q, is calculated as follows:

1D

2

h
Qz=AKE+(1—A)-Rz, 12)
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where L is half of the drain spacing (m), and A is a water ta-
ble shape factor (—) equal to 0.896. As we do not have precise
information on the location of the field drains and the propor-
tion of the surface equipped with them at AB, L can be ei-
ther calibrated with drainage data or set to a value frequently
found in the literature (generally between 3 and 12 m; Jeantet
et al., 2021).

Boussinesq’s equation assumes that buried pipes and open
drains rest on an impermeable layer, meaning that the en-
tire water table could be drained after a given period without
rain or irrigation. The hydrogeological configuration of the
AB district, with the presence of a shallow impervious layer,
allows us to assume that this condition is respected.

SIDRA is not spatialized; therefore, when combined with
SAMIR (which is spatialized, unlike RU), it uses the average
daily recharge from all the simulated plots of AB1 and AB2
as input.

2.2.4 Reservoir

Reservoir (Cenobio-Cruz et al., 2023) is a conceptual model
designed to reproduce the delay between the recharge and
the water table draining into a river, buried pipes, or open
drains. The idea of this model is that a reservoir filled by
recharge is drained according to a linear relationship between
the water level Z (mm) and a depletion coefficient w (-). It
can be expressed as follows:

Or=2; 0. 13)

Cenobio-Cruz et al. (2023) incorporated a reservoir size pa-
rameter to simulate overflow and to generate quick flows. We
decided not to include this parameter to make the Reservoir
model as simple as possible.

2.2.5 Initialization of the state variables

The four models, RU-Reservoir, RU-SIDRA, SAMIR-
Reservoir, and SAMIR-SIDRA, require initialization of their
state variables. These variables were initialized with a 12-
month spin-up simulation using data from 2020. SAMIR
initializes the depletion parameters of the soil and surface
reservoirs, RU initializes the water level in the soil reservoir,
SIDRA initializes the water table level, and Reservoir initial-
izes the water level in the conceptual reservoir.

2.2.6 Sensitivity of model parameters

Laluet et al. (2023) conducted an extensive sensitivity anal-
ysis of ET and recharge simulated by SAMIR over various
agro-pedoclimatic conditions. Two of the nine parameters
were found to dominate the model sensitivity: ag,, governs
the relationship between NDVI and K., (related to T de-
mand), and Z, pax 1S the maximum rooting depth that gov-
erns the size of the root zone reservoir.

Henine et al. (2022) and Chelil et al. (2022) analyzed the
sensitivity of the RU-SIDRA parameters for drainage simu-
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lation on two different plots. They both showed that, for the
RU model, the Siper parameter controls most of the model
sensitivity and that, for SIDRA, this is the case with K and

.
2.3 Strategy for evaluating the models’ precision
2.3.1 Calibration strategy

We remind the readers that precision means a model’s abil-
ity to approximate the observed drainage data as closely as
possible using site-specific calibration (using drainage mea-
surements). The most sensitive parameters of the four mod-
els were calibrated using an automatic calibration algorithm.
Since we do not have information on half of the drain spacing
on AB, we calibrated the L parameter, bringing the number
of parameters to be calibrated for RU-SIDRA to four and
the number to be calibrated for SAMIR-Reservoir to five. In-
deed, although Chelil et al. (2022) showed that L is not very
sensitive when it varies between 3.5 and 6 m, its uncertainty
within the AB district is large enough for it to be significantly
sensitive. The other less sensitive parameters are fixed at the
default values given in the literature. To analyze the variabil-
ity of the parameters from one hydrological year to the next,
we split the data into 12 months named the “2021 period”
and a period with the remaining months (9 months for ABI,
6 months for AB2) called the “2022 period”. Analysis of the
variability of the values of the calibrated parameters between
the two periods provides information on the predictive ca-
pacity of the models. If the values are close from one period
to another, this suggests that the model robustness is high. If
they are not, this indicates a low level of robustness.

The calibration method used is the multi-objective non-
dominated sorting genetic algorithm (NSGA-II) (Deb et al.,
2002). For the case of SAMIR, which simulates both irriga-
tion and recharge, we use a multi-objective method to en-
sure that the calibration of ag, and Z, .x parameters does
not significantly modify the simulated irrigation. Therefore,
for both SAMIR-Reservoir and SAMIR-SIDRA, drainage
and irrigation are optimized together, whereas, for both RU-
Reservoir and RU-SIDRA, only drainage is optimized (an
averaged irrigation is given as forcing in this case as RU can-
not simulate irrigation). NSGA-II is one of the most widely
used multi-objective algorithms. It implements a fast, non-
dominant sorting approach to discriminate solutions based
on dominance and Pareto optimality. It provides a set of op-
timal non-dominated solutions (set of parameters), allowing
the user to choose the best solution according to their pri-
orities. In the SAMIR case, the best solution would be the
one that simulates the most precise drainage, provided that it
simulates irrigation consistently with the observed data at the
pumping station. Readers are referred to Deb et al. (2002),
Bekele and Nicklow (2007), and Shafii and De Smedt (2009)
for a detailed description of the algorithm.
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2.3.2 Parameter distribution for calibration

NSGA-II requires a distribution provided by the user for each
calibrated parameter. The distribution and references used in
this study are provided in Table 3.

The distribution of ag_, of the SAMIR model is based
on Laluet et al. (2023a), who obtained ag, values for 37
agricultural seasons (mainly maize and wheat, being widely
present in the AB district) from the linear relationship K.y =
ak,,-NDVI+bg , . Knowing the value of NDVI in bare soil
(where K, is zero) and at full vegetation (where Ky, is equal
t0 K¢b,max), dk,, and bk, can be inferred.

The distribution of Z, max is derived from tables provided
by Allen et al. (1998) and Pereira et al. (2021). This study
uses the mean and standard deviation of Z, nax for maize,
being the most present and irrigated crop type at AB1 and
AB2.

The distribution of Sjer of the RU model is taken from
Jeantet et al. (2021), who calibrated this parameter based on
drainage discharge in situ data from 22 drained French sites.

The distribution of K and p of the SIDRA model is also
based on Jeantet et al. (2021), who derived the mean and
standard deviation of these parameters from field measure-
ments performed on 15 silty soils in France, with similar soil
textures to those of AB1 and AB2. Half of the drain spacing
parameter L distribution was chosen to be wide (uniform dis-
tribution between 4 and 60 m), taking into consideration that
some plots are not drained at AB1 and AB2. As a compari-
son, Chelil et al. (2022) used a uniform distribution between
3.5 and 6 m for fully drained sites.

The distribution of the w parameter of the Reservoir model
is derived from Cenobio-Cruz et al. (2023), who calibrated
this parameter based on discharge flow data of about 25
catchments in northern Spain.

2.3.3 Maetrics used for calibration and validation

For drainage calibration, the Kling—Gupta efficiency (KGE)
(Gupta et al., 2009) is used:

KGE=1—-/tr— )2+ (@— D2+ - 2, (14)

where r is the Pearson’s correlation coefficient, « is the bias

component, and § is the ratio of the discharge variance.
Os

msg
oa=—and§ = —
Mo Oo

15)

In the above, m and o are the mean and standard deviation,
respectively. Subscripts s and o represent the simulated and
observed flow, respectively.

Since the KGE tends to place more weight on high flows
(Santos et al., 2018), we used KGE (Q°?). KGE (Q%9) is the
KGE calculated from the square roots of simulated and ob-
served drainage, allowing the weights between high and low
flows to be more balanced. Following Jeantet et al. (2021),
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we consider simulations to be “excellent” when KGE (Q%)
is larger than 0.8, “very good” when it is larger than 0.7,
“good” when it is larger than 0.6, “acceptable” when it is
between 0.5 and 0.6, and “unsatisfactory” when it is below
0.5. Furthermore, to get a reference in mind, a KGE of —0.41
is equivalent to having a simulation performance equal to the
average of the observed data (Knoben et al., 2019).

The RMSD objective function is used for irrigation cali-
bration:

LG —i)?
J

RMSD = , (16)
where j is the number of days in the simulated time series, i
is 1d of the time series, J; is the simulated time series, and y;
is the reference time series. We consider irrigation to be well
simulated when the RMSD calculated between the irrigation
measured at the pumping station and the one simulated by
SAMIR for all the plots in AB is below 0.70mmd~". This
value corresponds to the average RMSD found from 2017 to
2021 by Olivera-Guerra et al. (2023).

2.4 Strategy for evaluating the models’ accuracy

Complementarily to the evaluation of the models’ precision,
this study also aims to assess the accuracy of the four models.
We remind the readers that, by accuracy, we mean the abil-
ity of a model to approximate the observed data as closely as
possible by relying only on default values given by the liter-
ature for its main parameters, i.e., without any site-specific
calibration step.

To this end, for each of the four models, 2000 sets of their
most sensitive parameters are generated randomly using a
Monte Carlo sampling with the distributions presented in Ta-
ble 3, except for half of the drain spacing L. Indeed, for the
accuracy evaluation, we consider a situation where we have
no information on the geometry of the drainage network and
therefore on L. In this hypothetical situation, we do not know
if a portion of the surface is not drained, potentially resulting
in high L values. Therefore, we use a value of 6 m for the
accuracy evaluation, which is a value frequently found in the
literature (Jeantet et al., 2021). In addition, to focus only on
the drainage accuracy evaluation, the irrigation obtained with
SAMIR during the precision evaluation step is injected into
SAMIR as a forcing. The KGE (Q°?) obtained with a sim-
ulation performed with average default parameters is calcu-
lated, and the ensemble generated by the 2000 Monte Carlo
simulations is analyzed.

2.5 Complexity of models’ calibration

The models involving SAMIR are more complex to calibrate
than those involving RU. This is due, in particular, to the fact
that (i) SAMIR-based models involve input data that are not
always readily available at the required fine resolution (in
particular, land use maps), and (ii) SAMIR is spatialized and
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therefore requires more computing resources (several hours
of computation for 2000 simulations based on the AB district
with 8§ GB RAM and four CPUs running in parallel). The RU-
based models are simpler to calibrate than the SAMIR-based
ones because RU requires only meteorological data as input,
and they are not spatialized and demand fewer computing
resources (a few minutes to run 2000 simulations on the AB
district with the same computing configuration).

The two subsurface models are simple and require few
computing resources. SIDRA-based models are slightly
more complex to calibrate than Reservoir-based models as
they require two drainage network characteristic parameters
(half of the drain spacing and depth of drains) as input. How-
ever, they are not the most sensitive parameters in the SIDRA
model (Henine et al., 2022; Chelil et al., 2022).

We see a gradient in terms of the level of complexity
and expertise required to calibrate the models, namely from
SAMIR-SIDRA to RU-Reservoir. The four models are coded
in Python, as is the NSGA-II calibration algorithm provided
by the Python package spotpy.

3 Results and discussion
3.1 Precision evaluation

This section will first give a quick overview of the irriga-
tion simulated by SAMIR and used as a forcing by RU. The
precision of the drainage simulated by each model is then
presented. Finally, we will explain why the model precision
differs between the four models, and we will provide some
recommendations and perspectives.

3.1.1 Irrigation simulated by SAMIR

Table 4 shows, for SAMIR-Reservoir and SAMIR-SIDRA,
the RMSD obtained between the simulated and observed ir-
rigation at the pumping station over all the irrigated plots of
AB resulting from the NSGA-II multi-objective calibration
performed for AB1 and AB2. The average RMSD obtained is
0.35mmd~! for 2021 and 0.66 mm d~! for 2022, in line with
the quality criteria defined previously (< 0.70mmd~"). The
average amount of irrigation simulated for the AB1 sub-basin
is 592 mm for the period from May to October 2021 and
693 mm for the period from May to October 2022. For AB2,
it is 619 mm in 2021 and 720 mm in 2022. These amounts
are fully consistent given the amounts of irrigation measured
at the pumping station and the proportions of surface used
for double crops and summer cereals in each AB1 and AB2
sub-basin compared to those in the entire AB district (see
Table 2).

3.1.2 Which model is more precise?

Figures 4 and 5 compare the simulated and observed
drainage for the AB1 and AB2 sub-basins, respectively, and

https://doi.org/10.5194/hess-28-3695-2024



P. Laluet et al.: Drainage assessment of irrigation districts

3705

Table 3. Distributions of the main parameters calibrated with the NSGA-II algorithm to evaluate the models’ precision and associated

references.
Parameter Distribution Reference
SAMIR ag,, &) Normal (mean: 1.45; SD: 0.12) Laluet et al. (2023)
Zy,max (mm)  Normal (mean: 1000; SD: 170) Allen et al. (1998), Pereira et al. (2021)
RU Sinter (Mm) Normal (mean: 138; SD: 53) Jeantet et al. (2021)
SIDRA K (m d_l) Lognormal (mean: 0.99; SD: 2.53) Jeantet et al. (2021)
um (=) Lognormal (mean: 0.018; SD: 2.19)
L (m) Uniform (low: 4; high: 60)
Reservoir &k (-) Normal (mean: 0.02; SD: 0.05) Cenobio-Cruz et al. (2023)

for the 2021 and 2022 periods. Table 5 shows that, among
the 16 combinations of model—sub-basin—period, nine have
KGE (0%9) values considered to be excellent, four are very
good, two are good, and one is acceptable; there is no unsatis-
factory simulation. RU-Reservoir stands out as the most pre-
cise model (mean KGE (Q°?) = 0.87), followed by SAMIR-
Reservoir (0.79), RU-SIDRA (0.76), and SAMIR-SIDRA
(0.68). From these results, two highlights stand out:

i. The models based on Reservoir are more precise in
terms of drainage simulations than those based on
SIDRA. This is particularly true for the AB1 sub-basin.

ii. The models based on RU are more precise in terms of
drainage simulations than those based on SAMIR.

3.1.3 Why are Reservoir-based models more precise?

The differences in the formalism of Reservoir and SIDRA
and the low responsiveness of the AB1 and AB2 hy-
drosystems explain the better performance of the site-
calibrated RU-Reservoir and SAMIR-Reservoir models. In-
deed, SIDRA was designed to simulate flow peaks followed
by relatively steep recession curves. In contrast, Reservoir
does not simulate peaks and generates flow according to a
depletion coefficient w that can be very low. However, the
measured drainage dynamics for AB1 and AB2 are repre-
sentative of hydrosystems showing low responsiveness. This
can be seen in Figs. 4 and 5, where the 40 mm rainfall in
December 2021 generates a peak of less than 1 mmd~! for
both sub-basins, followed by a smooth recession curve with a
discharge that never reaches O during the hydrological year.
In comparison, the data used by Jeantet et al. (2021) from
22 French experimental sites, accounting for nearly 200 hy-
drological years, show winter peaks exceeding 20 mmd~!
in most of the studied years, followed by steep recession
curves where 0 flow is reached in a few weeks. Therefore,
the Reservoir model is favored by the low responsiveness of
the AB1 and AB2 hydrosystems, especially for AB1. The
SIDRA model shows a better precision for AB2 than AB1
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because AB2 is more responsive, with larger amounts of dis-
charge. In addition, the values of the Reservoir depletion co-
efficient w are low at our sites (0.009 on average) compared
to those obtained by Cenobio-Cruz et al. (2023) (0.02 on av-
erage), which again reflects the relatively low responsiveness
of the studied area.

The soil does not explain this low responsiveness since
the mean calibrated values of K and p (0.81md~! and
0.11m3m3, respectively; see Table 6) are consistent with
the order of magnitude found in Jeantet et al. (2021) for a
similar soil type (K from 0.1 to 1.8 md~! and y from 0.05
to 0.08 m> m~3). The explanation seems to lie in the fact that
the surfaces of AB1 and AB2 are not fully equipped with
field drains. The transfer time from the recharge location to
the main drain would be longer on non-equipped plots. The
values of the calibrated half of the drain spacing L support
this assumption, with an average of 37 m (see Table 6), being
a value that could represent an average between low L val-
ues for plots equipped with field drains and high L values for
plots that are not equipped with field drains.

3.1.4 Why are RU-based models more precise?

To understand the better performance of the site-calibrated
RU-Reservoir and RU-SIDRA models in comparison with
SAMIR-Reservoir and SAMIR-SIDRA, respectively, it is
again necessary to look at the differences in formalism be-
tween RU and SAMIR. Indeed, RU, unlike SAMIR, has a
stage during which a reduction factor 8 of 0.33 is applied
to the recharge (Eq. 8; this stage is triggered by the water
level in the soil reservoir). In AB1 and AB2, this stage is
triggered particularly during the irrigation season and results
in the spread of recharge amounts. This benefits RU-SIDRA,
which, owing to the lower recharge events simulated by RU,
generates lower peaks, consistent with the drainage observa-
tions. This process is well illustrated in Fig. 4d, where RU-
SIDRA simulates numerous small peaks during the irrigation
period, allowing better matching of the observations. In con-
trast, in Fig. 4h, SAMIR-SIDRA simulates larger and fewer
peaks.
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AB1 sub-basin - 2021 period (12 months)
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AB1 sub-basin - 2022 period (9 months)
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Figure 4. Daily and cumulated drainage of the AB1 sub-basin simulated by the four site-calibrated models for 2021 (left) and 2022 (right)
periods. Plots at the top show the observed precipitation and the simulated irrigation.

Furthermore, the Sjner values of RU obtained through cal-
ibration are very low (17 mm on average for the 2021 period
and 61 mm for the 2022 period; see Table 5) compared with
those obtained by Jeantet et al. (2021) (138 mm on average).
This is because the RU-based models are not spatialized and
use average irrigation derived from the irrigation simulated
by SAMIR, whether for intensely irrigated corn plots gener-
ating a lot of recharge or for non-irrigated plots generating no
recharge. RU-based models simulate less recharge by simu-
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lating an average plot using average irrigation. To compen-
sate for this, the NSGA-II optimization algorithm finds low
Sinter Values to reduce the reservoir size and, therefore, the
ET, which in turn increases the recharge. This explains the
low Sinter values retrieved over AB1 and AB2.
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AB2 sub-basin - 2021 period (12 months)
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AB2 sub-basin - 2022 period (6 months)
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Figure 5. Same as Fig. 4 but for AB2 sub-basin.

3.1.5 Variability of calibrated parameter values
between the two periods analyzed

We can see from Table 6 that the calibrated values of most pa-
rameters vary between the two periods for a given sub-basin.
These variations indicate a lack of predictive capacity of the
models, at least between the two periods analyzed (using the
parameter values obtained from calibration based on the first
period, the models fail to predict the second period). We be-
lieve this is due to the semi-empirical nature of the models.

https://doi.org/10.5194/hess-28-3695-2024

Indeed, parameter values vary between the two periods to
compensate for the fact that physical processes (e.g., lateral
subsurface flows, root growth, evapotranspiration) are either
too empirically simulated or neglected.

3.1.6 Recommendations and perspectives
Based on the results obtained over AB by the four models

with varying complexity levels, we recommend using RU-
Reservoir when drainage data are available for calibration.

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024
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The simplest model can reproduce the drainage observed
at the AB1 and AB2 outlets fairly well. The RU-Reservoir
model efficiently combines the performance of RU (allowing
a better temporal distribution of recharge than SAMIR) and
Reservoir (offering drainage simulations with relatively low
responsive dynamics), which fits perfectly with the present
study. However, if a study concerns a more responsive hy-
drosystem with larger peaks and steeper recession curves,
we recommend using RU-SIDRA. Indeed, for the AB2 sub-
basin, which is slightly more responsive than AB1, RU-
SIDRA shows, during the 2021 period (Fig. 5c), a precision
comparable to that of RU-Reservoir (Fig. 5a). This leads us
to assume that RU-SIDRA could be more appropriate than
RU-Reservoir for even more responsive hydrosystems.

To support the strength of these recommendations and to
ensure that the models can be ultimately used as decision
support tools with confidence, we believe it is necessary to
improve the robustness of the models by better simulating
certain physical processes (e.g., lateral subsurface flows, root
growth, evapotranspiration). Indeed, the variability of cali-
brated parameter values between the two periods indicates
their limited robustness.

Since RU is not spatialized and has a very simple formal-
ism, the models based on it are more straightforward to run
and require fewer resources than those based on SAMIR.
However, they do not consider the spatial heterogeneity in
irrigation generally encountered in irrigated sub-basins, re-
sulting in calibrated Sinter values that are too low to simulate
enough recharge. Spatialization of the RU-based models with
irrigation data for each plot would lead to higher calibrated
Sinter Values that are more consistent with those proposed in
Jeantet et al. (2021). However, unlike SAMIR, RU cannot
simulate irrigation, and its spatialization would require plot-
scale irrigation data that are rarely available.

In some cases, SAMIR shows a relatively low KGE (QO‘S)
and difficulties reproducing the right amount of drainage (see
Figs. 4d, h, and 5e). Modifying the SAMIR formalism by
taking inspiration from RU and adding a stage related to the
soil water availability in which recharge is limited by a factor
B could help improve the precision of SAMIR-SIDRA and
SAMIR-Reservoir.

3.2 Accuracy evaluation

Figures 6 and 7 show, for each of the 16 model-sub-basin—
period combinations, the drainage simulated by using the
mean values of the default parameters as input (red line) and
the 2000 model runs from randomly generated input param-
eter sets within pre-defined distributions provided by the lit-
erature (gray lines). Table 7 summarizes the KGE (Q%) ob-
tained with the average default parameters. It indicates that
all 16 cases present unsatisfactory KGE (QO‘S) values (below
0.5). Moreover, nine cases show KGE (QO‘S) values lower
than —0.41, the value corresponding to the KGE obtained
with the temporal average of the observed data.

https://doi.org/10.5194/hess-28-3695-2024
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Table 5. KGE (QO'S) obtained with NSGA-II calibration for the AB1 and AB2 sub-basins, the four models, and both study periods. Values
above 0.8 are considered to be excellent, values between 0.7 and 0.8 are considered to be very good, values between 0.6 and 0.7 are considered
to be good, and values between 0.5 and 0.6 are considered to be acceptable.

KGE (Q%7) for AB1 |

KGE (Q%3) for AB2

2021 period 2022 period ‘ 2021 period 2022 period
RU-Reservoir 0.81 0.91 0.82 0.93
RU-SIDRA 0.67 0.75 0.82 0.77
SAMIR-Reservoir 0.81 0.83 0.71 0.82
SAMIR-SIDRA 0.63 0.51 0.80 0.76

Table 6. Parameter values obtained with NSGA-II calibration for the AB1 and AB2 sub-basins, the four models, and both study periods.

Parameters AB1/2021 period  AB1/2022 period  AB2/2021 period = AB2/2022 period
RU-Reservoir Sinter (Mm) 13 76 16 27
w (=) 0.015 0.008 0.014 0.007
RU-SIDRA Sinter (Mm) 10.5 94 28 51
K (md—1) 0.58 1.30 1.08 0.75
w (=) 0.07 0.13 0.14 0.11
L (m) 29 42 38 39
SAMIR-Reservoir  ag,, (-) 1.34 1.23 1.29 1.23
Zy max (mm) 1087 1130 1087 1004
w (=) 0.009 0.004 0.012 0.005
SAMIR-SIDRA ag, ) 1.36 1.19 1.23 1.24
Zy max (mm) 1072 1104 943 1079
K (md—1) 0.55 0.58 0.91 0.70
w (=) 0.10 0.10 0.17 0.09
L (m) 36 38 32 43

RU-Reservoir shows relatively satisfactory KGE (Q°?)
for 2022 (0.22 for AB1 and 0.29 for AB2). However, when
looking at the drainage dynamics and amounts illustrated in
Figs. 6b and 7b, it appears that these performances are due to
the nature of the objective function KGE (Q%”), giving sig-
nificant importance to low flows. SAMIR-Reservoir shows a
relatively good KGE (Q%) for AB2 for 2022 (0.29). Further-
more, the timing and quantities that SAMIR-Reservoir sim-
ulated for AB1 for both periods of 2021 and 2022, as well as
for AB2 for the 2021 period, are more consistent than those
simulated by the other three models.

3.2.1 Accuracy of RU-Reservoir and RU-SIDRA

Figures 6a and ¢ and 7a and ¢ show that the RU-based mod-
els do not simulate any discharge for the 2021 period with
the average default parameters (red lines). This is related to
the fact that, in a context where RU is not spatialized while
irrigation is spatially heterogeneous, the optimal Siper value
to generate sufficient recharge is lower than in the literature
(optimal Sipeer values are shown in Table 5). The Sinier val-
ues taken from the literature for the accuracy evaluation are
then too high to simulate enough recharge. This implies that,

https://doi.org/10.5194/hess-28-3695-2024

without calibration with drainage data, models based on RU
are only effective in contexts where irrigation practices are
homogeneous, e.g., on sites under monoculture. Note that,
for the 2022 period, the RU-based models simulate more
drainage than in 2021 because the irrigation amounts applied
by farmers in 2022 (587 mm between May and October 2022,
on average, over the AB district) are significantly larger than
in 2021 (509 mm between May and October 2021).

3.2.2 Accuracy of SAMIR-SIDRA

Figures 6 and 7 show that, with average default parame-
ter values, the SAMIR-based models simulate the drainage
dynamics with some consistency with the irrigation season
and the rain events for both the 2021 and 2022 periods.
However, SAMIR-SIDRA shows lower performance than
SAMIR-Reservoir. Several factors may explain this result.
First, although they are physical parameters, the values of
the SIDRA parameters K and p found in the literature do
not necessarily correspond to their optimal values for a given
site. Second, SIDRA is more appropriate for more respon-
sive hydrosystems than AB1 and AB2. Finally, the lack of
information regarding half of the drain spacing L in the AB

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024
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Figure 6. Daily drainage of the AB1 sub-basin simulated using average default parameters of the four models separately (red line) and the
drainage value ensemble obtained by running each model 2000 times using randomly generated input parameter sets within pre-defined

distributions (gray lines).

district led us to set it at 6 m, whereas, when calibrated based
on AB1 and AB2, this parameter is, on average, 37 m (av-
erage value considering the plots that are not equipped with
field drains). This lower L value results in a high reactivity
in terms of the simulated drainage.

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024

3.2.3 Accuracy of SAMIR-Reservoir

Figures 6e and f and 7e and f show that the drainage sim-
ulated by SAMIR-Reservoir with average default parameter
values is more consistent with the observed drainage than the
other three models. It also presents less variability within the
ensemble of 2000 simulations. Figure 7e shows that SAMIR-
Reservoir simulates the drainage dynamics and quantities

https://doi.org/10.5194/hess-28-3695-2024
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Figure 7. Same as Fig. 6 but for the AB2 sub-basin.

Table 7. KGE (QO'5 ) values obtained with average default values of model parameters for the AB1 and AB2 sub-basins, the four models,
and the two study periods separately.

KGE (Q%) for ABI |  KGE (Q%%) for AB2
2021 period 2022 period ‘ 2021 period 2022 period
RU-Reservoir —1.04 0.22 —-0.82 0.29
RU-SIDRA —1.04 —-0.77 —1.19 —0.11
SAMIR-Reservoir —0.11 —0.68 0.28 —0.21
SAMIR-SIDRA —1.13 —1.87 —0.32 —0.48
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particularly well for the AB2 sub-basin during the 2021 pe-
riod. SAMIR-Reservoir tends to overestimate the drainage
when the discharge is lower for AB1 during the 2021 and
2022 periods and for AB2 during the 2022 periods. The fact
that SAMIR-Reservoir shows higher accuracy than the more
complex models using SIDRA is an interesting result since
it shows that the descriptive complexity of the models may
not be useful for predictive purposes. One reason for this is
the difficulty of linking SIDRA soil parameters to physically
measurable soil properties.

The SAMIR-Reservoir accuracy varies spatially between
ABI1 and AB2 and temporally between 2021 and 2022. These
differences reflect the semi-empirical nature of the SAMIR
and Reservoir models. Indeed, they can be attributed to the
impact of unrepresented processes (e.g., lateral flows) or the
misrepresentation of ET and recharge processes in unusual
situations (e.g., 2022 drought and heatwaves). SAMIR, espe-
cially, fully neglects the lateral flow. Such subsurface flows
may come from outside sub-basin boundaries and contribute
significantly to the sub-basin discharge measured at the out-
let, depending on the hydrometeorological conditions en-
countered in a given year. Note that representing subsurface
lateral flows would be challenging, especially to estimate
them accurately across system boundaries. Furthermore, this
would require more complex models than those tested in this
study, as well as additional data (e.g., piezometric), which
are currently not available in the study area.

3.2.4 Recommendations and perspectives

Due to the semi-empirical nature of the four models inves-
tigated in this study, it is difficult to reproduce the drainage
discharge with default parameters from the literature. A lim-
itation of RU-based models is their lack of spatialization,
leading to the use of an average irrigation in forcing, while
the irrigation of AB1 and AB2 sub-basins is spatially hetero-
geneous. This results in RU not having enough irrigation to
generate a correct recharge with the Sier values suggested
in the literature (being too high). One way to overcome this
would be to spatialize RU with irrigation data at each plot,
but these data are rarely available.

SAMIR-Reservoir offers a certain consistency with the ob-
served data and could provide an approximate idea of the
drainage dynamics and amounts occurring in an ungauged
irrigated sub-catchment. Figures 6e and f and 7e and f show
that the 2000 simulations obtained with SAMIR-Reservoir
are less dispersed than for the other three models, suggesting
a greater robustness. For decision support, we therefore rec-
ommend the use of SAMIR-Reservoir. However, its accuracy
should be further evaluated based on other sites and could
be improved (i) by modeling lacking physical processes and
(ii) by investigating a link between the depletion coefficient
parameter @ and the soil texture or the characteristics of the
drainage network.

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024
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4 Summary and conclusion

Estimating the drainage in semi-arid irrigation conditions
is essential to prevent soil salinization issues and to assess
the water productivity and the irrigation impact on down-
stream ecosystems. A few studies have used physically based
models to simulate drainage in an irrigated context. How-
ever, these models have many parameters requiring exten-
sive data that are rarely available. In this paper, we thus
assessed the capacity of four parsimonious semi-empirical
models to simulate drainage at the scale of two sub-basins
of the AB district in northeastern Spain. The four mod-
els are built from the combination of two surface models
(RU and SAMIR) and two subsurface models (Reservoir
and SIDRA) with varying complexity levels: RU-Reservoir
(two main parameters), RU-SIDRA (three main parameters),
SAMIR-Reservoir (three main parameters), and SAMIR-
SIDRA (four main parameters). SAMIR is based on the
FAO-56 ET and crop water balance formulations relying on
two main sensitive parameters, while RU is a simplified ver-
sion of the FAO-56, relying on a single sensitive parame-
ter only. SIDRA solves the Boussinesq equation from two
main sensitive parameters, while Reservoir is an empirical
drainage model based only on a single depletion parameter.

The precision of the four models, i.e., their ability to re-
produce observed drainage data with a site-specific calibra-
tion, was first evaluated. An optimal calibration approach
was implemented for each model and each sub-basin using
the multi-objective genetic algorithm NSGA-II. The com-
parison between the drainage simulated by site-specific cali-
brated models and observations indicates that RU-Reservoir
presents a better precision, followed closely by SAMIR-
Reservoir. This is explained by the fact that the Reservoir
model is well suited to representing the low responsiveness
of both studied sub-basins and that the RU model manages
better in artificially spreading out the recharge events during
the irrigation period than the SAMIR model. In addition, the
calibrated parameter values vary between the two periods an-
alyzed for a given sub-basin. This indicates that the models
have limited predictive capacities (robustness). It is therefore
necessary to identify the processes that are poorly simulated
or not simulated at all, such as lateral subsurface flows, root
growth, and evapotranspiration, and to better take them into
account in the models.

Complex models, with many processes being simulated
and many parameters to calibrate, are likely to simulate
drainage more precisely than simple models when calibrated
based on observed data. However, when no data are available
for calibration, the most complex models are also the most
prone to uncertainty (Puy et al., 2022). Moreover, drainage
observations required for site-specific calibration are rarely
available. Therefore, the accuracy of the four models was
also evaluated. By accuracy, we mean the ability of the four
models to reproduce the observed drainage using default pa-
rameter values provided by the literature. The comparison
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between the drainage simulated by default-calibrated models
and observations indicates that SAMIR-Reservoir is the only
model among the four tested that is capable of giving a rough
estimate of the drainage dynamics and amounts from default
parameters.

However, it was found that the accuracy of SAMIR-
Reservoir is quite variable from one sub-basin to another
and from one hydrological year to another. Therefore, cal-
ibration strategies are still needed to reduce uncertainties
in SAMIR-Reservoir drainage estimates in sub-basins with
contrasting conditions. In addition, better constraining the
value of the Reservoir’s depletion coefficient w, especially
by seeking a link with soil texture or with the characteris-
tics of the drainage network, should be investigated in future
studies to improve the accuracy of SAMIR-Reservoir.

Furthermore, our study took place in an irrigation dis-
trict where the water use is known and accurately monitored
through the pumping data. Such irrigation data are rarely
available in practice, and no model can predict drainage ac-
curately based on inaccurate irrigation forcing, regardless of
the model calibration issue. Hence, it is crucial to develop
tools to retrieve the irrigation practices, notably at the inte-
grated spatial scales of sub-basin or irrigation districts. To
this end, many recent works seek to assimilate satellite prod-
ucts of soil moisture or ET in crop water balance models at a
range of scales (e.g., Ouaadi et al., 2021; Massari et al., 2021;
Dari et al., 2023; Olivera-Guerra et al., 2020). The coupling
of such remote sensing approaches with surface and subsur-
face models is likely to improve the predictive capabilities of
drainage in irrigated areas.

Code availability. All Python codes will be provided by the corre-
sponding author upon request. The Python package spotpy (Houska
et al., 2015) used for the NSGA-II multi-objective optimization is
available at https://pypi.python.org/pypi/spotpy/.

Data availability. Drainage data are not publicly available. Daily
precipitation and ET( data were provided by the Meteorological
Service of Catalonia and are available at https://ruralcat.gencat.
cat/agrometeo.estacions (Generalitat de Catalunya, 2024). The 2 m
resolution DEM was provided by the Institute of Cartography of
Catalonia and is available at https://www.icgc.cat/ca/Descarregues/
Elevacions/Model-d-elevacions-del-terreny-de-2x2-m (Institute of
Cartography of Catalonia, 2024). Crop type information was pro-
vided by the Department of Climate Action, Food, and Ru-
ral Agenda of the Region of Catalonia (2024) and is available
at https://agricultura.gencat.cat/ca/ambits/desenvolupament-rural/
sigpac/descarregues. SoilGrids products are available at https:/
maps.isric.org (Poggio et al., 2021).

Author contributions. PL and OM conceptualized the work. PL,
OM, LOG, and PQS provided the methodological guidelines. VA
and JMV collected data. PL, VR, and LOG developed the code. PL

https://doi.org/10.5194/hess-28-3695-2024

3713

drafted the paper. PL, OM, LOG, VR, VA, IMV, AJ, JT, PQS, ABO,
and OCC all revised the paper and contributed to its analyses and
discussions.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors would like to thank the Comunitat
de Regants Canal Algerri Balaguer and the Automatic Hydrological
Information System of the Ebro Basin for providing the irrigation
observation data used in this study. We also want to thank Eric Cha-
vanon (CESBIO), who helped to optimize the SAMIR code.

Financial support. This study was supported by the IDEWA
project (grant no. ANR-19-P026-003) of the Partnership for Re-
search and Innovation in the Mediterranean Area (PRIMA) program
and by the European Horizon 2020 ACCWA project (grant agree-
ment no. 823965) in the context of the Marie Sklodowska-Curie
research and innovation staff exchange (RISE) program.

Review statement. This paper was edited by Gerrit H. de Rooij and
reviewed by two anonymous referees.

References

Abdi, D. E., Owen, J. S.,, Wilson, P. C., Hinz, F. O.,
Cregg, B., and Fernandez, R. T.: Reducing pesticide trans-
port in surface and subsurface irrigation return flow in spe-
cialty crop production, Agr. Water Manage., 256, 107124,
https://doi.org/10.1016/j.agwat.2021.107124, 2021.

Ale, S., Gowda, P. H., Mulla, D. J., Moriasi, D. N., and Youssef,
M. A.: Comparison of the performances of DRAINMOD-NII
and ADAPT models in simulating nitrate losses from sub-
surface drainage systems, Agr. Water Manage., 129, 21-30,
https://doi.org/10.1016/j.agwat.2013.07.008, 2013.

Allen, R., Pereira, L., and Smith, M.: Crop evapotranspiration-
Guidelines for computing crop water requirements-FAO Irri-
gation and drainage paper 56, https://www.fao.org/4/X0490E/
X0490E00.htm (last access: 11 August 2024 1998.

Altés, V., Bellvert, J., Pascual, M., and Villar, J. M.: Un-
derstanding Drainage Dynamics and Irrigation Manage-
ment in a Semi-Arid Mediterranean Basin, Water, 15, 16,
https://doi.org/10.3390/w15010016, 2022.

Amazirh, A., Merlin, O., Er-Raki, S.,
Chehbouni, A.: Implementing a new

Bouras, E., and
texture-based soil

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024


https://pypi.python.org/pypi/spotpy/
https://ruralcat.gencat.cat/agrometeo.estacions
https://ruralcat.gencat.cat/agrometeo.estacions
https://www.icgc.cat/ca/Descarregues/Elevacions/Model-d-elevacions-del-terreny-de-2x2-m
https://www.icgc.cat/ca/Descarregues/Elevacions/Model-d-elevacions-del-terreny-de-2x2-m
https://agricultura.gencat.cat/ca/ambits/desenvolupament-rural/sigpac/descarregues
https://agricultura.gencat.cat/ca/ambits/desenvolupament-rural/sigpac/descarregues
https://maps.isric.org
https://maps.isric.org
https://doi.org/10.1016/j.agwat.2021.107124
https://doi.org/10.1016/j.agwat.2013.07.008
https://www.fao.org/4/X0490E/X0490E00.htm
https://www.fao.org/4/X0490E/X0490E00.htm
https://doi.org/10.3390/w15010016

3714

evaporation reduction coefficient in the FAO dual crop
coefficient method, Agr. Water Manage., 250, 106827,
https://doi.org/10.1016/j.agwat.2021.106827, 2021.

Bekele, E. G. and Nicklow, J. W.: Multi-objective automatic cal-
ibration of SWAT using NSGA-IL, J. Hydrol., 341, 165-176,
https://doi.org/10.1016/j.jhydrol.2007.05.014, 2007.

Blann, K., Anderson, J., Sands, G., and Vondracek, B.:
Effects of Agricultural Drainage on Aquatic Ecosys-
tems: A Review, Crit. Rev. Env. Sci. Tec., 39, 909-1001,
https://doi.org/10.1080/10643380801977966, 2009.

Bouarfa, S. and Zimmer, D.: Water-table shapes and drain flow
rates in shallow drainage systems, J. Hydrol., 235, 264-275,
https://doi.org/10.1016/S0022-1694(00)00280-8, 2000.

Boussinesq, J.: Recherches théoriques sur I’écoulement des nappes
d’eau infiltrées dans le sol et sur le débit des sources, J. Math.
Pure. Appl., 10, 5-78, 1904.

Cavero, J., Barros, R., Sellam, F., Topcu, S., Isidoro, D., Har-
tani, T., Lounis, A., Ibrikci, H., Cetin, M., Williams, J. R., and
Aragiiés, R.: APEX simulation of best irrigation and N manage-
ment strategies for off-site N pollution control in three Mediter-
ranean irrigated watersheds, Agr. Water Manage., 103, 88-99,
https://doi.org/10.1016/j.agwat.2011.10.021, 2012.

Cenobio-Cruz, O., Quintana-Segui, P.,, Barella-Ortiz, A., Za-
baleta, A., Garrote, L., Clavera-Gispert, R., Habets, F., and
Begueria, S.: Improvement of low flows simulation in the
SASER hydrological modeling chain, J. Hydrol. X, 18, 100147,
https://doi.org/10.1016/j.hydroa.2022.100147, 2023.

Chang, X., Wang, S., Gao, Z., Chen, H., and Guan, X.: Sim-
ulation of Water and Salt Dynamics under Different Water-
Saving Degrees Using the SAHY SMOD Model, Water, 13, 1939,
https://doi.org/10.3390/w13141939, 2021.

Chelil, S., Oubanas, H., Henine, H., Gejadze, 1., Malaterre, P. O.,
and Tournebize, J.: Variational data assimilation to improve sub-
surface drainage model parameters, J. Hydrol., 610, 128006,
https://doi.org/10.1016/j.jhydrol.2022.128006, 2022.

Dari, J., Brocca, L., Modanesi, S., Massari, C., Tarpanelli, A.,
Barbetta, S., Quast, R., Vreugdenhil, M., Freeman, V., Barella-
Ortiz, A., Quintana-Segui, P., Bretreger, D., and Volden, E.:
Regional data sets of high-resolution (1 and 6km) irrigation
estimates from space, Earth Syst. Sci. Data, 15, 1555-1575,
https://doi.org/10.5194/essd-15-1555-2023, 2023.

David, C. H., Maidment, D. R., Niu, G.-Y., Yang, Z.-
L., Habets, F., and Eijkhout, V.: River Network Routing
on the NHDPlus Dataset, J. Hydrometeorol., 12, 913-934,
https://doi.org/10.1175/2011JHM1345.1, 2011.

Department of Climate Action, Food, and Rural Agenda of
the Region of Catalonia: Crop type information, Department
of Climate Action, Food, and Rural Agenda of the Region
of Catalonia [data set], https://agricultura.gencat.cat/ca/ambits/
desenvolupament-rural/sigpac/descarregues (last access: 11 Au-
gust 2024), 2024.

De Schepper, G., Therrien, R., Refsgaard, J. C., and Hansen, A.
L.: Simulating coupled surface and subsurface water flow in a
tile-drained agricultural catchment, J. Hydrol., 521, 374-388,
https://doi.org/10.1016/j.jhydrol.2014.12.035, 2015.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and
elitist multiobjective genetic algorithm: NSGA-II, IEEE T. Evo-
Iut. Comput., 6, 182-197, https://doi.org/10.1109/4235.996017,
2002.

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024

P. Laluet et al.: Drainage assessment of irrigation districts

FAO: The state of the world’s land and water resources for
food and agriculture, https://www.fao.org/documents/card/fr/c/
cb7654en (last access: 20 April 2023), 2021.

Feng, G., Zhu, C.,, Wu, Q., Wang, C., Zhang, Z., Mwiya,
R. M., and Zhang, L.: Evaluating the impacts of saline
water irrigation on soil water-salt and summer maize
yield in subsurface drainage condition using coupled HY-
DRUS and EPIC model, Agr. Water Manage., 258, 107175,
https://doi.org/10.1016/j.agwat.2021.107175, 2021.

Garcfa-Garizdbal, I. and Causapé, J.: Influence of irri-
gation water management on the quantity and qual-
ity of irrigation return flows, J. Hydrol., 385, 36-43,
https://doi.org/10.1016/j.jhydrol.2010.02.002, 2010.

Gassman, P, Williams, J., Wang, X., Saleh, A., Osei, E.,
Hauck, L., Izaurralde, R, and Flowers, J.: The agricultural
policy/environmental extender (APEX) model: an emerging
tool for landscape and watershed environmental analyses, T.
ASABE, 53, 711-740, https://elibrary.asabe.org/abstract.asp?
NID=3&AID=30078&CID=t2010&v=53&i=3&T=1 (last ac-
cess: 11 August 2024), 2010.

Generalitat de Catalunya: Meteorological data, Generalitat de
Catalunya [data set], https://ruralcat.gencat.cat/agrometeo.
estacions (last access: 11 August 2024), 2024.

Golmohammadi, G., Rudra, R. P, Parkin, G. W., Kulasek-
era, P. B., Macrae, M., and Goel, P. K.: Assessment of
Impacts of Climate Change on Tile Discharge and Nitro-
gen Yield Using the DRAINMOD Model, Hydrology, 8, 1,
https://doi.org/10.3390/hydrology8010001, 2020.

Gowda, P, Mulla, D., Desmond, E., Ward, A., and Moriasi, D.:
ADAPT: Model use, calibration and validation, T. ASABE, 55,
1345-1352, https://doi.org/10.13031/2013.42246, 2012.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80-91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hengl, T., Jesus, J. M. de, Heuvelink, G. B. M., Gonza-
lez, M. R., Kilibarda, M., Blagoti¢, A., Shangguan, W.,
Wright, M. N., Geng, X., Bauer-Marschallinger, B., Gue-
vara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H.,
Leenaars, J. G. B., Ribeiro, E., Wheeler, 1., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil informa-
tion based on machine learning, PLOS ONE, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.

Henine, H., Jeantet, A., Chaumont, C., Chelil, S., Lauvernet,
C., and Tournebize, J.: Coupling of a subsurface drainage
model with a soil reservoir model to simulate drainage dis-
charge and drain flow start, Agr. Water Manage., 262, 107318,
https://doi.org/10.1016/j.agwat.2021.107318, 2022.

Houska, T., Kraft, P, Chamorro-Chavez, A.,
L.: SPOTting Model Parameters Using a Ready-
Made Python Package, PLOS ONE, 10, e0145180,
https://doi.org/10.1371/journal.pone.0145180, 2015  (code
available at: https://pypi.python.org/pypi/spotpy/, last access:
11 August 2024).

Institute of Cartography of Catalonia: 2m resolution DEM,
Institute of Cartography of Catalonia [data set], https://www.
icgc.cat/es/Datos-y-productos/Bessons-digitals- Elevacions/
Modelo-de-elevaciones-del-terreno-de-2x2-m  (last  access:
11 August 2024), 2024.

and Breuer,

https://doi.org/10.5194/hess-28-3695-2024


https://doi.org/10.1016/j.agwat.2021.106827
https://doi.org/10.1016/j.jhydrol.2007.05.014
https://doi.org/10.1080/10643380801977966
https://doi.org/10.1016/S0022-1694(00)00280-8
https://doi.org/10.1016/j.agwat.2011.10.021
https://doi.org/10.1016/j.hydroa.2022.100147
https://doi.org/10.3390/w13141939
https://doi.org/10.1016/j.jhydrol.2022.128006
https://doi.org/10.5194/essd-15-1555-2023
https://doi.org/10.1175/2011JHM1345.1
https://agricultura.gencat.cat/ca/ambits/desenvolupament-rural/sigpac/descarregues
https://agricultura.gencat.cat/ca/ambits/desenvolupament-rural/sigpac/descarregues
https://doi.org/10.1016/j.jhydrol.2014.12.035
https://doi.org/10.1109/4235.996017
https://www.fao.org/documents/card/fr/c/cb7654en
https://www.fao.org/documents/card/fr/c/cb7654en
https://doi.org/10.1016/j.agwat.2021.107175
https://doi.org/10.1016/j.jhydrol.2010.02.002
https://elibrary.asabe.org/abstract.asp??JID=3&AID=30078&CID=t2010&v=53&i=3&T=1
https://elibrary.asabe.org/abstract.asp??JID=3&AID=30078&CID=t2010&v=53&i=3&T=1
https://ruralcat.gencat.cat/agrometeo.estacions
https://ruralcat.gencat.cat/agrometeo.estacions
https://doi.org/10.3390/hydrology8010001
https://doi.org/10.13031/2013.42246
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1016/j.agwat.2021.107318
https://doi.org/10.1371/journal.pone.0145180
https://pypi.python.org/pypi/spotpy/
https://www.icgc.cat/es/Datos-y-productos/Bessons-digitals-Elevacions/Modelo-de-elevaciones-del-terreno-de-2x2-m
https://www.icgc.cat/es/Datos-y-productos/Bessons-digitals-Elevacions/Modelo-de-elevaciones-del-terreno-de-2x2-m
https://www.icgc.cat/es/Datos-y-productos/Bessons-digitals-Elevacions/Modelo-de-elevaciones-del-terreno-de-2x2-m

P. Laluet et al.: Drainage assessment of irrigation districts

Jahn, R., Blume, H. P., Asio, V., Spaargaren, O., and Schéd, P.: FAO
Guidelines for Soil Description, 4th ed., Food and Agriculture
Organization of the United Nations: Rome, ISBN 92-5-105521-
1, https://www.fao.org/3/a0541e/a0541e.pdf (last access: 11 Au-
gust 2024), 2006.

Jarvis, N. and Larsbo,
Calibration, and Validation, T. ASABE, 55,
https://doi.org/10.13031/2013.42251, 2012.

Jeantet, A., Henine, H., Chaumont, C., Collet, L., Thirel, G.,
and Tournebize, J.: Robustness of a parsimonious subsurface
drainage model at the French national scale, Hydrol. Earth Syst.
Sci., 25, 5447-5471, https://doi.org/10.5194/hess-25-5447-2021,
2021.

Jeantet, A., Thirel, G., Jeliazkov, A., Martin, P., and
Tournebize, J.: Effects of Climate Change on Hydrologi-
cal Indicators of Subsurface Drainage for a Representative
French Drainage Site, Front. Environ. Sci., 10, 899226,
https://doi.org/10.3389/fenvs.2022.899226, 2022.

Jiang, Q., Qi, Z., Lu, C., Tan, C. S., Zhang, T., and Prasher, S. O.:
Evaluating RZ-SHAW model for simulating surface runoff and
subsurface tile drainage under regular and controlled drainage
with subirrigation in southern Ontario, Agr. Water Manage., 237,
106179, https://doi.org/10.1016/j.agwat.2020.106179, 2020.

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: In-
herent benchmark or not? Comparing Nash—Sutcliffe and Kling—
Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 43234331,
https://doi.org/10.5194/hess-23-4323-2019, 2019.

Laluet, P., Olivera-Guerra, L., Rivalland, V., Simonneaux, V.,
Inglada, J., Bellvert, J., Er-raki, S., and Merlin, O.: A sensitivity
analysis of a FAO-56 dual crop coefficient-based model under
various field conditions, Environ. Modell. Softw., 160, 105608,
https://doi.org/10.1016/j.envsoft.2022.105608, 2023.

Larsbo, M., Roulier, S., Stenemo, F., Kasteel, R., and Jarvis, N.:
An Improved Dual-Permeability Model of Water Flow and So-
lute Transport in the Vadose Zone, Vadose Zone J., 4, 398-406,
https://doi.org/10.2136/vzj2004.0137, 2005.

M.: MACRO (v5.2): Model Use,
1413-1423,

Lehmann, P, Merlin, O., Gentine, P., and Or, D.: Soil
Texture Effects on Surface Resistance to Bare-Soil
Evaporation, Geophys. Res. Lett., 45, 10398-10405,

https://doi.org/10.1029/2018GL078803, 2018.

Lesaffre, B. and Zimmer, D.: Subsurface drainage peak
flows in shallow soil, J. Irrig. Drain. E., 114, 387-397,
https://doi.org/10.1061/(ASCE)0733-9437(1988)114:3(387),
1988.

Ma, L., Ahuja, L., Nolan, B. T., Malone, R., Trout, T., and
Qi, Z.: Root zone water quality model (RZWQM?2): Model
use, calibration and validation, T. ASABE, 55, 1425-1446,
https://doi.org/10.13031/2013.42252, 2012.

Massari, C., Modanesi, S., Dari, J., Gruber, A., De Lannoy, G. J. M.,
Girotto, M., Quintana-Segui, P., Le Page, M., Jarlan, L., Zribi,
M., Ouaadi, N., Vreugdenhil, M., Zappa, L., Dorigo, W., Wag-
ner, W., Brombacher, J., Pelgrum, H., Jaquot, P., Freeman, V.,
Volden, E., Fernandez Prieto, D., Tarpanelli, A., Barbetta, S., and
Brocca, L.: A Review of Irrigation Information Retrievals from
Space and Their Utility for Users, Remote Sensing, 13, 4112,
https://doi.org/10.3390/rs13204112, 2021.

Merlin, O., Stefan, V. G., Amazirh, A., Chanzy, A., Ceschia, E.,
Er-Raki, S., Gentine, P, Tallec, T., Ezzahar, J., Bircher, S.,
Beringer, J., and Khabba, S.: Modeling soil evaporation effi-

https://doi.org/10.5194/hess-28-3695-2024

3715

ciency in a range of soil and atmospheric conditions using a
meta-analysis approach, Water Resour. Res., 52, 3663-3684,
https://doi.org/10.1002/2015WR018233, 2016.

Moursi, H., Youssef, M. A., and Chescheir, G. M.: Develop-
ment and application of DRAINMOD model for simulat-
ing crop yield and water conservation benefits of drainage
water recycling, Agr. Water Manageme., 266, 107592,
https://doi.org/10.1016/j.agwat.2022.107592, 2022.

Muma, M., Rousseau, A. N., and Gumiere, S. J.: Modeling of
subsurface agricultural drainage using two hydrological mod-
els with different conceptual approaches as well as dimen-
sions and spatial scales, Can. Water Resour. J., 42, 38-53,
https://doi.org/10.1080/07011784.2016.1231014, 2017.

Negm, L. M., Youssef, M. A., and Jaynes, D. B.: Evaluation of
DRAINMOD-DSSAT simulated effects of controlled drainage
on crop yield, water balance, and water quality for a corn-
soybean cropping system in central lowa, Agr. Water Manage.,
187, 57-68, https://doi.org/10.1016/j.agwat.2017.03.010, 2017.

Nousiainen, R., Warsta, L., Turunen, M., Huitu, H., Koivusalo,
H., and Pesonen, L.: Analyzing subsurface drain network per-
formance in an agricultural monitoring site with a three-
dimensional hydrological model, J. Hydrol., 529, 82-93,
https://doi.org/10.1016/j.jhydrol.2015.07.018, 2015.

Olivera-Guerra, L., Merlin, O., and Er-Raki, S.: Irrigation re-
trieval from Landsat optical/thermal data integrated into a crop
water balance model: A case study over winter wheat fields
in a semi-arid region, Remote Sens. Environ., 239, 111627,
https://doi.org/10.1016/j.rse.2019.111627, 2020.

Olivera-Guerra, L.-E., Laluet, P., Altés, V., Ollivier, C., Pageot, Y.,
Paolini, G., Chavanon, E., Rivalland, V., Boulet, G., Villar, J.-
M., and Merlin, O.: Modeling actual water use under different
irrigation regimes at district scale: Application to the FAO-56
dual crop coefficient method, Agr. Water Manage., 278, 108119,
https://doi.org/10.1016/j.agwat.2022.108119, 2023.

Oosterbaan, R. J.: SAHYSMOD (version 1.7 a), Description of
principles, user manual and case studies, International Insti-
tute for Land Reclamation and Improvement, Wageningen, the
Netherlands, 140, https://waterlog.info/pdf/sahysmod.pdf (last
access: 11 August 2024), 2005.

Ouaadi, N, Jarlan, L., Khabba, S., Ezzahar, J., Le Page, M., and
Merlin, O.: Irrigation Amounts and Timing Retrieval through
Data Assimilation of Surface Soil Moisture into the FAO-56 Ap-
proach in the South Mediterranean Region, Remote Sensing, 13,
2667, https://doi.org/10.3390/rs13142667, 2021.

Pereira, L. S., Paredes, P, Hunsaker, D. J., Lépez-Urrea, R., and
Jovanovic, N.: Updates and advances to the FAO-56 crop wa-
ter requirements method, Agr. Water Manageme., 248, 106697,
https://doi.org/10.1016/j.agwat.2020.106697, 2021.

Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M.,
Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: pro-
ducing soil information for the globe with quantified spatial un-
certainty, SOIL, 7, 217-240, https://doi.org/10.5194/s0il-7-217-
2021, 2021 (data available at: https://maps.isric.org/, last access:
11 August 2024).

Puy, A., Beneventano, P., Levin, S. A., Lo Piano, S., Portaluri,
T., and Saltelli, A.: Models with higher effective dimensions
tend to produce more uncertain estimates, Science Advances, 8,
eabn9450, https://doi.org/10.1126/sciadv.abn9450, 2022.

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024


https://www.fao.org/3/a0541e/a0541e.pdf
https://doi.org/10.13031/2013.42251
https://doi.org/10.5194/hess-25-5447-2021
https://doi.org/10.3389/fenvs.2022.899226
https://doi.org/10.1016/j.agwat.2020.106179
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.1016/j.envsoft.2022.105608
https://doi.org/10.2136/vzj2004.0137
https://doi.org/10.1029/2018GL078803
https://doi.org/10.1061/(ASCE)0733-9437(1988)114:3(387)
https://doi.org/10.13031/2013.42252
https://doi.org/10.3390/rs13204112
https://doi.org/10.1002/2015WR018233
https://doi.org/10.1016/j.agwat.2022.107592
https://doi.org/10.1080/07011784.2016.1231014
https://doi.org/10.1016/j.agwat.2017.03.010
https://doi.org/10.1016/j.jhydrol.2015.07.018
https://doi.org/10.1016/j.rse.2019.111627
https://doi.org/10.1016/j.agwat.2022.108119
https://waterlog.info/pdf/sahysmod.pdf
https://doi.org/10.3390/rs13142667
https://doi.org/10.1016/j.agwat.2020.106697
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.5194/soil-7-217-2021
https://maps.isric.org/
https://doi.org/10.1126/sciadv.abn9450

3716

Quintana-Segui, P., Turco, M., Herrera, S., and Miguez-Macho,
G.: Validation of a new SAFRAN-based gridded precipi-
tation product for Spain and comparisons to Spain02 and
ERA-Interim, Hydrol. Earth Syst. Sci., 21, 2187-2201,
https://doi.org/10.5194/hess-21-2187-2017, 2017.

Romin Dobarco, M., Cousin, I, Le Bas, C., and Mar-
tin, M. P.: Pedotransfer functions for predicting avail-
able water capacity in French soils, their applicability do-
main and associated uncertainty, Geoderma, 336, 81-95,
https://doi.org/10.1016/j.geoderma.2018.08.022, 2019.

Santos, L., Thirel, G., and Perrin, C.: Technical note: Pitfalls in
using log-transformed flows within the KGE criterion, Hydrol.
Earth Syst. Sci., 22, 4583—4591, https://doi.org/10.5194/hess-22-
4583-2018, 2018.

Schultz, B., Zimmer, D., and Vlotman, W. F.: Drainage under in-
creasing and changing requirements, Irrig. Drain., 56, S3-S22,
https://doi.org/10.1002/ird.372, 2007.

Shafii, M. and De Smedt, F.: Multi-objective calibration of
a distributed hydrological model (WetSpa) using a ge-
netic algorithm, Hydrol. Earth Syst. Sci., 13, 2137-2149,
https://doi.org/10.5194/hess-13-2137-2009, 2009.

Simonneaux, V., Lepage, M., Helson, D., Metral, J., Thomas, S.,
Duchemin, B., Cherkaoui, M., Kharrou, H., Berjami, B., and
Chehbouni, A.: Estimation spatialisée de 1’évapotranspiration
des cultures irriguées par télédétection: application a la gestion
de l'irrigation dans la plaine du Haouz (Marrakech, Maroc),
Science et changements planétaires/Sécheresse, 20, 123-130,
https://doi.org/10.1684/sec.2009.0177, 2009.

Singh, A.: Environmental problems of salinization and
poor drainage in irrigated areas: Management through
the mathematical models, J. Clean. Prod., 206, 572-579,
https://doi.org/10.1016/j.jclepro.2018.09.211, 2019.

Skaggs, R. W., Youssef, M., and Chescheir, G. M.: DRAINMOD:
model use, calibration, and validation, T. ASABE, 55, 1509—
1522, https://doi.org/10.13031/2013.42259, 2012.

Tournebize, J., Kao, C., Nikolic, N., and Zimmer, D.: Adaptation
of the STICS model to subsurface drained soils, Agronomie, 24,
305-313, https://doi.org/10.1051/agro:2004030, 2004.

Hydrol. Earth Syst. Sci., 28, 3695-3716, 2024

P. Laluet et al.: Drainage assessment of irrigation districts

Turunen, M., Warsta, L., Paasonen-Kivekds, M., Nurmi-
nen, J., Myllys, M., Alakukku, L., Aijo, H., Puustinen,
M., and Koivusalo, H.: Modeling water balance and ef-
fects of different subsurface drainage methods on wa-
ter outflow components in a clayey agricultural field in
boreal conditions, Agr. Water Manage., 121, 135-148,
https://doi.org/10.1016/j.agwat.2013.01.012, 2013.

van Dam, J. C., Groenendijk, P., Hendriks, R. F. A., and
Kroes, J. G.: Advances of Modeling Water Flow in Vari-
ably Saturated Soils with SWAP, Vadose Zone J., 7, 640-653,
https://doi.org/10.2136/vzj2007.0060, 2008.

Vergnes, J.-P. and Habets, F.: Impact of river water levels on the
simulation of stream—aquifer exchanges over the Upper Rhine al-
luvial aquifer (France/Germany), Hydrogeol. J., 26, 2443-2457,
https://doi.org/10.1007/s10040-018-1788-0, 2018.

Wen, Y., Shang, S., Rahman, K. U., Xia, Y., and Ren, D.:
A semi-distributed drainage model for monthly drainage
water and salinity simulation in a large irrigation dis-
trict in arid region, Agr. Water Manage., 230, 105962,
https://doi.org/10.1016/j.agwat.2019.105962, 2020.

Xian, C., Qi, Z., Tan, C. S., and Zhang, T.-Q.: Mod-
eling hourly subsurface drainage wusing steady-state
and transient methods, J. Hydrol.,, 550, 516-526,
https://doi.org/10.1016/j.jhydrol.2017.05.016, 2017.

Zimmer, D., Tournebize, J., Bouarfa, S., Kao, C., and Lesaffre,
B.: Land drainage functioning and hydrological impacts in ru-
ral catchments: model development and field experiments, C. R.
Géosci., 355, 1-19, https://doi.org/10.5802/crgeos.194, 2023.

https://doi.org/10.5194/hess-28-3695-2024


https://doi.org/10.5194/hess-21-2187-2017
https://doi.org/10.1016/j.geoderma.2018.08.022
https://doi.org/10.5194/hess-22-4583-2018
https://doi.org/10.5194/hess-22-4583-2018
https://doi.org/10.1002/ird.372
https://doi.org/10.5194/hess-13-2137-2009
https://doi.org/10.1684/sec.2009.0177
https://doi.org/10.1016/j.jclepro.2018.09.211
https://doi.org/10.13031/2013.42259
https://doi.org/10.1051/agro:2004030
https://doi.org/10.1016/j.agwat.2013.01.012
https://doi.org/10.2136/vzj2007.0060
https://doi.org/10.1007/s10040-018-1788-0
https://doi.org/10.1016/j.agwat.2019.105962
https://doi.org/10.1016/j.jhydrol.2017.05.016
https://doi.org/10.5802/crgeos.194

	Abstract
	Introduction
	Material and methods
	Study area and data
	Study area
	Description of the data used in this study

	Description of the four models
	SAMIR
	RU
	SIDRA
	Reservoir
	Initialization of the state variables
	Sensitivity of model parameters

	Strategy for evaluating the models' precision
	Calibration strategy
	Parameter distribution for calibration
	Metrics used for calibration and validation

	Strategy for evaluating the models' accuracy
	Complexity of models' calibration

	Results and discussion
	Precision evaluation
	Irrigation simulated by SAMIR
	Which model is more precise?
	Why are Reservoir-based models more precise?
	Why are RU-based models more precise?
	Variability of calibrated parameter values between the two periods analyzed
	Recommendations and perspectives

	Accuracy evaluation
	Accuracy of RU-Reservoir and RU-SIDRA
	Accuracy of SAMIR-SIDRA
	Accuracy of SAMIR-Reservoir
	Recommendations and perspectives


	Summary and conclusion
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

