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S1 Exploring a situation-equitable Nash–Sutcliffe
Efficiency

A modified NSE could also evaluate each sample differ-
ently and evaluate situations that are easy to predict more
strictly and situations that are difficult to predict less strictly.5

We refer such a modification the Situation-Equitable NSE
(SENSE). A specific implementation that uses the design
principles from Sect. 2.2 of the original manuscript is

SENSE = 1−
∑T

t=1
1

(ot−σ̂t)2
(ot − st)

2∑T
t=1(ot − σ̂t)2

. (S1)

Here, σ̂2
t is an estimation for the observational variance at10

time t, which we estimate by using a nearest neighbor ap-
proach that draws from a reference set:

σ̂t =
1

K

K∑
k=1

kNN(ct,CR,k), (S2)

where ct = [ot−9,ot−8 . . . ,ot−1,ot] is a situation vec-
tor containing the current observation and additional con-15

text in the form of preceding runoff values of the last
10 day, bmCR = {ck,ck−1, . . . ,c0} is a reference stor-
age, and kNN yields the last observation ok within ĉk =
[ok−9,ok−8, . . . ,ok−1,ok], which in itself is the k-th nearest
neighbor of ct within bmCR. That is, we try to weight each20

given timestep t by finding an approximation to the condi-
tional variance of said timestep by taking the runoff obser-
vations in ct and using the kNN regressor to find the k most
similar runoff vectors. From these we then derive a situa-
tional estimation of the variance. Thus, the neighborhood of25

the kNN algorithm serves as the locality and its mean is our
estimator for the expectation.

The SENSE would introduce two hyper-parameters: k and
C and one could think about extend it to allowing arbitrary
measures of similarity. Our analysis of the relative impor-30

tance of choice k shows that SENSE that the parameter is
not particularly sensitive (Fig. S1). If one wants to develop
more sophisticated extensions one could use more nuanced
similarity measures and include explanatory variables (e.g.,
meteorological forcings).35
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Figure S1. Approximation behavior of the SENSE, given the
LSTM ensemble from Kratzert et al. (2019). The test data for a
basin comprises 10 years of daily data (i.e., 3650 data points). Thus,
800 neighbors consider ca. 20% of the data for each time step.
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S2 Connections between global and local performance
criteria

In the following, we consider a dataset DT = {(ot,st) | t ∈
1,2, . . . ,T} with tuples of observations ot ∈ Rm and simu-
lation values st ∈ Rm that correspond to the index t (which5

can, but not necessarily has to, correspond to a time step). In
general ot and st are vectors, but, for the sake of simplicity,
in the following we will only discuss the special case where
they are scalars. This choice does not result in any loss of
generality.10

Definition S2.1. A partitioning of DT , with the number
of partitions denoted by Z, is a sequence of disjoint sets
A1,A2, ... so that their union yields DT . That is:

⋃Z
z=1Az =

DT .

A specific partition Az of DT is hence given by15

Az = {(ot,st) | t ∈ 1,2, . . . ,T and 1(ot,st)∈Az
= 1}, where

1(ot,st)∈Az
is an indicator function that returns 1 if the crite-

ria for the desired partition are met by the datapoint at t and
0 otherwise. We will always assume that the partitions are
chosen so that a given performance criterion can be reason-20

ably evaluated. To give an example: for the NSE this would
mean that no partition with less than two data-points can be
created (since then the sample variance of the observations
would be undefined), and it is not allowed to choose the par-
titions so that all observation values are the same (again,25

because then the sample variance of the observation would
be zero). For any practical application this is not a strong
assumption (counterexamples do nevertheless exist, even in
practise. For example, dry seasons in ephemeral streams and
frozen streams could be special cases where partitioning can30

easily yield partitions with zero variance).
The indicator function for constructing Az trivially implies

Az ⊆DT and leads to a convenience index function IAZ
that

we will use to sum over the properties of a partition:

IAZ
(x) =

T∑
t=1

1(ot,st)∈Az
∗xt, (S3)35

where x here is a placeholder variable. We also define the
model error as et = ot − st, and will, for convenience, omit
the function arguments and brackets where it is clear from
the context. For example:

1. IAZ
(y) =

∑T
t=1 1(ot,st)∈Az

∗ yt.40

2. IAZ
(1) =

∑T
t=1 1(ot,st)∈Az

is the number of all ele-
ments in Az (that is, the size of the set Az).

3. IAZ
et := IAZ

(et) =
∑T

t=1 1(ot,st)∈Az
∗ et is the sum of

the errors (i.e., the bias) from the elements in Az .

S2.1 Generality45

Without loss of generality we will prove all the below proper-
ties with two partitions for the sake of simplicity. The results

generalize to higher numbers of partitions by recursively ap-
plying the same logic.

To illustrate this, let L denote a to-be-minimized perfor- 50

mance criterion (where we use LAz
to express that we eval-

uate over the data in Az), i.e. a loss, which obeys

LAi ≤ LAj =⇒ LDT
≤ LAj , (S4)

where Ai and Aj are two partitions of the dataset DT . In
words, the assumption from eq. S4 enforces that if the loss 55

for one partition is smaller than the loss for a second one,
then this implies that the loss for the overall data will also be
smaller for the second partition.

Proposition S2.2. This inequality also holds if we divide DT

into three partitions Aa,Ab,Ac. That is: 60

LAa
≤ LAb

≤ LAc
=⇒ LDT

≤ LAc
(S5)

also holds.

Proof. To prove this, we use the fact that, by the assumption
from eq. S4, if LAa

≤ LAb
then this implies that LAa∪Ab

≤
LAb

. Formally, 65

LAa
≤ LAb

=⇒ LAa∪Ab
≤ LAb

,

and therefore

LAa ≤ LAb
≤ LAc =⇒ LAa∪Ab

≤ LAb
≤ LAc .

Further,

LAa∪Ab
≤ LAc =⇒ LAa∪Ab∪Ac ≤ LAc 70

also holds by the assumption from eq. S4, so we can conclude
that Eq. (S5) is true.

This nested form of evaluation can be repeated no matter
how many partitions there are and it can also be repeated for
different implications. Therefore, we can analyze the behav- 75

ior of two partitions without loss of generality.

S2.2 Mean squared error

The sample MSE for a partition AX ∈DT is defined as:

MSE(Ax) =
IAX

e2t
IAX

. (S6)

Proposition S2.3. Given two partitions, Ai ⊂DT and Aj ⊂ 80

DT , with MSEAi
≤MSEAj

, the MSEDT
is bound by

MSEAi
≤MSEDT

≤MSEAj
.

Proof. Expanding and rearranging MSEAi ≤MSEAj gives:

IAJ
∗ IAI

e2t ≤ IAI
∗ IAJ

e2t .
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If we expand on both sides by IAI
∗ IAI

e2t , we get:

IAJ
∗ IAI

e2t + IAI
∗ IAI

e2t ≤ IAI
∗ IAJ

e2t + IAI
∗ IAI

e2t ,

(IAJ
+ IAI

) ∗ IAI
e2t ≤ IAI

∗ IDT
e2t ,

IAI
e2t

IAI

≤ IDT
e2t

IDT

,

MSEAi
≤MSEDT

.5

Hence, the smaller MSE of the two partitions is also smaller
than the MSE of the whole dataset. Inversely, the larger of
the MSEs of the two partitions is larger than the MSE of
the whole dataset — which can be shown analogously to the
provided derivation.10

Thus, we can summarize the results of our proof with fol-
lowing relationship:

MSEAi
≤MSEDT

≤MSEAj
.

S2.3 Weighted mean squared error

The sample weighted mean squared error WMSE for a par-15

tition AX ∈DT is defined as:

WMSE(Ax) =
IAX

wt ∗ e2t
IAX

wt
, (S7)

where wt are the weights given to each individual sample.

Proof. The proof is analogous to proof S2.2. Despite the re-
dundancy we show it in the following for the sake of com-20

pleteness.
Expanding and rearranging WMSEAi

≤WMSEAj
gives:

IAJ
wt ∗ IAI

wte
2
t ≤ IAI

wt ∗ IAJ
wte

2
t .

If we expand on both sides by IAI
wt ∗ IAI

wte
2
t , we get:

IAJ
wt ∗ IAI

wte
2
t + IAI

wt ∗ IAI
wte

2
t ≤ IAI

wt ∗ IAJ
wte

2
t + IAI

wt ∗ IAI
wte

2
t ,25

(IAJ
wt + IAI

wt) ∗ IAI
wte

2
t ≤ IAI

wt ∗ IDT
wte

2
t ,

IAI
wte

2
t

IAI
wt

≤ IDT
wte

2
t

IDT
wt

,

WMSEAi
≤WMSEDT

.

Hence, the smaller WMSE of the two partitions is also
smaller than the WMSE of the whole dataset. Inversely, the30

larger of the WMSEs of the two partitions is larger than the
WMSE of the whole dataset — which can be shown analo-
gously to the provided derivation.

Proposition S2.4. Given two partitions, Ai ⊂DT and Aj ⊂
DT , with WMSEAi ≤WMSEAj , the WMSEDT

is bound35

by WMSEAi
≤WMSEDT

≤WMSEAj
.

S2.4 Low Effort Nash-Sutcliffe Efficiency

For a partition Ax ∈DT the LENSE is defined as:

LENSEAX
= 1−

1
IAX

IAX
e2t

1
IXR

IXRe
2
t

, (S8)

where XR defines the data of the reference partition. 40

Proposition S2.5. Given two partitions, Ai ⊂DT and Aj ⊂
DT , with LENSEAi

≤ LENSEAj
, the LENSEDT

is bound
by LENSEAi

≤ LENSEDT
≤ LENSEAj

.

Proof. We rewriting Eq. (S8) in terms of MSE as

LENSEAX
= 1− MSEAX

1
IXR

IXRe
2
t

. (S9) 45

By inserting Eq. (S9) into the inequality from proposi-
tion S2.5 and rearranging we get:

MSEAi

1
IXR

IXRe
2
t

≥ MSEDT

1
IXR

IXRe
2
t

≥
MSEAj

1
IXR

IXRe
2
t

. (S10)

Here, the denominator is a constant (we can also relate it to
the WMSE by observering that wt = w = 1

1
IXR

IXRe
2
t

). Thus, 50

we can reduce the equation to obtain:

MSEAi ≥MSEDT
≥MSEAj , (S11)

which we know to be true from proof S2.2.

S2.5 Situation-equitable Nash–Sutcliffe Efficiency

The SENSE for a partition Ax ∈DT is defined as: 55

SENSEAX
= 1−

IAX

1
(ot−µ̂t)2

(ot − st)
2

IAX

1
(ot−µ̂t)2

, (S12)

where µ̂t is an estimation for the conditional expectation of
the observations of at timestep t. Appendix S1 discusses a
potential approach for obtaining such an estimation.

Proposition S2.6. Given two partitions, Ai ⊂DT and Aj ⊂ 60

DT , with SENSEAi
≤ SENSEAj

, the SENSEDT
is bound

by SENSEAi
≤ SENSEDT

≤ SENSEAj
.

Proof. It is easy to see that the right hand side of Eq. (S12)
is a special case of the WMSE with w = 1 . Thus, the proof
is analogous to proof S2.3. 65

S2.6 Nash–Sutcliffe Efficiency

The NSE for a partition AX ∈DT is defined as:

NSEAX
=

IAX
e2t

ōX
. (S13)
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Proposition S2.7. Given two partitions, Ai ⊂DT and Aj ⊂
DT , with NSEAj

≥NSEAi
; NSEDT

is bound by below by
the smaller NSE value of the two partitions — i.e., NSEAi

.

Proof. Following the convention from S2.3 and Eq. (S13),
we get:5

1− IAJ
e2t

IAJ
(ot − ōJ)2

≥ 1− IAI
e2t

IAI
(ot − ōJ)2

.

By subtracting 1, multiplying by −1, and rearranging IAJ
e2t

and IAI
e2t we get:

IAJ
e2t

IAI
e2T

≤ IAJ
(ot − ōJ)

2

IAI
(ot − ōI)2

,

adding 1 to both sides and substituting et gives:10

IAJ
e2t

IAI
e2t

+1≤ IAJ
(ot − ōJ)

2

IAI
(ot − ōI)2

+1,

and

IAJ
e2t

IAI
e2t

+
IAI

e2t
IAI

e2t
≤ IAJ

(ot − ōJ)
2

IAI
(ot − ōI)2

+
IAJ

(ot − ōJ)
2

IAJ
(ot − ōJ)2

. (S14)

At this stage we note that ō(Ai) minimizes the squared
distance for the samples in Ai, and vice versa ō(Aj) mini-15

mizes for samples in Aj . Any other choice than ō(Ai) (or
ō(Aj), respectively) in their respective partitions leads to a
larger sum. For example:

IAJ
[ot−ōJ)]

2+IAI
[ot−ōI)]

2 ≤ IAJ
[ot−ōT ]

2+IAI
[ot−ōT ]

2,

which we can use to bind the right-hand side of Eq. (S14).20

After some rearrangement, we have

IDT
e2

IAI
e2

≤ IDT
[ot − ōT ]

2

IAI
[ot − ōI)]2

.

From here we can manipulate the equation to reintroduce the
canonical formulation of the NSE and we get:

1− IDT
e2t

IDT
(ot − ōT )2

≥ 1− IAI
e2t

IAI
(ot − ōI)2

,25

NSEDT
≥NSEAi

.

Thus, the lower NSE of the two partitions is the lower
bound of the NSE of the whole dataset.

This means that that we obtain the following relation for
the NSE:30

NSEAi
≤NSEDT

≤ 1.

S2.7 Pearson’s correlation coefficient

The sample correlation coefficient over a partition AX ⊆DT

is

rAX
=

IAX
(ot − ōX)(st − s̄X)√

IAX
(ot − ōX)2IAX

(st − s̄X)2
. (S15) 35

In most cases, rAz
is independent from r(DT ) — as is

demonstrated by Simpson’s Paradox (Sect. 1 of the origi-
nal manuscript) — and we can only make claims for special
cases. For example, if r(DT ) = 1 (or −1) then it follows that
rAz = 1 (or −1). 40

S2.8 The special case of standardized data

During the review process, reviewer Hoshin Gupta inspired
us to think about what would happen to the NSE if the avail-
able data would always be standardized (i.e., both the obser-
vations and simulations have zero mean and unit variance for 45

all partitions and the overall data). This section shows that in
this special setting the NSE and the Kling-Gupta Efficiency
(KGE just measures the Pearson’s correlation coefficient r,
and the correlation becomes the same as the cosine similarity.

Proposition S2.8. In a setting where we standardize the ob- 50

servations and model outputs for a given set of observations
and simulations, we get NSE = 2 ∗ r− 1.

Proof. As per Gupta et al. (2009) the NSE can be decom-
posed into

NSE = 2 ∗α ∗ r−α2 −β, (S16) 55

where α is the ratio of the standard deviations, i.e.: α=
σs

σo
, r is Pearson’s correlation coefficient, and β = µs−µo

σo

(here independent of the partition).
Since the means of the observations and simulations are

zero, it always holds that β = 0 and α= 1, which simplifies 60

Eq. (S16) to

NSE = 2 ∗ r− 1.

In other words, in this special setting the NSE only mea-
sures the correlation.

There exists a similar simplification for the KGE: 65

Proposition S2.9. In a setting where we standardize the ob-
servations and model outputs, it holds that KGE= r.

Proof. The KGE is defined as

KGE= 1−
√

(r− 1)2 +(σs/σo − 1)2 +(µs/µo − 1)2.
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In the current setting µs

µo
is actually undefined because of

the division by zero, but we might also interpret it as one be-
cause µs = µo. Similarly, σs

σo
= 1. Thus, the only part within

the square root that remains is (r− 1)2, which gives us:

KGE= 1−
√
(r− 1)2,5

= 1− |r− 1|,
= r.

Thus, we showed that in the special setting where obser-
vations and simulations are standardized the KGE measures
the correlation only.10

Next, we show that within the standardization setting the
correlation becomes the cosine similarity.

Proposition S2.10. In a setting where we standardize the ob-
servations and model outputs for all data and all partitions,
the correlation is the same as the cosine similarity.15

Proof. The cosine similarity between two N dimensional
vectors a and b is defined as

sc = cosθ =

∑N
i=1 aibi√∑N

i=1 a
2
i ∗

√∑N
i=1 b

2
i

, (S17)

where θ is the angle between the two vectors, and equiva-
lence to r is given because Eq. (S17) is the same as Eq. (S15)20

if the means are set to zero.

In other words, we posit that in this special setting the cor-
relation only measures the difference in rotation by the two
centered vectors of the observations and simulations.

25
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Figure S2. Empirical cumulative distribution functions of the NSE
(black, dotted line) and the LENSE (green line) for the 531
CAMELS basins and an ensemble of calibrated HBV models from
(see Kratzert et al., 2019).

S3 More experimental results

S3.1 Model evaluation with the NSE and the LENSE
for different models

This section shows alterations of the first part of our analysis
(Sect. 2.2 of the original manuscript) using different models.5

S3.2 Two more experimental results

This appendix shows two additional sweeps of our ex-
periment from Sect.2.1 of the original manuscript. One
has NSElow = 0.25 (Fig. S5) and the other NSElow = 0.75
(Fig. S6).10

S4 Flow–duration curve based metrics and the DAMN.

This appendix provides a short comment on why many of the
currently used metrics based on flow–duration curves do not
guard against the DAMN. Specifically, we discuss the case
of the percent bias of the bottom 30% low flow range (FLV)15

and percent bias of the top 2% high flow range (FHV) as
defined in Yilmaz et al. (2008). Both the FLV and the FHV
first divide the data based on the flow-duration curve and then
compute the percent bias for the flow–duration values that
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Figure S3. Empirical cumulative distribution functions of the NSE
(black, dotted line) and the LENSE (green line) for the 531
CAMELS basins and the SAC-SMA model (see Kratzert et al.,
2019).

fall within the predefined partition. This approach has three 20

problems with regard to the DAMN:

1. The a-priori set thresholds (30% and 2%) are too coarse
to capture situational differences in model performance.
For example, a model that captures rain–driven high-
flows well, but melt–driven ones badly might still ex- 25

hibit a good FHV if the former occur frequently enough
to fall over the threshold. This problem is made worse
by point 2.

2. The relative bias can be compensated by varying situa-
tional performance. For example, a model that overes- 30

timates some set of peaks, but equally underestimates
another set of peaks can have an FHV that is close to 0
(nearly perfect) — despite the model performing badly
for all peaks. This problem is exacerbated by point 3.

3. The flow duration curve breaks temporal locality: The 35

temporal occurrence of the events is not considered, so
the behavior in one situation can compensate for the be-
havior in another. For example, if a model underesti-
mates one high peak A, but overestimates another un-
related event B, then it still can happen that the FHV is 40

be close to zero (i.e., nearly perfect) because the simu-
lations can become assigned to different observations.
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Figure S4. Empirical cumulative distribution functions of the NSE
(black, dotted line) and the LENSE (green line) for the 531
CAMELS basins and the VIC-conus model (see Kratzert et al.,
2019).
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Figure S5. Rerun of our experiment (Sect.2.1 from the original
manuscript) with NSElow fixed at 0.25. Each pixel in the plot rep-
resents an “interval score”, which is zero if the overall model per-
formance NSEall is within the interval spanned by model perfor-
mance in the low-flow partition, NSElow, and the high-flow par-
tition, NSEhigh. The red squares in the plot below indicate where
where the interval score falls to zero. In the other case, the interval
score is negative if NSEall is lower than the interval, and positive if
NSEall is higher (see Fig. 4 of the original manuscript).
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Figure S6. Rerun of our experiment (Sect. 2.1 from the original
manuscript) with NSElow fixed at 0.75. Each pixel in the plot rep-
resents an “interval score”, which is zero if the overall model per-
formance NSEall is within the interval spanned by model perfor-
mance in the low-flow partition, NSElow, and the high-flow par-
tition, NSEhigh. The red squares in the plot below indicate where
where the interval score falls to zero. In the other case, the interval
score is negative if NSEall is lower than the interval, and positive if
NSEall is higher (see Fig. 4 of the original manuscript).


