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Abstract. The geostatistical characterization of the subsur-
face is confronted with the double challenge of large uncer-
tainties and high exploration costs. Making use of all avail-
able data sources is consequently very important. Bayesian
inference is able to mitigate uncertainties in such a data-
scarce context by drawing on available background informa-
tion in the form of a prior distribution. To make such a prior
distribution transparent and objective, it should be calibrated
against a data set containing estimates of the target variable
from available sites. In this study, we provide a collection of
covariance and/or variogram functions of the subsurface hy-
draulic parameters from a large number of sites. We analyze
this data set by fitting a number of widely used variogram
model functions and show how they can be used to derive
prior distributions of the parameters of said functions. In ad-
dition, we discuss a number of conclusions that can be drawn
for our analysis and possible uses for the data set.

1 Introduction

Due to high exploration costs, the field of subsurface hy-
drology is characterized by scarcity of data, leading to high
uncertainty (Heße et al., 2019). Collecting data and mak-
ing them available to practitioners should, therefore, be a
high priority. In the field of subsurface hydrology, the largest
databases are the World Wide Hydrogeological Parameters
DAtabase (WWHYPDA) (Comunian and Renard, 2009) for
aquifer sites as well as the SoilKsatDB for soils (Gupta et al.,
2021). These databases were launched in 2006 and 2021

with the aim of creating a collaborative catalog of values
and statistical distributions needed for subsurface hydrolog-
ical modeling. The data are stored together with metadata
like estimated measurement errors, number of metadata on
the site, the measurement technique, length scale, and rock
or soil type.

As such, they can serve as a repository for background
information that practitioners can draw on to improve their
understanding and modeling of the subsurface. Bayesian in-
ference is known for being able to incorporate such back-
ground information by virtue of the prior distribution and,
therefore, provide information for free. While the role of pri-
ors and their choice in statistical inference used to be strongly
debated, it is now widely acknowledged that priors that are
based on transparent, impartial and observable base rates,
i.e., frequencies of the variable in question, provide an objec-
tive source of information (Billot et al., 2005; Gilboa et al.,
2010; Gelman and Hennig, 2015). In a data-scarce context
such as subsurface hydrology, the ability to access such a
free source of information is an invaluable asset that has not
yet been fully exploited (Heße et al., 2019). Recently, Cuc-
chi et al. (2019) developed and introduced a Bayesian hier-
archical model that addresses parts of this challenge. Using
this model, it is possible to derive prior distributions for one-
point statistics like mean and variance (Heße et al., 2021).
One of the biggest challenges, however, is the persistent lack
of data on higher-order statistics that would make it possi-
ble to derive prior distributions for models describing spa-
tial correlations such as the covariance or (semi-)variogram
function. Examples of such statistics are the horizontal and
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vertical correlation and/or integral scales, anisotropy ratios
and variogram/covariance models. As a result, there are no
freely available tools that systematically provide background
information on such variables. This means that even a sim-
ple structural model for spatial heterogeneity, like a Gaussian
process (Gelfand and Schliep, 2016), is currently lacking ob-
jective and informative prior distributions for its main param-
eters. For this purpose, it is necessary to collect and analyze a
sufficiently large data set suitable for statistical analysis, with
the help of which the prior distributions of such multivariate
parameters can be determined.

For the collection of these data, different sources are avail-
able: primary data in the form of geo-referenced point mea-
surements, secondary data in the form of empirical vari-
ogram functions and tertiary data in the form of statistical
estimates of subsurface properties. As regards primary data,
the SoilKsatDB database provides some geo-referenced mea-
surements, while the WWHYPDA unfortunately does not.
In addition, the research literature provides a substantial yet
disorganized repository on such data (Bjerg et al., 1992; Re-
hfeldt et al., 1992; Hess et al., 1992; Welhan and Reed, 1997;
Vereecken et al., 2000), primarily for conductivity and trans-
missivity fields. As regards secondary data, a large number of
empirical variogram clouds can be found in the literature. In
fact, they provided the majority of estimates on higher-order
statistics for our study (see below). In addition, some sources
provide curated collections of tertiary data in the form of
subsurface statistics, which can be used directly (Jim Yeh,
1992; Gelhar, 1993; Kupfersberger and Deutsch, 1999; Ru-
bin, 2003).

Apart from its above mentioned value for Bayesian infer-
ence, a large data set of spatial correlations can be impor-
tant for a wide range of applications and investigations. First,
geostatistical subsurface parameters like the characteristic
length scale (Neuman, 1990; Rovey II and Cherkauer, 1995;
Sanchez-Vila et al., 1996; Schulze-Makuch et al., 1999;
Bromley et al., 2004) or the dispersion coefficient (Pickens
and Grisak, 1981; Arya et al., 1988; Cirpka and Kitanidis,
2000; Dentz et al., 2011; Ross et al., 2019) are widely known
to show scale effects. This effect is such that their estimated
value increases with the observation scale. This observed ef-
fect is used to argue that the subsurface should be character-
ized as a fractal medium (Neuman et al., 2008). Yet so far,
this scale dependency has mostly been investigated theoreti-
cally or using small data sets (Zech et al., 2015). With a data
set like the one provided here, the community of subsurface
geostatistics has an empirical basis to investigate this ques-
tion in more detail.

Furthermore, the data set can be used to compare differ-
ent established variogram models by, for example, investigat-
ing how they differ in parameter estimation with respect to,
say, the length scale or the nugget effect. Furthermore, some
variogram models have additional shape parameters. A large
data set can be used to determine how such added complexity
can help to better describe empirical variogram functions and

whether the added complexity is justified by greater accuracy
in modeling.

Even outside of Bayesian parameter estimation, a data-
driven approach like ours can be of use for classic parameter
estimation. Virtually all geostatistical software tools provide
the ability to apply user-specified initial values. Having good
initial values can be key in any optimization routine, and our
results can provide such estimates.

Finally, the data set provided here can be used as an em-
pirical basis for a wide range of investigations into the prop-
erties and characteristics of subsurface quantities like hy-
draulic conductivity. Such additional studies can, e.g., inves-
tigate under which circumstances any given variogram model
function is the best choice and whether there is any connec-
tion between a given property of the experimental variogram
and some other property of the underlying medium. It can
be used to test the applicability of a new variogram model,
to test new hypotheses regarding subsurface behavior or to
investigate whether cross-correlations between different pa-
rameters exist.

In order to outline how we addressed the above objectives,
the rest of this paper is structured as follows: we first present
the methods used in this study to obtain our results. This
includes the sources for our data set and how we compiled
them, the covariance/variogram models we used to analyze
these data, the software tools and workflows we used, and the
online repositories where all data and software solutions can
be accessed. This is followed by the Results section, where
we present and analyze the statistical properties of the dif-
ferent variogram parameters and show how they can be used
to improve the characterization of the subsurface. Further-
more, we critically evaluate the limitations of our study and
discuss dangers of misuse. In the final section, Conclusions,
we summarize our main findings and show how practitioners
can benefit from them.

2 Methods

Let us first look at the tools and methods we used in this study
to draw our conclusions. These include the subsurface vari-
ogram data sets, the variogram models we used to analyze
these data and the numerical tools used for the analyses.

2.1 Data set

2.1.1 Data sources

To obtain a representative data set of subsurface variogram
functions, we conducted a literature search on the ISI Web
of Knowledge (https://clarivate.com/webofsciencegroup/
solutions/web-of-science/, last access: 31 August 2022).
We searched for these data by using the phrases “hy-
draulic conductivity”, “saturated hydraulic conductivity”,
“hydraulic transmissivity”, “hydraulic permeability”,
“correlation length”, “spatial variability”, “variogram”,
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Figure 1. Overview of the countries from where data sets were available.

“semi-variogram”, “kriging” and “covariance”. We looked
at all the references that came up from this search. If they
contained subsurface measurements or a geostatistical anal-
ysis of them, we added them to the data set. If reference was
made to available data, we tried to contact the corresponding
author(s) of the study. The data collected can be divided into
three main categories, namely (i) existing data on hydraulic
conductivity, transmissivity or permeability (in the form of
tables) published in peer-reviewed papers; (ii) processed data
on variogram functions in the form of empirical variogram
functions derived from the logarithm of these values; and
(iii) collections of estimated variogram parameters. It is clear
that the first form of data is the most useful as it contains
little additional processing, while the last form represents the
least amount of information. Overall, however, the second
form of data was the most common.

Figure 1 shows a world map of countries where data sets
could be collected. The color map shows how many data
points are available in each country, while the countries with-
out data are shown in grey. As can be seen, the focus is on
North America and western Europe, as is usual for scientific
data. But other world regions are also covered to a reason-
able extent. So the data set contains a wide range of climate
regions and geographical media.

2.1.2 Preparation of the data

Depending on the type of data, we used a number of differ-
ent workflows to process them. Raw data of hydraulic con-
ductivity, transmissivity and permeability were processed by
deriving the empirical variogram cloud from their logarithm,
which was subsequently joined with the ones derived from
the literature. The empirical variogram clouds found in the
literature were available as scatter plots. They were digitized
using the freely available WebPlotDigitizer version 4.6 (Ro-
hatgi, 2022). All empirical variogram clouds were then fit-

ted to one of a number of variogram model functions. These
model functions and the workflow will be explained below.
The last type of data was processed statistics provided in sci-
entific papers of textbooks. To avoid any overlap, we made
sure that these statistics were not derived from sites which
were already present in the other data. For all data derived
from the literature we provide the online sources from where
they were taken, by virtue of their digital object identifier in
the data file (see below).

2.1.3 Representation of the data

All the data used for this study are made available online
in a number of .csv files. In this section, we are going to
describe the keywords of these data files.

These keywords are depicted in Table 1. The first one is
site_id, which provides a unique identifier for the site
from which the data were drawn. This name is always based
on the name used by the authors which collected the data.
The next keywords all refer to estimated variogram param-
eters. These are var, len_scale, nugget and nu for
the variance, length scale, nugget and shape parameter, re-
spectively. The shape parameter is not found in all investi-
gated variogram models. In those cases, the entry is empty.
The keyword r2 is the goodness-of-fit measure, i.e., a mea-
sure describing how well a given optimum fit of a variogram
model function actually fits an empirical variogram cloud.
The keywords maximum_scale and minimum_scale
describe the maximum and minimum length scale assumed
to be present in the data set. In this study, these length
scales are interpreted to represent the largest and small-
est distances in the data set. The keyword var_type de-
scribes the type of variable. In this study, the data can re-
fer to hydraulic conductivity, saturated hydraulic conductiv-
ity (for soils), hydraulic transmissivity, hydraulic permeabil-
ity and indicator variograms of hydraulic conductivity. The
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Table 1. Name, description and units of the key variables used in
the results data file.

Header Description Units

site_id unique ID for the site –
var estimated sill –
len_scale estimated length scale m
nugget estimated nugget –
nu estimated shape parameter –
r2 goodness-of-fit measure –
maximum_scale maximum length scale of the data set m
minimum_scale minimum length scale of the data set m
var_type type of data –
direction physical direction of the variogram –
geological_unit specifies possible subunits per site –
data_source DOI of the data source –
ISO 3166 country code of the site –

keyword direction describes the direction in which the
variogram was taken. Direction x is the default direction.
This means that it was used in cases where a unidirectional
variogram was analyzed, and it was used as the main direc-
tion when two horizontal directions were present in the col-
lected data. If two horizontal directions are present, the sec-
ond direction is always encoded as y . Both x and y there-
fore have no further physical meaning beyond that. The di-
rection z is always used for the vertical direction. The key-
word geological_unit is used in those situations where
several variograms are presented in a source for a given site.
This situation can represent a number of different situations.
In some cases, the authors of the study separated the data by
different geologic strata; in some cases, the separation repre-
sented geologic subunits that were subdivided by the authors
according to their expertise; in some cases, the data repre-
sented several actually distinct sites that were combined into
a single measurement campaign; and in some cases, it was
not clear what criterion was used to make the separation. This
keyword may, therefore, represent a number of different sit-
uations. The keyword data_source contains the digital
object identifier (DOI) to the online resources from which
the data were drawn. Finally, the keyword ISO 3166 con-
tains the country code for the country where the data were
collected.

2.2 Variogram models

In this study, we used the GSTools Python package (Müller
et al., 2022) for the analysis of the empirical data and
the covariance models implemented in this package. The
data were analyzed with several different model functions,
namely the exponential function, the spherical function, the
Gaussian function, the Matérn function, the stable function
and the truncated power law (TPL) function using Gaussian
modes. However, in the vast majority of studies, the spa-
tial heterogeneity in the subsurface is expressed using the

(semi-)variogram function γ (h), which is related to the cor-
relation function ρ(h) through the following relationship:

γ (h)= n+ σ 2(1− ρ(h)). (1)

Here we follow the notation of GSTools, described in Müller
et al. (2022), where σ 2 is the correlated variability (or partial
sill), meaning the portion of the sill above the nugget n (the
uncorrelated variability). The resulting sill or total variance
is then the sum of both s = σ 2

+n. The parameter h is the lag,
i.e., the distance between two observation points. The equa-
tion above defines an omnidirectional scalar variogram for
the sake of brevity. To account for anisotropy and rotation,
we refer to Müller et al. (2022), where h is the isotropic dis-
tance that is a scalar value and where the distances hi along
the main axis of correlation are incorporated and re-scaled
with the respective anisotropy ratios ei as follows:

h=

√√√√ d∑
i=1

(
hi

ei

)2

. (2)

Closely related is the covariance function C(h)= s− γ (h),
which is also well known. Such a transformation is possible
for all considered variogram/covariance models since they all
represent weakly stationary (spatial) processes, meaning that
their variance is finite.

The first model function on the list is the exponential
model (Webster and Oliver, 2007), which is defined as

γ (h)= n+ σ 2
(

1− exp
(
−
h

`

))
, (3)

with ` being the characteristic length scale. Next is the spher-
ical model (Webster and Oliver, 2007), which is defined as

γ (h)=

{
n+ σ 2

(
3
2
h
`
−

1
2
h3

`3

)
h≤ `,

n+ σ 2 h > `
. (4)

The next variogram model considered here is the Gaussian
model function (Webster and Oliver, 2007). It is defined as

γ (h)= n+ σ 2
(

1− exp
(
−
h2

`2

))
, (5)

with the parameters having the same definition as above.
These first three model functions are widely used. For ex-

ample, they represent the vast majority of model functions
used in the literature that we used to collect our data set.
They also all contain the same number of parameters having
the same interpretation. In addition, we also examined three
other model functions, all of which contain an additional pa-
rameter. The first one is the Matérn function (Rasmussen and
Williams, 2005), which is defined as

γ (h)= n+ σ 2
(

1−
21−ν

0(ν)
·
(√
ν ·h

)ν
·Kν

(√
ν ·h

))
. (6)
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Here, 0 is the Gamma function, and Kν is the modified
Bessel function of the second kind (Abramowitz and Stegun,
1972). The ν parameter sets the Matérn function apart from
the above model functions by introducing an additional de-
gree of freedom and therefore more flexibility in modeling
the variogram behavior. The final variogram model used is
the stable model (Wackernagel, 2003), which is defined as

γ (h)= n+ σ 2
(

1− exp
(
−
hα

`α

))
. (7)

As can be seen, the stable model, named after the stable
distribution (Wackernagel, 2003), is a generalization of the
aforementioned Gaussian and exponential model by virtue
of turning their fixed exponent into the parameter α. Even
though it is not immediately obvious from its formula, the
Matérn function, too, is a generalization of the Gaussian and
exponential model, and the additional parameters ν and α,
therefore, share some similarities. This will be explored in
more detail in Sect. 3 below. Finally, we used the TPL model
function. This model was introduced by Di Federico and
Neuman (1997) to account for the often-observed scaling ef-
fects of the characteristic length scale of log-hydraulic con-
ductivity data. They showed how a superposition of Gaus-
sian or exponential variogram functions reproduces such a
behavior. Since both versions are very similar, we used only
one version in our study, namely a TPL function, constructed
with Gaussian functions:

γ (h)= n+ σ 2
(

1−HE1+H

(
h2
))
. (8)

Here, H is the Hurst coefficient, and E(·)(x) is the exponen-
tial integral function (Abramowitz and Stegun, 1972).

These different variogram models were used by us for fit-
ting them to every available empirical data set we collected
from the literature. For primary data, we used the procedure
as described in Müller et al. (2022), to derive the empiri-
cal variogram cloud and, therefore, turn them into secondary
data. We then derived estimates of the parameter values by
fitting the above variogram functions to the empirical vari-
ogram clouds for each site. An example is depicted in Fig. 2,
where four of the model functions can be seen fitted against
an empirical variogram data set of saturated log hydraulic
conductivity. The specific variogram data were derived by the
authors by analyzing the log-saturated hydraulic conductiv-
ity collected at an experimental plot site of the Tokyo Univer-
sity of Agriculture and Technology (TUAT), Japan, during a
measurement campaign during the summer of 2003 (Wijaya
et al., 2010). The best-fit parameters resulting from a fitting
procedure like this formed the basis of the analysis presented
in the following. It should be noted that not all empirical var-
iogram data could be fitted with all variogram model func-
tions. In those cases where comparisons between different
model functions were made, we therefore restricted our anal-
ysis to those sites for which we could achieve satisfying re-
sults for all variogram model functions.

Figure 2. Scatter plot of the empirical variogram function for satu-
rated log hydraulic conductivity presented by Wijaya et al. (2010),
jointly with optimal fits using the exponential, the spherical, the sta-
ble and the TPL model function.

A crucial property of variogram models is the roughness
information that is closely related to the mathematical con-
cept of differentiability. The roughness α of a correlation
function ρ(r) can be defined as (Wu and Lim, 2016)

ρ(r)≈ 1− k · rα as r→ 0, (9)

with 0< α ≤ 2 and k > 0. Low values of α indicate a Gaus-
sian process (not to be confused with the Gaussian variogram
model) whose fields are very rough, whereas higher values
indicate a process whose fields are very smooth.

For example, the Gaussian variogram model has a rough-
ness information of α = 2; the exponential and spherical
models have α = 1. The shape parameter of the Matérn
model is directly connected to its roughness information with
α =min(ν,2), and in the case of the stable model the shape
parameter coincides with its roughness information.

2.3 Numerical tools

As already mentioned, the data came from a variety of
sources, most of which were scatter plots of empirical var-
iogram functions in scientific articles and reports. In a first
step, we digitized them with the freely available WebPlot-
Digitizer version 4.6. These data were joined into two dif-
ferent .csv files, one for aquifer sites and one for soils.
These two data files of the extracted data are available online
in the associated GitHub repository, which can be found at
https://github.com/GeoStat-Examples/GeoStat-DB (last ac-
cess: 11 January 2023) and is part of the collections of geo-
statistical examples of the GeoStat-Framework Python pack-
ages. The repository contains the whole workflow that gener-
ated all the results presented in the paper and ensures trans-
parency and reproducibility of the workflow. This is particu-
larly important since we consider the availability of the data
set to be a key asset of our study. Making all data, results
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and the workflow that connects them available is therefore
mandatory.

The data are stored in a series of subfolders that repre-
sent the different stages of processing. The data_raw/
folders contains raw data files, i.e., data on point-referenced
measurements of hydraulic conductivity, transmissivity
and permeability. Since some of the authors we contacted
raised concerns about data ownership, we could not make
all raw data available. In those cases, only the empirical
variogram data are made available. The data_prep/
folders contain data on empirical variogram clouds. These
are either derived from the aforementioned raw data or, more
commonly, by digitizing scatter plots from journal articles
and reports. The data_proc/ folder contains processed
data, where all empirical variogram data are stored jointly
in two files, one for data from aquifer sites and one for
data from soils. They form the basis for all the analyses
presented below. The data_stats/ folder contains the
results of the geostatistical analysis, i.e., a number of .csv
files that contain the best-fit, geostatistical estimates. Here,
the .csv files follow the naming convention such that the
file aquifer_statistics_gaussian.csv contains
statistics from aquifer sites derived using the Gaussian vari-
ogram model, the file soil_statistics_matern.csv
contains statistics from soils derived using the Matérn var-
iogram model and so on. In addition, this folder contains
statistics derived from the literature. The scr/ folder
contains the Python scripts to perform these geostatistical
analyses. These files are different depending on whether
they are used to analyze aquifers or soils and what variogram
model is used for the analysis. For example, the Python script
empirical_aquifer_analysis_exponential.py
analyzes data from aquifer sites using the ex-
ponential variogram model, the Python script
empirical_soil_analysis_matern.py ana-
lyzes data from soils using the Matérn variogram model, and
so on. The folder also contains the geostat_db_tools/
subfolder, where Python subroutines that are shared by all
the other scripts are placed. Finally, the paper/ folder
contains all data used in the production of this paper. This
comprises the paper.tex file for the main text, the
paper.bib file for the references used, the figures and all
the scripts used to generate the figures from the results in the
data_stats/ folder. This repository, therefore, contains
all the data and the entire workflow for creating, reviewing
and improving the results presented here.

3 Results and discussion

In the following, we will present and discuss the results of
the analysis of the above data set using the tools presented
in the previous section. For this purpose, we will focus on
the statistical properties of the estimated variogram parame-
ters. In particular, these are the length scale, the vertical and

Figure 3. Scatter plot of empirical variogram function for satu-
rated log hydraulic conductivity presented by Wijaya et al. (2010)
(same data as presented in Fig. 2) and by Huysmans and Dassargues
(2006).

horizontal anisotropy, the nugget and the potential shape pa-
rameters of the variogram model function. In addition, we
will investigate and compare how different model functions
can describe empirical variogram data.

3.1 Comparison between different variogram model
functions

Let us start with a comparison between the different vari-
ogram model functions using a goodness-of-fit criterion. The
investigated model functions were the Gaussian model, the
exponential model, the spherical model, the Matérn model
and the stable model function. As the goodness-of-fit crite-
rion, we chose the (pseudo-)R2 measure, also known as the
coefficient of determination, as implemented in the GSTools
Python package. In this context, the (pseudo-)R2 score indi-
cates how much better a fitted model matches the data com-
pared to a pure nugget model set to the mean value of the
empirical variogram cloud.

Since not all model functions could provide a fit for all
sites in the collected data set, we only used those sites for
the comparison where the fitting procedure converged for
all considered model functions. Overall, results between the
different model functions were very similar when a clear
plateau was reached within the covered spatial range (see left
panel in Fig. 3 with the same data as presented in Fig. 2)
but varied often substantially when no clear plateau was
reached (see right panel in Fig. 3 with data from a low-
permeability clay formation in Belgium; Huysmans and Das-
sargues, 2006). The similar accuracy of the different model
functions was, of course, only true in the aggregate, i.e.,
when looking at the whole data set. It can, however, be ex-
plained with the overall similar behavior of variogram func-
tions. Most differences between them are present at the ori-
gin of the functions, whereas for large spatial distances the
different functions converge. The problems associated with
empirical variogram data, which show no clear plateau with
the covered spatial range, will be discussed in the following
sections, where we will look into the behavior of different
parameters of the model functions in more detail.

In general, our results showed comparable goodness-of-
fit measures for all investigated variogram model functions
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Table 2. Average R2 scores for the different variogram model functions. For this comparison, only aquifer sites were used where all model
functions resulted in a fit.

Variogram Gaussian Exponential Spherical Matérn Stable Fractal
model

R2 score 0.7149 0.7159 0.7173 0.7346 0.7359 0.7196

Figure 4. Scatter plot of the estimated R2 scores of the exponential
and the spherical model function.

(see Table 2). Both the Matérn and the stable model function
showed somewhat better R2 scores compared to the others.
This can be explained by the additional degree of freedom
and therefore additional flexibility to match any given point
cloud. However, whether these overall modest gains in ac-
curacy are justified depends on the type of application and
the needs of the practitioner. One formal way to quantify
this trade-off are model selection criteria like the Akaike,
Bayes or Hannan–Quinn information criteria, which com-
bine goodness-of-fit measures with a penalty term for the
number of parameters any given model has.

In this study, we did not perform such a quantitative model
selection analysis since the overall goodness of fit was ex-
tremely similar for all investigated model functions. This
was further substantiated when looking at a scatter plot of
the individual R2 scores comparing all functions pointwise.
These comparisons showed that the similarities in accuracy
between the different model functions were not only valid on
the aggregated but also on the individual level (see Fig. 4 for
a comparison of the exponential and spherical model func-
tions). Our results therefore indicate that the selection of the
most appropriate model does not have to be based on con-
cerns about accuracy but can be guided by other considera-
tions.

However, as will be shown and discussed below, the over-
all similar accuracy of the Gaussian, the exponential and the
spherical model may be a result of the nugget value compen-
sating for some of their lack in flexibility, which is restricted
to the area of the curve near the origin. Given that the nugget
value is not a pure convenience parameter but has a plausible
physical interpretation, this behavior of the fitting procedure
may be a liability depending on the modeling task.

It is known from the literature that the impact of the spe-
cific variogram model function on flow and transport sim-

ulations is mixed (Riva and Willmann, 2009; Jafarpour and
Tarrahi, 2011; Heße et al., 2015). Given the overall similar
accuracy, these results can interpreted such that the choice of
what model function to use for any given task in subsurface
hydrology can be driven by considerations of practicality and
the specific aims of the task at hand.

One notable difference between the model functions was
the number of sites for which our fitting procedure converged
and consequently provided usable results (data not shown).
The trend was such that the stable model showed the best
performance, whereas the Matérn model showed the worst,
with the other models being in between (data not shown).
However, this study does not aim to present a thorough anal-
ysis of the numerical properties of the different model func-
tions since these often depend on the specific implementation
of the model functions themselves, the functions used pro-
vided by other packages and the specific setup of the fitting
procedure. Using other software or tweaking the fitting pro-
cedure can therefore lead to a different behavior. We would
consequently regard these observed differences as tentative
and context specific. Regardless, in the following we will use
results derived with the stable model as the default model,
when investigating the behavior of specific parameters, if not
specified otherwise.

3.2 Scale dependency

As we already discussed in the Introduction, the scale depen-
dency of hydraulic properties like the correlation length is
a well-known phenomenon from the literature (Neuman and
Di Federico, 2003; Neuman, 2008; Colecchio et al., 2020).
Therefore, we investigated this property empirically by using
our data set and estimating the correlation lengths for all sites
in the data set. The resulting set formed the basis for the fol-
lowing analysis. As mentioned earlier, we will only present
results derived using the stable model. This was largely un-
problematic, as the overall trend for most estimated parame-
ters was the same regardless of the model function used. Only
in cases where notable changes were observed or where we
compared differences between the two models do we address
them separately.

Our results confirmed a monotonous increase in correla-
tion lengths with the maximum length scale for the case of
both soil and aquifer sites (see Fig. 5). Using a log–log plot,
we can clearly see an excellent linear relationship between
both in the data set. As stated in the Methods section, the
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Figure 5. Log length scale vs. log maximum length for variogram
models fitted to data from aquifers (a) and soil (b). The used vari-
ogram model function was the stable model.

maximum length scale was defined here as the largest dis-
tance in the data set. In this study, this was identified with the
largest distance between two observation points in the data
set, typically two piezometer stations or observation wells.
We also performed the same analysis with respect to the
minimum length scale, which was identified with the small-
est distance between two observation points in the data set.
As expected, these results showed the same trend (data not
shown).

It is not the purpose of this paper to enter into the long-
standing debate about the nature of scaling effects and
whether hydraulic variables represent intrinsic physical prop-
erties or whether they are introduced by the measurement
process. However, it can be said that these data, and in partic-
ular the striking smoothness of the scaling behavior, provide
strong evidence for the idea that the length scale of variogram
functions is not primarily an intrinsic physical property of the
medium but rather is influenced by truncation effects induced
by the measurement process.

To further investigate the behavior of the estimated length
scale, we also looked at the different estimates derived us-
ing different variogram models, namely the exponential, the
spherical, the Gaussian, the Matérn and the stable model
function. Results showed an overall strong linear correlation
between the estimates for all investigated variogram models
(see Fig. 6). While the slope of the regression plot varied,
the overall trend was the same regardless of the used model.
This demonstrates that all models capture the same underly-
ing property of the empirical variogram cloud. Besides this
strong linear correlation, a noticeable number of sites were
outliers from this trend. To better understand these outliers,
we took a closer look at a number of these sites. In all cases
that we looked at, we found an empirical variogram function
which had not yet reached a clear plateau. This phenomenon,
that not all studied empirical variogram functions flatten with
the studied spatial domain, has already been discussed above
(see Fig. 3 and associated paragraph). When the long-range
behavior of the full model function was not present in the
data set, it resulted in a low sensitivity during the fitting pro-
cedure. The different variogram models, therefore, reacted
differently when exposed to these data and provided some-

times strongly diverging estimates for those parameters most
sensitive to the long-term behavior of the variogram func-
tion, namely the length scale and the variance. It should be
noted that in the literature, we found a tendency to perform
the fitting such that the plateau of the model function was
reached within the given spatial range, probably by enforc-
ing additional constraints, like fixing the variance, during the
estimation procedure. Within this study, we did not enforce
such conditions resulting in the observed divergence between
the different models.

To analyze the behavior of the scale dependency in more
detail, we performed a kernel-density estimation for the
residuals around the linear regression line presented in Fig. 5.
The results showed a similar behavior for both aquifers and
soils (see Fig. 7). In both situations, we saw that most esti-
mated length scales were concentrated at around 1/10th of
the maximum length scale with a noticeable uncertainty
around that estimate. This value coincides well with an em-
pirical rule of thumb provided, e.g., by Neuman et al. (2007).
Apart from this, both aquifers and soils showed estimated
length scales that were larger than the maximum length scale
present in the data set, a finding that is not explainable by
a simple truncating process. These length-scale estimates
which exceed the maximum length scale are not only sub-
stantially less common, their estimated value is also much
less certain. This is due to the fact mentioned already that
only a portion of the overall empirical behavior could be used
for the fitting process, making the fitting procedure less sta-
ble.

All the above results present the length scale determined
by fitting a stable variogram function to the empirical var-
iogram cloud. However as discussed above, the correlation
between the estimated length scale was high for all inves-
tigated variogram models. Using another model function
consequently resulted in a very similar behavior (data not
shown).

From a Bayesian perspective, the distributions of the resid-
uals shown in Fig. 7 represent the uncertainty of a length
scale estimate given a maximum length scale as a predictor.
They are therefore a natural choice for the prior distribution
of a Bayesian approach to variogram parameter estimation.
Let us demonstrate this approach using the following steps.
First, we perform a regression analysis for all sites in the
data set for the variogram model one wants to use. Let us use
aquifer sites only and the exponential model function since
this is a widely used model. The regression model for the log
correlation length given the maximum log length scale then
results in

logλ= 0.985122logλmax− 0.75734. (10)

Here λmax would be the said maximum length scale, i.e., the
predictor of λ. This represents the knowledge one has regard-
ing the expected correlation length. In the next step, we esti-
mate the distribution of the residuals. This represents the un-
certainty one has regarding the expected correlation length.
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Figure 6. Scatter matrix plot for the estimated log length scales using the Gaussian, the exponential, the spherical, the Matérn and the stable
model function.

Figure 7. Histogram and kernel-density estimate of the residu-
als around the regression line of the data presented in Fig. 5 for
aquifers (a) and soil (b).

In our case, we used a parametric model, namely a mixed
model consisting of two independent Gaussian distributions:

p(logλmax)=
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Fitting this parametric model yielded the following esti-
mates: µ1 =−1.024, σ 2

1 = 1.035, µ2 = 9.488, σ 2
2 = 1.318

and θ = 0.8709. The goodness of the fit using these param-
eters can be seen in Fig. 8, indicating a very good repre-
sentation of the estimated density. While a more complex

Figure 8. Kernel-density estimate (solid) and fitted parametric
model (dotted) of the residuals around the regression line for
aquifers using the exponential model.

model of, say, three Gaussian distributions may fit the kernel-
density estimate even better, we consider the simpler model
to be an acceptable parametric model for our case. This
model, i.e., the regression and the prior distribution, can be
used by a practitioner for the Bayesian geostatistical model-
ing of an unknown site.

The above example is, of course, highly contingent on a
number of factors. As already mentioned, using a different
variogram model may lead to somewhat different estimates
and maybe another parametric model may represent the in-
ferred distribution more satisfactorily. In fact, we did follow
the above procedure using other variogram models, which
did lead to slightly different values for the regression line
and the fit around the residuals. In addition, the data set used
may change over time, or another type of clustering of the
data may lead to different data sets and thus to different prior
distributions. Regardless, the above example is a proof of
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Figure 9. Scatter plot of both main horizontal length scales de-
termined for aquifers using a stable model function (a) and (b) a
kernel-density estimate of the residuals around the diagonal.

concept on how to make use of the assets provided in this
study. Of course all the scripts used to derive above results
are available jointly with this paper. Practitioners are there-
fore free to repeat the analysis, review its results, and adapt
it to their needs and applications.

3.3 Anisotropy

Having described the scale dependency of the correlation
length, let us now look at the anisotropy of these estimates.
As is well known, subsurface anisotropy is strongly pro-
nounced between the vertical and horizontal direction but is
often assumed to be negligible between the two horizontal
direction.

Let us start with anisotropy in the horizontal direction. Our
results showed a strong linear relationship between the esti-
mated log length scales in both directions (labeled λx and λy
in Fig. 9 left). The scatter is centered around the diagonal
line, which is to be expected since the x and y directions are
arbitrarily chosen and do not reflect any geological proper-
ties that could induce a meaningful difference between the
two. Using the same procedure as above, we can also esti-
mate the distribution around that center diagonal (see Fig. 9
right). In general, this estimate is based on significantly fewer
data points (n= 26 in case of the stable model) and is there-
fore less reliable compared to the density estimates presented
above. As a result, a parametric model should be used to esti-
mate the prior uncertainty, by following the above procedure.
Given the tailing indicated in Fig. 9, the short-tailed Gaussian
distribution, used in above example, may not be an appropri-
ate parametric model for this situation. Instead, the use of a
long-tailed distribution like the t distribution would be advis-
able.

Let us now look at the anisotropy between the vertical
and horizontal directions. This anisotropy is known to be
strongly pronounced due to the geological processes like sed-
imentation (Pyrcz and Deutsch, 2014). Our results confirm
this anisotropy with some notable exceptions (see Fig. 10a).
Overall, the number of sites used for this estimation was
larger compared to the above case of horizontal anisotropy
(n= 48 for the case of the stable model). This number rep-

Figure 10. Scatter plot of horizontal and vertical log length scales
determined for aquifers using a stable model function (a) and a
kernel-density estimate of the residuals around the diagonal (b).

resents only sites in aquifers but could be increased if sites
from soil variograms would be included. Since their num-
bers are small overall (n= 4), we performed no dedicated
analysis for this group alone.

One of the most surprising results was the number of cases
where the estimated vertical length scale is larger than the
estimated horizontal length scale (see Fig. 10b). They are al-
most all caused by sites where the estimated length scale was
larger than the maximum length scale. This indicates that it
may be, at least in part, caused by the resulting uncertainty
in the estimation procedure. It is, therefore, not clear whether
these results should be used to derive a prior distribution.
If they were included, the resulting distribution would again
show a long-tailed behavior. Like in the case of the horizontal
anisotropy, a parametric fitting procedure using the t distri-
bution could be a good candidate (see Fig. 10b).

3.4 Nugget value

The next variogram parameter we investigated was the
nugget parameter. This parameter describes the variance at
the lag value of zero, i.e., how much measurements differ that
are taken at effectively the same location. Such differences
are often interpreted to represent two very different phenom-
ena; first they may refer to measurement errors or second
to unresolved variations in the measured variable below the
measurement scale (Rubin, 2003; Kitanidis, 2008).

To investigate the behavior of the nugget parameter, we
estimated its value using the stable model function and fitted
it against our collected data set. For the analysis, we normal-
ized the value of the nugget against the variance, making sure
its value was between 0 and 1.

Results showed a somewhat similar behavior for the es-
timated distribution of nugget values for both aquifers and
soils. In general, most nugget values were close to 0 in both
cases, indicating a small or negligible measurement error or
subscale variabilities. Regardless, a substantial portion of the
estimated nugget values were found above the value of 0.5,
meaning that large uncertainties are present in many data
sets. Such higher values for the nugget were more common

Hydrol. Earth Syst. Sci., 28, 357–374, 2024 https://doi.org/10.5194/hess-28-357-2024



F. Heße et al.: Data-driven geostatistical subsurface characterization 367

Figure 11. Kernel-density estimate of the estimated nugget values
for aquifer (a) and soil (b) sites. The variogram model used was the
stable model.

for data sets from soils, leading to an effectively bimodal be-
havior of the resulting density estimates. It should be noted
that our soil data set was smaller compared to the aquifer
data set (n= 71 and n= 215 for soil and aquifer sites, re-
spectively). As regards a suitable parametric model for this
observed behavior, it is clear that a Gaussian or t distribution
is not a viable candidate, due to the potential range of values
being bounded between 0 and 1. Any parametric model func-
tion that is to be fitted against the sample should, therefore,
be chosen to honor both these boundaries as well as the gen-
eral behavior indicated in the kernel-density estimate. Given
the observed behavior in Fig. 11, a mixed model using the
beta distribution or a truncated lognormal distribution may
be viable candidates.

To investigate how the nugget value differed between the
variogram model functions, we also compared their respec-
tive estimates. Our results showed a strong linear correlation
between the estimated nugget of the stable model and the
Matérn model (see Fig. 12a), which shows the similarity be-
tween both model functions. On the other hand, plotting the
estimated nugget of the Gaussian model vs. the exponential
model shows substantially larger differences between the two
(see Fig. 12b). This is due to the different behavior of these
two models for small lag values. Whereas the exponential
model exhibits a steep gradient, the Gaussian model is es-
sentially flat in this region. The different nugget values are
therefore an artifact of the fitting procedure, which tries to
compensate for this difference through adjusting the nugget
value. This demonstrates that prior distributions for this value
should be considered as model specific and should not sim-
ply be transferred between different model functions.

The estimated nugget values of the spherical model
showed the highest correlation with the nugget values of the
exponential model but a lower correlation with the nugget
values of all other variogram model functions examined (data
not shown). This is due to the similar behavior of the spher-
ical model and the exponential model at small lags, again
showing the relationship between this near-origin behavior
of the model function and the ability of the nugget model
to compensate for possible inconsistencies between the em-

Figure 12. Scatter plot of the estimated nugget values for the stable
model vs. the Matérn model (a) and Gaussian model vs. the expo-
nential model (b). All data were drawn from aquifer sites.

pirical variogram and the behavior of the model function. Al-
though all results shown were derived from aquifer sites only,
the use of data from soils also supports these statements.

3.5 Shape parameter

Many common variogram model functions like the exponen-
tial and the Gaussian model are fully defined by specifying
the length scale, the variance and the nugget value. There is,
however, a class of variogram model functions that feature an
additional degree of freedom. In the following, we will call
this additional parameter the shape parameter.

In the case of the well-known Matérn function, this param-
eter is known as the roughness parameter ν. This name refers
to the fact that its value is directly related to the roughness
of the resulting spatial random field (Banerjee and Gelfand,
2003; Diggle and Ribeiro, 2007). The relationship is such
that a low value means a high roughness, with the value of
ν = 1.0 resulting in a random field that has no derivatives
whatsoever, i.e., infinite roughness. A Matérn model func-
tion with such a low value is mathematically identical to the
exponential model function. On the other end of this spec-
trum, a very high value of ν→∞ results in a field with
an infinite number of derivatives, i.e., infinite smoothness. A
Matérn model function with such a high value of ν is mathe-
matically identical to the Gaussian model function.

Our results show a somewhat bimodal behavior of the
resulting frequency distribution of estimated ν values (see
Fig. 13). This behavior is very similar for both aquifers and
soils. The first cluster of the estimated shape parameter ν is
found for very small values, with most values being at or
near ν = 0.5. This indicates that an exponential model func-
tion would perform with similar accuracy in these cases. On
the other hand, a second cluster can be found for ν > 20. Al-
though the Matérn function only converges to the Gaussian
function in the limit of ν→∞, it should be noted that al-
ready for values of ν > 10, both functions become virtually
indistinguishable. The roughness parameter has little impact
beyond such a high value, meaning that it barely changes the
behavior of the function anymore. This means that a Gaus-
sian model function would be able to similarly describe cases
in this second cluster very well.
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Figure 13. Kernel-density estimate of the estimated roughness pa-
rameter ν of the Matérn variogram model function for aquifer (a)
and soil (b) sites.

Figure 14. Kernel-density estimate of the estimated shape param-
eter α of the stable variogram model function for aquifer (a) and
soil (b) sites.

These observations support a number of conclusions. First,
despite the roughness parameter spanning a significant range,
most of its values fall into two intervals, both of which can
be approximated well with a more common model function,
namely the exponential and Gaussian function. Second, the
number of cases where a Gaussian model function would be
a good fit is larger than expected. Due to its high smooth-
ness, the Gaussian model function is sometimes considered
unrealistic (Stein, 1999). This assessment is not supported
by our findings, at least not from a simple fitting perspective.
Finally, the Matérn model function is still a relevant model
function since it may not be clear in advance which classic
function, i.e., the Gaussian or the exponential, can provide a
better performance.

In the next step, we analyzed our data set using the sta-
ble variogram model function. The shape parameter of this
model function is denoted as α. Our results again show a
roughly bimodal behavior of the resulting frequency distri-
bution of α (see Fig. 14). It should be noted that the shape
parameter α is defined between 0 and 2, and many values are
found for α = 2. Still, the overall similarity shows a connec-
tion between the two shape parameters of the Matérn and the
stable mode functions.

To better understand this connection between the shape pa-
rameter ν of the Matérn model and the shape parameter α of
the stable model function, we performed a regression analy-
sis for those sites where both model functions did result in

Figure 15. Scatter plot of the estimated shape parameter values for
aquifers (a) and soils (b). Here, ν is the shape parameter of the
Matérn model, and α is the shape parameter of the stable model.

a fit. Our results showed a very similar behavior for both
aquifers and soils (see Fig. 15). As can be seen, the scatter
plot reveals that most points in the plot fall into two distinct
correlation regimes between ν and α. First, for smaller values
of ν, representing an exponential-like behavior of the Matérn
function, we see a linear correlation between the two with a
very flat slope. This flat slope is caused by the strong cluster-
ing of sites where ν ≈ 0.5 For high values of ν, representing
a Gaussian-like behavior of the Matérn function, we see a
nearly vertical behavior; i.e., a larger range of ν values now
corresponds to a very small range of α values. The latter is
caused by the truncation behavior of the stable model, which
is confined to values between 0 and 2. This means that the
range of ν values, representing a Gaussian-like behavior, gets
mapped into a very small interval of α values close to 2 (see
behavior in Fig. 15).

We can draw two conclusions from these observations.
First, the shape parameter α of the stable model is indeed
related to the shape parameter ν of the Matérn model since
both are directly connected to their respective roughness in-
formation as described above. Second, the confined parame-
ter range of the stable model is not a drawback from a prac-
tical point of view since the sensitivity of the Matérn model
becomes extremely low for larger values of ν. In fact, from a
numerical perspective, this limitation of the parameter range
is an asset since it improves the performance of an optimiza-
tion algorithm necessary for the fitting procedure. Although
this study does not aim to investigate this issue in detail, we
did indeed observe a much higher numerical stability of the
stable model compared to the Matérn model. This stability
was observed both in terms of the number of steps necessary
to find an acceptable fit between the model function and the
empirical variogram function and in terms of the number of
sites for which optimal parameters could be found. Although
the name of this model is derived from the stable distribution
(Wackernagel, 2003), it, therefore, also describes its numeri-
cal behavior, a connection which is no doubt a coincidence.

Finally, we also looked at the Hurst coefficient, which can
be interpreted as the shape parameter of the TPL variogram
model function. Results for the Hurst coefficient also show a
roughly bimodal behavior, with many values being clustered
near the boundaries of the values’ range (see Fig. 16b). It
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Figure 16. Scatter plot of the estimated Hurst coefficient for aquifer
sites (a) and its kernel-density estimate (b).

shows the low sensitivity of the Hurst coefficient for the data
sets used. This is not surprising given that the highest sensi-
tivity is with respect to the near-origin behavior, where often
fewer data points were available. In addition, the nugget pa-
rameter also has its highest sensitivity in this region. Both
these facts result in a situation where the overall sensitivity
of this parameter is rather low. In addition, we also looked at
the overall trend of the Hurst coefficient with respect to the
length scale and found no relationship between the two (see
Fig. 16a). Given, however, the low sensitivity of the Hurst
coefficient toward the available data that has already been
established, this result has to be interpreted carefully.

3.6 Critical assessment of results

In addition to presenting and discussing our results, we
would also like to assess our work critically, in the sense of
determining both possible weak points as well as limits to
their applicability. This will help practitioners to apply our
results and use our data more appropriately and avoid mis-
use.

The first topic that we would like to address concerns the
problem of publication bias or survivor bias (Schmitz et al.,
2012). This is caused by the fact that our data set is based on
published data alone, meaning that only data which both the
author(s) and editor(s) deemed suitable for publication could
end up in our collection. This notion is for instance substan-
tiated by the fact that all empirical variogram functions we
found produced viable variogram parameters when they were
analyzed by the respective author(s) of the study. However,
when we re-analyzed them, a certain number of sites resulted
in a fit where the estimated length scale was larger than the
largest length scale in the study. This indicates that authors
choose not to publish results that they consider unsatisfac-
tory for various reasons. As a result, our data set is not a ran-
dom sample of aquifers and soils from all over the world but
skewed toward sites where an acceptable variogram analysis
was achieved, whereas problematic cases may have been left
out. Having a non-random data set is a serious challenge for
any statistical investigation. Whether this is a problem, how-
ever, depends on the type of application. For a typical geosta-

tistical characterization of a site, it may not be of relevance.
After all, practitioners of subsurface geostatistics by defini-
tion are only going to use these results for sites which they
deem appropriate for a variogram analysis. For such an ap-
plication, the data sets used for our investigations may, there-
fore, not be biased in any relevant way. Still, there are appli-
cations where the topic of survivor bias should be considered
carefully. In any situation where our data set is to be used for
inferring general properties of aquifers and soils, proper care
in the interpretation of one’s results is, therefore, advised.

Another challenge present in the data sets found in the lit-
erature was the general lack of data for short lags. Most of
these data sets were generated from observation networks
that followed a regular grid. This makes sense in practice,
as most studies try to maximize the spatial coverage of their
measurement campaign but can only use a limited number of
observation points due to budget constraints. However, from
a variogram estimation perspective, this is problematic. Pa-
rameters such as the nugget or shape parameter are most sen-
sitive to behavior near the origin, i.e. at small distances com-
pared to the characteristic length scale. If the data in this im-
portant region are sparse or noisy, the estimation procedure
becomes more error prone. A good way to balance budget
constraints with the need for better information at close dis-
tances would be to arrange at least some of the observation
points in a logarithmic fashion (Müller et al., 2021).

Another possible challenge concerns the variable number
of data points used for the inference of the different density
distributions of variogram model parameters. While any den-
sity estimation improves with the number of samples being
used, there are no widely agreed rules as to how many sam-
ple points are necessary for an acceptable estimation proce-
dure (Dell et al., 2002). In addition, different features of a
distribution need different numbers of sample points, with
higher moments or higher dimensions needing more data
(Silverman, 1986). This is particularly problematic for den-
sities having uncommon features like long tails, being highly
skewed or being multi-modal. In general, non-parametric es-
timators can handle the challenge of uncommon distributions
well but require a large sample size. On the other hand, para-
metric approaches require much fewer data but can lead to
model errors if the parametric model is far from the true
density (Li and Racine, 2006). In order to account for this
problem, we presented an approach where we started with
a non-parametric method, like kernel-density estimation and
subsequently interpreted the results within the context of a
suitable parametric model for the inferred behavior of the un-
derlying distribution. We then used the said parametric model
for estimating the density. Of course, this is only one possi-
ble approach to addressing this challenge, and practitioners
may find other approaches more appropriate depending on
their circumstances. Since all data and analyses are openly
available, they can easily adapt this approach to their needs.

Related to this topic is the problem that any inference
based on past observation may miss features that are not
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represented in the used data set (Billot et al., 2005; Gilboa
et al., 2010). For the results presented here, this is not of pri-
mary concern since all investigations were performed with
respect to properties which are known to be relevant based
on prior experience, i.e., the parameters of widely used vari-
ogram models. Still, the data set collected for this study can
be used to investigate a number of questions, some of which
have been alluded to above. In these cases, this challenge
should be kept in mind.

Another topic that needs to be addressed is the fact that
some of the variogram data we used for the analysis were
provided in clustered form such that they were labeled as
coming from the same site but representing different cate-
gories. In the data set, we marked these variograms by us-
ing the same site_id but distinguished them by the label
geological_unit. As mentioned in the Methods section
above, the reason that the same site label was used for differ-
ent data sets differed in each situation. In some cases, the
authors separated the data according to different geological
layers; in some cases the separation represented geological
subunits, subdivided by the authors according to their do-
main knowledge; in some cases it represented several ac-
tually different sites that were combined into a single mea-
surement campaign; and in some cases it was not clear ac-
cording to which criterion the separation was made. The la-
bel geological_unit does therefore represent a num-
ber of different and disparate situations. Still, the sheer fact
that they may be similar can pose a problem from a sta-
tistical point of view since variograms from the same site,
regardless of what that term meant in that particular study,
may be correlated to a certain extent. This problem is known
as pseudoreplication in the literature (Hurlbert, 1984). Us-
ing only a single data set per site would avoid this prob-
lem but reduce the overall amount of data available. On the
other hand, using all the data risks giving too much weight
to some sites, where several variograms are available. To de-
termine the relevance of this risk, we looked at variograms
derived from different subunits and saw moderate correla-
tions in some cases and none in others. Within the scope of
this study, we did therefore treat these different subunits as
independent sites. To properly account for the possibility of
within-site correlations, however, a hierarchical model could
be employed (Cucchi et al., 2019). In such a hierarchical
model such within-site correlation could be estimated from
the data provided enough data points are available. Within
the scope of this study, we did not perform such an investiga-
tion, but the availability of the data set, where variogram data
from the same site are marked as such, makes it possible for
future investigations to address this topic, if necessary.

The last topic we should discuss is the fact that the em-
pirical variogram functions do not represent raw data but are
already processed to a certain degree. This means that these
data implicitly contain modeling assumptions that were used
when these empirical variograms were determined and are
no longer present. As a result, it makes them somewhat less

comparable. From a Bayesian point of view this means that
the density estimates contain modeling uncertainty, which
may, depending on the need of the practitioner, result in a
larger uncertainty. This issue is unproblematic from a cau-
tionary point of view, since the result is simply an increase
in uncertainty. On the other hand, it is unsatisfactory due to
the said increase in uncertainty, which means a loss of infor-
mation, compared to the use of the raw data instead. For in-
stance, for the results presented in this paper, we did not use
tertiary data of site statistics due to the modeling uncertainty
associated with them but only made them available at the on-
line repository. While primary data have the lowest modeling
uncertainty, their overall numbers were too small. As a result,
secondary data formed the majority of the data providing a
compromise between sample size and accuracy.

Finally, we want to emphasize that a purely data-driven
analysis is not a substitute for but rather an addition to good
domain knowledge and site-specific expertise. First, our anal-
ysis does only provide the prior distribution for a number of
variogram parameters. As such, this is only the first step for a
full characterization, and site-specific data may lead a prac-
titioner to very different conclusions depending on the cir-
cumstances. Furthermore, our analysis has also shown how
elusive a number of parameters are if only fitting concerns
are taken into account. This is particularly true for the near-
origin behavior (e.g., nugget value) and parameters that de-
pend on it (e.g., the shape parameter). As such, a critical and
careful attitude towards data-driven methods is necessary to
prevent overconfidence and misuse of this otherwise impor-
tant tool of geostatistics.

4 Conclusions

In this study, we have presented two different advances for
the field of subsurface geostatistics: first, a data set of empir-
ical variogram functions from a variety of different locations
around the world, and, second, a series of geostatistical anal-
yses aimed at examining some of the statistical properties of
such variogram functions and their relationship to a number
of widely used variogram model functions.

The data set collected for this study is freely available
in the online repository associated with this paper (see the
“Code and data availability” section below). It can there-
fore be used by practitioners to replicate our analyses, ex-
tend them with additional data and adapt them to their needs.
They can also use it to explore new questions not covered
here. Finally, we explicitly encourage practitioners to both
expand the data set and extend the range of metainformation
associated with it. This would allow additional questions to
be answered and the scope of the data presented here to be
broadened.

As regards our analyses of the said data set, we have de-
rived a set of frequency distributions for the parameters of
variogram models that can be used as prior distributions for
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Bayesian geostatistical applications. Since these prior distri-
butions already contain a considerable amount of informa-
tion, their use will result in a higher information content in
the posterior. Given the overall dearth of subsurface data and
the often high exploration cost, such an additional source of
information presents a valuable asset for a geostatistical char-
acterization of a soil or aquifer site.

In addition, we investigated the viability of different vari-
ogram model functions for modeling the empirical variogram
cloud. Our results showed an overall similar accuracy of all
investigated variogram models even though some feature 1
additional degree of freedom. This overall similar accuracy
supports the notion that variogram models can be primarily
chosen by the practitioner based on other considerations like
familiarity, applicability and availability.

Finally, our investigation revealed the distribution of
some geostatistical features of subsurface sites. First, the
widely observed scale effect of many subsurface properties
is strongly pronounced for the characteristic length scale of
the heterogeneities. This observation supports the conceptu-
alization of the subsurface as a fractal medium, where het-
erogeneities appear on any scale of observation, and their ap-
parently finite length is, at least in part, a finite-size effect
caused by the truncation of the measurement process. Next,
the nugget value, a feature representing measurement errors
and subscale variability, is widely distribution over its possi-
ble range, an observation that is exacerbated by the fact that
simpler variogram models may tend to compensate with the
nugget parameter for a mismatched model behavior at short
distances. Finally, that behavior at short distances is strongly
connected to the roughness of said heterogeneities. Our re-
sults show that most sites fall into two distinct categories de-
pending on that roughness, i.e., either having very high or
very low roughness. If this behavior is to be represented cor-
rectly, a more flexible model function, e.g., the Matérn or
stable model, is to be used.

To extend the results and data discussed here, a number
of options can be considered. First, expanding the number
of sites covered and adding more features could reduce the
uncertainty in the prior distributions. Using the above work-
flow, the uncertainty in these distributions represents the un-
certainty of the entire data set and thus assumes that a par-
ticular site is a random draw from that set. However, it is
not mandatory to use such a large and therefore statistically
highly variable population. In fact, there is no unique popu-
lation from which any given site needs to be considered to be
randomly drawn from, a notion that is known in statistics as
the reference class problem (Hajek, 2007; Hajek and Hitch-
cock, 2016). As a result, it is advantageous to use the most
precise reference class for which a large enough sample is
still available, thus striking a balance between precision and
accuracy (Wallmann, 2017). In subsurface geostatistics, this
would mean only using sites for the transfer of information
which are similar to the given site based on some criterion
of site similarity (Kawa et al., 2022). Yet, being able to limit

one’s analysis to a smaller, more appropriate and less vari-
able cluster of similar sites would require a large population
of sites, arguably larger than the current data set.

Another possible venue for further study could be to estab-
lish a connection between certain variogram properties and
varied geological settings (sediments, rocks, porous versus
fractured media) as well as the measurement technique used.
This would again necessitate the addition of geological fea-
tures to the database itself, a task that was beyond the scope
of the current study. If done, it could, e.g., help practitioners
to discern how such features affect variogram behavior.

Code and data availability. In this study, we used a number of soft-
ware packages for the preparation of the data and the analysis of the
results. To guarantee that others can make use of the data collected
in this project as well as reproduce and adapt our analyses, we pro-
vide online resources to make them available. They are as follows:

– For the variogram/covariance analysis, we used the GSTools
Python package (Müller et al., 2022). This software is devel-
oped at https://github.com/GeoStat-Framework/GSTools (last
access: 11 January 2023). The used software version was 1.3.1
(https://doi.org/10.5281/zenodo.4899076, Müller and Schüler,
2021).

– The data used for the analysis in this paper are provided
at the https://github.com/GeoStat-Examples/GeoStat-DB
(last access: 11 January 2023) GitHub repository in-
side the data_raw/, data_prep/, data_proc/
and data_stats/ folders. Since this online ver-
sion may be updated over time, we also created a
Zenodo repository for the data used for this paper at
https://doi.org/10.5281/zenodo.8169429 (Heße, 2022).

– The workflow to reproduce the analyses from this pa-
per and the figures used herein is provided at again
at https://github.com/GeoStat-Examples/GeoStat-DB
(last access: 11 January 2023) in the src/ folder or in
https://doi.org/10.5281/zenodo.8169429 (Heße, 2022).

All code examples used in this study are released under the MIT
license.
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