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Abstract. The underestimation of precipitation (UoP) in
the hilly and mountainous parts of South Asia is estimated
by some studies to be as large as the observed precipita-
tion (P ). However, UoP has been analyzed to only a limited
extent across India. To help bridge this gap, watershed-scale
UoP was analyzed using various P datasets within a water
imbalance analysis. Among these P datasets, the often-used
Indian Meteorological Department (IMD) dataset is of pri-
mary interest. The gross UoP was identified by analyzing the
extent of the imbalance in the annual water budget of water-
sheds corresponding to 242 river gauging stations for which
quality-controlled data on catchment boundaries and stream-
flow are available. The water year (WY)-based volume of ob-
served annual P was compared against the observed annual
streamflow (R) and the satellite-based actual evapotranspira-
tion (ET).

Across many watersheds of both Northern and Penin-
sular India, spurious water imbalance scenarios (P ≤ R or
P � R+ET) were realized. It is shown that the manage-
ment of water, such as groundwater extraction, reservoir stor-
age and water diversion, is generally minimal compared to
the annual P in such watersheds. It is also shown that an-
nual changes in terrestrial water storage are minimal com-
pared to the annual P in such watersheds. Assuming that data
on R (and, to a lesser extent, ET) are reliable, it is concluded
that UoP is very likely the cause of this imbalance. Inter-
watershed groundwater flow (IGF) is assumed to be negligi-
ble. While the effect of IGF on R is unknown, examples are
provided which show that IGF is unlikely to be the cause of
the observed imbalance in certain watersheds.

All 12 of the P datasets analyzed here suffer from UoP,
but the extent of the UoP varies by dataset and region. The
reanalysis-based datasets ERA5-Land and IMDAA are less
affected by UoP than the IMD dataset. Based on the 30-

year period of WY 1985–2014, P for the whole of India
could be as much as 19 % (ERA5-Land) to 37 % (IMDAA)
higher than that from the IMD, with substantial variability
within years and river basins. The actual magnitude of UoP
is speculated to be even greater. Moreover, trends seen in the
IMD’s P are not always present in ERA5-Land and IMDAA.
Studies using IMD should exercise caution since UoP could
lead to the misrepresentation of water budgets and long-term
trends. Limitations of this study are discussed.

1 Introduction

Precipitation (P ) is a key component of the hydrological cy-
cle, and changes in spatial and temporal patterns of precipi-
tation due to climatic change is a very important area of con-
cern (Krishnan et al., 2020). Such changes are particularly
relevant for India, where a substantial portion of its popula-
tion relies on an agrarian economy, which, in turn, is strongly
tied to specific seasonal patterns of precipitation (Chauhan
et al., 2014). Thus, the accurate measurement of precipita-
tion and the subsequent dissemination of such measurements
is important for socioeconomic purposes. Raw data from rain
gauges are often compiled by government or research agen-
cies to create precipitation products for subsequent use in hy-
drological and other environmental studies. Other precipita-
tion products based on satellites, reanalysis, weather simu-
lators, or a combination of the above sources are also avail-
able (Sun et al., 2018). Several studies have analyzed such
products across the whole of India (e.g., Rana et al., 2015;
Prakash, 2019; Gupta et al., 2020; Shahi, 2022) and specific
regions of India (e.g., Thakur et al., 2019; Kanda et al., 2020).
Within these studies, gauge-based precipitation products are
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often treated as reference products, or benchmarks, when
evaluating satellite-based and other non-traditional datasets.

In hydrological and meteorological studies across India,
the de facto benchmark dataset is the gauge-based grid-
ded daily product from the Indian Meteorological Depart-
ment (IMD) (Pai et al., 2014). However, gauge-based grid-
ded datasets can suffer from inadequate representation of ex-
treme events – such as those reported by King et al. (2013) in
Australia; spurious trends due to changes in the locations of
reporting gauges – such as those reported by Lin and Huybers
(2019) using the IMD dataset; or uncertainties introduced by
the relative positioning of reporting gauges – such as those
reported by Prakash et al. (2019) using the IMD dataset.
Moreover, measurement errors associated with gauges, such
as wind-induced undercatch (Adam and Lettenmaier, 2003;
Kochendorfer et al., 2017), affect the gridded products which
utilize observations from such gauges. Underestimation of
precipitation (UoP) has been reported in South Asia – e.g.,
in the upper reaches of the Ganga Basin in Nepal (Dangol
et al., 2022) and in the upper reaches of the Indus Basin
(Dahri et al., 2018). Studies have also explored the UoP in
the mountainous regions of India using satellite and gauge-
based products (Li et al., 2017). However, the UoP across
the whole of India has not been thoroughly analyzed in the
literature.

Goteti (2023) noted that many watersheds in the moun-
tainous western coast of India have observed annual volumes
of runoff that exceed the observed annual volume of precip-
itation. CWC-19 (2019) tabulated similar exceedances but
did not delve into the details (e.g., Appendix R in CWC-
19, 2019). It is speculated that such watersheds are affected
by UoP. Some studies have developed bias-correction fac-
tors (CFs) to compensate for UoP. Such factors are often
developed at the grid resolution of a reference precipitation
dataset, typically with an average monthly or average annual
timescale. For instance, Adam et al. (2006) and Beck et al.
(2020) developed grid-based CFs utilizing the concept of the
Budyko curve.

The PBCOR dataset developed by Beck et al. (2020) es-
timated the bias-corrected precipitation climatology corre-
sponding to several reference climatologies (see Sect. S1 in
the Supplement for further information). The ratio of the
bias-corrected annual precipitation from PBCOR to that from
IMD is shown in Fig. S1.2 in the Supplement. It is evident
that the largest ratios occur in the wettest regions of India
– the western coast of India, northernmost India and North-
eastern India. If estimates from PBCOR are reasonable, they
imply that the observed precipitation in these regions, and In-
dia in general, is substantially underestimated. Some of the
wettest regions of India have experienced catastrophic flood-
ing in the recent past (e.g., Hunt and Menon, 2020; Mahto
et al., 2023). Thus, unbiased estimates of precipitation are
important for the management of floods and other water re-
sources. Moreover, significant decreasing trends in precipita-
tion across India have been reported, including in the wettest

parts of India (e.g., Krishnan et al., 2020). It is important to
understand to what extent such trends are affected by UoP.
The identification and quantification of UoP across India is
important for many reasons but has not received much atten-
tion from the scientific community. Filling this void is the
motivation behind this study.

2 Data

The following conventions are used throughout this paper.
The words “catchment” and “watershed” are used inter-
changeably for smaller watersheds, while the word “basin”
is reserved for larger watersheds – e.g., the Indus Basin. A
reference time period often used when analyzing hydrologi-
cal variables is the water year (WY). A WY is defined here
as the period starting from 1 June and ending on 31 May of
the following year. For example, WY 2020 spans the period
from 1 June 2020 to 31 May 2021. This definition is consis-
tent with the definition of WY often used by Indian agencies
(e.g., CWC-19, 2019).

2.1 Study domain, river gauging stations and
catchment boundaries

The study domain includes the river basins that span India,
including the catchment areas that fall outside of the politi-
cal boundaries of India (Fig. 1). The boundaries of the river
basins used here are generally consistent with those used
by India’s Central Water Commission (CWC). Consistent
with the CWC, adjacent watersheds in some regions were
pooled to create composite river basins, such as west-flowing
rivers (WFR) north and south, east-flowing rivers (EFR)
north and south, and west-flowing rivers of Kutch (WFR
Kutch). The catchment boundaries used here are from the
GHI dataset (Goteti, 2023), a quality-controlled dataset on
India’s river gauging stations, catchment boundaries and hy-
drometeorological time series. However, the GHI dataset is
limited to Peninsular India. The catchment boundaries for
the Northern Indian watersheds were derived using the Hy-
droSHEDS suite of products, using the same procedures
as the GHI dataset. Station descriptions available from the
CWC were validated using online maps (e.g., Google Maps).
Stations were then relocated to the closest point on the river
network. The watershed draining into this relocated point
and all of the upstream watersheds were recursively iden-
tified using geographic information system (GIS) software.
Catchment areas for the delineated watersheds were vali-
dated against those reported by the CWC.

The river basins of Peninsular India, the non-shaded re-
gion in Fig. 1a, have daily streamflow data that are available
through India’s Central Water Commission (CWC). Limited
streamflow data are available for the river basins of North-
ern India (shaded regions in Fig. 1a). The stations used here
were chosen such that the catchment area discrepancy be-
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Figure 1. (a) Major river basins spanning India. The shaded basins are transboundary basins. Stations with daily streamflow data (grey dots)
are from the GHI dataset (Goteti, 2023), and stations with only annual streamflow data (black dots) are from CWC-19 (2019). (b) River
basins of Peninsular India. Some basin names have been shortened for ease of display within the map, with the complete names shown next
to the map.

tween the GHI and CWC datasets is less than 5 %, and there
was at least 5 years of observed streamflow data with mini-
mal missing records. A total of 242 stations are used in this
analysis, with 213 of these stations located in Peninsular In-
dia and 29 in Northern India (dots in Fig. 1a). The number
of stations within each basin and other pertinent information
are summarized in Tables S2.1 and S2.2.

2.2 Precipitation

The selected P datasets used here are outlined in Table 1 and
are briefly described here. In addition to these datasets, the
PBCOR dataset is used as a reference climatology in certain
parts of this analysis. Additional information on the PBCOR
dataset is provided in Sect. S1, while additional information
on P datasets is presented in Sect. S3.

The P datasets used here were often identified in the re-
cent literature as being reasonable representations of the ob-
served P , and they range in spatial resolution from about
4 to 25 km and in temporal frequency from half an hour to
a month. Datasets included here are based on rain gauges
(e.g., the IMD dataset), reanalysis (e.g., ERA5-Land), satel-
lites, or a combination of sources (e.g., CHIRPS). The IMD
gauge-based dataset is of primary interest here, since it is an

often-used benchmark that is employed in a number of stud-
ies.

The reader should note that while the IMD dataset is lim-
ited to India’s political boundaries, the rest of the P datasets
are not. However, certain river basins of India extend beyond
India’s boundaries and are part of this analysis. To enable an
appropriate comparison between datasets, the IMD dataset
is complemented, where needed, with the APHRODITE
dataset (Yatagai et al., 2012). The APHRODITE dataset was
chosen for several reasons: it is also based on rain gauge
data, similar to the IMD dataset; its spatial and temporal res-
olution are the same as the IMD dataset’s resolution (0.25°
or ∼ 25 km and daily); and studies in the literature have
found that APHRODITE compares reasonably well with the
IMD dataset across many parts of India (e.g., Prakash et al.,
2015b). While limitations with APHRODITE are discussed
by such studies, it is assumed to be the best gauge-based al-
ternative to the IMD dataset.

For those regions where data from the IMD are unavail-
able, grids from APHRODITE were identified, and then the
data from those grids was interpolated to align with the IMD
dataset grid. Finally, a blended product called IMD-APHRO
which spanned the entire study domain was created. In the re-
mainder of this paper, unless otherwise stated, IMD-APHRO
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Table 1. The P datasets analyzed here and relevant information. The input used in the creation of each dataset is indicated by one or more
of “G” (gauge), “O” (observation-based data product), “R” (reanalysis) and “S” (satellite). In the time span, the end year is left blank when
a dataset extends to the present.

Product (version) Alias Input(s) Native resolution Reference Time span

APHRODITE (v1101)a APHRO G, O Daily, 0.25° (∼ 25 km) Yatagai et al. (2012) 1951–2015
CHIRPS (v2)b CHIRPS S, R, O Daily, 0.05° (∼ 5 km) Funk et al. (2014) 1981–
CPC CMORPH (v1)c CMORPH S, O 0.5-hourly, 8 km Xie et al. (2017) 1998–
ERA5-Landd ERA5 R Hourly, 0.10° (∼ 10 km) Muñoz-Sabater et al. (2021) 1950–
GSMaP (v6, Gauge_NRT)e GSMAP S, O Hourly, 0.10° (∼ 10 km) Kubota et al. (2020) 2000–
IMD IMD G Daily, 0.25° (∼ 25 km) Pai et al. (2014) 1950–
IMD/APHRODITE blend IMD-APHRO Monthly, 0.25° (∼ 25 km) This study, Sect. 2.2 1951–2015
IMDAAf IMDAA R Hourly, 0.12° (∼ 12 km) Rani et al. (2021) 1980–
IMERG (final, v06B)g IMERG S, O 0.5-hourly, 0.10° (∼ 10 km) Huffman et al. (2020) 2000–
MSWEP (v2, Past_nogauge)h MSWEP S,R,O 3-hourly, 0.10° (∼ 10 km) Beck et al. (2019) 1980–
PERSIANN (CCS-CDR)i PERSIANN S, O 3-hourly, 0.04° (∼ 4 km) Sadeghi et al. (2021) 1983–
SM2RAIN (ASCAT, v1.5)j SM2RAIN S, O Daily, 0.10° (∼ 10 km) Brocca et al. (2019) 2007–
TerraClimate TERRA R, O Monthly, 0.042° (∼ 4 km) Abatzoglou et al. (2018) 1958–

a Asian Precipitation – Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources. b Climate Hazards Group InfraRed Precipitation with Station
data. c Climate Prediction Center Morphing Technique. d European Centre for Medium-Range Weather Forecasts (ECMWF) land component of the fifth generation of European
ReAnalysis (ERA5). e Global Satellite Mapping of Precipitation. f Indian Monsoon Data Assimilation and Analysis reanalysis. g Integrated Multi-satellitE Retrievals for Global
precipitation measurement. h Multi-Source Weighted-Ensemble Precipitation. i Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(Cloud Classification System–Climate Data Record). j Soil Moisture to Rain (Advanced Scatterometer, v1.5).

refers to the blended product created here, and IMD refers to
the product confined to India’s political boundaries. Also, in
the remainder of this paper, each P product is referred to by
its alias (see Table 1).

2.3 Evapotranspiration

Two datasets were considered for this analysis, based on their
usage in studies across India (Table 2) – the Numerical Ter-
radynamic Simulation Group (NTSG) at the University of
Montana (Zhang et al., 2010) and the Global Land Evapo-
ration Amsterdam Model (GLEAM) (Martens et al., 2017;
Miralles et al., 2011) datasets. GLEAM provides estimates
of the different components of ET, including transpiration,
bare-soil evaporation, interception loss, open-water evapora-
tion and sublimation. A comparison of NTSG and GLEAM
indicates that they are generally consistent with each other
across several basins (Sect. S4). However, estimates from
GLEAM tend to be lower than those from NTSG. GLEAM
was the primary dataset used here because of its longer time
span and its availability up to the present time.

2.4 Other data

2.4.1 Elevation, land cover and land use

Figure 2a shows the variability in elevation across the study
domain. The dominant features include the Himalayas in the
northern and northeastern regions, the mountains (or ghats)
along the western and eastern coasts of India, the plains of
the Ganga and Brahmaputra basins, and the Deccan Plateau
in Peninsular India.

The high-resolution (100 m) global dataset based on the
PROBA-V satellite (Buchhorn et al., 2020) was used to
identify the dominant land-cover and land-use types. Fig-
ure 2b shows the dominant land-cover and land-use types.
For the purpose of this analysis, the land-cover types of grass,
shrubs, and trees/forest were pooled into one category.

2.4.2 Water management

The water management considered here includes groundwa-
ter extraction, diversions (imports and exports), and reser-
voir storage, which are summarized in Fig. 3. A detailed de-
scription of these data is provided in Sect. S5. Groundwa-
ter extraction and recharge estimates are available from In-
dia’s Central Ground Water Board (CGWB) for select years.
The extent of annual groundwater extraction is quantified as
a fraction of the annual P . Similarly, basin-scale imports and
exports from CWC-19 (2019) are expressed as a fraction of
the annual P . Information on large dams and reservoirs in In-
dia was obtained from the National Registry of Large Dams
(NRLD, 2019). For each of the 242 watersheds used here, the
cumulative live storage capacity from all dams present within
the watershed is expressed as a fraction of the annual P .

Figure 3a shows that groundwater extraction can be a sub-
stantial fraction of the annual P in certain parts of India, but
it is minimal in the mountainous and wet regions of India
– the western coast of India, northernmost India and North-
eastern India. Similarly, water diversions are highest in the
agricultural regions of the Ganga Basin and the interior parts
of Peninsular India. The highest density of dams is in arid
Western India, while the lowest density occurs in the plains
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Table 2. The evapotranspiration datasets analyzed here and relevant information. In the time span, the end year is left blank when a dataset
extends to the present.

Product (version) Alias Native resolution Reference Time span

NTSG/PLSHa NTSG Monthly, 0.083° (∼ 8 km) Zhang et al. (2010) 1982–2013
GLEAM (v3.6a)b GLEAM Daily, 0.25° (∼ 25 km) Martens et al. (2017), Miralles et al. (2011) 1980–

a Numerical Terradynamic Simulation Group (NTSG) Process-based Land Surface evapotranspiration/Heat (PLSH) fluxes algorithm. b Global Land
Evaporation Amsterdam Model.

Figure 2. (a) Elevation based on HydroSHEDS 500 m topographic data. For ease of display, 500 m data are aggregated to 10 km resolution
and the maximum value within each 10 km grid is displayed. (b) Major land-cover and land-use types based on PROBA-V 100 m data. For
ease of display, 100 m data are aggregated to 10 km resolution and the dominant value within each 10 km grid is displayed.

and mountains of Northern India. There are some watersheds
in coastal Peninsular India, where reservoir storage is a sig-
nificant portion of the annual P , but most of the other water-
sheds are minimally impacted by such storage.

2.4.3 Changes in terrestrial water storage (TWS)

Changes in terrestrial water storage (TWS), inferred from the
Gravity Recovery and Climate Experiment (GRACE) satel-
lite mission (Tapley et al., 2004), are useful for identify-
ing regions where large-scale water management is caus-
ing substantial changes to the natural hydrologic cycle (e.g.,
Famiglietti, 2014; Rodell et al., 2009). TWS includes wa-
ter stored below the ground, on the ground and above the
ground. GRACE-based TWS anomalies from the Center for
Space Research (CSR) (Save et al., 2016; Save, 2020) were
used to estimate the change in annual TWS (or 1TWS) as a
fraction of the annual P (see Sect. S6). Figure 4 shows the
maximum and minimum 1TWS over the period WY 2002–
2014. The magnitudes of such changes for most of the study
domain are within +20 % or −20 % of the annual P . How-
ever, there are regions, such as Northwestern, Northern and
Eastern India, where the magnitudes of such changes are
larger than 20 % of the annual P .

3 Methods

The overall objective is to analyze the spatial extent and mag-
nitude of the watershed-scale or gross UoP in India and not
the station-scale UoP. A station-scale analysis of UoP is be-
yond the scope of this study because the data needed are un-
available. The UoP is identified by analyzing the water bal-
ance (or lack of it – i.e., an imbalance) where reliable hy-
drometeorological data are available. By eliminating two po-
tential causes of this annual water imbalance – namely, large-
scale management and substantial changes in annual terres-
trial water storage (1TWS) – it is concluded that the likely
cause of the imbalance is UoP. Other potential causes of a
water imbalance are also discussed.

The overall methodology and the specific objectives are
illustrated in the flowchart in Fig. 5. The specific objectives
are: (1) to analyze the annual water budgets of watersheds
using IMD as the source of P and to identify the imbalanced
watersheds; (2) to investigate the large-scale management
and annual 1TWS in those watersheds and to attribute the
cause of the imbalance to UoP if management and 1TWS are
found to be relatively minimal; and (3) to analyze the extent
of the UoP within other state-of-the-art P products and to
compare it against the UoP in IMD to identify reasonable
alternatives, if any, to IMD.
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Figure 3. (a) Districtwise annual groundwater extraction as a percent of the annual P ; (b) basin-scale imports and exports as a fraction of the
annual P ; (c) density of dams and reservoirs, represented as the number of dams per 0.25° (about 25 km) grid; and (d) cumulative maximum
live storage capacity of each watershed expressed as a fraction of the annual P for WY 2019.

Figure 4. (a) Gridwise maximum values of annual 1TWS for WY 2002–2014. (b) Same as (a) but for the minimum values.
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Figure 5. Flowchart showing the overall objectives, the methods
used to achieve those objectives and the major assumptions made in
this study.

In this study, UoP is said to occur when the observed an-
nual P (Pobs) is less than the actual annual P (Pact) aver-
aged over the entire watershed (Pobs < Pact). Since Pact is
unknown, expected empirical relationships between Pobs
and other hydrological fluxes are examined to identify the
gross UoP. Watersheds affected by UoP would be those
where the balance between inputs (Pobs) and outputs (e.g.,
R and ET) cannot be reconciled despite reasonably account-
ing for changes in TWS or disruptions to the natural bal-
ance caused by large-scale management. Watersheds are as-
sumed to have negligible flow across topographic boundaries
– i.e., inter-watershed groundwater flow (IGF) is ignored.
The particular UoP scenarios analyzed here are described in
Sect. 3.1. The methodology used to compile the data needed
for such an analysis is described in Sect. 3.2.

3.1 Water imbalance scenarios

In order to take advantage of the datasets on TWS anomalies
and water management discussed in Sect. 2.4, the traditional
annual water balance equation is formulated in two different
ways in the following discussion.

Under natural circumstances, one could express the annual
water balance of a watershed by assuming that the net change
in terrestrial water storage (1TWS) is the imbalance between
the total actual P (Pact), the output fluxes of R and ET, and
inter-watershed groundwater flow (IGF):

1natural
TWS = Pact−R−ET+1IGF. (1)

TWS is the sum of all the potential water reservoirs – ground-
water, soil moisture, snow water equivalent, surface water,
land ice and water in the biomass (Humphrey et al., 2023).
Watershed boundaries do not always coincide with underly-
ing aquifer boundaries, and IGF could play an important role
in the watershed’s water balance (e.g., Fan, 2019; Liu et al.,
2020). However, in the absence of field data on groundwater
flow pathways, it is not possible to quantify the effect of IGF
on the water balance. IGF is assumed to be negligible. The
implications of this assumption are discussed in Sect. 5.1.2.

If one were to account for the effects of management,
1TWS would represent changes due to both natural and
human-related causes such as groundwater extraction, reser-
voir storage and diversions. Under such circumstances, af-
ter ignoring IGF, one could reformulate Eq. (1) as Eq. (2).
Net surface water diversions are represented by two terms:
Exports (net loss of water) and Imports (net gain of water).
The terms Pact, R, ET, Exports and Imports are non-negative.
1TWS is positive if there is a net increase in TWS and nega-
tive if there is a net decrease in TWS.

1TWS = Pact−R−ET+ Imports−Exports (2)

Rearranging Eq. (2) results in Eq. (3). The equality in Eq. (2)
has been replaced with an approximation in Eq. (3) because
the data needed, if available, are often not at the spatial or
temporal resolution required to accurately balance the water
budget.

Pact ≈ R+ET+1TWS+Exports− Imports (3)

There is another way, although more approximate than
Eq. (3), of formulating the annual water balance. Manage-
ment of water is present in many parts of India and in-
cludes groundwater extraction, reservoir storage and diver-
sions (CWC-19, 2019). To take advantage of these data
on management, the annual water balance is approximated
as Eq. (4). Groundwater storage changes – both natu-
ral (1GW natural) and human-caused changes (1GW human) –
are included. Changes to reservoir storage (1Reservoir) and di-
versions (Exports and Imports) are also explicitly included.
In Eq. (4), both 1GW terms are positive if there is a net
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Figure 6. Schematic illustrating potential spurious scenarios derived from Eqs. (3) and (4) when Pact is underestimated. The terms in grey
text within the annual water balance equations are relatively small compared to Pact.

aquifer recharge and negative if there is a net aquifer deple-
tion. Thus, the groundwater extraction presented in Fig. 3
would be a negative quantity. 1Reservoir is positive if there is
a net increase in reservoir storage and negative if there is a
net decrease in storage.

Pact ≈ R+ET+1GW natural+1GW human+1Reservoir

+Exports− Imports (4)

The reader should note that Eqs. (3) and (4) are separate, but
useful, ways of analyzing the water budget. While 1TWS in
Eq. (3) includes changes in all potential water reservoirs,
Eq. (4) is an approximation and does not adequately capture
the effect of snow processes, does not include water stored as
soil moisture, and does not capture all the effects of manage-
ment. The reader should also note that hydrologic analyses
often make the a priori assumption that the net annual change
in storage (1TWS or 1GW) is negligible. This study does not
make such an assumption within Eqs. (3) and (4).

If UoP is absent (i.e., Pobs ≈ Pact), then, based on Eqs. (3)
and (4), it is reasonable to expect R to be only a portion
of Pact, regardless of the extent of management. If the ef-
fects of management – the two rightmost terms in Eq. (3)
and the four rightmost terms in Eq. (4) – are relatively small
compared to Pact, then it is also reasonable to expect Pact to
approximately equal R+ET+1, where 1 is either 1TWS
or 1GW natural. As discussed later in this section, for most
watersheds in the study domain, a reasonable upper bound

on the magnitude of 1TWS (and 1GW natural) is 20 % of Pobs.
The above expectations are illustrated by the “likely scenar-
ios” in Fig. 6.

If UoP is present (i.e., Pobs� Pact), one could potentially
realize the “spurious scenarios” of Pobs ≤ R and Pobs�

R+ET (see Fig. 6) when the extent of management is min-
imal. If, on the other hand, management is moderate to ex-
tensive, it is difficult to generalize the relationship between
the relative magnitudes of Pact, R and ET since R and ET are
no longer constrained by the natural water balance. The spu-
rious scenarios in this situation only include the case where
Pobs ≤ R. The word “minimal” is used in a relative sense
when the overall effect of annual management at the water-
shed scale relative to the annual Pobs is minimal. It should not
be interpreted as the effect of local management on specific
storm events.

The two specific scenarios investigated here are based on
the spurious scenarios in Fig. 6. The annual Pobs is less than
or equal to R in Scenario I.

Scenario I : Pobs ≤ R (5)

Thus, the annual runoff coefficient is at least 1 in Scenario I.
This scenario could be realized regardless of the extent of
management outlined in Fig. 6. Such a scenario was also
used by other studies (e.g., Beck et al., 2020) to identify UoP.
However, instances where the annual runoff coefficient is less
than 1 but still spuriously high (e.g., 0.95) are excluded by
Scenario I. Scenario II attempts to include such instances.
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Scenario II : (0.70×Pobs)≤ R < Pobs and

(1.20×Pobs)≤ R+ET (6)

Moreover, Scenario II is also intended to capture instances
where the sum of R and ET greatly exceeds Pobs. If UoP is
present, relatively high values of R combined with reason-
able estimates of ET result in the sum of R and ET greatly
exceeding Pobs. The formulation of Scenario I exactly fol-
lows the first of the spurious scenarios in Fig. 6. The second
of the spurious scenarios in Fig. 6, Pobs� R+ET, is not
an exact mathematical relationship. It is made exact by the
use of heuristics. The rationale behind such heuristics is pre-
sented in the following discussion.

The typical wet season runoff coefficient for the whole of
India was estimated to be about 0.38 by Gupta et al. (2016).
The basin-scale average annual runoff coefficient was esti-
mated by Xiong et al. (2022) to range from 0.10 to 0.40 for
several large river basins of India, with higher coefficients
for the Indus and Brahmaputra basins. Considering the mag-
nitudes of those estimated runoff coefficients, a coefficient
of 0.70 was assumed to be a reasonable lower bound for iden-
tifying spuriously high annual runoff coefficients.

As shown in Fig. 4, for regions that have hilly terrain
or are covered by forests, the magnitude of 1TWS is typ-
ically within 20 % of the annual Pobs. Watershed manage-
ment is represented by the four rightmost terms in Eq. (4):
1GW net recharge, 1Reservoir, Exports and Imports. In the re-
gions that have hilly terrain or are covered by forests (Fig. 2),
where management can be assumed to be minimal, the mag-
nitude of the individual effect of each type of management is
typically less than 5 % of Pobs (Fig. 3). A reasonable upper
bound on the cumulative effect of the four rightmost terms in
Eq. (4) is also 20 % of the annual Pobs. Thus, when manage-
ment can be considered minimal, it is reasonable to expect
R+ET to have a maximum value of 1.20×Pobs. This is the
justification for the heuristic of 1.20 in Scenario II. As men-
tioned earlier, “minimal” management is used in the context
of the overall effect of annual management at a watershed
scale relative to annual Pobs. For instance, a 20 % manage-
ment effect of the annual Pobs in a watershed with 0.4 as the
runoff coefficient translates to a 50 % (20%/0.4= 50%) ef-
fect on the annual R. Thus, minimal management could still
have a substantial effect on the annual R.

This study identifies UoP by first identifying individual
years within watersheds where Scenario I or II is realized.
Then, it proceeds to investigate the extent of management
and extent of 1TWS within those imbalanced watersheds. If
management and 1TWS are deemed minimal relative to an-
nual P , then it is concluded that the likely cause of the spu-
rious imbalance is UoP.

3.2 Time series compilation

In order to investigate the abovementioned scenarios, annual
time series of all the relevant terms need to be compiled. All
of the variables needed are expressed in the same units of
volume. Observed daily streamflow (R), available in units
of m3 s−1 was aggregated to cumulative monthly and annual
volumes of million m3 s−1 (MCM per month and MCM per
year, respectively). Gridded data on Pobs and ET, available in
units of depth per unit area per month (e.g., mm per month),
were also aggregated to watershed-scale monthly and annual
volumes. The process of aggregating grid-based products to
a watershed involves identifying the spatial overlap between
the grids and the watershed. Such relationships were identi-
fied using a GIS analysis. Grid-specific fractional areas were
used in the process of aggregation. A schematic illustrating
the process of aggregation is shown in Sect. S7. The time
series needed were compiled for each of the 242 watersheds
analyzed here. P datasets are often available up to the current
year, but the latest year for which observed R data are avail-
able is WY 2017, and ET data since WY 1980 are available.
The time span of the data compiled here is WY 1980 to 2017
(38 WYs), whenever data are available.

4 Results

The results presented here follow the specific objectives out-
lined in the Introduction. The observed UoP within the IMD-
APHRO dataset is discussed in Sect. 4.1, which includes an
example illustrating the spurious water imbalance potentially
caused by UoP and considers the spatial extent of imbal-
anced watersheds. The hydroclimatological characteristics of
such imbalanced watersheds, including the extent of manage-
ment, are discussed in Sect. 4.2. The extent of UoP within all
P datasets is compared in Sect. 4.3. Using select datasets
which present less UoP than IMD-APHRO, gridwise poten-
tial correction factors (CFs) associated with IMD are esti-
mated in Sect. 4.4. Basin-scale potential CFs are also dis-
cussed in Sect. 4.4.

4.1 Imbalanced watersheds identified using
IMD-APHRO

An example of Scenario I is shown in Fig. 7 for the Bant-
wal station on the Nethravathi River in the WFR south basin.
The annual time series is shown in Fig. 7a, while the monthly
time series for select years is shown in Fig. 7b. There are sev-
eral WYs where the total annual volume of P is less than the
total observed R, such as WYs 2011–2013 in the recent past.
The total live capacity of all upstream reservoirs is 0 since
there are no dams in this watershed. The monthly time series
is also shown in for select years (WYs 2011–2015; Fig. 7b).
The strong seasonal pattern imposed by the summer mon-
soon is evident, with the months of June to September hav-
ing the highest values of P and R. There are several months
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within each year where the observed R is greater than P . It
is useful to note that the above spurious relationship in which
the annual R exceeds the annual P for the Bantwal watershed
was also tabulated by CWC-19 (2019) (see their Appendix R,
Table R-2), based on the same P and R data sources as those
used here.

Watersheds where either Scenario I or II was realized
were identified by analyzing the annual P , R and ET for all
242 watersheds. Figure 8 shows the catchment areas corre-
sponding to these imbalanced watersheds (grey areas) and
the gauging stations at the outlets of these watersheds (blue
dots). These watersheds are located along the western coast
of India, in the forested and hilly regions of central India,
and within the Himalayan mountains and their foothills. The
locations of these imbalanced watersheds coincide with the
regions receiving the highest annual P (see Fig. S1.2). Most
major river basins have at least one imbalanced watershed.
Some of these watersheds have catchment areas that are out-
side of India’s political boundaries. Such watersheds with
at least 1 % of the total catchment area outside of India are
shown in pink in Fig. 8. Due to the limited availability of ob-
served R data in Northern India, only a small number of im-
balanced watersheds could be identified. In contrast, Penin-
sular India has many more imbalanced watersheds.

The watersheds identified above are based on a specific set
of heuristics (0.70 and 1.20) within Scenario II. In order to
understand the impacts of changing the heuristics, three other
sets of heuristics were tried. Instead of 0.70, values of 0.60,
0.80 and 0.90 were used, and instead of 1.20, values of 1.10,
1.30 and 1.40 were used. Figure S9.1 shows the imbalanced
watersheds resulting from the use of each set of heuristics.
By lowering these heuristics, one would expect more water-
sheds to be categorized as imbalanced, while raising them
would result in fewer watersheds. As expected, lower values
of the heuristics (e.g., 0.60 and 1.10) result in a larger num-
ber of watersheds, and higher values (e.g., 0.90 and 1.40)
result in a lower number of watersheds compared to the wa-
tersheds shown in Fig. 8. However, the general locations of
these watersheds remain the same – the western coast of In-
dia, the forested and hilly regions of central India, and the
Himalayan mountains and their foothills.

4.2 Characteristics of imbalanced watersheds

The dominant physical characteristics associated with these
imbalanced watersheds are summarized in Fig. 9. The sizes
of these watersheds can range from more than a 100 000 km2

in the northern portion of the study domain to less than a
1000 km2 in Peninsular India (Fig. 9a). The maximum eleva-
tion within such watersheds is about 2000 m (Fig. 9b), which
is much higher than the average elevation of India – about
600 m (estimated in this study). The statistics on fractional
land cover and land use indicate that most of these water-
sheds are predominantly covered by natural land cover types

(grass, shrubs, trees/forest, or bare/snow), followed by crops
(Fig. 9c).

The average annual P for these imbalanced watersheds is
typically around 2000 mm yr−1 (Fig. 9d) – about twice the
average annual P for the whole of India (about 1100 mm,
see Table S3.1). Thus, such watersheds are typically wetter
than the rest of India. Moreover, what is presented here is the
observed P , which is potentially affected by UoP, and the
actual P could be much higher. The maximum annual runoff
coefficient for these watersheds typically exceeds 1 (median
value of 1.15; maximum value of 3.33; Fig. 9e). The extent
of reservoir storage is quantified as the cumulative sum of
the maximum live storage capacity of all reservoirs present
in the watershed, expressed as a percentage of the average
annual P (Fig. 9f). While most watersheds have relatively
minimal storage, some of them could have more than 50 % of
the annual P captured in the reservoirs. However, the P data
used here is the observed P (affected by UoP), not the ac-
tual P . Therefore, the actual effect of reservoirs is expected
to be smaller than what is represented here. Finally, the min-
imum and maximum watershed-averaged values of 1TWS
expressed as fractions of the annual P (Fig. 9g) indicate that
the magnitude of 1TWS is less than 20 % for most of these
watersheds.

Based on these physical characteristics, the imbalanced
watersheds identified using the IMD-APHRO dataset are typ-
ically forested (or minimally impacted by agriculture) and
located in relatively wet regions and at relatively high ele-
vations, often have annual runoff coefficients exceeding 1.0,
and, in general, are minimally impacted by reservoir stor-
age. Moreover, based on a visual comparison of the extent of
large-scale management shown in Fig. 3 and the locations of
imbalanced watersheds in Fig. 8, the imbalanced watersheds
can be considered to be minimally affected by groundwa-
ter extraction and diversions. Furthermore, based on a visual
comparison of annual 1TWS in Fig. 4 and the locations of
imbalanced watersheds in Fig. 8, the imbalanced watersheds
are typically in regions not affected by relatively large annual
changes in TWS.

4.3 UoP within IMD-APHRO versus other datasets

Similar to the earlier analysis in which watersheds potentially
affected by UoP were identified using the IMD-APHRO
dataset, the potential UoP within other P datasets is ana-
lyzed in this section. For each P dataset, Table 3 shows the
number of station-years across all imbalanced watersheds ac-
cording to that dataset. The number of station-years by sce-
nario are tabulated separately for the watersheds of North-
ern India and Peninsular India. Since the different P datasets
have differing time spans, the total number of WYs varies
by P dataset. ERA5, IMD-APHRO and TERRA have the
longest time spans (782 station-years in Northern India and
6153 station-years in Peninsular India), while SM2RAIN has
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Figure 7. (a) Example showing the imbalance scenario P ≤ R (Scenario I) for Bantwal station on the Nethravathi River in the WFR south
basin. The annual R (grey bars) exceeds annual P (blue line) in certain years. ET (green bars) and cumulative reservoir storage capacity
(red line) are also shown for reference. (b) Monthly volumes instead of annual volumes for select WYs. Months are indicated by initials and
follow the June–May WY convention.

Figure 8. (a) Imbalanced watersheds from Scenario I (grey-shaded regions) and the gauging stations (blue dots) at the outlets of those
watersheds. Watersheds shaded in pink have at least 1 % of their catchment area outside of India. (b) Same as (a) but for Scenario II.

the shortest time span (195 station-years in Northern India
and 1784 station-years in Peninsular India).

The total number of imbalanced years for which either
UoP scenario is realized is expressed as the percentage of the
total analyzed station-years. This percentage acts as proxy
for the extent of UoP, and can vary from about 2 % to 29 %
in Northern India and from 5 % to 19 % in Peninsular India,
depending on the P dataset. The APHRO dataset is consis-
tent with IMD-APHRO in Peninsular India but not in North-
ern India. Across the entire study domain, the satellite-based
GSMAP, PERSIANN and CMORPH datasets typically have

the highest percentages of imbalanced station-years, while
the reanalysis-based datasets of ERA5 and IMDAA have the
lowest percentages. While ERA5 and IMDAA are consistent
across both Northern and Peninsular India, the MSWEP and
TERRA datasets have the lowest percentages in Peninsular
India but do not have such low percentages in Northern In-
dia. The reanalysis-based datasets of ERA5 and IMDAA out-
perform IMD-APHRO as well as the high-resolution satellite
products such as CMORPH and PERSIANN. The GSMAP
dataset has the highest percentage of imbalanced watersheds
in both Northern and Peninsular India.
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Figure 9. Characteristics of the imbalanced watersheds identified using IMD-APHRO. The watersheds are sorted in ascending order of
catchment area (left to right) in all of the panels. The thick broken vertical line in each plot separates the watersheds of Northern India from
those of Peninsular India. (a) Catchment area; (b) maximum elevation (blue line shows the average elevation for the whole of India: 600 m);
(c) land-cover and land-use fractions (blue line shows the 50 % fraction for reference); (d) average annual P (blue line shows the average
annual P for the whole of India: 1100 mm); (e) maximum runoff coefficient (blue line indicates a value of 1.0); (f) cumulative maximum live
storage capacity expressed as a fraction of the annual P ; and (g) maximum (shaded bars) and minimum (unshaded bars) 1TWS as fractions
of the annual P .

The statistics presented in Table 3 are based on a specific
set of heuristics (0.70 and 1.20) used within Scenario II. In
order to understand the impacts of changing the heuristics,
three other sets of heuristics were tried. Instead of 0.70, val-
ues of 0.60, 0.80 and 0.90 were used, and instead of 1.20,
values of 1.10, 1.30 and 1.40 were used within Scenario II.
Tables S9.1–9.3 show the new set of statistics (similar to Ta-
ble 3) for each set of heuristics. It is evident from these ta-
bles that the performance of the datasets remains similar to
that shown in Table 3. ERA5 and IMDAA outperform IMD-
APHRO consistently across both Northern and Peninsular In-
dia, while the MSWEP and TERRA datasets have the lowest
percentages in Peninsular India but do not have such low per-
centages in Northern India.

The metrics presented in Table 3 are associated with wa-
tersheds where adequate hydrometeorological data are avail-
able. Since these watersheds are limited to only certain por-

tions of India, these metrics do not accurately reflect the
spatial distribution of UoP present within each P dataset.
In order to assess the spatial distribution of UoP, poten-
tial correction factors (CFs) are estimated for select datasets
in Sect. 4.4. The ERA5, IMDAA, MSWEP and TERRA
datasets are chosen for further analysis because of their po-
tential ability to be less affected by UoP than IMD-APHRO.

4.4 Potential correction factors (CFs) for specific
datasets

Correction factors (CFs) represent ratios of actual and ob-
served P . Since it is not possible to estimate them with-
out knowing the actual P , they were estimated assuming
that select datasets from the above analysis are reasonable
proxies for the actual P . These estimated CFs are referred
to as potential CFs to distinguish them from true CFs. As
mentioned in Sect. 4.3, the ERA5, IMDAA, MSWEP and
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Table 3. Total number of station-years analyzed and the imbalanced station-years by scenario for all the watersheds of Northern India (left)
and Peninsular India (right) for each P dataset.

North India Peninsular India

Product Total Scenario Scenario % Total Scenario Scenario %
I II imbalanced I II imbalanced

APHRO 782 92 73 21.1 % 5788 349 385 12.7 %
CHIRPS 782 76 45 15.5 % 6036 306 299 10.0 %
CMORPH 436 61 42 23.6 % 3493 315 186 14.3 %
ERA5 782 7 40 6.0 % 6153 245 311 9.0 %
GSMAP 382 76 35 29.1 % 3132 441 142 18.6 %
IMD-APHRO 782 32 59 11.6 % 6153 414 372 12.8 %
IMDAA 782 8 9 2.2 % 6153 179 239 6.8 %
IMERG 382 19 22 10.7 % 3132 169 170 10.8 %
MSWEP 782 60 55 14.7 % 6153 122 211 5.4 %
PERSIANN 782 89 60 19.1 % 5796 767 260 17.7 %
SM2RAIN 195 9 13 11.3 % 1784 116 79 10.9 %
TERRA 782 75 58 17.0 % 6153 153 231 6.2 %

TERRA datasets suffer less from UoP than IMD-APHRO.
Using these datasets, potential CFs were estimated using
Eq. (7):

CFdataset
=

P
dataset
1985–2014

P
IMD
1985–2014

. (7)

For each dataset, data were first aggregated to IMD’s resolu-
tion of 0.25° (∼ 25 km). Then, for the 30-year common data
period of WY 1985–2014, the gridwise average annual P

was estimated. The ratio of gridwise 30-year average an-
nual P between each dataset and IMD is presented in Fig. 10.
The spatial domain is limited to the political boundaries of
India where IMD data are available.

The spatial maps of potential CFs shown in Fig. 10 can
be compared to those presented in Figs. S1.1 and S1.2.
High CFs are present in the mountainous western coast of
India for all four datasets and in the mountainous parts of
Northern India for only fERA5 and IMDAA. This is con-
sistent with the percentage of imbalanced station-years as-
sociated with each of these datasets (see Table 3). Another
feature that is evident from Fig. 10 is that the highest CFs
occur in the wettest parts of India (Fig. S1.2). If these po-
tential CFs are reasonably accurate, then one could conclude
that UoP is a substantial problem in the wettest parts of India.
A CF of at least 1.5 (yellow-, green- or blue-shaded areas in
Fig. 10) indicates that the actual P is at least 50 % higher
than the observed P . There are wide swaths of mountainous
and hilly regions of India with such CFs. In order to iden-
tify the river basins of India that are most affected by UoP,
basin-aggregated potential CFs are analyzed.

Table 4 shows the basin-aggregated potential CFs for the
above four P datasets. An additional table for all of the
P datasets analyzed here is shown in Table S3.1. The poten-
tial CFs shown here were estimated as the ratio of annual P

for each dataset and IMD. The average and maximum val-
ues for the 30-year period of WY 1985–2014 are shown in
Table 4. Since IMD is the main P dataset of interest and is
limited to the political boundaries of India, only that portion
of each river basin falling within India’s boundaries was in-
cluded when estimating these potential CFs.

Across the whole of India, ERA5, IMDAA and MSWEP
are on average 9 %, 26 % and 3 % higher than IMD, re-
spectively, while TERRA is 2 % lower than IMD. However,
the maximum values indicate that ERA5, IMDAA, MSWEP
and TERRA can be up to 19 %, 37 %, 10 % and 6 % higher
than IMD, respectively. There is substantial variability across
basins and datasets. For instance, for the Brahmaputra Basin,
ERA5 and IMDAA are 56 % and 90 % higher than IMD;
however, MSWEP and TERRA are 5 % and 9 % lower than
IMD. Similarly, for the Ganga Basin, on average, ERA5, IM-
DAA and MSWEP are 9 %, 36 % and 8 % higher than IMD;
however, TERRA is 1 % lower than IMD. Similarly, for the
Indus Basin, on average, ERA5 and IMDAA are 6 % and
26 % higher than IMD; however, MSWEP and TERRA are
33 % and 43 % lower than IMD. This pattern of ERA5 and
IMDAA being higher than IMD while MSWEP and TERRA
were lower than IMD in the basins of Northern India is con-
sistent with the potential CFs shown in Fig. 10. ERA5 and
IMDAA have CFs exceeding 1 in many regions of Northern
India, while MSWEP and TERRA do not have such high CFs
to the same extent.

Table 4 also shows that for most basins of Peninsular India,
potential CFs from the four selected P datasets are almost
always greater than 1. This implies that P is underestimated
across most of Peninsular India, regardless of which of the
four datasets is used as a proxy for actual P . The Godavari
and Krishna basins are the two largest basins of Peninsular
India. In the Godavari Basin, on average, the four datasets
are 4 % to 13 % higher than IMD. In the Krishna Basin, on
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Table 4. Basin-aggregated potential CFs for select datasets based on the period WY 1985–2014. Average and maximum values for each
dataset are shown for each river basin. The upper half of the table shows the basins of Northern India, while the lower half shows the basins
of Peninsular India.

Basin ERA5 IMDAA MSWEP TERRA

All India 1.09/1.19 1.26/1.37 1.03/1.10 0.98/1.06

Barak 0.87/1.24 1.20/1.61 0.98/1.31 0.98/1.80
Brahmaputra 1.56/1.97 1.90/2.51 0.95/1.19 0.91/1.18
Ganga 1.09/1.32 1.36/1.54 1.08/1.26 0.99/1.17
Indus 1.06/1.40 1.26/1.66 0.67/0.88 0.57/0.80
Minor 1.18/1.63 1.36/1.80 1.38/1.91 1.38/2.22
North Ladakh 0.70/1.83 0.45/1.33 0.38/1.03 0.06/0.19
WFR Kutch 0.93/1.04 0.98/1.54 0.97/1.13 0.94/1.12

Brahmani-Baitarani 1.00/1.22 1.13/1.42 1.04/1.23 1.00/1.20
Cauvery 1.21/1.95 1.28/1.98 1.17/2.00 1.13/2.13
EFR north 1.06/1.32 1.11/1.40 1.10/1.31 1.08/1.22
EFR south 1.05/1.88 1.27/2.11 1.11/2.04 1.10/2.30
Godavari 1.05/1.31 1.13/1.41 1.06/1.22 1.04/1.23
Krishna 1.13/1.27 1.16/1.34 1.19/1.35 1.16/1.52
Mahanadi 1.08/1.23 1.17/1.37 1.09/1.21 1.04/1.21
Mahi 1.00/1.29 0.96/1.35 1.02/1.28 1.03/1.63
Narmada 1.07/1.47 1.08/1.51 1.09/1.35 1.05/1.29
Pennar 0.96/1.24 1.18/1.59 0.95/1.20 0.94/1.33
Sabarmati 0.90/1.21 0.83/1.09 0.97/1.28 0.98/1.28
Subernarekha 0.97/1.11 1.12/1.46 1.03/1.20 0.99/1.30
Tapi 1.15/1.42 0.98/1.22 1.09/1.46 1.03/1.30
WFR north 0.73/1.07 0.77/1.15 1.10/1.54 1.13/1.55
WFR south 0.99/1.17 1.04/1.21 1.25/1.57 1.21/1.70

average, the four datasets are 13 % to 19 % higher than IMD.
The wettest basins of Peninsular India are the WFR north
and WFR south basins. In these two basins, MSWEP and
TERRA are higher than IMD, while ERA5 and IMDAA tend
to be similar to or lower than IMD. This is consistent with the
percentage of imbalanced station-years associated with each
of these datasets in Peninsular India (see Table 3).

5 Discussion

5.1 Limitations

The watersheds affected by UoP were identified by analyzing
the extent of the annual water imbalance. As such, the results
are dependent on the quality of the data and strength of the
assumptions used. The limitations of the datasets used here
and also the limitations imposed by the assumptions made
within this analysis are discussed here.

5.1.1 Limitations of the data

The GHI dataset (Goteti, 2023) was chosen here because
of the quality-controlled nature of the catchment boundaries
and R data used in its development. The GHI stations used
here were those that had a catchment area discrepancy of less

than 5 % when compared with CWC. It is assumed that the
catchment boundaries used here are reasonably accurate, and
any errors in such boundaries and are not likely to cause the
identified water imbalance.

GHI is limited to Peninsular India, and R data for North-
ern India was compiled from CWC-19 (2019). Such annual
and monthly R data were compiled from daily records which
are known to have missing days. Hence, the actual R is very
likely higher than the observed R. Thus, it is expected that
there would be more imbalanced station-years. Moreover, as
additional R data from other gauging stations become avail-
able, particularly in the mountainous portions of Northern
India, many other watersheds affected by UoP will be iden-
tified. All of the R data used here are directly or indirectly
from the CWC. Studies have reported that R based on rating
curves could have significant errors (e.g., Di Baldassarre and
Montanari, 2009; Kiang et al., 2018). Huang et al. (2023)
estimate that about 70 % of the global streamflow gauging
stations analyzed in their study have a bias in catchment dis-
charge of greater than 10 %. None of the stations from Huang
et al. (2023) are present within this study’s analysis domain.
It is not known to what extent R from the CWC is derived
from rating curves, to what extent such data are affected
by measurement or other errors, or to what extent errors in
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Figure 10. Gridwise potential CFs for select datasets based on the
period WY 1985–2014.

streamflow measurement affect the streamflow data used in
this analysis.

GLEAM was used as the source of ET instead of
NTSG. While there is reasonable correlation between the
two products, GLEAM-based ET is generally lower than
NTSG-based ET (Sect. S4). Goroshi et al. (2017) indi-
cated that NTSG underestimates lysimeter-based ET obser-
vations across many locations in India. This would imply
that GLEAM would further underestimate such ET observa-
tions. Thus, ET from GLEAM should be considered a lower
bound for ET. If more accurate ET estimates were to become
available, it is expected that there would be more imbalanced
station-years.

Management of water, such as groundwater extraction,
reservoir storage and water diversion (imports or exports),
is shown to be relatively minimal in the imbalanced wa-
tersheds (relative to annual P ). Extent of groundwater ex-
traction is available at district resolution and only for select
years. Some studies have urged caution when interpreting
trends in groundwater levels from CGWB (e.g., Hora et al.,
2019). The quantification of groundwater storage in the study
domain is particularly challenging due to varying geological
settings (alluvial versus hard-rock aquifers), extensive and
unregulated withdrawal for irrigation use, and changing en-
ergy policies (Panda et al., 2022). The dams considered here
were only from India and included only the large dams avail-
able via the NRLD inventory. It is possible that smaller, or
other, dams that are present in the watershed and not included
within NRLD could be causing some of the water imbalance.
Data on water diversions are available only for select sub-
basins of the major basins of India. There are also a number
of local watershed development projects that are being pur-
sued in the forested and mountainous regions of India, such
as those reported by Chauhan (2010). The effect of such de-
velopment on the hydrologic budgets of the watersheds ana-
lyzed here is unknown.

GRACE-based annual changes in 1TWS are useful for
understanding the effect of such changes on the annual wa-
ter budget. As discussed by Humphrey et al. (2023), numer-
ous assumptions went into the processing of raw GRACE
data, and one has to exercise caution when interpreting the
end products derived from raw data. The effective resolu-
tion of GRACE is about 300 km× 300 km. Thus, watershed-
scale annual 1TWS values for the imbalanced watersheds in
Fig. 9 are representative of coarser-scale patterns and com-
plement the data on watershed management summarized in
Fig. 3. GRACE-based 1TWS cannot be directly compared
to changes in the local water table. Some recent studies have
assimilated GRACE observations into hydrological models
to better capture finer-scale groundwater storage changes (Li
et al., 2019). The use of 1TWS from such studies could be
explored in future work.

The accuracy of gauge-based products such as IMD is de-
pendent on the underlying gauge data as well as the spe-
cific interpolation procedures used to create the gridded data.
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If raw gauge data are available, it might be worthwhile to
compare such data with the other P datasets for select high-
intensity storms in the imbalanced watersheds. The reader is
referred to the studies of Prakash et al. (2015a, 2019) for in-
formation on how such comparisons could be made and also
on the challenges involved in creating gridded products.

5.1.2 Limitations of the methodology

Watershed boundaries do not always coincide with underly-
ing aquifer boundaries (e.g., Liu et al., 2020), and so one
cannot always assume that water flowing out of a watershed
is completely generated within the watershed. A number of
studies have discussed the important role of inter-watershed
groundwater flow (IGF) (e.g., Fan, 2019), including that
within high mountain environments such as the Brahmaputra
Basin (e.g., Somers and McKenzie, 2020; Yao et al., 2021).
The contribution of IGF to the streamflow depends on a num-
ber of factors such as the geology, topography and climate,
among others. While some studies have identified that karst
aquifers are present in select parts of India (Dar et al., 2014),
extensive watershed-specific hydrogeologic field investiga-
tions are needed (such as those by Yao et al., 2021) to quan-
tify the effect of IGF on the streamflow. IGF is assumed to
be negligible. It is possible that some or all of the watersheds
analyzed here are affected by IGF. However, one should not
assume that all instances of an observed annual water imbal-
ance are solely due to IGF. As discussed in Sect. S8, there
are watersheds within the study domain where it appears that
IGF is unlikely to be the cause of the observed water imbal-
ance.

Yao et al. (2021) analyzed the contribution of groundwater
to R in the upper reaches of the Brahmaputra Basin. Several
watersheds from the study of Yao et al. (2021) had annual
runoff coefficients greater than 1 due to a contribution from
IGF as well as snowmelt and permafrost thawing. The contri-
bution of seasonal snow melt is implicitly considered within
the observed R, but glacier melt has not been considered. In
the Himalayan mountains, glacier melt could sometimes be
a significant portion of the annual runoff and could even ex-
ceed snow melt (e.g., Mukhopadhyay and Khan, 2015). In
such watersheds where glacier melt is substantial, the an-
nual observed R could be higher than the annual P , despite
there being no management. The GRACE-based 1TWS is
supposed to capture storage changes due to glacier melt at
the spatial scale of major river basins but not across smaller
watersheds. It is possible that the approach adopted here
could incorrectly identify such watersheds as being affected
by UoP.

The identification of watersheds affected by UoP focuses
on those regions where there is a relatively minimal effect
of management or where the annual 1TWS is minimal rel-
ative to P . It is not clear how to identify UoP when there
is moderate to extensive management or annual 1TWS is
substantial relative to P . Analyzing the relative magnitudes

Table 5. Trends in annual basin-aggregated P (mm yr−1) for
WY 1985–2014 for select datasets and select river basins. Values
that are statistically significant at the 95 % confidence level are in-
dicated by ∗.

Basin IMD ERA5 IMDAA MSWEP TERRA

All India −1.7 +3.2 +3.6 +2.1 +2.3

Barak −33.2∗ −11.3 −5.9 −16.4∗ −12.2
Brahmaputra −19∗ −19.1∗ −13.3 −13.9∗ −7.5
Ganga −4 +1.7 +0.8 +2.6 −4.1
Indus −12.2∗ −6∗ −4.4 −3.2 −1.2
WFR north +8.6 +17∗ +22.7∗ +17.3∗ +36.6∗

WFR south +23.7∗ +21.4∗ +18.9∗ +18.4∗ +16.3

of the individual terms of the water budget might not be the
way to identify UoP under such circumstances. The two wa-
ter imbalance scenarios investigated here are only two of the
many possible scenarios. The imbalanced watersheds identi-
fied here are dependent on the formulation of such scenarios.

The formulation of Scenarios I and II relies more on R and
less on ET. This is because, while observations of R are avail-
able, the observed ET at the scale of the watersheds analyzed
here is non-existent. Satellite-based ET was used as a proxy
for observed ET. However, such ET data can have substan-
tial biases (e.g., Goroshi et al., 2017; Goteti, 2022). Hence,
observed R is assumed to be more reliable than satellite-
based ET. If one had more reliable estimates of ET, then the
formulation of the scenarios could be revised to include other
instances of a spurious water imbalance.

5.2 Spurious patterns within IMD

During the course of this analysis, several potential issues
with trends in the IMD dataset were encountered. The fol-
lowing is a discussion on basin-scale trends in the IMD
dataset and those present in other datasets. For the purposes
of this discussion, the spatial domain is limited to the politi-
cal boundaries of India where IMD data are available. Basin-
scale aggregation of gridded P was performed only using the
grids within India’s boundaries.

Trends in the four datasets identified in Sect. 4.3 are com-
pared against those in IMD. Trends in basin-aggregated an-
nual P for WY 1985–2014 were estimated using the non-
parametric Theil–Sen slope (Helsel et al., 2020), making
use of the R statistical package “RobustLinearReg” (Hur-
tado, 2023). Table 5 shows the trends for select basins where
mountains are present. Table S3.2 shows the trends for all of
the basins and all of the P datasets.

The annual P from IMD for the whole of India shows a
decreasing trend of −1.7 mm yr−1. In contrast to IMD’s de-
creasing trend, all other datasets have an increasing trend.
However, none of these trends are statistically significant at
the 95 % confidence level. There is substantial variation in
regional trends, as is evident in the trends presented for in-
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Figure 11. (a) Annual P for Barak Basin for select datasets. IMD (blue) is compared against select datasets. The periods of interest,
WY 1961–1980 and WY 1981–2000, are highlighted. Thin lines show the annual values, while the thick lines show the 9-year running
average. (b) Same as (a) but for the Indus Basin.

dividual basins. For the IMD dataset, the Barak, Brahmapu-
tra, Ganga and Indus basins in Northern India show decreas-
ing trends. However, other datasets do not always have the
same magnitude or sign as IMD. For instance, for the Ganga
Basin, IMD shows a negative trend of −4 mm yr−1, while
ERA5, IMDAA and MSWEP show a positive trend. None
of these trends are statistically significant at the 95 % confi-
dence level. For the wettest basin of India, the WFR south
basin, all datasets show a positive trend, with most of them
being statistically significant. Based on Table S3.2, there ap-
pears to be more consistency in trends between IMD and
other datasets for the basins of Peninsular India compared
to the basins of Northern India.

Another issue which was encountered was abrupt changes
in the time series of P from the IMD dataset, particularly in
the earlier part of its record. The time period of interest here
is the 20-year period of WY 1981–2000, which is compared
to the prior 20-year period of WY 1961–1980. The time se-
ries of basin-averaged annual P from IMD is compared with
the corresponding time series from three P datasets which
have data available for these periods – APHRO (gauge-
based), ERA5 and TERRA (reanalysis-based).

Figure 11 shows such comparisons for the Barak and In-
dus basins, while Figs. S3.16 to S3.38 show a similar time se-
ries comparison for all of the major basins. Both annual val-
ues (thin lines) and the 9-year running average (thick lines)
are shown in Fig. 11 to highlight the short- and long-term
changes in P in each of the datasets. Figure 11 shows that for
the Barak Basin, IMD shows an increase in average annual P

of about 22 % for WY 1981–2000 relative to WY 1961–
1980. However, APHRO, ERA5 and TERRA show a change
of 8 %, −3 % and 5 %, respectively. Also, IMD has a distinct
visual increasing trend from low values in the early 1960s to
high values in the early 1990s. Such a pattern is not present
in APHRO, ERA5 or TERRA. Similarly, for the Indus Basin,
IMD shows an increase in average annual P of about 35 %
for WY 1981–2000 relative to WY 1961–1980. However,
APHRO, ERA5 and TERRA show a change of 5 %, 4 % and
3 %, respectively. IMD, once again, has a distinct visual in-
creasing trend from low values in the mid 1970s to high val-
ues in the late 1990s. Such a pattern is not present in APHRO,
ERA5 or TERRA.

Overall, the above discussion highlights two related issues
with the IMD dataset. First, trends present within the IMD
dataset are not always present in other datasets. Second, the
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conspicuous temporal shifts present in the IMD dataset are
not present in other datasets. Lin and Huybers (2019) noted
a potentially spurious shift in the IMD dataset over central
India. It is not known if, and to what extent, such issues are
caused by UoP within these datasets.

5.3 Interim measures

Solving the problem of UoP by increasing the station den-
sity in relevant areas, by monitoring and analyzing extreme
P events and rainfall–runoff relationships for such events,
or by any other means requires significant planning and re-
sources from the relevant government agencies. Such efforts
are strongly encouraged by the authors. In the interim, there
are several useful and feasible ideas the community could
pursue to help address the issue of UoP. The following is a
brief discussion of such ideas.

Raw station data from the IMD would be extremely help-
ful for resolving discrepancies associated with trends and
discrepancies with other datasets. However, such data are
not publicly available. The IMD could help resolve the issue
of UoP by making such raw station data publicly available.
Other data from India’s water agencies, such as streamflow
data, which are currently classified by the CWC for Northern
India, would also be valuable for addressing UoP.

Some studies have demonstrated the ability of high-
resolution simulation models to capture P in watersheds
dominated by hilly or mountainous terrain. For instance, Li
et al. (2017) implemented the Weather Research and Fore-
casting (WRF) Hydro model in a high-resolution setting
(3 km grid) across a mountainous watershed of Northern In-
dia. They demonstrated that such a system can reasonably
simulate P and can overcome the deficiencies of typical
gauge-based products and satellite-based products. Hunt and
Menon (2020) also used the WRF-Hydro modeling system in
a high-resolution setting (4 km grid) to analyze P during the
catastrophic flooding of 2018 in the state of Kerala in Penin-
sular India. Their study was also able to capture the spatial
structure and magnitude of the observed P reasonably well.
Such modeling studies should be pursued further to better
identify and quantify UoP within traditional products.

6 Conclusions

The gross underestimation of precipitation (UoP) in India
was analyzed using a water balance approach across 242 wa-
tersheds of Northern and Peninsular India. Gross UoP was
identified by comparing the water year (WY)-based volume
of observed annual P against the observed annual stream-
flow (R) and comparing P against the sum of R and satellite-
based evapotranspiration (ET). Across many watersheds of
both Northern and Peninsular India, the spurious water im-
balance scenarios of P ≤ R or P � R+ET were realized.
It was shown that the occurrence of such imbalances is un-

likely to be due to the large-scale management of water, such
as groundwater extraction, reservoir storage and diversions.
It was also shown that the occurrence of such imbalances is
unlikely to be due to annual changes in terrestrial water stor-
age. Assuming that the data on R and ET are reliable, it was
concluded that UoP is the likely cause of such spurious im-
balances. The effect of the inter-watershed groundwater flow
has been ignored. However, it appears that such groundwater
flow is unlikely to be the cause of the spurious water imbal-
ances observed in some of the watersheds.

All 12 state-of-the-art P products analyzed here suffer
from UoP but to a varying extent. Within the often-used IMD
dataset, UoP is an issue in most major river basins of India
and is present throughout the historical record, including the
decade of the 2010s. Based on the limited observation data
available, UoP is found typically in the relatively wet regions
of India. Thus, our understanding of the hydrology of India
is limited by inadequate P data, particularly in these wet re-
gions, some of which have experienced catastrophic flooding
in recent years. Moreover, the P product from IMD, which
is typically the benchmark in many hydrological and envi-
ronmental studies across India, suffers from UoP more than
some products based on reanalysis. The P from such prod-
ucts tends to be much higher than IMD across most river
basins of India. Furthermore, such products do not have the
spurious temporal patterns found in IMD. Studies using the
IMD dataset should exercise caution, particularly in regions
with hilly or mountainous terrain. This study highlights not
only a major limitation of existing P products over India but
also other data-related obstacles faced by the research com-
munity.
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