
Hydrol. Earth Syst. Sci., 28, 3597–3611, 2024
https://doi.org/10.5194/hess-28-3597-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A decomposition approach to evaluating the local
performance of global streamflow reanalysis
Tongtiegang Zhao1, Zexin Chen1, Yu Tian2, Bingyao Zhang3, Yu Li3, and Xiaohong Chen1

1Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Key Laboratory for Water Security in the
Guangdong-Hongkong-Macao Greater Bay Area, School of Civil Engineering, Sun Yat-Sen University, Guangzhou, China
2State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,
China Institute of Water Resource and Hydropower Research, Beijing, China
3School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China

Correspondence: Zexin Chen (chenzx33@mail2.sysu.edu.cn)

Received: 19 March 2024 – Discussion started: 20 March 2024
Revised: 5 June 2024 – Accepted: 30 June 2024 – Published: 8 August 2024

Abstract. While global streamflow reanalysis has been eval-
uated at different spatial scales to facilitate practical applica-
tions, its local performance in the time–frequency domain
is yet to be investigated. This paper presents a novel de-
composition approach to evaluating streamflow reanalysis by
combining wavelet transform with machine learning. Specif-
ically, the time series of streamflow reanalysis and observa-
tion are respectively decomposed and then the approxima-
tion components of reanalysis are evaluated against those
of observed streamflow. Furthermore, the accumulated lo-
cal effects are derived to showcase the influences of catch-
ment attributes on the performance of streamflow reanalysis
at different scales. For streamflow reanalysis generated by
the Global Flood Awareness System, a case study is devised
based on streamflow observations from the Catchment At-
tributes and Meteorology for Large-sample Studies. The re-
sults highlight that the reanalysis tends to be more effective
in characterizing seasonal, annual and multi-annual features
than daily, weekly and monthly features. The Kling–Gupta
efficiency (KGE) values of original time series and approx-
imation components are primarily influenced by precipita-
tion seasonality. High values of KGE tend to be observed
in catchments where there is more precipitation in winter,
which can be due to low evaporation that results in reason-
able simulations of soil moisture and baseflow processes.
The longitude, mean precipitation and mean slope also in-
fluence the local performance of approximation components.
On the other hand, attributes on geology, soils and vegetation
appear to play a relatively small part in the performance of

approximation components. Overall, this paper provides use-
ful information for practical applications of global stream-
flow reanalysis.

1 Introduction

Global streamflow reanalysis provides valuable information
for water resources management (Beck et al., 2017; Har-
rigan et al., 2020; Pokhrel et al., 2021). Generated by us-
ing climate reanalysis to drive global hydrological mod-
els (GHMs; Alfieri et al., 2020; Hersbach et al., 2020;
Muñoz-Sabater et al., 2021), there exist multiple stream-
flow reanalysis datasets, e.g., the Global Flood Awareness
System (GloFAS) within the European Centre for Medium-
Range Weather Forecasts (ECMWF)’s latest global atmo-
spheric reanalysis (GloFAS-ERA5; Harrigan et al., 2020),
the Global Reach-Level A Priori Discharge Estimates for
SWOT (GRADES; Lin et al., 2019) and the Global Reach-
Level Flood Reanalysis (GRFR; Yang et al., 2021). In prac-
tice, streamflow reanalysis can bridge the data gaps for un-
gauged and poorly gauged catchments and provides esti-
mates on a large spatial scale and with sufficient temporal
resolution (Lin et al., 2019; Harrigan et al., 2020; Yang et
al., 2021). For example, the recent GloFAS-ERA5 provides
streamflow information at the daily time step and with a spa-
tial resolution of 0.1° across the globe (Harrigan et al., 2020).

The local performance plays a critical part in practical ap-
plications of global streamflow reanalysis (Veldkamp et al.,
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2018; Munia et al., 2020; Feng et al., 2021). By evaluat-
ing global reanalysis against observed streamflow, diagnostic
plots and verification metrics are generated to showcase its
local performance (Xie et al., 2019; Gao et al., 2020; Cantoni
et al., 2022; Huang et al., 2022; Zhao et al., 2022a; Han et al.,
2023; Liu et al., 2023). In the meantime, hydrological signa-
tures derived from reanalysis are compared to those obtained
from observed streamflow to facilitate insights into the ef-
fectiveness of hydrological models (Beck et al., 2017; Chen
et al., 2022; Zhao et al., 2022b). For example, the perfor-
mances of 10 Inter-Sectoral Impact Model Intercomparison
Project (ISI-MIP) models are evaluated for low, mean and
high flows using five streamflow percentile series (Chen et
al., 2021). Considering limited observation data, streamflow
reanalysis can serve as reference data to calibrate hydrolog-
ical models, and then the model outputs can be compared to
observations to see whether practical applications are avail-
able (Senent-Aparicio et al., 2021).

Time series analysis is one of the most important ap-
proaches to investigating the performance of hydrological
models (Saraiva et al., 2021; Manikanta and Vema, 2022;
Guo et al., 2022). From the perspective of time series, hy-
drological simulations are a combination of the components
of periodic motion, trend, seasonality and error, which can
be extracted by using decomposition approaches (Abebe et
al., 2022; Manikanta and Vema, 2022; Xu et al., 2022).
As one of the most important decomposition approaches,
wavelet transform decomposes streamflow into time series
of wavelet coefficients under certain frequencies (Manikanta
and Vema, 2022). Therefore, it allows for multiresolution
analysis compared to other decomposition approaches (Mon-
toya et al., 2022). Owing to the time–frequency character-
ization, wavelet-based features of reanalysis and observed
streamflow can be compared in order to zoom into detailed
information for multiple time series segments (Manikanta
and Vema, 2022). If there are errors in the reanalysis at
specific timescales or during specific periods, the sources
of these errors can be identified by the technique of time–
frequency characterization (Lane, 2007).

While global streamflow reanalysis has been evaluated at
different spatial scales (Harrigan et al., 2020; Chen et al.,
2021; Senent-Aparicio et al., 2021), the time series charac-
teristics of streamflow reanalysis in the time–frequency do-
main are yet to be investigated. Meanwhile, it is difficult to
interpret the local performance of global streamflow reanal-
ysis across different locations (Sichangi et al., 2016; Ghiggi
et al., 2019; Tu et al., 2024), let alone the additional interpre-
tation of the local performance at different timescales. This
paper aims to bridge the gap by presenting a novel evalua-
tion of global streamflow reanalysis by combining the dis-
crete wavelet transform (DWT) with machine learning tech-
niques. That is, the DWT is employed to exploit streamflow
reanalysis in the time–frequency domain; then the accumu-
lated local effects (ALEs) are derived by the random forest
model to showcase the performance of original time series

of reanalysis and its decomposed components at different
scales. As will be demonstrated in the Methods and Results
sections, streamflow reanalysis does exhibit different local
performances at different timescales, and the influences of
catchment attributes are illustrated.

2 Methods

2.1 Overview of the decomposition approach

A novel decomposition approach that combines the wavelet
transform with machine learning techniques is proposed to
evaluate global streamflow reanalysis in the time–frequency
domain. There are three steps.

1. Decomposition of time series. The DWT is used to de-
compose the reanalysis and observed streamflow time
series, resulting in “approximation” and “detail” com-
ponents at different scales.

2. Verification of decomposed series. The Kling–Gupta ef-
ficiency (KGE), correlation, bias ratio and variability ra-
tio are derived to indicate the local performance of origi-
nal time series, approximation and detail components at
various scales. In the meantime, the density-based spa-
tial clustering of applications with noise (DBSCAN) al-
gorithm is used to remove outliers from the verification
metrics.

3. Influences of catchment attributes. The ALEs derived
from the random forest model are employed to elabo-
rate on the influences of catchment attributes and then
identify the driving factors.

2.2 Decomposition of time series

Both reanalysis and observed streamflow time series are de-
composed into approximation and detail components using
the DWT (Chalise et al., 2023). It is executed by control-
ling the scaling and shifting factors associated with a mother
wavelet (Nalley et al., 2012). Following Wei et al. (2012),
the Daubechies wavelet of order 5 is used to decompose the
streamflow time series (Talukder et al., 2020):

W(a,b)=
∑
t∈Z

q(t)ψm,n(t), (1)

in which q(t) is the time series to be decomposed, m and
n are integers that respectively represent the amount of dila-
tion and translation of the wavelet, t represents the discrete
time, and ψ represents the wavelet basis function (Nalley et
al., 2012):

ψm,n(t)= 2−
m
2 ψ

(
2−mt − n

)
. (2)

The DWT decomposes a signal into approximation (low-
frequency) and detail (high-frequency) coefficients, thereby
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separating its frequency components based on magnitude
(Quilty and Adamowski, 2021). In the initial decomposi-
tion that utilizes high-pass and low-pass filters and inverse
DWT, the original signal is decomposed into the detail com-
ponent (D1) and the approximation component (A1). Subse-
quently, the approximation component (A1) resulting from
this initial stage is furthermore decomposed into D2 and A2,
and so on for successive levels. This process is conducted
from high-pass and low-pass filters followed by a down-
sampling operator:

(q ↓ 2)[t] = q[2t]. (3)

Therefore, the streamflow time series is decomposed into the
approximation coefficients and detail coefficients (Talukder
et al., 2020):
cAl[t] =

∑
n

L[n]q[2t + n],

cDl[t] =
∑
n

H [n]q[2t + n], (4)

in which cAl[t] is the coefficient of approximation, cDl[t] is
the coefficient of detail, the subscript l represents the decom-
position level, L is the low-pass filter and H is the high-pass
filter. The inverse DWT is used to obtain the approximation
components and detail components (Guo et al., 2022):{
Al = IDWT(cAl[t]) ,
Dl = IDWT(cDl[t]) ,

(5)

in which IDWT is the inverse DWT, Al is approximation
component and Dl is detail component in level l.

For reanalysis and observed streamflow time series, the de-
composition is denoted as
dt =

lm∑
l=1
Dd,l +Ad,lm ,

qt =
lm∑
l=1
Dq,l +Aq,lm ,

(6)

in which dt is the reanalysis, qt is the observed stream-
flow and lm is the maximum decomposition level. The sub-
scripts d and q respectively represent reanalysis and ob-
served streamflow.

The DWT captures time series information at multiple
scales in the time–frequency domain, with each scale corre-
sponding to a specific period (Joo and Kim, 2015; Manikanta
and Vema, 2022). Specifically, the approximation and detail
components at the decomposition level l correspond to the
timescale of 2l d (Nalley et al., 2012).

2.3 Verification of decomposed series

The KGE stands out as a widely used verification metric to
evaluate the model performance (Frame et al., 2021; Huang
and Zhao, 2022; Zhao et al., 2022b). It indicates the perfor-
mance of original time series and approximation and detail

components. When evaluating the performance of original
time series, the KGE is calculated as follows:

KGEo = 1−
√
(ro− 1)2+ (βo− 1)2+ (γo− 1)2. (7)

As can be seen, the KGEo is comprised of three components,
namely, the Pearson correlation coefficient ro, the bias ra-
tio βo and the variability ratio γo:

ro =

T∑
t=1
(dt −µd)

(
qt −µq

)
√

T∑
t=1
(dt −µd)

2

√
T∑
t=1

(
qt −µq

)2 , (8)

βo =
µd

µq
, (9)

γo =
σd

σq
, (10)

in which µ is the mean streamflow and σ is the streamflow
standard deviation. The subscripts d and q respectively rep-
resent reanalysis and observed streamflow. The KGE ranges
from −∞ to 1, with a perfect value of 1.

To investigate the relationship between reanalysis and ob-
servations, it is necessary to extract the corresponding grid
cell for each hydrometric station. The grid cell in which the
hydrometric station is located may not overlap with the sim-
ulated river network in streamflow reanalysis due to the in-
accuracy of the routing module in a distributed hydrologi-
cal model (Chen et al., 2021). There are three steps to iden-
tify the target cell: firstly, the initial cell is located according
to the latitude and longitude of the hydrometric station; sec-
ondly, the KGE between reanalysis and observed streamflow
is calculated for the initial cell and its eight surrounding cells;
and finally, the cell with the largest KGE is used as the target
cell (Zhao et al., 2022b).

Hydrometric stations with outliers in terms of the KGE,
correlation, bias ratio and variability ratio are excluded from
the investigation, as outliers can deteriorate the performance
of machine learning techniques (Lee and Kam, 2023). The
DBSCAN, which is used to remove the outliers of KGE and
its three components, offers a distinctive advantage in detect-
ing outliers by defining clusters as dense regions separated
by sparser areas (Smiti, 2020). This characteristic makes the
algorithm effective in distinguishing outliers from the main
clusters (Li et al., 2022). There are two key parameters in
the DBSCAN, including the maximum cluster radius (ε) and
the minimum number of points (MinPts; Smiti, 2020). Points
within a distance ε are considered part of a dense region,
while those with fewer than MinPts neighbors are treated
as outliers (Li et al., 2022). Following the study conducted
by Brinkerhoff et al. (2020), the “elbow”-based approach is
used to determine ε, and MinPts is set to 5. By setting these
parameters, the DBSCAN effectively identifies and isolates
outliers, preserving the integrity of the main cluster struc-
tures (Hauswirth et al., 2021).
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2.4 Influences of catchment attributes

The ALEs are derived by the random forest model to show-
case the influences of catchment attributes on the perfor-
mance of original time series and its approximation compo-
nents at different scales. The random forest model is em-
ployed to establish a predictive relationship between the
performance and multiple catchment attributes. This model
is well suited to capture complex relationships within the
dataset through its ensemble of decision trees, which ren-
ders it an effective tool for performance prediction (Wei et
al., 2023). To implement the model, the data are split into
training and testing sets under the ratio of 75 : 25 (Naghibi
et al., 2017). That is, 75 % of catchments are randomly al-
located for training and the remaining 25 % for testing. The
random forest model is set up by the training set with the hy-
perparameters tuned to optimize its prediction accuracy (Wei
et al., 2023). Afterwards, the model is validated by the test-
ing set, and the coefficient of determination (R2) is calcu-
lated to evaluate its prediction accuracy based on catchment
attributes.

Taking the KGE of original time series as an example, the
prediction of the performance of approximation components
for reanalysis using the random forest model is denoted as

KGEp = RF(X), (11)

in which KGEp is the predicted KGE using the random forest
model, RF(·) is the random forest model and X is the catch-
ment attributes. The R2 between the predicted KGEp and the
calculated KGEo is denoted by

R2
=

N∑
i=1

(
KGEp,i −µKGEp

)(
KGEo,i −µKGEo

)
√

N∑
i=1

(
KGEp,i −µKGEp

)2√ N∑
i=1

(
KGEo,i −µKGEo

)2


2

, (12)

in whichµ is the mean KGE. The KGEp and KGEo represent
the predicted KGE of the random forest model and the cal-
culated KGE between reanalysis and observed streamflow,
respectively.

The ALEs are used to describe how catchment attributes
influence the performance of approximation components at
various scales for reanalysis based on the random forest
model. They illustrate how changes in one input variable im-
pact model predictions by analyzing the differences within
small quantile-based intervals (Stein et al., 2021). An advan-
tage of the ALEs is the overcoming of the confounding ef-
fects of correlated catchment attributes (Stein et al., 2021).
The ALE curves reveal whether the association is linear or
exhibits more complex patterns (Teng et al., 2022). The un-

centered ALE ˆ̃fj,ALE(x) is formulated as follows:

ˆ̃
fj,ALE(x)=

kj∑
k=1

1
nj (k)

∑
i:x

(i)
j ∈Nj (k)

[
f
(
zk,j ,x

(i)
−j

)

−f
(
zk−1,j ,x

(i)
−j

)]
, (13)

in which x is the value of the catchment attribute j , and k is
one of the kj quantiles. By dividing the range of x, nj (k) is
the number of x that is in quantileNj (k), zk,j is the boundary
values of x within that quantile, f is the output of the random
forest model and x(i)

−j is the values of catchment attribute i
except for j .

The ALE f̂j,ALE(x) is derived from the uncentered ALE
values by subtracting its mean across all quantiles (Konapala
et al., 2020):

f̂j,ALE(x)=
ˆ̃
fj,ALE(x)−

1
kj

kj∑
k=1

ˆ̃
fj,ALE (xk) . (14)

Furthermore, the local interpretable model-agnostic expla-
nations (LIMEs) elucidate individual predictions made by
a trained black-box machine learning model (Xiang et al.,
2023). The LIMEs are used to identify the dominant catch-
ment attribute on performance of approximation components
at various scales for each catchment.

A transformation is applied to the bias and variability ra-
tios of original time series and its approximation components
when investigating the influences of catchment attributes.
The bias ratio and variability ratio are transformed as follows
(Poncelet et al., 2017):{
β∗ = 1− |1−βo| ,
γ ∗ = 1− |1− γo| ,

(15)

in which β∗ represents the bias ratio after transformation,
and γ ∗ is the variability ratio after transformation. This oper-
ation is owing to the fact that increases in the values of bias
and variability ratios do not necessarily indicate improved
performance. After the transformation, both β∗ and γ ∗ take
the value of 1 to be the maximum value that indicates the best
performance. Notably, this transformation does not affect the
ranking of performance among catchments.

3 Case study

3.1 Streamflow reanalysis

The GloFAS-ERA5 streamflow reanalysis v2.1 provides
valuable hydrological time series forced by the latest global
atmospheric reanalysis ERA5 (Harrigan et al., 2020). De-
veloped jointly by the Joint Research Centre (JRC) of the
European Commission, the University of Reading and the
ECMWF (Harrigan et al., 2020), this streamflow reanalysis is
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generated by coupling the Hydrology Tiled ECMWF Scheme
for Surface Exchanges over Land (HTESSEL) land surface
model with the LISFLOOD hydrological and channel rout-
ing model (Alfieri et al., 2020; Harrigan et al., 2020). Specif-
ically, the daily surface and subsurface runoff generated by
the HTESSEL model are routed using the LISFLOOD model
(Harrigan et al., 2020). The GloFAS-ERA5 provides a spa-
tial resolution of 0.1° at a daily time step, covering the time
period from 1 January 1979 to near real time (Harrigan et
al., 2020). Harrigan et al. (2020) found that the GloFAS-
ERA5 streamflow reanalysis tends to be skillful across 86 %
of tested catchments and also noted that there exists consid-
erable variability in the skill, e.g., significant positive biases
in central United States and Africa.

3.2 Observed streamflow

The observed streamflow is sourced from the Catch-
ment Attributes and Meteorology for Large-sample Stud-
ies (CAMELS) dataset (Newman et al., 2015; Addor et al.,
2017). An advantage of this dataset is the presentation of time
series from 1980 to 2015 (Addor et al., 2017). There are 671
catchments across the continental United States (CONUS),
which exhibit diverse hydro-meteorological characteristics.
Notably, these catchments are primarily located at headwa-
ters, resulting in minimal influence from human activities
(Stein et al., 2021). In the meantime, the CAMELS pro-
vides information on six categories of catchment attributes,
including climate, geology, topography, soil, vegetation and
streamflow indices (Addor et al., 2017; Stein et al., 2021).
Categorical attributes are not used in the investigation of the
influences on model performance (Stein et al., 2021). The
influences of catchment attributes on performance of stream-
flow time series characteristics are investigated using 38 at-
tributes across five categories: climate, geology, topography,
soil and vegetation.

To facilitate the evaluation of streamflow reanalysis, the
stations whose data length meets the requirement for the de-
composition into 10 levels are selected (Nalley et al., 2012).
The maximum decomposition level lm is denoted by

lm =
log

(
N

2v−1

)
log(2)

, (16)

in which v represents the number of vanishing moments of
the Daubechies wavelet (set to 5), and N is the number of
data points. Specifically, 661 stations with a data length ex-
ceeding 9216 d are selected for the investigation.

4 Results

4.1 Approximation and detail components

The time series of streamflow reanalysis and observation
along with their approximation and detail components are

presented in Fig. 1. The plots are for station 6224000 in
which streamflow reanalysis tends to exhibit the highest
KGE value of 0.82. The approximation and detail compo-
nents at level l correspond to the timescale of 2l d. For ex-
ample, A1 and A8 correspond to the periods of 2 and 256 d,
respectively. It can be observed that the original time series of
reanalysis generally captures the primary features of the ob-
served streamflow. Under the stepwise decomposition of the
streamflow time series, the KGE tends to increase from 0.48
for A1 to 0.62 for A8 and increase from−4.57 forD1 to 0.48
for D8. This result indicates that streamflow reanalysis tends
to capture seasonal and annual information more effectively
than daily, weekly or monthly information. At higher decom-
position levels, the series of approximation and detail compo-
nents becomes smoother, owing to the filtering of short-term
noise. As the decomposition level increases, the reanalysis
becomes more able to capture the information in the obser-
vation.

The KGEs of approximation and detail components across
the CONUS are illustrated in Fig. 2. There are respectively
554 and 417 catchments for the approximation and detail
components after removing the outliers. It can be observed
that the KGEs of the approximation components tend to in-
crease from A1 to A10 and that, by contrast, the KGEs of the
detail components exhibit considerable fluctuations from D1
to D10. The comparison between the left and right parts of
Fig. 2 highlights that the detail components are more diffi-
cult to be characterized than the approximation components.
This outcome is attributable to the presence of environmental
noise in the original time series (de Macedo Machado Freire
et al., 2019). Given that the KGEs of the detail components
can drop below −2.5 in some catchments, more attention
is paid to the approximation components in the subsequent
analysis.

4.2 Performance across the CONUS

The KGE values of original time series and its approxima-
tion components for the 554 catchments after removing the
outliers are presented in Fig. 3. In total, there are 11 spatial
plots for original time series and its components after decom-
position. It can be observed that the original time series tends
to exhibit relatively high KGEs in the western United States
and relatively low KGEs in the central United States. This
observation is consistent with those by Addor et al. (2017),
who found poor performances in the high plains and deserts
of the southwest. In the meantime, the approximation com-
ponents from A1 to A10 tend to exhibit high KGEs in the
western United States and low KGEs in the central United
States. This finding indicates that the KGE values of approx-
imation components are related to the KGE values of orig-
inal time series. Moreover, as the scale increases from A1
to A10, the performance of approximation components tends
to improve. The KGEs in the central United States change
from negative values in A1 to positive values in A10. That is,
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Figure 1. Time series plots of original time series and its approximation and detail components for station 6224000.

Figure 2. The KGEs of approximation and detail components across the CONUS.

Hydrol. Earth Syst. Sci., 28, 3597–3611, 2024 https://doi.org/10.5194/hess-28-3597-2024
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Figure 3. Spatial distribution of the KGE values of original time series and its approximation components from A1 to A10.

seasonal, annual and multi-annual features tend to be better
represented by streamflow reanalysis than daily, weekly and
monthly features.

The KGE and its three components for the 554 catch-
ments are illustrated by boxplots in Fig. 4. For the KGEs
between streamflow reanalysis and observations, it can be
observed that the local performance of streamflow reanal-
ysis generally improves from A1 to A7 and then remains
promising from A8 to A10. Specifically, the median value of
KGE is 0.02 for A1, 0.09 for A2, 0.19 for A3, 0.24 for A4,
0.29 forA5, 0.36 forA6, 0.47 forA7, 0.43 forA8, 0.42 forA9
and 0.40 for A10. This trend is due to the fact that the corre-
lation ratio tends towards 1 from A1 to A7. In the meantime,
it is noted that A7 exhibits higher KGE than the original time
series. This result implies that errors in the original time se-
ries primarily stem from daily, weekly and monthly compo-
nents. Focusing on the correlation, the medians of correlation
for approximation components exceed 0.2, implying valu-

able information in multiple timescale approximations. The
bias ratio remains nearly constant at each scale for approxi-
mation components. That is, the mean values of approxima-
tion components are generally similar to the mean values of
the original time series.

4.3 Influences of catchment attributes

The influences of catchment attributes on the KGE and its
three components are measured by the mean absolute ALEs
and illustrated in Fig. 5. From the first row, it can be ob-
served that the KGE values of original time series and its
approximation components are primarily influenced by pre-
cipitation seasonality. Positive (negative) values of precipita-
tion seasonality indicate that precipitation peaks in summer
(winter). That is, the season with more precipitation has a
significant impact on the KGE. Longitude and mean slope
also have a significant impact on the KGE across original
time series and daily, weekly, and monthly features (from A1

https://doi.org/10.5194/hess-28-3597-2024 Hydrol. Earth Syst. Sci., 28, 3597–3611, 2024
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Figure 4. Boxplots of the KGE and its three components for the original time series and its approximation components across 554 catchments
in the CONUS. The lines within the boxes mark the median values. The boxes illustrate the interquartile range (IQR), where the lower and
upper boundaries of the boxes respectively indicate the lower quartile (Q1) and upper quartile (Q3). The lower and upper whiskers show
the smallest and largest values within the range of Q1− 1.5IQR to Q3+ 1.5IQR. Dark grey diamonds represent outliers that lie beyond the
whiskers.

toA5). In the meantime, the correlations of annual and multi-
annual features (from A7 to A10) are mainly affected by the
precipitation seasonality, while daily, weekly and monthly
features are influenced by longitude and mean slope of the
catchment. This result suggests that the influences of catch-
ment attributes on correlation of annual and multi-annual fea-
tures are different from daily, weekly and monthly features.
Furthermore, the bias ratio is primarily influenced by mean
precipitation, and the variability ratio is mainly affected by
catchment area and depth to bedrock. The geology, soils and
vegetation appear to have minor impacts on the local perfor-
mance of global streamflow reanalysis.

To further illustrate how catchment attributes affect the
performances of original time series and its approximation
components, the ALE curves are presented for the three in-
fluential attributes of precipitation seasonality, mean precip-
itation and mean slope of catchment. The influences of pre-
cipitation seasonality on the KGE and its three components
are presented in Fig. 6. It can be observed that the relation-
ships between the KGE and precipitation seasonality are gen-
erally nonlinear. The KGE gradually decreases with the in-
creasing precipitation seasonality. That is, the KGE values
are notably low when precipitation tends to concentrate in
summer and turn out to be high when precipitation tends to

concentrate in winter. The ALE curves of the daily, weekly
and monthly features (from A1 to A5) are similar to original
time series, reducing towards−0.5. The seasonal, annual and
multi-annual features (from A6 to A10) decrease around 0. In
the meantime, the influences of precipitation seasonality on
the correlation, bias and variability ratios are similar to that
on the KGE. These results can be due to low evaporation in
winter that results in reasonable simulations of soil moisture
and baseflow processes (Poncelet et al., 2017).

The influences of mean precipitation on the KGE, correla-
tion, bias ratio and variability ratio across different scales are
illustrated in Fig. 7. The mean precipitation has a positive ef-
fect on the KGE of original time series and its approximation
components, with a nonlinear increase of the KGE with ris-
ing mean precipitation, particularly for the annual and multi-
annual features. In the meantime, it affects the correlation,
bias ratio and variability ratio of original time series posi-
tively. This result suggests that mean precipitation tends to
have a consistent influences on the KGE, correlation, bias
and variability ratios for the approximation components. This
result can be due to the fact that rainfall–runoff processes
are more linear in humid catchments than in arid catchments,
leading to less variability in hydrologic states and facilitating
more accurate simulations (Parajka et al., 2013).

Hydrol. Earth Syst. Sci., 28, 3597–3611, 2024 https://doi.org/10.5194/hess-28-3597-2024



T. Zhao et al.: Performance of global streamflow reanalysis 3605

Figure 5. The ALEs of the catchment attributes on the KGE, correlation, bias ratio and variability ratio. The color denotes the mean absolute
values for each ALE curve, which is normalized for each original time series (approximation component). The sizes of point represent
prediction accuracy indicated by R2 for the random forest model using testing set. The “Original” represents original time series.

The influences of mean slope on the KGE and its three
components across different scales are shown in Fig. 8. It
can be observed that there is a nonlinear relationship be-
tween the KGE and mean slope of catchment. As the mean
slope increases, the KGE of original time series and its ap-
proximation components tend to increase. This result may
be due to the mean slope of catchment affecting the simula-
tion of runoff generation and infiltration (Stein et al., 2021;
Massmann, 2020). It is noted that the KGE values of ap-
proximation components gradually increase when the mean
slope of catchment surpasses 150. In particular, the correla-
tion and variability ratio of original time series generally in-
crease with the increase in the KGE. That is, the mean slope
of catchment has a similar effect on the KGE, correlation and

variability ratio. On the other hand, bias ratio initially de-
creases and then increases with the increase of mean slope.
In other words, the relationship between bias ratio and mean
slope of catchment is non-monotonic.

4.4 Driving factors of each catchment

The most important attribute that influences the KGE is iden-
tified for each catchment by the LIMEs method and then il-
lustrated by spatial plots in Fig. 9. It can be observed that
the most important attributes influencing the KGE exhibit re-
gional clustering. The KGE of original time series is primar-
ily influenced by precipitation seasonality in the western and
central United States and by depth to bedrock in the eastern
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Figure 6. The ALE curves of the relationship between precipitation seasonality and the KGE, correlation, bias ratio and variability ratio for
original time series and its approximation components.

Figure 7. Same as for Fig. 6 but for mean precipitation.

United States (Addor et al., 2017; Pfister et al., 2017). The
substantial differences in precipitation seasonality between
the western and central United States result in significant dif-
ferences in the KGE. On the other hand, the most important
attribute controlling the KGE of approximation components
is different from that of original time series. It can be ob-
served that the KGE values of approximation components

from A6 to A8 are primarily controlled by precipitation sea-
sonality in the eastern United States, while the original time
series is controlled by depth to bedrock. The higher depth
to bedrock may exhibit larger storage values, consequently
leading to higher baseflow (Pfister et al., 2017). In the mean-
time, the number of catchments controlled by precipitation
seasonality tends to increase from A1 to A8, with a high
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Figure 8. Same as for Fig. 6 but for mean slope.

proportion observed in A6, A7 and A8. That is, the perfor-
mance of the annual variability of streamflow reanalysis is
influenced by precipitation seasonality.

5 Discussion

Global streamflow reanalysis provides valuable information
for water resources management (Alfieri et al., 2020; Harri-
gan et al., 2020; Yang et al., 2021). Building upon previous
studies evaluating the performance of hydrological signa-
tures derived from reanalysis and observed streamflow (Beck
et al., 2017; Chen et al., 2021; Tu et al., 2024), this pa-
per presents a novel evaluation by combining the wavelet
transform with machine learning. Specifically, streamflow
reanalysis and observation are respectively decomposed by
the DWT into detail and approximation components at dif-
ferent scales. As a result, streamflow characteristics in the
time–frequency domain are unraveled by extracting features
and removing noise from the original signal (Manikanta and
Vema, 2022). This approach provides a new perspective by
paying attention to the difference between global streamflow
reanalysis and observed streamflow in the time–frequency
domain. The KGE generally indicates that streamflow reanal-
ysis exhibits a robust capability to capture the information
of seasonal, annual and multi-annual variability, particularly
the annual fluctuations. This result suggests that hydrologi-
cal simulations at daily or even hourly timescales are more
challenging.

Hydrological models generally exhibit different perfor-
mances across different catchments (Newman et al., 2015;
O’Neill et al., 2021; Tu et al., 2024). The differences can be

related to heterogeneous streamflow patterns under unique
combinations of climate and catchment attributes (Stein et
al., 2021). Previous studies have found that model perfor-
mance is related to aridity index, with generally better per-
formance in wetter catchments compared to drier ones (Pon-
celet et al., 2017). In addition to aridity index, other fac-
tors are also linked to the model performance, such as im-
pact of snow (Newman et al., 2015), catchment area (Harri-
gan et al., 2020), precipitation intermittency (Newman et al.,
2015) and human activities (Veldkamp et al., 2018). In this
paper, it is found that the KGE values of original time series
and approximation components are primarily influenced by
precipitation seasonality. This outcome can be due to lower
evaporation in winter, when the soil moisture is higher and
baseflow can be better simulated (Poncelet et al., 2017). On
the other hand, the relationships between KGE and catch-
ment attributes are nonlinear. The results highlight that the
wavelet transform can facilitate the evaluation of the local
performance of global streamflow reanalysis to provide more
effective information.

6 Conclusions

This paper has presented a novel decomposition approach
to evaluating global streamflow reanalysis by combining the
widely used wavelet transform and machine learning tech-
niques. Specifically, the reanalysis and observed streamflow
are decomposed by the DWT, and then they are used to in-
dicate the local performance of the time series characteris-
tics in the time–frequency domain. Furthermore, the influ-
ences of catchment attributes on the performance of orig-
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Figure 9. Spatial patterns of the controlling catchment attribute on the KGE of original time series and approximation components for each
catchment. For each spatial distribution map, if there are more than five catchment attributes, only the top five attributes are presented, while
the rest are labeled as others.

inal time series and its approximation components at vari-
ous scales are investigated using the ALEs. A large-sample
test is conducted for the CAMELS dataset so as to evalu-
ate the effectiveness of GloFAS streamflow reanalysis. The
results show that the streamflow reanalysis tends to charac-
terize seasonal, annual and multi-annual variabilities more
efficiently than daily, weekly and monthly variabilities. Pre-
cipitation seasonality is identified to be the most important
attribute influencing the KGE of original time series and its
approximation components using the ALEs. The longitude,
mean precipitation and mean slope also influence the perfor-
mance of approximation components. On the other hand, the
attributes on geology, soils and vegetation seem to have a
relatively minor influence on the performance of approxima-

tion components. Overall, the evaluation of global stream-
flow reanalysis at different timescales using decomposition
approaches provides useful information for practical appli-
cations of global streamflow reanalysis.

Data availability. The GloFAS-ERA5 streamflow reanalysis v2.1
can be downloaded from the Copernicus Climate Data Store and
can be accessed at https://cds.climate.copernicus.eu/ (Harrigan et
al., 2020). The CAMELS dataset can be sourced from the US Na-
tional Center for Atmospheric Research and is accessible with https:
//gdex.ucar.edu/dataset/camels.html (Newman et al., 2015; Addor et
al., 2017).
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