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Abstract. The evaluation of model performance is an essen-
tial part of hydrological modeling. However, leveraging the
full information that performance criteria provide requires a
deep understanding of their properties. This Technical Note
focuses on a rather counterintuitive aspect of the perhaps
most widely used hydrological metric, the Nash–Sutcliffe ef-
ficiency (NSE). Specifically, we demonstrate that the overall
NSE of a dataset is not bounded by the NSEs of all its par-
titions. We term this phenomenon the “divide and measure
nonconformity”. It follows naturally from the definition of
the NSE, yet because modelers often subdivide datasets in a
non-random way, the resulting behavior can have unintended
consequences in practice. In this note we therefore discuss
the implications of the divide and measure nonconformity,
examine its empirical and theoretical properties, and provide
recommendations for modelers to avoid drawing misleading
conclusions.

1 Introduction

Measuring model performance is a foundational pillar of en-
vironmental modeling. For instance, in order to ensure that
a model is suited to simulate the rainfall–runoff relationship,
we have to test how “good” its predictions are. Hence, over
time, our community has established a set of performance
criteria that cover different aspects of modeling. We use these
criteria to draw conclusions with regard to the evaluation and
the model. Therefore, criteria should exhibit consistent be-

havior that follows our intuitions. However, when we use
these criteria it is important to keep in mind that each one has
specific properties – certain advantages and disadvantages –
that are relevant for interpreting results.

The Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe,
1970) is the perhaps most used metric in hydrology. In this
contribution we show that the NSE exhibits a counterintu-
itive behavior (which, as far as we can tell, is so far undoc-
umented), captured by the following exemplary anecdote. A
hydrologist evaluates a model over a limited period of time
and obtains an NSE value of, say, 0.77 (Fig. 1, blue parti-
tion). Then, a large event occurs and an isolated evaluation
for that specific event results in the slightly worse model per-
formance of, say, 0.75 (Fig. 1, orange partition). One might
then expect that the overall performance (i.e., a model eval-
uation over both the blue and the orange partitions) should
be bound by the values obtained during evaluation over each
partition separately. However, the NSE over the entire time
series in this example is 0.80 (Fig. 1, purple partition), which
is higher than either partition.

We refer to the phenomenon that the overall NSE can be
higher than the NSEs of data subdivisions as the divide and
measure nonconformity (DAMN). A natural question that
follows from here is the following: what is the cause for the
“DAMN behavior” in the example? To give an answer it is
useful to consider the formal definition of the NSE:
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Figure 1. Example of the part–whole relationship within the divide and measure nonconformity. The blue data partition has an NSE of 0.77,
and the orange data partition (that contains the peak event) has an NSE of 0.75. However, the overall NSE is 0.8 (violet partition), which is
larger than both individual partitions.

NSE= 1−

T∑
t=1

(ot − st )
2

T∑
t=1

(ot − o)2
, (1)

where o represents observations, s represents simulations,
t is an index variable (usually assumed as time), T is the
overall number of time steps the NSE is computed over, and
o is the average of the observations.

This is the standard definition of the NSE and it contains
several different interpretations for the source of the DAMN
behavior. One interpretation is that the new event shifted the
mean of the observational data (which the NSE uses as a ref-
erence model for comparisons; Schaefli and Gupta, 2007) so
that the observational mean became a worse estimate for the
first partition (blue) as a portion of the superset (purple). An-
other way to explain this behavior is that the NSE gives very
different results for partitions with different variability. The
variance of the observations in the second (orange) partition
is higher than the variance of observations over the superset
(purple), meaning that the denominator in the NSE calcu-
lation is higher if the numerator does not change. One can
imagine taking the squared error term (the numerator of the
NSE metric) over only the second (orange) partition but us-
ing the observational variance (the denominator of the NSE
metric) from the whole (purple) time period. This would re-
sult in a value higher than the actual NSE value in the second
period (orange).

The reflection from the previous paragraph concludes our
motivational introduction. In what follows we provide a more
in-depth exploration of the DAMN. We structure our exposi-
tion as follows: the remainder of the Introduction discusses
related work (Sect. 1.1). Afterwards, we present our case
study. Therein, we show that the overall NSE can only be

equal to or higher than the NSE values of all possible parti-
tions (Sects. 2 and Sect. 3; Sect. S2 provides a correspond-
ing theoretical treatment showing that this behavior logically
follows from the definition of the NSE). In the last part we
present a short discussion of the implications of our work
(Sect. 4) and our conclusions along with some recommenda-
tions for modelers (Sect. 5).

1.1 Related work

The NSE is so important to hydrological modeling that many
publications exist that (critically) analyze its properties (e.g.,
Schaefli and Gupta, 2007; Mizukami et al., 2019; Clark et al.,
2021; Gauch et al., 2023). Covering the full extent of the sci-
entific discussion is out of scope for our Technical Note. In-
stead, we will mention the few publications that are most rel-
evant: Gupta et al. (2009) use a decomposition of the NSE to
show that the criterion favors models that provide conserva-
tive estimates of extremes. In contrast, our analysis provides
a data-based view of how the NSE behaves when data are di-
vided or combined. There is also a line of work that focuses
on the statistical problems that arise with estimating model
performance in small and limited data settings that we often
encounter in hydrology (e.g., Lamontagne et al., 2020; Clark
et al., 2021). For example, Clark et al. (2021) demonstrate in-
herent uncertainties of estimating the NSE and suggest using
distributions of performance metrics to understand the inher-
ent uncertainties. While their analysis focuses on the difficul-
ties of finding a hypothetical “true NSE value”, we focus on
a specific behavior that concerns the part–whole relationship
of the criterion. We thus view this research avenue as per-
pendicular to ours. Lastly, we point to the studies of Schaefli
and Gupta (2007), Seibert (2001), and more recently Duc and
Sawada (2023), which argue that the NSE is not necessarily
well-suited to compare rivers that exhibit different stream-
flow variances. Indeed, one can view the evaluation of multi-
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Figure 2. Toy example illustrating Simpson’s paradox, showing the
relationship between the time spent studying and grades. Top panel:
the “global” evaluation of the data suggests a negative effect of
preparation time on the grade. Bottom panel: the “local” evaluation
from splitting students by exam class shows a positive correlation
between study time and grades. Evaluators should account for both
patterns – the global and the local – depending on the purpose of
the analysis. Adapted from Wayland (2018).

ple rivers as a form of assessing multiple partitions (the same
logic as in our introductory example from Sect. 1 applies:
whether the mean of a time series is a better or worse estima-
tor depends mainly on the variance of the observations).

1.1.1 Statistical paradoxes

Statisticians have coined many paradoxes. In particular, the
DAMN is closely related to Simpson’s paradox (Simpson,
1951; Wagner, 1982). Simpson’s paradox illustrates how
positive statistical associations can be inverted under (non-
random) data partitioning (Fig. 2). The DAMN can be seen
as a special case of Simpson’s paradox, since it describes the
behavior of model performance metrics when (non-random)
partitions of the data are combined (or, vice versa, when the
data are divided into partitions). Similarly, an amalgamation
paradox (sensu Good and Mittal, 1987) can be seen as a
more general form of Simpson’s paradox. It describes how
statistical associations increase or decrease under different
data combinations. Hence, the DAMN can also be seen as
a special case of an amalgamation paradox, where the mea-
sured performance can always only increase when we com-
bine data, compared to the lowest score found in the data
subsets.

1.1.2 Limited sample size

For model evaluation more data typically help. This also
holds true for situations where the DAMN is a concern, since
the NSEs will behave less erratically when more data are
used (see Clark et al., 2021). However, the DAMN as such
is not a small-sample problem. It will occur whenever we di-
vide the data into situations that have specific properties (e.g.,
when we divide the data along the temperature while hav-
ing a model that has a high predictive performance for low
temperature and low predictive performance for high tem-
peratures). For example, the NSE remains susceptible to the
DAMN independently of how well we are able to estimate
the mean (or variance) of the data. That said, for the special
case of time splits (for a given basin) it is indeed possible to
argue that the occurrence of the DAMN is only due to limited
data: if we had unlimited data for each partition, the inherent
correlation structure (e.g., Shen et al., 2022) and the extreme
value distribution of the streamflow (e.g., Clark et al., 2021)
would not matter and our estimations of the mean (or vari-
ance) would converge to the same value for each partition –
assuming no distribution shifts over time. Yet, sometimes we
are interested in the performance of a model on subsets of the
full available period, and for these cases no amount of overall
available data will save us from the DAMN.

1.1.3 Models with uncertainty predictions

With access to models that provide not only point predictions
but also richer forms of prediction (say, interval or distribu-
tional predictions), modelers get access to more model per-
formance criteria. Many of these criteria are evaluated first
on a per-sample level (e.g., by comparing the distributional
estimation with the observed values) and then aggregated in
a simple additive way (e.g., by taking the sum or the mean).
Metrics based on proper scoring rules – such as the Win-
kler score (Winkler, 1972) for interval or the log-likelihood
for distributional predictions – or metrics derived from infor-
mation theoretical consideration (such as the cross-entropy)
generally follow this scheme and are therefore typically not
susceptible to the DAMN (see Sect. S2).

2 Methods

We conduct two distinct experiments. The first experiment is
purely a synthetic study. It examines how the overall NSE re-
lates to different NSE values of the partitions. The goal is to
empirically show that the overall NSE can be higher (but not
lower) than all of the individual NSE values of a partition.
In the second experiment, we make a comparative analysis
of the NSE and a derived “DAMN-safe” performance crite-
rion. This experiment is based on real-world data. Our goal
is to examine the implications of the DAMN for a particular
example. In the following subsections we explain both exper-
imental parts in more detail.
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2.1 Synthetic study

Our synthetic experiment demonstrates that the overall per-
formance of a model (as measured by the NSE) is in many
cases higher than what all situational or data split perfor-
mances would suggest. The setup is loosely inspired by
Matejka and Fitzmaurice (2017): all data for the experiment
derive from a single gauging station (namely, Priest Brook
Near Winchendon –USGS ID no. 01162500 – from Addor
et al., 2017).

To generate simulations we (1) copied the streamflow ob-
servation data, (2) added noise to those observation data,
(3) clipped any resulting negative values to zero (to avoid
streamflow that is trivially implausible), and (4) further opti-
mized the resulting streamflow values themselves to reach a
certain prescribed NSE by using gradient descent. That is,
we modify the data points of the simulation (which in it-
self is just the observation with some noise) along the gra-
dient given our loss function – and until the warranted per-
formance (say, an NSE of 0.7) is reached. This allows us to
build simulations that have defined NSE values for the data
partitions. Specifically, we partition the observed streamflow
into two parts: (1) “low flows” that fall below a threshold and
(2) “high flows” that are at or above said threshold. We set the
threshold using a desired fraction of data being designated
as low or high flows. For example, w = 0.2 means the 20 %
smallest streamflow values are contained in the low-flow par-
tition. We will refer to the NSE of the low flows as NSElow
and the NSE of the high flows as NSEhigh. We fix low-flow
performance to NSElow = 0.5 using the procedure outlined
above (for runs with other fixed parameters Sect. S3 provides
similar results for NSElow = 0.25 and NSElow = 0.75). From
a technical standpoint it is arbitrary for our experiment which
of the two partitions has a fixed performance. However, we
chose the low-flow partition since it is perhaps easier to think
about what would happen if we have more or fewer high-
flow data. We vary both w and NSEhigh between 0.1 and 0.9.
For each point of the resulting grid we have three NSE val-
ues: (1) NSElow, (2) NSEhigh, and (3) the overall NSEall. We
measure the practical effect of the DAMN using the signed
distance of NSEall to the nearest edge of the NSEs of the
partitions (either NSElow or NSEhigh):

Is =

{
NSEall−NSEmin if NSEall ≤ NSEmin
0 if NSEmin < NSEall < NSEmax
NSEall−NSEmax if NSEall ≥ NSEmax

, (2)

where NSEmin =min(NSElow,NSEhigh) and NSEmax =

max(NSElow,NSEhigh) as shown in Fig. 3.

2.2 Comparative analysis

Our comparative analysis shows the influence of the DAMN
by juxtaposing the behavior of the NSE with a derived perfor-
mance criterion. This criterion is probably the simplest modi-
fication of the NSE that renders it DAMN-safe. However, our
intention with the new criterion is not to propose a new met-

Figure 3. Exemplary depiction of the experimental setup. (a) For
each model evaluation the data are split into two parts by a runoff
threshold and three NSEs are computed: NSElow for data below the
threshold, NSEhigh for data above the threshold, and NSEall for all
data. (b) Then, the interval score is computed as the signed distance
of NSEall from the interval between the NSElow and the NSEhigh.

ric for hydrologists (even if it could be used as such). Rather,
we want to introduce the criterion as a tool for thought to
reason about the DAMN.

The most straightforward NSE modification we found is
to use a fixed reference partition for the denominator of the
NSE. That is, instead of re-estimating the observational mean
within the NSE for each (new) partition, we first choose a
reference split and then compute the estimated variance from
it (we also explored other more complex modifications but
found them to be less insightful; Sect. S1 in the Supplement
provides an example of such an exploration). Given the sim-
ple nature of the modification, we refer to the “new” perfor-
mance criterion as low-effort NSE (LENSE):

LENSE= 1−

1
T

T∑
t=1

(ot − st )
2

1
TR

TR∑
t=1

(ot − oR)2
, (3)

where t is the sample index (which can but does not neces-
sarily have to be a time index), oR is the mean of the obser-
vations from a to-be-chosen reference partition, T represents
the total number of time steps in the evaluated partition, and
TR represents the number of time steps in the reference par-
tition. In a certain sense, both T and TR are a result of the
modification, since the different partitions for computing the
errors and the observational variance make it so that the frac-
tions are not necessarily reduced.

The LENSE follows a straightforward design principle:
we use a reference set that is independent of the partition
to transform the right-hand side of NSE into a special case
of a weighted mean squared error. This principle makes the
LENSE DAMN-safe because the denominator re-normalizes
the squared error for each partition using the same constant
(Sect. S2.3 and S2.4 provide the corresponding formal proofs
for the weighted mean squared error and the LENSE, respec-
tively). In practice, the only advantage of the LENSE over
using the MSE for expressing the model performance would
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be that the LENSE provides a similar range of interpretation
as the NSE.

The choice of the reference partition largely determines
its interpretation. If, for example, the mean is supposed to
be an estimate of the (true) mean of an underlying distribu-
tion (like, for example, in Schaefli and Gupta, 2007), then
we should use as many data as possible to estimate it. In this
case, it would be logical to use all data for the estimation –
i.e., training (in hydrology we refer to this partition as the cal-
ibration set), validation (in hydrology this partition typically
does not exist or is subsumed into the calibration set), and
test (in hydrology we refer to this partition as the validation
set). If, on the other hand, we interpret the mean as a base-
line model (like, for example, in Knoben et al., 2019), then it
makes sense to also use just the data that were used for model
selection for the estimation of the mean. One could also use
the test split as a reference and recreate the NSE (the crucial
difference is that it is not allowed to update the reference split
if new data arrive). Since the most convenient choice for such
a reference split is the training (calibration) split, we propose
using it for the canonical application of LENSE (also, this
split remains unchanged when new data arrive for the model
to be used in the future).

The LENSE is robust against the DAMN by design. Thus,
measuring its interval score with our synthetic setup will
yield zero values everywhere. We did indeed try this as a
check but do not show these results explicitly since very lit-
tle information is provided (we nevertheless encourage inter-
ested readers to explore this by using the code we provide).
However, it is still insightful to compare how the LENSE
and the NSE behave. Specifically, we explore two aspects. To
that end we use the model and real-world data from Kratzert
et al. (2019). First, we show how the performance criteria
compare when we evaluate them for the 531 basins from
Kratzert et al. (2019). Here, we evaluate NSE as in Kratzert
et al. (2019) and use the training period as the reference parti-
tion for LENSE. Second, we inspect the overall performance
according to the NSE and LENSE related to the correspond-
ing performances of different hydrological years for an arid
catchment. We specifically chose an arid catchment here,
since the mean of the runoff varies there more considerably
between individual hydrological years. As before, we use the
training period as the reference partition for the LENSE.

For both parts of the comparative analysis we use the en-
semble Long Short-Term Memory (LSTM) network from
Kratzert et al. (2019) as hydrological models, but note that
the model choice is not of importance (for comparison,
Sect. S3.1 provides some example cumulative distribution
functions for other models).

3 Results

3.1 Synthetic study

Based on our synthetic experiment we find that NSEall can
be outside of the range of the NSEs spanned by the partitions
(Fig. 4). Furthermore, the absence of negative interval scores
indicates that the lowest-valued NSE of all partitions is a
lower bound for NSEall, which we confirm with theoretical
considerations (Sect. S2). Similarly, the existence of positive
interval scores indicates that there is no trivial upper bound
for the NSEall below its maximum of 1. We can also see that
the interval scores tend to be highest when the NSEs of the
partitions are equal – that is, NSEhigh = NSElow = 0.5. Intu-
itively from a statistical perspective, this makes sense: this
is where the interval is the thinnest – and due to the lower
bound, the NSEall can only be above or exactly equal. In-
terestingly though, the highest interval score is only reached
with the largest lower partition we considered (90 % of the
data). Here, we not only have the thin interval, but this is
also the situation where we would expect the mean of the
high-flow data to be the furthest from the mean of the low
flows (since the mean of the low flows does not change much
with the additional high flows, while the highest high flows
have a substantially higher mean than the lower ones). Thus,
when we introduce the high-flow data into the NSEall com-
putation it yields the largest difference.

Further, if we look at the overall pattern of interval scores
in Fig. 4, we can see that even if the overall performance is
relatively good (say, an NSEhigh of 0.7) the interval scores
(and hence the distances to a situational NSE value) can be-
come quite large. As a matter of fact, in terms of situational
performances the interval score is only some sort of best-case
scenario, since it only measures the distance to the better of
the score of the partitions.

3.2 Comparative analysis: NSE and LENSE

The comparison of the NSE and the LENSE for the LSTM
ensemble and the 531 basins from Kratzert et al. (2019)
shows that the LENSE tends to yield lower values than the
NSE, except for the best-performing basins (Fig. 5). There,
the LENSE values are slightly higher than the NSE values.
However, since the performance on these basins is already
very close to the theoretical best value (which is 1 for both
criteria) the differences there are tiny.

For the yearly evaluation on an individual basin the NSE
can vary substantially (Fig. 6). We note first that the LENSE
exhibits fewer variations over the years than the NSE. Fur-
ther, we can see that the overall LENSE is nicely enclosed
within the values from the individual years – while the over-
all NSE is not. For 4 years the NSE values fall below 0.0,
and for 2 of the 4 they are below −0.5. These values are of
particular interest because the overall NSE is above 0.7. A
naive interpretation would suggest that the model degrades
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Figure 4. Interval scores Is as defined by Eq. (2). NSElow is set to
the value 0.5. NSEhigh (y axis) and the fraction w of data in the
lower partition (x axis) are varied between 0.1 and 0.9.

Figure 5. The plot above shows the empirical cumulative distribu-
tion functions of the NSE (dotted black line) and the LENSE (green
line) for the 531 basins used in Kratzert et al. (2019) and the cor-
responding LSTM ensemble runs. The scatter plot below shows the
non-cumulative relation between the NSE and the LENSE.

Figure 6. Comparison of NSE and LENSE in an arid basin. The col-
ored dots show the performance for different hydrological years in
the validation period (the color indicates the magnitude of the per-
formance difference); the crosses show the respective performances
for the entire validation period. We truncated the values to −0.5 to
show the pattern more clearly. The relatively large downward vari-
ability of NSE values exists because for some years the mean be-
comes an extremely good estimate for the daily runoff within cer-
tain periods. The LENSE, on the other hand, does not recompute the
mean in the denominator for each validation year and has a stable
estimation of the observational variance; see Eq. (3). It is therefore
more stable and less susceptible to such outlier years.

in performance in these years. However, a comparison to the
respective LENSE values indicates that what we see here is
largely an effect of the DAMN.

Another interesting phenomenon is that the NSE values
from 3 hydrological years are higher than the corresponding
LENSE values. The worst LENSE values (−0.5) correspond
to an NSE that is above 0.0, which is far away from the sup-
posed worst performance in terms of the NSE. This suggests
that the year had a relatively high streamflow variance, with
a relatively bad simulation.

To conclude, we re-emphasize that the purpose of the
LENSE is not to propose a new metric or to replace the NSE.
The performance values from LENSE should not be consid-
ered “more true” than those of the NSE. Rather, they show
different aspects of the model behavior that are in the data
but are easily overlooked if one only focuses on the NSE
alone.

4 Discussion

Some specific examples where modelers should consider
DAMN-like phenomena are as follows.

1. Approaches that rely on sliding windows (e.g., Wagener
et al., 2003). Here, one cannot derive the overall perfor-
mance from the performances over different windows
of the data, and NSE values calculated over sliding win-
dows might appear smaller than the ones calculated over
longer time periods of the same data.
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2. Aggregating or comparing separate evaluation of differ-
ent rivers – for example, as was done by Kratzert et al.
(2019). For basins with low runoff variability, the mean
is a better estimator than for basins with high variability.
Our analysis suggest that in this case the relative perfor-
mance does not necessarily suggest model failure, but
could also be related to the DAMN, since the mean is
a very strong baseline for the arid catchment (which in-
duces erratic NSE behavior).

3. Differential split settings that divide the hydrograph into
low flows and high flows (e.g., Klemeš, 1986). In this
case, the low-flow NSE can be prone to having low val-
ues because the mean is a good estimator. Yet, high-flow
NSEs will often suffer from larger overall errors.

These examples represent settings where the DAMN ap-
pears very prominently. However, our findings generalize to
any study that draws conclusions about model performance
while using “DAMN-susceptible” metrics over different pe-
riods. For example, the Kling–Gupta efficiency (KGE; Gupta
et al., 2009) exhibits similar empirical behavior to the NSE
(we do not show this explicitly in this note but encourage
readers to explore it, e.g., by using our code, which provides
an implementation of the KGE for testing). That said, sim-
ple average-based metrics such as MSE are not subject to the
DAMN (see Sect S2.2).

Random partitions and data splitting

Data splitting is common practice in machine learning and
data analysis. To our knowledge, the oldest records of data
splitting go back in the early 20th century (Larson, 1931;
Highleyman, 1962; Stone, 1974; Vapnik, 1991). These clas-
sical cases and the approaches that derived from them use
random splitting. Although the DAMN can also occur with
random subsets of the data (our theory applies also there;
Sect. S2) it is less of a concern there, since for independent
sampling the overall NSE value should not deviate too much
from the NSE values of the partitions. The intuition here fol-
lows the one given in our exemplary introduction (Sect. 1):
according to expectation, the means of two random partitions
provide the same reference models. In hydrology, two com-
mon situational (i.e., non-random) data splits exist: (1) the
spatial data split between catchments (e.g., Kratzert et al.,
2019; Mai et al., 2022) and (2) the temporal data split for
validating (for a recent discussion see Shen et al., 2022).
Regarding (1), Feng et al. (2023) recently proposed an ad
hoc regional data partitioning for model evaluation. A per-
haps more principled form of this technique can be found in
the data-based splitting that has been put forward indepen-
dently by Mayr et al. (2018) and Sweet et al. (2023). On their
own terms, both propose partitioning the data based on fea-
ture clusters. Either way, this type of informed (non-random)
splitting is susceptible to the DAMN. Regarding (2), Kle-
meš (1986) introduced a style of twofold (cross-)validation

to hydrology. Inter alia, he proposed the so-called differen-
tial split sample test. It is a type of non-random split that
subdivides a hydrograph into parts that reflect specific hy-
drological processes – say, low-flow and high-flow periods.
This type of splitting is common in hydrology, but since it is
also an informed (non-random) splitting it is indeed exposed
to the DAMN. Here, we do not want to say that the commu-
nity should refrain from differential split sampling. On the
contrary, we believe that it should remain a part of the hy-
drological model building toolbox. However, when using it
modelers should be aware of the DAMN and how it limits
potential conclusions for model comparisons.

Likewise, we do not argue against using the NSE for
model comparisons. Even if there are limits to what the
metric can express, we assert that NSE remains a well-
established assessment tool with many desired properties (in
this context we would also like to refer readers to Schaefli
and Gupta, 2007, for a more specific discussion of the limits
of the NSE for comparing model performance across differ-
ent basins). Hence, our goal is to shine light on the specific
behavior of metrics that are not DAMN-safe (the NSE being
the most prominent example thereof). That is, the DAMN can
make comparisons more difficult when data are split into par-
titions with widely different statistical properties (say, rivers
or periods with very low variance and rivers or periods with
very high variance in streamflow).

5 Conclusions

This contribution examines a part–whole relation that we
term “divide and measure nonconformity” (DAMN). Specif-
ically, the DAMN describes the phenomenon that the NSE of
all the data can be higher than all the NSEs of subsets that to-
gether comprise the full dataset. That is, the global NSE can
show counterintuitive behavior by not being bounded by the
NSE values in all its subsets. From a statistical point of view,
the DAMN can therefore be seen as a sort of amalgamation
paradox (Good and Mittal, 1987), and despite its counterin-
tuitive appearance, the behavior can be well-explained. Our
goal with this Technical Note is not to eliminate the DAMN
but rather to make modelers more aware of it, explain how it
manifests itself, and provide tools to check and think about
it. If we study model behavior in specific situations, we need
to be aware of the DAMN.

Although our treatment revolves almost exclusively
around NSE, many performance criteria are “DAMN-
susceptible”. As demonstrated by our introduction of LENSE
(a pseudo-performance criterion that serves as a thinking tool
in our discussion), the strength of the effect depends mainly
on the design of a given criterion. If a performance criterion
is prone to the DAMN it implies that we cannot infer the
global performance from looking at local performances.

With regard to follow-up work, we believe that our ex-
perimental setup suggests an interesting avenue for inquiry,
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which we shall call “NSE kinetics” – that is, to study how
easy it is to improve or worsen the NSE by changing the ob-
servations or simulations with a given budget or constraints.
For example, it might be easy to improve (worsen) the per-
formance for basins where a model is weak by randomly
improving some time points (by just adding noise). How-
ever, if one wants to improve (worsen) the simulation for
a basin with pronounced seasonality and large amounts of
high-quality data it might require a larger budget and changes
to specific events. Studies like that might have potential to
render the behavior of the NSE clearer. They might even
allow the community to derive (quantitative) comparisons
for the “flexibility/response” of different metrics. Scientists
have studied the sensitivity and uncertainty of the NSE (e.g.,
Wright et al., 2015; Clark et al., 2021, respectively). Yet, as
far as we know, no one has yet examined a principled ap-
proach that is able to quantify the ease of change with respect
to a given direction.

We conclude with the observation that the existence of
phenomena like the DAMN underlines the importance of
evaluating models with a range of different metrics – prefer-
ably tailored to the specific application at hand (Gauch et al.,
2023). On top of that, we would like to push the community
(and ourselves) to also always evaluate models with regard
to the predictive uncertainty when doing model comparisons
and benchmarking exercises (e.g., Nearing et al., 2016, 2018;
Mai et al., 2022; Beven, 2023). Typically, this will result in
an additional workload for modelers, since it often means
that a method for providing uncertainty estimates needs to
be built (on top of a hydrological model that gives point pre-
dictions). However, existing uncertainty performance criteria
(e.g., the log-likelihood, the Winkler score, or the continuous
ranked probability score) not only provide additional infor-
mation, but are also largely robust against the DAMN (this
is because they are usually computed for each data point and
then aggregated by taking a sum or an average). Further, un-
certainty plays an important role for hydrological predictions
and should thus be included in our benchmarking efforts.

Code and data availability. We will make the code and data for the
experiments and data from all produced results available online.
The code for the experiments can be found at https://github.com/
danklotz/a-damn-paper/tree/main (Klotz, 2024). The hydrological
simulations are based on the data from Kratzert et al. (2019) and on
the open-source Python package NeuralHydrology (Kratzert et al.,
2022). The streamflow that we used is from the publicly available
CAMELS dataset by Newman et al. (2015) and Addor et al. (2017).
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