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Abstract. The interaction between forest and climate ex-
hibits regional differences due to a variety of biophysical
mechanisms. Observational and modeling studies have in-
vestigated the impacts of forested and non-forested areas on
a single climate variable, but the influences of forest cover
change on a combination of temperature and precipitation
(e.g., drought) have not been explored, owing to the complex
relationship between drought conditions and forests. In this
study, we use historical forest and climate datasets to explore
the relationship between forest cover fraction and drought
from 1992-2018. A set of linear models and an analysis of
variance approach are utilized to investigate the effect of for-
est cover change, precipitation and temperature on droughts
across different timescales and climate zones. Our findings
reveal that precipitation is the dominant factor (among the
three factors) leading to drought in the equatorial, temperate
and snow regions, while temperature controls drought in the
arid region. The impact of forest cover changes on droughts
varies under different precipitation and temperature quan-
tiles. Precipitation modulates forest cover’s impact on long-
term drought in the arid region, while temperature modulates
the impact of forest cover changes on both short- and long-
term drought in the arid region as well as only on long-term
drought in the temperate region. Forest cover can also modu-
late the impacts of precipitation and temperature on drought.
High forest cover leads to a combined effect of precipitation
and temperature on long-term drought in arid and snow re-
gions, while precipitation is the only dominant factor in low
forest cover conditions. In contrast, low forest cover triggers
a strong combined effect of precipitation and temperature on
drought in the temperate region. Our findings improve the

understanding of the interaction between land cover change
and the climate system and further assist decision-makers to
modulate land management strategies in different regions in
light of climate change mitigation and adaptation.

1 Introduction

Forests cover around 4.06 x 10° ha, accounting for around
30 % of the global ice-free land surface, and are distributed
widely from the tropical to boreal regions (Crowther et al.,
2015; Hansen et al.,, 2013). Global forests have under-
gone significant changes in the past few decades (Hansen
et al., 2013). Most countries have reported a net forest loss
due to intensive logging in the tropical region, especially
in the 2000s. The tropical forest loss rate increased from
4040 hayr~! in the 1990s to 6535 hayr~! in the 2000s (Kim
et al., 2015). And since the early 2000s, more than three-
quarters of the Amazon rainforest has been losing resilience,
especially in regions with less rainfall and closer to human
activity (Boulton et al., 2022). At the mid-latitudes, the forest
cover fraction has increased, owing to accelerated afforesta-
tion (Hansen et al., 2013). Large deforestation areas have
been detected in the boreal regions due to wildfire occurrence
(Hansen et al., 2010). At the national scale, China contributes
to the largest afforestation area in the world, as more than
16 sustainability programs have been launched in the coun-
try since the 1970s (Bryan et al., 2018). The area of planted
forest in China has increased by around 1.7 x 10% hayr~!
since the 1990s (Peng et al., 2014). Brazil has been the world
leader in tropical deforestation, clearing an average of ap-
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proximately 1.95 x 10%hayr=! from 1996 to 2005 (Nepstad
et al., 2009). Based on five integrated assessment models and
Shared Socioeconomic Pathways (SSP) scenarios, global for-
est areas are likely to decrease by up to —600x10°ha in
SSP3 (regional rivalry) and increase by up to 1100x10° ha
in SSP1 (sustainability) by the end of the 21st century (Popp
et al., 2017).

Forests play a vital role in supporting ecosystem ser-
vices, including local climate regulation via water and heat
exchanges with the atmosphere (known as biophysical ef-
fects) (Anderson et al., 2011; Bonan, 2008). Changes in for-
est cover have the potential to alter local climate by affect-
ing surface evapotranspiration, albedo and surface roughness
(Alkama and Cescatti, 2016; Mahmood et al., 2014). The
net impact on local climate is highly spatially heterogeneous
due to the balance among these mechanisms (Perugini et al.,
2017; Li et al., 2015; Cherubini et al., 2018). In general,
afforestation in the tropics results in regional land surface
cooling due to high evapotranspiration, while the effect is
warming in the boreal region caused by the typically low sur-
face albedo of forests, especially in the snow-covered winter
(Alkama and Cescatti, 2016; Perugini et al., 2017). At mid-
latitudes, the effects are more uncertain and have more spa-
tial variability, particularly at a local scale (Mahmood et al.,
2014; Perugini et al., 2017; Findell et al., 2017). The un-
certainties are mainly caused by competing biogeophysical
forcings from albedo and evapotranspiration being similar
in magnitude but opposite in sign (Bonan, 2008). And the
regional background conditions (climate and soil moisture),
forest types (coniferous vs. deciduous), types of land used
for comparison (cropland vs. grassland) or analysis meth-
ods (observations vs. climate models) further enlarge such
an uncertainty (Ge et al., 2019; Li et al., 2016; Pitman et al.,
2011; Tian et al., 2022). For instance, a study using satellite
retrieval products shows that the non-radiative (i.e., evapo-
transpiration) effect dominates in surface cooling in a typical
temperate region (i.e., the Loess Plateau in China) (Ge et al.,
2019). Nevertheless, for the same region, a coupled land-
atmosphere model finds a net surface warming caused by ra-
diative effects (i.e., changes in surface albedo and radiation
fluxes) (Tian et al., 2022).

Forest change also can influence the hydrologic cycle
by altering evapotranspiration, streamflow, precipitation and
soil moisture (Bonan, 2008; Hoek van Dijke et al., 2022).
Deforestation in the tropics can result in a strong decrease
in precipitation (Smith et al., 2023), with up to 30 % of an-
nual total precipitation (Snyder et al., 2004; Perugini et al.,
2017). This is because more than half of forest evapotran-
spiration can be recycled and produce rainfall in the tropi-
cal region (Salati and Nobre, 1991; Silva Dias et al., 2009).
And another reason is that deforestation induces an asym-
metrical temperature response in the northern high latitudes
and Southern Hemisphere tropics, which leads to a reduction
in the thermal contrast between the hemispheres, resulting
in a weakened meridional pressure gradient. Consequently,
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the convergence of cross-equatorial flows and precipitation
is diminished (Liang et al., 2022). Leite-Filho et al. (2021)
revealed that the impact of deforestation on precipitation is
intricately linked to the extent of deforestation in the Ama-
zon. Within 28 km grid cells, deforestation can actually lead
to an increase in rainfall, with forest loss of approximately
55 %—-60 % exhibiting this effect. However, once this thresh-
old is surpassed, the decline in rainfall becomes steep. No-
tably, these thresholds vary when considering larger scales
(45 %—-50 % at 56 km and 25 %-30 % at 112km grid cells).
In the case of 224 km grid cells, rainfall steadily decreases
with increasing deforestation. In the boreal region, tree re-
moval leads to a slight reduction in precipitation, around
15 % of the annual total precipitation (Snyder et al., 2004;
Cherubini et al., 2018). This is likely due to inappreciable
differences in the evapotranspiration ratio between different
vegetation covers in boreal region (Beringer et al., 2005).
Forests’ change impacts on precipitation in the temperate
regions are more complex than in the boreal or tropical re-
gion (Bala et al., 2007; Field et al., 2007; Bonan, 2008). It
is challenging to detect the signal of forest cover changes on
rainfall in the temperate region, owing to the high variabil-
ity of synoptic-scale meteorological systems, which impact
local-to-regional circulation and rainfall patterns (Bala et al.,
2007; Field et al., 2007; Bonan, 2008). Modeling studies sug-
gest that a decline in vegetation cover can lead to a reduction
in annual precipitation in the temperate region, ranging from
—73 to =219 mmyr~! (Perugini et al., 2017). Based on the
Coupled Model Intercomparison Project Phase 6 (CMIP6)
results, deforestation has wide-ranging effects on precipita-
tion patterns. It not only causes a significant reduction in
local and regional precipitation but also impacts areas be-
yond the deforested regions. Additionally, deforestation con-
tributes to a decrease in the frequency and intensity of heavy
precipitation events while also shortening the duration of the
rainy season (Luo et al., 2022).

Changes in temperature and precipitation may affect re-
gional wet and dry conditions, such as drought. Drought is a
complex climatic condition characterized by below-normal
rainfall over a period from months to years (Dai, 2011).
Drought is mainly driven by a combined effect of temper-
ature, precipitation, wind speed and solar radiation (Senevi-
ratne, 2012). Meanwhile, drought is also considered a natural
disaster that poses serious threats to ecosystems by chang-
ing the forest structure (tree size, plant life form and po-
tential canopy position) and carbon content (the distribution
and types of vegetation that store carbon) (Nepstad et al.,
2007). Moreover, several studies have reported changes in
drought characteristics in the past few decades (Cook et al.,
2014; Trenberth et al., 2014; Naumann et al., 2018; Zhao
and Dai, 2015). Since the 1950s, there has been a noticeable
trend towards increased drought severity in southern Europe
(Vicente-Serrano et al., 2014) and West Africa (Dai, 2013),
as indicated by the standardized precipitation evapotranspi-
ration index (SPEI) time series and self-calibrated Palmer
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drought severity index (scPDSI), respectively. In southern
Europe, the trend shows a higher frequency and intensity of
droughts, while West Africa has experienced severe to ex-
treme droughts. On the other hand, western North Amer-
ica has seen a relatively smaller increase in drought severity,
with the number of months with moderate to extreme drought
showing an increase of around 100 between 1958 and 2008,
as compared to the period of 1909—1958, with the maximum
value being over 225 months (Peterson et al., 2013).

Some studies have indicated that alterations in forest cover
are highly likely to have an impact on regional drought con-
ditions. For example, deforestation leads to less water that
can be recycled and intensifies the regional dry seasons in
the Amazon region (Bagley et al., 2014; Staal et al., 2020).
Based on model simulations, the conversion of mid-latitude
natural forests to cropland and pastures is accompanied by
an increase in the occurrence frequency of hot, dry sum-
mers (Findell et al., 2017). To date, no reports have ad-
dressed the impact of forest changes on drought conditions
in other regions. Additionally, the different timescale drought
responses to forest change have not been explored. Given
the significance of forest management decisions for climate
adaptation and mitigation targets, it is essential to compre-
hend how drought responds to alterations in forest cover. The
statistical model serves as a valuable tool for exploring cli-
mate impacts resulting from changes in forest cover (Huang
et al., 2023). In this study, we aim to employ statistical mod-
els to explore the connection between forest cover changes
and drought, keeping the following questions in mind:

1. How do changes in forest cover affect droughts at dif-
ferent timescales?

2. What is the role of forest cover change in modulating
drought across various climatic regions?

The objective of this study is to give a fundamental view
of the relationship between observational forest cover area
shift and drought variation to understand how drought re-
sponds to forest change across different timescales and cli-
mate zones. A brief introduction involving forest change and
its climate effect is given in Sect. 1. Section 2 presents an
overview of the data description and source, followed by a
discussion on methods used in the paper in Sect. 3. Section 4
evaluates the effect of forest cover change on drought in dif-
ferent timescales and climate zones. In Sect. 4.1, we ana-
lyzed the effects of forest cover change and meteorological
factors on droughts based on the analysis of variance men-
tioned in Sect. 3.2. In Sect. 4.2, we focused on how meteo-
rological factors influence the impact of forest cover change
on droughts. Finally, in Sect. 4.3, we examined the effects
of meteorological factors on droughts under extreme values
of forest cover area, specifically the maximum and minimum
values. Section 5 concludes the main findings, along with the
limitations and possible extensions of the work.
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2 Data
2.1 Climate classification

The climate classification is based on the digital K&ppen—
Geiger world map dataset, which was first formulated by
Wladimir Koppen and has been updated for several genera-
tions (Kottek et al., 2006; Peel et al., 2007; Kriticos et al.,
2012; Beck et al., 2018). The philosophy behind the con-
struction of this version is to rely on observed data rather than
experience, wherever possible, to minimize the number of
subjective decisions. The map dataset is defined on long-term
station records of monthly precipitation sums and monthly
mean temperature obtained from the Global Historical Cli-
matology Network (GHCN) version 2.0 dataset (Peterson
and Vose, 1997). In the creation of the climate classification
dataset, 12396 precipitation stations and 4844 temperature
stations were used, and there are 30 possible climate types.
The latest iteration of the Koppen—Geiger world map dataset,
presented by Beck et al. (2018), boasts an exceptional reso-
lution of 0.0083° (roughly equivalent to 1km at the Equa-
tor), offering a more precise depiction of regions with high
heterogeneity. However, our analysis concentrates solely on
five primary climate zones, where we find no substantial
distinctions among the available Koppen—Geiger world map
datasets. We have classified the 30 climate types into five pri-
mary climate groups, namely equatorial (11 030 grids), arid
(15673 grids), temperate (9587 grids), snow (20734 grids)
and polar (35391 grids) regions, as shown in Fig. 1. How-
ever, since forest cover in the polar region is insignificant,
this study focuses only on the first four regions.

2.2 Drought indices

To measure, monitor and analyze the drought, multiple in-
dices have been developed (Keyantash and Dracup, 2002).
Over the past few decades, there have been two widely used
drought indices, the standardized precipitation evapotran-
spiration index (SPEI) (Vicente-Serrano et al., 2010a) and
the self-calibrating Palmer drought severity index (scPDSI)
(Burke et al., 2006). These two indices describe the effect
of temperature and precipitation on droughts. Furthermore,
the SPEI describes droughts at different timescales, which is
important for our first research question. The SPEI focuses
more on atmospheric conditions, while scPDSI considers the
situation in the soil. In order to obtain a more comprehensive
picture, both indices are used in this study.

2.2.1 The standardized precipitation
evapotranspiration index (SPEI)

The SPEI is the extension of the SPI (standardized precipita-
tion index), which considers the influence of potential evap-
otranspiration (PET) and uses the difference between precip-
itation (Precip) and PET, while SPI maps the precipitation
intensity on a Gaussian variable and uses Precip as the only
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Figure 1. Global distribution of main climate classification, according to the Koppen— Geiger world map.

input (McKee et al., 1993). Similarly to the SPI, SPEI is a
timescale-dependent drought index. For this, we specify an
integration timescale T and a reference month; e.g., SPEIO3
for May denotes a drought index obtained for the period from
March to May.

D; = Precip; — PET;, (1)

with i specifying the month. D; is the water deficit, which
can be aggregated for the desired timescale 7. The cumula-
tive D; is the D series, and then the D series is standardized
to obtain the SPEI.

The global SPEI dataset used in this study is available
as monthly values with a spatial resolution of 0.5° x 0.5°.
We choose to download various integration timescales t
of the index: 3 months (SPEIO3, short-term), 6 months
(SPEIO6, mid-term), 12 months (SPEI12, mid-term) and
24 months (SPEI24, long-term). The time period consid-
ered is 1992-2018. The calculation of PET is based on the
FAO-56 Penman—Monteith method (Allen et al., 1998). And
the dataset is based on the Climatic Research Unit (CRU)
TS3.24.01 dataset (Vicente-Serrano et al., 2010b, a).

Each grid point is then associated with one of the five re-
gions given in Fig. 1. Averaging over all grid points in one
region yields the SPEIt at monthly resolution for a given re-
gion; subsequently averaging over all months of a year yields
annual values for each region. For example, the SPEIO3 for
the year 2000 is the average over the SPEIO3 from January
to December of the same year.

2.2.2 The self-calibrating Palmer drought severity
index (scPDSI)

The Palmer drought severity index (PDSI) is an old drought
indicator, developed in 1965 to assess the soil’s moisture
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available by using precipitation and temperature to estimate
moisture supply and demand within a two-layer soil model
(Wayne, 1965). In 2004, Wells et al. (2004) developed the
PDSI into scPDSI, more effectively improving the compara-
bility of the index at different locations. As with the PDSI,
the scPDSI is calculated from time series of precipitation
and temperature, together with fixed parameters related to
the soil/surface characteristics at each location. The funda-
mental calculation of PET follows Thornthwaite’s method
(Thornthwaite, 1948). In 2006, Burke et al. (2006) improved
the calculation of PDSI, using the Penman—Monteith ap-
proach (Maidment, 1993) to establish the evapotranspiration,
which is applied to the actual vegetation cover, rather than a
reference crop (as is done implicitly in the Thornthwaite’s
method).

The scPDSI dataset (Barichivich et al., 2021; van der
Schrier et al.,, 2013) is available at a 0.5° resolution at
monthly resolution for the time period 1992-2018. It is based
on the CRU TS 4.05 dataset, and the calculation of PET is
based on the Penman-Monteith method. Each grid point is
associated with one of the five regions given in Fig. 1. Av-
eraging the scPDSI over all grid points in a region and sub-
sequently averaging all months of the year yields the annual
scPDSI for the region.

According to McKee et al. (1993) (both the SPEI and
SPI employ the same classification criteria) and Wells et al.
(2004), the subsequent classification of the SPEI and scPDSI
provides specific ranges for wetness and dryness categories,
as outlined in Supplement Tables S2 and S3. In the case
of the SPEI and scPDSI, the normal states are defined as
—0.99 to 0.99 and —0.49 to 0.49, respectively. However, in
our study, regional averaging was conducted for each index,
which tends to normalize the indices toward the average val-
ues. Despite this normalization effect, the positive and nega-
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tive variations still reveal the tendency of the region to expe-
rience dry or wet conditions.

2.3 Forest cover

Changes in forest cover fraction are calculated based on the
annual European Space Agency (ESA) Climate Change Ini-
tiative (CCI) land cover maps from 1992 to 2018 at a spa-
tial resolution of 300 m (ESA, 2017). The maps describe the
earth’s terrestrial surface in 37 land cover classes based on
the United Nations Land Cover Classification System (UNL-
CCS), and 14 out of the 37 classes are defined as forest.
The dataset was produced after the combination of the global
daily surface reflectance of five different satellite observation
systems, with the ambition to maintain high levels of consis-
tency over time. It has high accuracy (> 70 %) in represent-
ing cropland classes, forests, urban areas, bare areas, water
bodies, and perennial snow and ice (Poulter et al., 2015).
This dataset has been widely used in investigating recent land
cover change and its climate effects (Huang et al., 2020; Hu
et al., 2020). We aggregated the dataset to a 0.5° x 0.5° res-
olution, and at each grid point, the forest fraction can take
values between 0 and 1. In the following, we use forest frac-
tion aggregated to the level of regions, centered and scaled
the annual values by their standard deviation to unit vari-
ance for the sake of visualizing the interannual change and
comparing the contribution of forest fraction change in lin-
ear models (Sect. 4) to other analogously scaled variables.

Figure 2 shows the time series of annual forest fraction
(centered and scaled to unit variance) for the four regions
(equatorial, arid, temperate and snow) as well as the drought
indices (scPDSI, SPEIO3, SPEIO6, SPEI12 and SPEI24) for
the period from 1992 to 2018.

In the equatorial region, the forest fraction declines
monotonously until 2013 with the decay being slower from
2004. Since then, it is slightly increasing. From the visual
comparison, there is no obvious relation to any of the drought
indices. In the arid region, forest fraction declines until 2003
and increases again, interrupted by a few years of decline
around 2010. The regeneration to (and even above) values
from 1992 happens relatively quickly after 2016. Drought in-
dices are all negative from about 1998 and fluctuate around a
relatively constant value from 2010. The temperate zone also
shows a decline in forest fraction until 2003, followed by
slight ups and downs until 2015. In recent years until 2018,
the forest fraction increased again to the average level. Com-
pared to the plots in other regions, the drought indices in the
snow zone undulate around zero (coordinate on the right y
axis), and there is little difference between SPEI and scPDSI.
The forest fraction bars show an almost opposite behavior as
in other regions: an increase until around 2009 followed by a
decrease that levels off at around 2016.
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2.4 Precipitation and temperature

Climatic Research Unit (CRU) monthly near-surface temper-
ature and precipitation datasets with a spatial resolution of
0.5° x 0.5° are used in this study. In the CRU datasets, me-
teorological station observations were interpolated to grids
and given as monthly values by an automated method (Har-
ris et al., 2014). The datasets are used to analyze the effect of
meteorological factors on droughts.

Again, for the sake of easier comparison, the variables in
Fig. 3 have been centered and scaled to unit variance. Shown
is the annual mean of monthly precipitation as bars and tem-
perature as black dots for the different climate zones (dif-
ferent columns) in Fig. 3, together with the drought indices
considered here (different rows). Note that for the SPEI for 3,
6, 12 and 24 months, temperature and precipitation are analo-
gously aggregated to this length. Hence, for SPEI06 in June,
we average monthly precipitation and temperature from Jan-
uary to June and for SPEIO6 for July and from February to
July and so on. Figure 3 shows the annual means of precipi-
tation and temperature aggregated analogously to the aggre-
gation level of the drought index.

In equatorial and temperate regions, the main influencing
factor to droughts is precipitation, which is largely consis-
tent with changes in the drought index, while this relation-
ship is not visible for the arid region, where the temperature
has a larger influence. In snow regions, the situation is even
more complex. This implies that precipitation or tempera-
ture may not be the dominant factors in this region. Other
factors such as their interaction or other environmental vari-
ables may play a more important role in driving the changes
in drought conditions in the snow region. Furthermore, Fig. 3
also gives an idea about the difference between scPDSI and
SPEISs. In equatorial, temperate and snow regions, the change
of scPDSI and SPEI is similar, but in the arid region, the vari-
ation is different. This is probably due to the low precipita-
tion in the arid region, causing a large difference in the water
content of the atmosphere and soil.

Detailed information regarding all the data utilized in this
study can be found in Table S1.

3 Methods
3.1 Linear models

We use linear models to explore the influence of forest cover,
as well as temperature and precipitation on the drought in-
dices in various climate zones. We use linear models because
of their great flexibility, versatility and robustness. They are
characterized by linearity in parameters to estimate; relations
between the predictand and variables in the predictor can still
be formulated in a non-linear way. Furthermore, they easily
allow us to describe joint effects of different variables (tem-
perature and forest cover) on the predictand (interactions),
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a feature made extensive use of in this study. Linear mod-
els allow the assessment of drought indices for hypothetical
situations in a projected climate change scenario. The target
variable (drought index) is assumed to be a realization of a
normally distributed random variable Y with constant vari-
ance o2 and varying expectation i:

Y ~N(u, o). 2)

The expectation u depends on a set of covariates (or inde-
pendent variables) X1, X2, X3, ..., X, which we expect to
influence the expectation of the target (drought index) in a
linear way:

u=p+ B X1+ Xo+BXs+...6pXp. (3

The unknown model parameters §; are estimated using max-
imum likelihood (Wilks, 2019), realized within the environ-
ment for statistical computing R (R Core Team, 2018) using
the function 1m () (Chambers and Hastie, 1992; Wilkinson
and Rogers, 1973) from the package stats.

For ease of communication, we adopt the notation for lin-
ear models introduced by McCullagh and Nelder (1989). For
example, for a model with covariates X1, X2, X3 which enter
all as direct effects and X, X3 as interactions, i.e.,

w=po+p1 X1+ X2+ B3 X3+ BaX2X3, )
the model notation reads

Y~X1+Xo0xX3=X1+ X2+ X3+ X2: X3, )
with X5 * X3 being shorthand for X, + X3+ X5 : X3, 1.e., in-

cluding X, and X3 as direct effects and as interaction X» :

Hydrol. Earth Syst. Sci., 28, 321-339, 2024

X3. The interpretation of X7 : X3 is a modulation of the ef-
fect of X3 on Y by X, (or vice versa: modulation of the ef-
fect of X5 on Y by X3). Another perspective is to view this
as approximating the unknown function using a second-order
Taylor expansion, with the resulting unknown parameters es-
timated from data. By employing this approach to investi-
gate how meteorological conditions and forest cover influ-
ence droughts, we aim to generate ideas for potential mech-
anisms based on data. Here, we use

D ~ Xtorest + Xprecip + Xtemp + Xtorest Xprecip
+ Xtorest * Xtemp + Xprecip * Xtemp » (6)

with D; denoting the annual mean of drought index,
i.e., scPDSI or SPEI, with integration time 7. Xforest the
forest cover fraction. For scPDSI, Xpecip stands for the an-
nual mean of precipitation, and Xiemp the annual temperature
mean. In the case of SPEI, Xpyecip is the annual mean of pre-
cipitation aggregated similarly to the aggregation level of the
drought index, and Xemp is the annual mean of temperature
based on the same method. X, : X}, denotes interactions; e.g.,
Xtorest : Xtemp describes the influence of temperature depend-
ing on forest cover fraction.

All variables are standardized to zero mean and unit vari-
ance before parameter estimation. After building the linear
models for each region and drought indices, variance infla-
tion factors (VIFs) for each variable in each linear model
have been calculated. The values are all less than 5, indi-
cating that the colinearity among these variables can be ne-
glected. The SPEI is a timescale-dependent drought index
with integration time t. Note that the integration time t also
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Figure 3. Time series of regional averaged annual mean of precipitation (bar), temperature (dashed line) and drought indices (lines; the
legend is the same with Fig. 2. Rows from top to bottom: scPDSI and SPEIt with t € {03, 06, 12,24}) from 1992 to 2018 across different
zones (columns from left to right: equatorial, arid, temperate and snow).

defines the first available data point for D; as T — 1 month
after the start of the time series in January 1992. Thus for
longer integration times, the SPEIr cannot be obtained for
the first years of the dataset; e.g., for SPEI24, the calculation
starts in December of the second year.

Based on Eq. (6), we estimate the impact of forest fraction
and meteorological factors on drought. For SPEIO3, SPEIO6
and SPEI12 of a specific month, we use the previous 3, 6 or
12 months’ data; for SPEI24, we need the data of the previ-
ous 2 years.

Figure 4 compares annual values for the scPDSI and
SPEIt obtained as described in Sect. 2.2 (points) to the ex-
pectation from the linear models (Eq. 6 using forest fraction
Xftorest, temperature Xemp and precipitation X precip as inputs)
(lines); the rows give the scPDSI and the SPEIt for different
integration timescales T € {03, 06, 12, 24} (from top to bot-
tom) and across various climate zones (columns, equatorial,
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arid, temperate and snow, from left to right). And in Table 1,
we also give the MSE (mean squared error) and adjusted R?
for all models in Fig. 4.

The MSE quantifies the difference between model esti-
mates and observed values for the drought indices, computed
as

1< -~ 1< —
MSE= -3 (yi—¥)? =~ (Dei=Dei), (7

i=1 i=1

where y; represents the observed values for the drought index
(Dyz,i, scPDSI and SPEIs); Y; denotes the model estimates
(5;); and n is the number of data points, i.e., the number of
years. The coefficient of determination R? gives the fraction
of variability described by the model:

SSreg _
SSwot

Sk

R2
SStot

®)
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with the total sum of squares

n

SSior = Z(yi —ﬁ)z = Ssreg + SSres 9
i=1

the sum of squares of the regression
n ~
SSreg = > _(¥; =), (10)
i=1
the sum of squares of the residuals
n —~~
SSres =y (i — i), (1)
i=1

and y; the arithmetic mean of the observations y;. We use the
adjusted R:

2 Ssres/ dfres

Radj —_ 1 O

Sstot/dftot
Xm0 Y e -p) a2

Yo i =¥/ (n—1)

with dfi,; and dfyes denoting the degrees of freedom for the
total and residual sum of squares, respectively; n the number
of observations; and p the number of covariates (independent
variables).

The linear model is able to capture the inter-annual vari-
ability of the drought indices to a certain extent, with perfor-
mance varying across climate zones. From visual inspection
and comparison of Rgdj, drought indices in the equatorial re-
gion can be described best (0.84 < Rgdj < 0.97), while for
the snow region (0.23 < Rgdj < 0.39), the model is by far not
as performant; see Table 1. For arid and temperate zones, the
models are almost as performant as for the equatorial zone.
The MSE in the equatorial region is around 0.1 and smaller,
while in the snow region, we find MSE of around 0.5 (Ta-
ble 1). Thus in the equatorial, temperate and arid regions,
linear models with two-point interactions of forest cover,
temperature and precipitation are well suited to describe the
drought indices used here, whereas in the snow region, the
factors influencing the drought indices must be more com-
plex than this.

Furthermore, we see from Fig. 4 and Table 1 that the SPEI
indices with varying timescale t are consistently better rep-
resented by the model (larger Rfdj) than the scPDSI over all
regions, with performance (Rgdj) roughly increasing with ©
(except for the snow region). We hypothesize that this is an
effect of the calculation of the scPDSI based on a two-layer
soil box model, and thus local soil conditions are relevant;
the latter are not represented in our model-building process.
Furthermore, we have included residual versus fits plots for
all drought indices across different regions in Fig. S1. Upon
careful inspection of the residual plots, no evident structures
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or patterns are observed, indicating that there are no appar-
ent missing terms or heteroscedasticity present in the models.
In addition, the significance tests for all linear models have
been incorporated into Table S4. This table provides the sig-
nificance asterisks denoting p values associated with each
coefficient in the linear regression models.

3.2 Analysis of variance

Analysis of variance (ANOVA; Anscombe, 1948) gives a
quantitative estimate of the relative strength of these factors,
which is used to quantify the effect of the various covariates
X. We use it to describe the drought indices, i.e., forest frac-
tion, precipitation and temperature; see Eq. (6). We denote
the full model for a drought index D as Dy, as given in
Eq. (6). The model without the information on the forest is
denoted as

D_forest ~ Xprecip * Xtemp- (13)

Analogously, we denote models without information on tem-
perature or precipitation as D_emp and D_precip, respec-
tively. With

SStorest = SSreg(Dfull) - Ssreg(D—forest)’ (14)

we assess the improvement in model performance in terms of
regression sum of squares due to including the forest fraction
as a covariate, with the F' test giving significance to that. Note
that the difference in degrees of freedom used in the F test
for the full and the reduced model is §p = 3 as all terms in
Eq. (6) involving forest fraction Xgores are taken out. Anal-
ogously, we define SS¢emp and SSprecip for quantifying the
influence of temperature and precipitation.

The fraction of variance contributed to the regression by
forest fraction is given as

SStorest
ASSfores = ——rorest (15)
orest Ssreg(Dfull)

analogously for precipitation (ASSprecip) and temperature
(ASSiemp).

4 Results

For each region, linear models for scPDSI, SPEIO3, SPEI06,
SPEI12 and SPEI24 are built to describe the relationship be-
tween the drought indices (D7) and three covariates (factors)
(Xforests Xprecip» Xtemp). The annual values for forest frac-
tion Xforest and the SPEIT have a time delay, as discussed
in Sect. 3: the model for SPEIO3, SPEIO6 and SPEI12 uses
meteorological data from 1993 to 2018, while the values for
forest fraction are from 1992 to 2017; the model for SPEI24
uses meteorological data from 1994 to 2018, while values
for forest fraction are from 1992 to 2016; and for scPDSI,
all values for the covariates are from 1992 to 2018. Here, the
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Figure 4. Time series of drought indices (colors as same as in Fig. 2); annual point estimates (points) and estimates from the linear model
(Eq. 6, lines) across different climate zones (columns from left to right: equatorial, arid, temperate and snow) and for the scPDSI and SPEIr
with different integration times (rows from top to bottom: scPDSI and SPEIr with t € {03, 06, 12, 24}). The shade signifies that the range lies

at a 95 % level of confidence. Note that SPEIO3, SPEIO6 and SPEI
for the first 2 years.

results in terms of the proportion of variance added to the
models by forest cover change and other meteorological fac-
tors across different regions are displayed first. Subsequently,
we investigate the interaction of the three factors on droughts
in four regions. Key insights emerging from the results are
discussed, and we also give some possible explanations.
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12 cannot be obtained for the first year, and SPEI24 can not be obtained

4.1 The proportion of variance described by forest
cover change

Based on the linear models for all variants of drought indices

and across climate zones, we estimate the contribution of the
three covariates to the regression according to the procedure
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Table 1. MSE (mean squared error) and adjusted R? (Rfdj) for all models in Fig. 4.

Equatorial ‘ Arid ‘ Temperate ‘ Snow
2 2 2 2
MSE RZ; | MSE Ry | MSE R, | MSE  RZ,
scPDSI  0.12 084 | 031 059 | 023 0.70 | 0.57 0.23
SPEIO3 005 093 | 0.17 0.77 | 0.10 0.86 | 049 0.32
SPEIO6 0.03 095 | 0.17 0.76 | 0.09 0.88 | 045 0.39
SPEI12 003 097 | 0.11 085 | 0.05 094 | 0.53 0.27
SPEI24 0.02 097 | 0.09 087 | 0.04 094 | 0.53 0.27

described in Sect. 3.2. The bars in Fig. 5 show the propor-
tion of variance contributed by forest cover fraction (Xforest,
green), precipitation (Xprecip, blue) and temperature (Xemp,
red) to the regression.

The contribution of precipitation to variability dominates
for drought indices in equatorial, temperate and snow re-
gions. For the arid region, precipitation only dominates
scPDSI, while for SPEI-based drought indices, temperature
dominates its variability. For the temperate region, precipi-
tation contributes the most considerable fraction of variance
compared to the other areas, followed by the snow region.

Across all regions, the forest fraction describes a more sig-
nificant fraction of the regression variance for scPDSI than
for the SPEI-based drought indices. As scPDSI is the only
drought index used here that involves soil properties, we
hypothesize that forest fraction is linked to these and thus
has some potential to describe more about the variability of
scPDSI. However, we still should note that the linear models
better represent SPEI-based indices (higher dej in Table 1)
than scPDSI.

For the equatorial and temperate regions, forest fraction
does not contribute to describing the variability of the SPEI-
based indices (non-significant). In the arid region, however,
the proportion of variance contributed by forest cover to
SPEI-based indices is around 0.1 and at least significant on
the 0.05 level (SPEIO3 only on 0.1 level), while for the snow
region, the contributing fraction of variance is comparably
large but not statistically significant on any reasonable level.
Here, the contribution of precipitation is particularly large for
SPEI06, and the influence of temperature seems to increase
with timescale 7; however, the latter is not significant on the
normal levels. Thus for the snow region, precipitation seems
to have a larger impact on short-term drought indices while
temperature affects more long-term indices. Note that the lin-
ear models for the snow region show adjusted R? values of
around 0.3 and hence are a lot less capable of describing
the index variability than that in other regions (Rz%dj >0.7);
see Table 1. Processes in the snow region seem to be more
complex than what can be represented with the approach
here.

Proportions of contribution do vary across regions and
drought indices: precipitation has a large influence in all re-
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gions except the arid region, the temperature has a larger in-
fluence on SPEI-based drought indices in the arid region and
the forest fraction describes a larger fraction of the regres-
sion variance for scPDSI than for the SPEI-based indices.
Thus in the arid region, where the ecosystems are fragile and
highly vulnerable to climate change, the forest fraction has a
stronger impact on changes in drought indices.

4.2 Variations in droughts response to forest fraction
according to different precipitation and
temperature quantiles

Figure 6 explores the effect of forest cover fraction on
SPEI24 and SPEIO3 conditioned on precipitation and tem-
perature. Again, this analysis is based on the previously dis-
cussed models. The first two rows show the effect of forest
cover on SPEIs for different levels of precipitation (dark-
green lines) with temperature held fixed at its median. For
the bottom two rows, precipitation has been held fixed at
its median, and the forest cover effect for various levels of
temperature (dark-yellow lines) is explored. The strength of
the colored bands is associated with the quantiles of pre-
cipitation/temperature. The dark-green/dark-yellow part of
the band covers the central part of the precipitation/temper-
ature (0.4 to 0.6 quantile). For each successive outer band,
the quantile level for temperature/precipitation changes by
0.05. Furthermore, similar analyses for SPEIO6, SPEI12 and
scPDSI can be found in Figs. S4, S5 and S6 in the Supple-
ment.

We can see that the influence of forest cover on drought
conditions varies depending on precipitation levels and geo-
graphical regions. For SPEIO3, it appears that forest fraction
has a relatively modest impact across various levels of pre-
cipitation (lines are close to horizontal). This suggests that
precipitation does not significantly modulate the influence of
forest cover on the short-term drought index (the first row
in Fig. 6). However, when we examine SPEI24, a different
pattern emerges. There is a strong influence of precipitation
on the forest fraction effect (the second row in Fig. 6), par-
ticularly in arid regions (as seen in Fig. 6F). In general, as
precipitation increases beyond the median level, the drought
index tends to rise with increasing forest cover. This phe-
nomenon can be explained by increased transpiration asso-
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Figure 5. Proportion of variance contributed by forest fraction, precipitation, and temperature to the full model that describes drought indices
at different timescales across four climate regions (confidence at significance levels of *** 0.001, ** 0.01, * 0.05 and - 0.1).

ciated with larger amounts of precipitation, resulting in a re-
duced vapor pressure deficit (VPD) and, consequently, lower
PET. This leads to higher SPEI24 values when forests are
denser. Furthermore, forests have the capacity to intercept
precipitation and diminish ground-level wind speeds. These
combined effects contribute to a reduction in PET as forest
cover increases. If precipitation is lower, this effect decreases
and the slopes in Fig. 6f get smaller. There is not sufficient
water to be evapotranspirated, even if the forest fraction in-
creases. For a specific amount of precipitation (about the me-
dian) the slope is 0. When the precipitation is less than this
amount, we see a negative slope, suggesting the interpreta-
tion that for restricted water supply, an increase in trees leads
to an increase in PET and hence to a decrease in SPEI24. An
opposite effect can be observed in the snow region (Fig. 6n).
Here, with minimal forest cover, precipitation directly affects
the SPEI24, leading to a more humid situation with higher
precipitation. However, with forest cover increases, this di-
rect effect vanishes. It is worth noting that for snow regions,
the model captures less than 30 % of the total variability, in-
dicating the complexity of this relationship.

The modulation of forest cover by temperature (Fig. 6,
two bottom rows) is more diverse. In the equatorial region
(Fig. 6¢ and d), the temperature influence is much weaker
than precipitation (see Fig. 5); hence precipitation domi-
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nates the drought index in the equatorial region. However, for
the higher temperature, we see a slight decrease in SPEI24
(Fig. 6d) with forest cover, while for the low temperature,
SPEI24 increases with forest cover. However, the signifi-
cance test, as presented in Table S4, reveals that the inter-
action between temperature and forest cover to SPEI24 does
not demonstrate statistically significant results. This modu-
lating effect of the forest cover effect on the drought index
is a lot stronger for the arid region. For the short-term in-
dex (SPEIO3, Fig. 6g), high/low temperatures lead to a no-
table negative/positive response of SPEIO3 to forest cover,
while the same effect is even stronger for the long-term in-
dex (SPEI24, Fig. 6h). A possible explanation is that elevated
temperatures trigger greater transpiration rates from trees.
When there is an abundance of trees, they collectively draw
more water from the soil. This depletes the water content in
the soil, and when soil moisture becomes insufficient, it re-
sults in reduced evapotranspiration. This decrease in evap-
otranspiration leads to a higher vapor pressure deficit and,
subsequently, an increase in PET. This shift toward higher
PET values often corresponds with a decrease in drought in-
dices. In the presence of low temperatures, forest transpira-
tion tends to weaken. In such conditions, the influence of
forest transpiration on drought changes becomes less pro-
nounced. It is important to note that trees can still play a

Hydrol. Earth Syst. Sci., 28, 321-339, 2024



332

Y. Li et al.: Effect of forest fraction change on droughts

- (@ - (e) e ()} © Hm)
N
3 S 00%| N ] = |
o © |me— o | © °
. T e 1
=) 50% 70%| o 2% 0% S g0s "
E g Hronm————=—0%| < 7 50%j 0% 50%—70"6
7 i o
) i A
] o A N
© - < <
3 4
T T T T T T T T T T T T T T T T T
0.482 0.492 0.0383 0.039 0.312 0.316 0.504 0.508
- S A S qm
N
o [ <
N ' S S
m 7 o N
E s 2 - :
o ! _
o < N
© = - o o -
oS ! ! T
T T T T T T T T T
0.483 0.492 0.0383 0.039 0.504 0.508
de 4 < ©
(c) N (9) ool S ® O]
(oo S S 30%| o <
o ©° ! o 7 c
w _|50% 70%
0% 0| © o
o 0 S —C | © O T 0hs0w O o 30%
[7p] g — \;geﬁ T 70%;90‘% ?8%>‘<70%
| — -
N Qo <+ | N
2 T T <
T T T T T T T T T T T T T
0.482 0.492 0.0383 0.039 0.312 0.316 0.504 0.508
@) ol (h) =S40 24P
< o S [\ <
SV ' S ] S ]
L 7 0% o 1o o %
o éﬂ%éﬁ% © [e0% = I — S %
RN 70%| S s0% 70% 50%/ 90% “
! _{10% = 70%! - "
_ o < | / o] o
e - Q <
T T T T T T T T T T T T T
0.483 0.492 0.0383 0.039 0.312 0.316 0.504 0.508
Forest

Figure 6. The effect of forest fraction on droughts for SPEIO3 in the first and third rows and for SPEI24 in the second and fourth rows for
different levels of precipitation (dark-green lines) and temperature (dark-yellow lines) using the models from Sect. 3 across different climate
zones (from left to right: equatorial, arid, temperate, snow). For the first two rows, the temperature is held constant at its 0.5 quantiles, and
the forest cover effect is explored under different quantiles of precipitation. For the bottom two rows, precipitation is held constant, and the

effect is shown under different temperature quantiles.

role in promoting water circulation and increasing air hu-
midity in arid regions. When there is more precipitation, es-
pecially in the presence of a substantial number of trees, it
can provide some relief from drought conditions (in the tem-
perate region). However, the extent of this relief depends on
various factors, including the amount and timing of the pre-
cipitation, the type of tree species present, and other envi-
ronmental factors. For the temperate zone, increasing tree
cover results in increasing rates of evaporation, which con-
tributes to higher atmospheric moisture, thus reducing PET
and hence increasing SPEI. However, if temperatures are re-
duced, i.e., are close to their 0.1 quantiles, this effect van-
ishes. In the temperate region, water resources are relatively
abundant compared to the arid region. This suggests that
higher temperatures and more trees can indeed increase the
SPEI24, as shown in (Fig. 6l), as they contribute to higher
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evaporation and transpiration rates, leading to increased at-
mospheric moisture and potentially mitigating drought con-
ditions. For the snow region, trees in mostly snow-covered
regions change the albedo and the transpiration. Again, for
the snow region, the model captures only a little part of the
variability, which limits its interpretability.

The combined forest fraction and meteorological effect
on drought indices varies across regions and timescales t
in magnitude and direction. In equatorial and temperate re-
gions, the long-term drought index (SPEI24) is primarily in-
fluenced by precipitation, rather than forest cover. Similarly,
the short-term drought index (SPEIO3) in four regions is also
more dependent on precipitation than on forest cover. How-
ever, in the arid region, precipitation plays a significant role
in modulating the influence of forest cover on the long-term
drought index (SPEI24). Furthermore, temperature plays an
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apparent role in modulating the impact of forest cover on
both short-term (SPEIO3) and long-term droughts (SPEI24)
in arid regions. Additionally, in the temperate region, tem-
perature also plays a substantial role in influencing the effect
of forest cover on long-term drought (SPEI24) conditions.

And additional figures that provide further insights and
analysis about the effect of forest cover fraction on SPEI24
and SPEIO3 when temperature or precipitation is fixed at
maximum or minimum levels are included in Figs. S2 and
S3. The regions exhibiting more pronounced changes are pri-
marily in the arid and snow regions. These regions experi-
ence more significant variations in the combined forest frac-
tion and meteorological effect on drought conditions com-
pared to other areas.

4.3 Response of drought to precipitation and
temperature under extreme forest fraction
(minimum and maximum) conditions

We studied the effect of precipitation and temperature on
short-term (SPEIO3) and long-term (SPEI24) drought indices
for observed minimum (min(Xforest,region)) and maximum
(max (X forest,region)) forest cover fractions. We generate a grid
with 100 x 100 points based on the variables of precipitation
and temperature used in the linear models across different
climate regions and then use the precipitation, temperature
and forest extremes (maximum and minimum) to calculate
the drought indices (SPEIO3 and SPEI24) based on the mod-
els from Eq. (6). The first two rows in Fig. 7 depict the short-
term drought index (SPEIO3) obtained for the minimum (first
row) and maximum forest cover (second row), and the last
two rows depict the long-term drought index (SPEI24) for
minimum (third row) and maximum forest cover (fourth
row). Furthermore, similar analyses for SPEI06, SPEI12 and
scPDSI can be found in Figs. S7, S8 and S9.

Blue colors indicate the situations wetter than the me-
dian (positive indices), green represents situations close to
the median (indices around 0) and yellow indicates condi-
tions drier than the median conditions (negative indices). For
the equatorial region, precipitation influences the short and
long-term drought indices (vertical color change); for maxi-
mum forest cover (Fig. 7b), the dependence on temperature
(horizontal color change) becomes visible, even more so for
the long-term index (Fig. 7d). As the forest cover increases
(Fig. 7b, d), higher temperatures become more significant in
driving drought conditions. The elevated temperature leads
to increased rates of evaporation and transpiration, poten-
tially making the region drier. Nevertheless, the combined
effect of these factors on droughts, as indicated in Table S4,
is found to be statistically insignificant. The long-term index
in the arid region shows a somewhat stronger temperature
dependence for maximum forest cover (Fig. 7h) than that in
the equatorial region (Fig. 7d). For minimum forest cover
(Fig. 7g), the temperature dependence is very weak (and re-
versed). For SPEIO3 (Fig. 7e and f), the dependence also
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changes from precipitation to temperature if there are more
trees. In the temperate region, the SPEI24 for minimum for-
est cover (Fig. 7k) shows the strongest temperature and pre-
cipitation dependence; increasing forest cover to maximum
(Fig. 71) significantly reduces the temperature dependence,
leaving the long-term drought index for the temperate region
dominated by precipitation. The short-term index (Fig. 7i and
j) is less dependent on both, and the influence from precip-
itation and temperature is almost unaffected by the change
in forest cover. In the snow region, the relationship between
temperature, precipitation and long-term droughts is closely
linked to the extent of forest cover. The interaction between
precipitation and temperature plays a crucial role in shaping
drought conditions when there is maximal forest cover frac-
tion (Fig. 7p). Minimizing the forest cover (Fig. 70) elimi-
nates the temperature dependence. For SPEIO3 (Fig. 7m and
n), the dependence on both variables is a lot weaker, with
temperature dependence being reversed by reducing the for-
est from maximum (Fig. 7n) to the minimum (Fig. 7m).

Comparing all panels in Fig. 7, forest cover has a greater
influence on the long-term drought index in the arid region.
Increasing the forest cover increases the dependence on tem-
perature in snow, arid and equatorial regions, and it reduces
the dependence on temperature for the temperate region.

Figure 5 shows that the drought indices are greatly affected
by precipitation (except arid regions). In most cases, the color
shift in Fig. 7 should be vertically distributed. Transpiration
from the forest is essentially the evaporation of water vapors
from plant leaves and stems, which is an important part of
the water cycle (39 % of terrestrial precipitation and 61 %
of evapotranspiration globally) (Schlesinger and Jasechko,
2014). Within the cycle, temperature plays a major role in the
rate of transpiration (Kimball, 1993), especially during the
growing season. Therefore, forests can act as a medium for
the temperature to have a greater impact on drought changes,
as shown in snow and arid regions. In the temperate region,
the drought indices are dominated by precipitation, and the
forest only affects the influence of temperature to SPEI24,
and when there are fewer trees, the influence of temperature
will be amplified (shown in Fig. 61). And this is consistent
in Fig. 7k and 1. Note that simultaneously with afforestation
or deforestation, the global climate is changing. Therefore,
local changes in climate may also be additionally influenced
by global climate change and not only afforestation or defor-
estation rates.

5 Conclusions

The scientific community has dedicated significant efforts to
quantify the influence of land cover changes on climate. In
this study, linear models were employed to evaluate the im-
pacts of forest cover and climatic factors on droughts at var-
ious temporal scales in four distinct climate regions (exclud-
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Precip (mm/month)

15.8 -2.14 -0.979

Temp (°C)

Figure 7. The variation of droughts (SPEIO3 — the first and second rows and SPEI24 — the third and fourth rows) under the effect of minimal
(the first and third rows) and maximal (the second and fourth rows) forest cover across four regions (from left to right: equatorial, arid,

temperate and snow regions).

ing the polar region, which has negligible forest cover). The
study findings are summarized as follows:

1. Linear models incorporating forest fraction, precipita-
tion and temperature yield the most accurate results for
explaining drought indicators in the equatorial region
but are less effective in the snow region. These three
variables provide a better fit for changes in SPEIs com-
pared to scPDSI, which may be due to scPDSI’s consid-
eration of soil conditions. Precipitation is the primary
factor explaining a significant proportion of the regres-

Hydrol. Earth Syst. Sci., 28, 321-339, 2024

sion variance in all regions, except for the arid region
where temperature is the dominant factor.

. It is conceivable that changes in precipitation and tem-

perature can impact the relationship between forest
cover changes and drought occurrence. Specifically,
precipitation alters the influence of forest cover on long-
term drought (SPEI24) in the arid region, while tem-
perature significantly modifies the effect of forest cover
on both short- and long-term droughts (SPEIO3 and
SPEI24) in the arid region and only long-term droughts
(SPEI24) in the temperate region.
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3. Forest cover has differing effects on drought occurrence
(especially long-term drought) depending on the max-
imum and minimum levels of forest fraction in differ-
ent climate regions. Specifically, in arid and snow re-
gions, higher forest cover intensifies the combined in-
fluence of precipitation and temperature for long-term
drought. Conversely, in regions with lower forest cover,
precipitation is the dominant factor for drought occur-
rence. The opposite pattern is observed in the temper-
ate region, where lower forest cover promotes a com-
bined effect of precipitation and temperature for long-
term drought.

Despite the substantial progress made in understanding
the factors that influence drought occurrence, uncertainties
remain that have not always been fully acknowledged. One
source of uncertainty is the use of different drought indices,
which can produce divergent results. In this study, we fo-
cused on two indices, scPDSI and SPEI. However, the cal-
culation of drought indices, particularly scPDSI, is subject
to various uncertainties. For example, scPDSI requires in-
formation on temperature, precipitation and soil conditions.
Obtaining detailed soil information for each location can be
challenging, leading to potential inaccuracies in the calcu-
lation of the index. In addition, human activities like irriga-
tion are not accounted for in the index calculation, which can
affect its accuracy. Meanwhile, each of the drought indices
has its own niche where it excels. Different drought indices
should be used when assessing different types of droughts
(Mishra and Singh, 2010). Secondly, this study used a rela-
tively short-term dataset of 25-26 years, and future studies
can use longer-term data to obtain a more robust understand-
ing of the relationship between forest cover and drought.
Thirdly, our study indicates that the relative influence of pre-
cipitation and temperature on drought indices varies across
different regions and forest cover fractions; however, the spe-
cific physicochemical and biological processes underlying
this relationship require further verification through climate
models. Finally, this study utilized linear models with a lim-
ited number of predictors, and the conclusion is valid only
under the assumptions we use here. There might be other
models more accurate than linear models, and future studies
can investigate more complex models to explore other poten-
tial effects of forest cover change on drought. A generaliza-
tion to additive models (not necessarily linear) might reveal
more subtle effects. However, an initial explorative analysis
with line plots did not suggest these based on the data used
here. These gaps in knowledge present opportunities for fu-
ture research and can help in developing a broader framework
for understanding natural hazards, including droughts.

Possible extensions of this study include broadening the
scope of land cover analysis to include other types of land
cover, such as agricultural land, grasslands, wetlands and
settlements. Additionally, conducting more specific research
in particular locations, such as Europe, could provide more
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definitive recommendations. In our research, to simplify the
initial study, we chose to aggregate data across different cli-
mate regions. This approach helps to smooth out localized
variations and complexities. Going into a more detailed spa-
tial analysis would be a deeper level of investigation. How-
ever, it is important to note that the conclusions might not
be entirely consistent when transitioning to a grid-point-wise
training approach. This inconsistency arises due to interac-
tion terms in the model building process. Future model inter-
comparison studies, such as the Land-Use Model Intercom-
parison Project simulations (LUMIP; Lawrence et al., 2016)
under the Coupled Model Intercomparison Project phase 6
(CMIP6), could further investigate the impact of land use on
climate and examine the effect of land cover change on the
onset and evolution of drought under various forcing con-
ditions. The influence of droughts is not solely attributed
to local factors such as forest cover but is also affected by
global drivers and large-scale atmospheric patterns. Separat-
ing and isolating the specific effects of forest cover from
these broader-scale factors presents a significant challenge
in our research. Further investigation is warranted to explore
the varying effects of different tree species on drought. The
impact of tree species on drought dynamics can differ sig-
nificantly, and thus, it is important to delve deeper into this
topic. These extensions could significantly expand our un-
derstanding of the relationship between land cover change
and drought and inform the development of more effective
land use policies to mitigate the impacts of climate change.
Expanding our understanding of the regional and global cli-
mate impact of land cover changes, including their scale ef-
fects, can help to inform the development of land use policies
that prioritize climate objectives. This is particularly impor-
tant given that decisions regarding land use are frequently
made at the subnational level by regional authorities.

This study enhances our comprehension of the connec-
tion between forest cover and drought across various tem-
poral scales and climatic regions. Additionally, it elucidates
the combined impact of forest cover, temperature and pre-
cipitation on drought variability. The findings of this study
can offer a theoretical framework for the creation of regional
land use policies that prioritize climate concerns, as well as
deepen our insight into the impact of land surface changes on
climate change.

Code and data availability. All the datasets used in the article can
be freely downloaded. More information is given in Table S1. The
statistical analysis primarily relies on the stats package in R
(https://www.r-project.org/, R Core Team, 2018), employing the
1m () function (Chambers and Hastie, 1992; Wilkinson and Rogers,
1973) for linear modeling. R codes and all the datasets produced
during this study are available upon request.

Hydrol. Earth Syst. Sci., 28, 321-339, 2024


https://www.r-project.org/

336

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-321-2024-supplement.

Author contributions. YL and HWR conceived and designed the
research. YL built the models with the primary processing data from
BH and conducted the statistical analysis under the supervision of
HWR. YL made the figures. All authors interpreted the results and
wrote the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Yan Li acknowledges the support from the
China Scholarship Council (CSC) and the Freie Universitit Berlin.
Bo Huang acknowledges the support of the Norges Forskningsrad
(project nos. 94534 and 286773). The authors express gratitude to
all the providers of datasets for making the data accessible, as de-
tailed in Table S1.

Financial support. This research has been supported by the
China Scholarship Council and the Norges Forskningsrad (grant
nos. 294534 and 286773).

The article processing charges for this open-access
publication were covered by the Freie Universitit Berlin.

Review statement. This paper was edited by Genevieve Ali and re-
viewed by Jun Ge and one anonymous referee.

References

Alkama, R. and Cescatti, A.: Biophysical climate impacts of recent
changes in global forest cover, Science, 351, 600-604, 2016.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.:
Crop evapotranspiration-Guidelines for computing crop water
requirements-FAO Irrigation and drainage paper 56, Fao, Rome,

300, D05109, ISBN 9251042195, 1998.

Anderson, R. G., Canadell, J. G., Randerson, J. T., Jackson,
R. B., Hungate, B. A., Baldocchi, D. D., Ban-Weiss, G. A.,
Bonan, G. B., Caldeira, K., Cao, L., Diffenbaugh, N. S.,
Gurney, K. R., Kueppers, L. M., Law, B. E., Luyssaert, S.,
and O’Halloran, T. L.: Biophysical considerations in forestry
for climate protection, Front. Ecol. Environ., 9, 174-182,
https://doi.org/10.1890/090179, 2011.

Hydrol. Earth Syst. Sci., 28, 321-339, 2024

Y. Li et al.: Effect of forest fraction change on droughts

Anscombe, F. J.: The validity of comparative experiments, J. R.
Stat. Soc. A-G, 111, 181-211, 1948.

Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K., and Foley,
J. A.: Drought and Deforestation: Has Land Cover Change Influ-
enced Recent Precipitation Extremes in the Amazon?, J. Climate,
27, 345-361, https://doi.org/10.1175/Jcli-D-12-00369.1, 2014.

Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B.,
Delire, C., and Mirin, A.: Combined climate and carbon-cycle
effects of large-scale deforestation, P. Natl. Acad. Sci. USA, 104,
655065535, https://doi.org/10.1073/pnas.0608998104, 2007.

Barichivich, J., Osborn, T., Harris, 1., Van Der Schrier, G., and
Jones, P.: Monitoring global drought using the self-calibrating
Palmer Drought Severity Index [in “State of the Climate in
2020], B. Am. Meteorol. Soc., 102, S68-S70, 2021.

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N.,
Berg, A., and Wood, E. F.: Present and future K&ppen-Geiger
climate classification maps at 1-km resolution, Sci. Data, 5, 1-
12, 2018.

Beringer, J., Chapin, F. S., Thompson, C. C., and McGuire, A. D.:
Surface energy exchanges along the tundra-forest transition and
feedbacks to climate, Agr. Forest Meteorol., 131, 143-161,
https://doi.org/10.1016/j.agrformet.2005.05.006, 2005.

Bonan, G. B.: Forests and climate change: forcings, feedbacks,
and the climate benefits of forests, Science, 320, 1444-1449,
https://doi.org/10.1126/science.1155121, 2008.

Boulton, C. A., Lenton, T. M., and Boers, N.: Pronounced loss of
Amazon rainforest resilience since the early 2000s, Nat. Clim.
Change, 12, 271-278, 2022.

Bryan, B. A., Gao, L., Ye, Y. Q., Sun, X. F.,, Connor, J. D., Cross-
man, N. D., Stafford-Smith, M., Wu, J. G.,, He, C. Y., Yu, D. Y,,
Liu, Z. F, Li, A., Huang, Q. X., Ren, H., Deng, X. Z., Zheng,
H., Niu, J. M., Han, G. D., and Hou, X. Y.: China’s response
to a national land-system sustainability emergency, Nature, 559,
193-204, https://doi.org/10.1038/s41586-018-0280-2, 2018.

Burke, E. J., Brown, S. J., and Christidis, N.: Modeling the recent
evolution of global drought and projections for the twenty-first
century with the Hadley Centre climate model, J. Hydrometeo-
rol., 7, 1113-1125, 2006.

Chambers, J. and Hastie, T.: Linear models, Chap. 4 in:
Statistical models in S, Wadsworth & Brooks/Cole, 1992,
https://doi.org/10.1201/9780203738535, ISBN 9780203738535,
1992.

Cherubini, F., Huang, B., Hu, X., Tolle, M. H., and Strgmman,
A. H.: Quantifying the climate response to extreme land cover
changes in Europe with a regional model, Environ. Res. Lett.,
13, 074002, https://doi.org/10.1088/1748-9326/aac794, 2018.

Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warm-
ing and 21 st century drying, Clim. Dynam., 43, 2607-2627,
2014.

Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., May-
nard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid,
M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam,
C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J.,
Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J.,
Tikhonova, E., Borchardt, P, Li, C. E,, Powrie, L. W., Fischer,
M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay,
P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and
Bradford, M. A.: Mapping tree density at a global scale, Nature,
525, 201-205, https://doi.org/10.1038/nature 14967, 2015.

https://doi.org/10.5194/hess-28-321-2024


https://doi.org/10.5194/hess-28-321-2024-supplement
https://doi.org/10.1890/090179
https://doi.org/10.1175/Jcli-D-12-00369.1
https://doi.org/10.1073/pnas.0608998104
https://doi.org/10.1016/j.agrformet.2005.05.006
https://doi.org/10.1126/science.1155121
https://doi.org/10.1038/s41586-018-0280-2
https://doi.org/10.1201/9780203738535
https://doi.org/10.1088/1748-9326/aac794
https://doi.org/10.1038/nature14967

Y. Li et al.: Effect of forest fraction change on droughts

Dai, A.: Drought under global warming: a review, Wires Clim.
Change, 2, 45-65, 2011.

Dai, A.: Increasing drought under global warming in
observations and models, Nat. Clim. Change, 3, 52,
https://doi.org/10.1038/nclimate1633, 2013.

ESA: Land Cover CCI Product User Guide Version
2, https://maps.elie.ucl.ac.be/CCI/viewer/download/
ESACCI-LC-Ph2-PUGv2_2.0.pdf (last access: 27 May 2022),
2017.

Field, C. B., Lobell, D. B., Peters, H. A., and Chiariello,
N. R.: Feedbacks of Terrestrial Ecosystems to Cli-
mate Change, Annu. Rev. Env. Resour, 32, 1-29,
https://doi.org/10.1146/annual.energy.32.053006.141119,

2007.

Findell, K. L., Berg, A., Gentine, P., Krasting, J. P., Lint-
ner, B. R., Malyshev, S., Santanello, J. A., and Shevliakova,
E.: The impact of anthropogenic land use and land cover
change on regional climate extremes, Nat. Commun., 8, 989,
https://doi.org/10.1038/s41467-017-01038-w, 2017.

Ge, J., Guo, W. D., Pitman, A. J., De Kauwe, M. G., Chen, X. L.,
and Fu, C. B.: The Nonradiative Effect Dominates Local Surface
Temperature Change Caused by Afforestation in China, J. Cli-
mate, 32, 4445-4471, https://doi.org/10.1175/Jcli-D-18-0772.1,
2019.

Hansen, M. C., Stehman, S. V., and Potapov, P. V.: Quantification
of global gross forest cover loss, P. Natl. Acad. Sci. USA, 107,
8650-8655, 2010.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova,
S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J.,
Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice,
C. O., and Townshend, J. R. G.: High-resolution global maps of
21st-century forest cover change, Science, 342, 850-853, 2013.

Harris, 1., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations—the CRU
TS3. 10 Dataset, Int. J. Climatol., 34, 623-642, 2014.

Hoek van Dijke, A. J., Herold, M., Mallick, K., Benedict, I,
Machwitz, M., Schlerf, M., Pranindita, A., Theeuwen, J. J. E.,
Bastin, J.-F.,, and Teuling, A. J.: Shifts in regional water avail-
ability due to global tree restoration, Nat. Geosci., 15, 363-368,
https://doi.org/10.1038/s41561-022-00935-0, 2022.

Hu, X., Huang, B., Verones, F., Cavalett, O., and Cheru-
bini, F.: Overview of recent land-cover changes in bio-
diversity hotspots, Front. Ecol. Environ.,, 19, 91-97,
https://doi.org/10.1002/fee.2276, 2020.

Huang, B., Hu, X., Fuglstad, G.-A., Zhou, X., Zhao, W., and Cheru-
bini, F.: Predominant regional biophysical cooling from recent
land cover changes in Europe, Nat. Commun., 11, 1-13, 2020.

Huang, B., Li, Y., Liu, Y., Hu, X., Zhao, W., and Cherubini,
F.: A simplified multi-model statistical approach for predict-
ing the effects of forest management on land surface temper-
ature in Fennoscandia, Agr. Forest Meteorol., 332, 109362,
https://doi.org/10.1016/j.agrformet.2023.109362, 2023.

Keyantash, J. and Dracup, J. A.: The quantification of drought: an
evaluation of drought indices, B. Am. Meteorol. Soc., 83, 1167—
1180, 2002.

Kim, D.-H., Sexton, J. O., and Townshend, J. R.: Accelerated defor-
estation in the humid tropics from the 1990s to the 2000s, Geo-
phys. Res. Lett., 42, 3495-3501, 2015.

https://doi.org/10.5194/hess-28-321-2024

337

Kimball, J. W.: Biology, 6th Edition, Published by William C
Brown Pub, 800 pp., ISBN 13 9780697142573, 1993.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World
Map of the Koppen— Geiger climate classification updated, Me-
teorol. Z., 15, 259-263, 2006.

Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I.,
Bathols, J., and Scott, J. K.: CliMond: global high-resolution his-
torical and future scenario climate surfaces for bioclimatic mod-
elling, Meth. Ecol. Evol., 3, 53-64, 2012.

Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahdo, G. M.,
and Borner, J.: Deforestation reduces rainfall and agricultural
revenues in the Brazilian Amazon, Nat. Commun., 12, 2591,
https://doi.org/10.1038/s41467-021-22840-7, 2021.

Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E.,
and Li, S.: Local cooling and warming effects of forests
based on satellite observations, Nat. Commun., 6, 6603,
https://doi.org/10.1038/ncomms7603, 2015.

Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q.,
Kalnay, E., Zhao, F, Li, S., and Wang, K.: Potential and Ac-
tual impacts of deforestation and afforestation on land sur-
face temperature, J. Geophys. Res.-Atmos., 121, 14372-14386,
https://doi.org/10.1002/2016JD024969, 2016.

Liang, Y., Xu, X., and Jia, G.: Deforestation drives desiccation
in global monsoon region, Earth’s Future, 10, e2022EF002863,
https://doi.org/10.1029/2022EF002863, 2022.

Luo, X., Ge, J., Guo, W., Fan, L., Chen, C., Liu, Y., and Yang, L.:
The biophysical impacts of deforestation on precipitation: results
from the CMIP6 model intercomparison, J. Climate, 35, 3293—
3311, 2022.

Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer,
P. A., McAlpine, C., Carleton, A. M., Hale, R., Gameda, S.,
Beltran-Przekurat, A., Baker, B., McNider, R., Legates D. R.,
Shepherd, M., Du, J., Blanken, P. D., Frauenfeld, O. W., Nair,
U. S., and Fall, S.: Land cover changes and their biogeophysical
effects on climate, Int. J. Climatol., 34, 929-953, 2014.

Maidment, D. R.: Handbook of hydrology, vol. 9780070, McGraw-
Hill New York, ISBN 9780070397323, 1993.

McCullagh, P. and Nelder, J.: Generalized Linear Models, CRC
Press, Boca Raton, Fla, 2 edn., ISBN 9780412317606, 1989.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship
of drought frequency and duration to time scales, in: Proceed-
ings of the 8th Conference on Applied Climatology, vol. 17,
American Meteorological Society Boston, Anaheim, Califor-
niam 17-22 January 1993, 179-183, https://climate.colostate.
edu/pdfs/relationshipofdroughtfrequency.pdf (last access: 27 De-

cember 2023), 1993.

Mishra, A. K. and Singh, V. P.: A review of drought concepts, J.
Hydrol., 391, 202-216, 2010.

Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R., Car-
rao, H., Spinoni, J., Vogt, J., and Feyen, L.: Global changes in
drought conditions under different levels of warming, Geophys.
Res. Lett., 45, 3285-3296, 2018.

Nepstad, D., Soares-Filho, B. S., Merry, F., Lima, A., Moutinho,
P, Carter, J., Bowman, M., Cattaneo, A., Rodrigues, H.,
Schwartzman, S., McGrath, D. G., Stickler, C. M., Lubowski,
R., Piris-Cabezas, P., Rivero, S., Alencar, A., Almeida,
O., and Stella, O.: Environment. The end of deforesta-
tion in the Brazilian Amazon, Science, 326, 1350-1351,
https://doi.org/10.1126/science.1182108, 2009.

Hydrol. Earth Syst. Sci., 28, 321-339, 2024


https://doi.org/10.1038/nclimate1633
https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://doi.org/10.1146/annual.energy.32.053006.141119
https://doi.org/10.1038/s41467-017-01038-w
https://doi.org/10.1175/Jcli-D-18-0772.1
https://doi.org/10.1038/s41561-022-00935-0
https://doi.org/10.1002/fee.2276
https://doi.org/10.1016/j.agrformet.2023.109362
https://doi.org/10.1038/s41467-021-22840-7
https://doi.org/10.1038/ncomms7603
https://doi.org/10.1002/2016JD024969
https://doi.org/10.1029/2022EF002863
https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf
https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf
https://doi.org/10.1126/science.1182108

338

Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., and Cardinot,
G.: Mortality of large trees and lianas following experimental
drought in an Amazon forest, Ecology, 88, 2259-2269, 2007.

Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world
map of the Kdppen-Geiger climate classification, Hydrol. Earth
Syst. Sci., 11, 1633-1644, https://doi.org/10.5194/hess-11-1633-
2007, 2007.

Peng, S. S., Piao, S., Zeng, Z., Ciais, P.,, Zhou, L., Li, L. Z., Myneni,
R. B., Yin, Y., and Zeng, H.: Afforestation in China cools local
land surface temperature, P. Natl. Acad. Sci. USA, 111, 2915—
2919, https://doi.org/10.1073/pnas.1315126111, 2014.

Perugini, L., Caporaso, L., Marconi, S., Cescatti, A., Que-
sada, B., de Noblet-Ducoudre, N., House, J. I., and Ar-
neth, A.: Biophysical effects on temperature and precipitation
due to land cover change, Environ. Res. Lett., 12, 053002,
https://doi.org/10.1088/1748-9326/aa6b3f, 2017.

Peterson, T. C. and Vose, R. S.: An overview of the Global Histor-
ical Climatology Network temperature database, B. Am. Meteo-
rol. Soc., 78, 2837-2850, 1997.

Peterson, T. C., Heim Jr., R. R., Hirsch, R., Kaiser, D. P., Brooks, H.,
Diffenbaugh, N. S., Dole, R. M., Giovannettone, J. P., Guirguis,
K., Karl, T. R., Katz, R. W., Kunkel, K., Lettenmaier, D., Mc-
Cabe, G. J., Paciorek, C. J., Ryberg, K. R., Schubert, S., Silva,
V. B. S., Stewart, B. C., Vecchia, A. V., Villarini, G., Vose, R.
S., Walsh, J., Wehner, M., Wolock, D., Wolter, K., Woodhouse,
C. A., and Wuebbles, D.: Monitoring and understanding changes
in heat waves, cold waves, floods, and droughts in the United
States: state of knowledge, B. Am. Meteorol. Soc., 94, 821-834,
2013.

Pitman, A. J., Avila, F. B., Abramowitz, G., Wang, Y. P,
Phipps, S. J., and de Noblet-Ducoudre, N.: Importance of
background climate in determining impact of land-cover
change on regional climate, Nat. Clim. Change, 1, 472-475,
https://doi.org/10.1038/Nclimate1294, 2011.

Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpendoder, F., Ste-
hfest, E., Bodirsky, B. L., Dietrich, J. P., Doelmann, J. C., Gusti,
M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Taka-
hashi, K., Valin, H., Waldhoff, S., Weindl, 1., Wise, M., Kriegler,
E., Lotze-Campen, H., Fricko, O., Riahi, K., and Vuuren, D. P.:
Land-use futures in the shared socio-economic pathways, Global
Environ. Chang., 42, 331-345, 2017.

Poulter, B., MacBean, N., Hartley, A., Khlystova, 1., Arino, O.,
Betts, R., Bontemps, S., Boettcher, M., Brockmann, C., De-
fourny, P., Hagemann, S., Herold, M., Kirches, G., Lamarche, C.,
Lederer, D., Ottlé, C., Peters, M., and Peylin, P.: Plant functional
type classification for earth system models: results from the Eu-
ropean Space Agency’s Land Cover Climate Change Initiative,
Geosci. Model Dev., 8, 2315-2328, https://doi.org/10.5194/gmd-
8-2315-2015, 2015.

R Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Aus-
tria, https://www.R-project.org/ (last access: 15 February 2023),
2018.

Salati, E. and Nobre, C. A.: Possible climatic impacts of
tropical deforestation, Climatic Change, 19, 177-196,
https://doi.org/10.1007/BF00142225, 1991.

Schlesinger, W. H. and Jasechko, S.: Transpiration in the global wa-
ter cycle, Agr. Forest Meteorol., 189, 115-117, 2014.

Hydrol. Earth Syst. Sci., 28, 321-339, 2024

Y. Li et al.: Effect of forest fraction change on droughts

Seneviratne, S. I.: Climate science: Historical drought trends revis-
ited, Nature, 491, 338, https://doi.org/10.1038/491338a, 2012.
Silva Dias, M. A., Avissar, R., and Silva Dias, P.: Modeling the
regional and remote climatic impact of deforestation, Washing-
ton DC American Geophysical Union, Geophysical Monograph
Series, 186, 251-260, https://doi.org/10.1029/2008GM000817,

20009.

Smith, C., Baker, J., and Spracklen, D.: Tropical deforestation
causes large reductions in observed precipitation, Nature, 615,
270-275, 2023.

Snyder, P. K., Delire, C., and Foley, J. A.: Evaluating the influence
of different vegetation biomes on the global climate, Clim. Dy-
nam., 23, 279-302, https://doi.org/10.1007/s00382-004-0430-0,
2004.

Staal, A., Flores, B. M., Aguiar, A. P. D., Bosmans, J. H., Fet-
zer, 1., and Tuinenburg, O. A.: Feedback between drought and
deforestation in the Amazon, Environ. Res. Lett., 15, 044024,
https://doi.org/10.1088/1748-9326/ab738e, 2020.

Thornthwaite, C. W.: An approach toward a rational classification
of climate, Geogr. Rev., 38, 55-94, 1948.

Tian, L., Zhang, B. Q., Wang, X. J., Chen, S. Y., and Pan, B. T.:
Large-Scale Afforestation Over the Loess Plateau in China Con-
tributes to the Local Warming Trend, J. Geophys. Res.-Atmos.,
127, e2021JD035730, https://doi.org/10.1029/2021JD035730,
2022.

Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D.,
Barichivich, J., Briffa, K. R., and Sheffield, J.: Global warm-
ing and changes in drought, Nat. Clim. Change, 4, 17-22,
https://doi.org/10.1038/nclimate2067, 2014.

van der Schrier, G., Barichivich, J., Briffa, K., and Jones, P.: A
scPDSI-based global data set of dry and wet spells for 1901—
2009, J. Geophys. Res.-Atmos., 118, 4025-4048, 2013.

Vicente-Serrano, S. M., Begueria, S., and Lépez-Moreno, J. I.: A
multiscalar drought index sensitive to global warming: the stan-
dardized precipitation evapotranspiration index, J. Climate, 23,
1696-1718, 2010a.

Vicente-Serrano, S. M., Begueria, S., Lépez-Moreno, J. I., Angulo,
M., and El Kenawy, A.: A new global 0.5 gridded dataset (1901—
2006) of a multiscalar drought index: comparison with current
drought index datasets based on the Palmer Drought Severity In-
dex, J. Hydrometeorol., 11, 1033-1043, 2010b.

Vicente-Serrano, S. M., Lopez-Moreno, J.-I., Begueria, S.,
Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., Garcia-Ruiz, J. M.,
Azorin-Molina, C., Moran-Tejeda, E., Revuelto, J., Trigo, R.,
Coelho, F., and Espejo, F.: Evidence of increasing drought sever-
ity caused by temperature rise in southern Europe, Environ. Res.
Lett., 9, 044001, https://doi.org/10.1088/1748-9326/9/4/044001,
2014.

Wayne, C. P.: Meteorological drought, US weather bu-
reau research paper, 58, https://books.google.de/books?
hl=en&lr=&id=ky YZgnEk-L8C&oi=fnd&pg=PA6&
dg=Meteorological+drought&ots=U58wfl- Eki&sig=
8PQ8kJ4kWT2LGepZQbEH7QoT6vE&redir_esc=y#v=
onepage&q=Meteorologicaldrought&f=false ~ (last  access:
27 May 2022), 1965.

Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating Palmer
drought severity index, J. Climate, 17, 2335-2351, 2004.

https://doi.org/10.5194/hess-28-321-2024


https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1073/pnas.1315126111
https://doi.org/10.1088/1748-9326/aa6b3f
https://doi.org/10.1038/Nclimate1294
https://doi.org/10.5194/gmd-8-2315-2015
https://doi.org/10.5194/gmd-8-2315-2015
https://www.R-project.org/
https://doi.org/10.1007/BF00142225
https://doi.org/10.1038/491338a
https://doi.org/10.1029/2008GM000817
https://doi.org/10.1007/s00382-004-0430-0
https://doi.org/10.1088/1748-9326/ab738e
https://doi.org/10.1029/2021JD035730
https://doi.org/10.1038/nclimate2067
https://doi.org/10.1088/1748-9326/9/4/044001
https://books.google.de/books?hl=en&lr=&id=kyYZgnEk-L8C&oi=fnd&pg=PA6&dq=Meteorological+drought&ots=U58wfl-Eki&sig=8PQ8kJ4kWT2LGepZQbEH7QoT6vE&redir_esc=y#v=onepage&q=Meteorological drought&f=false
https://books.google.de/books?hl=en&lr=&id=kyYZgnEk-L8C&oi=fnd&pg=PA6&dq=Meteorological+drought&ots=U58wfl-Eki&sig=8PQ8kJ4kWT2LGepZQbEH7QoT6vE&redir_esc=y#v=onepage&q=Meteorological drought&f=false
https://books.google.de/books?hl=en&lr=&id=kyYZgnEk-L8C&oi=fnd&pg=PA6&dq=Meteorological+drought&ots=U58wfl-Eki&sig=8PQ8kJ4kWT2LGepZQbEH7QoT6vE&redir_esc=y#v=onepage&q=Meteorological drought&f=false
https://books.google.de/books?hl=en&lr=&id=kyYZgnEk-L8C&oi=fnd&pg=PA6&dq=Meteorological+drought&ots=U58wfl-Eki&sig=8PQ8kJ4kWT2LGepZQbEH7QoT6vE&redir_esc=y#v=onepage&q=Meteorological drought&f=false
https://books.google.de/books?hl=en&lr=&id=kyYZgnEk-L8C&oi=fnd&pg=PA6&dq=Meteorological+drought&ots=U58wfl-Eki&sig=8PQ8kJ4kWT2LGepZQbEH7QoT6vE&redir_esc=y#v=onepage&q=Meteorological drought&f=false

Y. Li et al.: Effect of forest fraction change on droughts

Wilkinson, G. and Rogers, C.: Symbolic description of factorial
models for analysis of variance, J. R. Stat. Soc. C-Appl., 22, 392—
399, 1973.

Wilks, D. S.: Statistical methods in the atmospheric sciences, Else-
vier, Amsterdam, NL, 4th edn., ISBN 9780128158234, 2019.

https://doi.org/10.5194/hess-28-321-2024

339

Zhao, T. and Dai, A.: The magnitude and causes of global drought
changes in the twenty-first century under a low—moderate emis-
sions scenario, J. Climate, 28, 4490-4512, 2015.

Hydrol. Earth Syst. Sci., 28, 321-339, 2024



	Abstract
	Introduction
	Data
	Climate classification
	Drought indices
	The standardized precipitation evapotranspiration index (SPEI)
	The self-calibrating Palmer drought severity index (scPDSI)

	Forest cover
	Precipitation and temperature

	Methods
	Linear models
	Analysis of variance

	Results
	The proportion of variance described by forest cover change 
	Variations in droughts response to forest fraction according to different precipitation and temperature quantiles
	Response of drought to precipitation and temperature under extreme forest fraction (minimum and maximum) conditions

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

