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Abstract. Flooding is predicted to become more frequent in
the coming decades because of global climate change. Re-
cent literature has highlighted the importance of river mor-
phodynamics in controlling flood hazards at the local scale.
Abrupt and short-term geomorphic changes can occur af-
ter major flood-inducing storms. However, there is still a
widespread lack of ability to foresee where and when sub-
stantial geomorphic changes will occur, as well as their ram-
ifications for future flood hazards. This study sought to gain
an understanding of the implications of major storm events
for future flood hazards. For this purpose, we developed self-
organizing maps (SOMs) to predict post-storm changes in
stage–discharge relationships, based on storm characteris-
tics and watershed properties at 3101 stream gages across
the contiguous United States (CONUS). We tested and ver-
ified a machine learning (ML) model and its feasibility
to (1) highlight the variability of geomorphic responses to
flood-inducing storms across various climatic and geomor-
phologic regions across CONUS and (2) understand the im-
pact of these storms on the stage–discharge relationships
at gaged sites as a proxy for changes in flood hazard. The
established model allows us to select rivers with stage–
discharge relationships that are more prone to change after
flood-inducing storms, for which flood recurrence intervals
should be revised regularly so that hazard assessment can be
up to date with the changing conditions. Results from the
model show that, even though post-storm changes in chan-
nel conveyance are widespread, the impacts on flood hazard
vary across CONUS. The influence of channel conveyance
variability on flood risk depends on various hydrologic, ge-
omorphologic, and atmospheric parameters characterizing a
particular landscape or storm. The proposed framework can

serve as a basis for incorporating channel conveyance adjust-
ments into flood hazard assessment.

1 Introduction

Several factors contribute to nonstationarity in flow regimes,
including variations in human activities, changes in land
cover and land use, climate changes, and low-frequency
internal climate variability (i.e., multidecadal oscillations)
(Cunderlik and Burn, 2003; Mostofi Zadeh et al., 2020). Con-
sequently, flood trends over the past decades have changed
worldwide (Chang et al., 2007; FEMA, 2023; Karagiannis et
al., 2017; McEvoy et al., 2012; Ziervogel et al., 2014), re-
sulting in adverse impacts on society and the environment
(Blöschl et al., 2019; Dottori et al., 2018, 2022; Hattermann
et al., 2014; Milly et al., 2002; Mostofi Zadeh et al., 2020;
Slater et al., 2015). Traditional “cause–effect” studies have
focused on the time dependency or nonstationarity of indi-
vidual hydrologic flood drivers (Alfieri et al., 2015; Khanam
et al., 2021; Lisenby and Fryirs, 2016; Mallakpour and Vil-
larini, 2015; Mostofi Zadeh et al., 2020; Munoz et al., 2018).
However, these studies might be underestimating or overes-
timating the actual damage, especially in regions where the
landscape is changing rapidly because of the magnitude and
prevalence of the hydroclimatic variability that is now under-
way. Nonetheless, the flood risk estimation has traditionally
been based on flood frequency, derived from variability in
streamflow and assuming constant channel capacity (Merz
et al., 2012; Slater et al., 2015). The relationship between
magnitude and frequency is also generally built upon the
peak flow distribution, whereas peaks are discretized as ei-
ther annual maxima or peaks over the threshold but mostly
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assuming that river capacity remains constant over the in-
vestigation records. For decades, fluvial geomorphology re-
search has focused on changes in river characteristics (Baker,
1994; Benito and Hudson, 2010; Stott, 2013). Various re-
cent works (Ahrendt et al., 2022; Naylor et al., 2016; Slater
et al., 2015, 2019; Sofia and Nikolopoulos, 2020; Sofia et
al., 2020; Stephens and Bledsoe, 2020, 2023) have suggested
that the time has come to move beyond flood hazard assess-
ment based on this “fixed river” idea. River channels and
their adjacent floodplains continuously evolve because of the
interactions of hydrology, landscape, and climate drivers and
the interdependencies of processes at different spatial and
temporal scales (Lane et al., 2007; Pinter et al., 2006b; Slater
et al., 2015; Stover and Montgomery, 2001; Blench, 1969).
Humans and water resources are intertwined, and they are
now more than ever active players in these intricate geomor-
phic dynamics of rivers and floods (Ceola et al., 2019; Grill et
al., 2019; Wohl, 2019). Rivers naturally modify their geome-
try (i.e., their breadth, depth, and slope) to reflect changes in
discharge and sediment in the upstream catchment in addi-
tion to the obvious alterations brought on by human involve-
ment (Lisenby et al., 2018). Any changes in these character-
istics will also possibly alter the magnitude, frequency, and
risk of future flooding.

The ability of rivers to store and move floodwaters down-
stream affects the probability that floods will destroy river-
banks or flood barriers, even when the total volume of wa-
ter that flows through river systems during floods remains
constant. Therefore, these abrupt changes in channel capac-
ity alter flood properties, even when the magnitude of the
flood remains unchanged (Blench, 1969; Criss and Shock,
2001; Lane et al., 2007; Neuhold et al., 2009; Pinter et al.,
2008; Slater et al., 2015; Stover and Montgomery, 2001).
Some obvious evidence of the effects of channel changes on
flood properties (e.g. extent, depth) has been presented by
recurring flooding in different dynamic rivers (Brierley and
Fryirs, 2016; Pinter et al., 2001; Zischg et al., 2018; Tate,
2019; Munoz et al., 2018). During these flood events, impacts
are most evident at sites where the rivers’ channel capacity
has been drastically reduced (Munoz et al., 2018; Tate, 2019;
Sofia et al., 2020). Neglecting the possibility of rapid changes
in streamflow regime and channel conveyance capacity can
conceal short-term shifts in flood threats. Li et al. (2020),
for example, demonstrated that long-term trends comprise
numerous short-term transients of much larger magnitude.
These transient stages are often caused by abrupt scouring or
deposition during flood-inducing storm events and are com-
parable in magnitude to long-term trends in peak streamflow.
Additionally, short- and long-term climate variability can at
the same time impact the streamflow patterns and channel
conveyance changes, with the channel form adjusting to pre-
cipitation and sediment supply (Death et al., 2015; Rathburn
et al., 2017; Ruiz-Villanueva et al., 2018; Scorpio et al., 2018;
Surian et al., 2016; Wicherski et al., 2017). Figure 1, for ex-
ample, shows changes in Boulder Creek in Colorado before

and after a flash flood in 2013. Comparing the channel plan-
form and width, it is evident that the channel got wider after
the flood. Images from 2015 and 2019 show that the sec-
ondary channel on the right eventually disappeared, and the
main channel acquired a more prominent bend than in the
2013 image. Such relatively quick alterations have the poten-
tial to further modify the geomorphic characteristics of rivers
and to produce feedback that will affect the properties of fu-
ture floods (depth, frequency, duration, and spatial extent).

Systematic shifts in a river’s stage–discharge relationships
identify the need for sharp upward revisions in hazard levels
and stage-based flood frequency analysis. Adjustments to the
river stage–discharge relationship account for, at least partly,
climate variability and long-term change. Nonetheless, while
some river changes might be persistent in time, others could
be more sudden and persist for a shorter time frame, like in
the case of flood-inducing storms. These short-term chan-
nel changes are difficult to predict, but they could substan-
tially increase the post-flood hazard, especially in the case
of subsequent storms. Understanding the scale and severity
of channel changes after flood-inducing storm events is key
to improving flood management and building the resilience
of critical infrastructure. What is missing from our current
knowledge is a comprehensive study that shows the impacts
of storm-induced channel changes on future flood hazards.
Buraas et al. (2014) cited a general lack of capability to pre-
dict where significant geomorphic changes will occur fol-
lowing flood-inducing events. Other authors have pointed to
multidirectional approaches as promising contributions to the
analysis of channel response to severe floods and the identi-
fication of controlling factors (Rinaldi et al., 2016; Scorpio
et al., 2018; Surian et al., 2016; Wicherski et al., 2017). At
regional scales, when it is often either impracticable or im-
possible to identify the precise events responsible for peri-
ods of channel shift, linking geomorphic cause and effect be-
comes increasingly difficult. However, this does not negate
the requirement to comprehend and recognize short-term ge-
omorphologic and hydrologic behavior that can exacerbate
or mitigate flood threats. For this purpose, the availability of
a large dataset representing a wide range of flood-inducing
storm characteristics and channel morphology under differ-
ent boundary conditions, such as underlying climatic, hydro-
logic, and geomorphologic settings, is crucial. This set of
information forms a complex interacting system. The pro-
cesses underlying these boundary conditions vary in spatial
and temporal scale, and this calls for the use of improved
analysis methods able to draw predictions interlocking data
of a varying nature. In this context, machine learning (ML) is
gaining popularity in the field of hydrology, geomorphology,
and climate studies (Bergen et al., 2019; Schlef et al., 2019;
Valentine and Kalnins, 2016), thanks to its ability to tackle
coupled processes across space and time. Despite some lim-
itations (Karpatne et al., 2019), and provided that the bench-
mark data used for the training are of high quality (Bergen
et al., 2019), ML offers a valuable tool for gaining new data-
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Figure 1. Change in channel width in Boulder Creek, Colorado, before (2012) and after (2013–2015–2019) a flash flood in 2013 (© Google
Earth imagery). The discharge reported here is the daily discharge measured at USGS 06730200 Boulder Creek at North 75th St. near
Boulder, Colorado. The red circles denote the section of the channel that has changed over the years, and the blue arrows show the missing
channel from the years 2012 to 2019.

driven insights with high accuracy, transferability, and scala-
bility (Houser et al., 2022; Sarker, 2021; Schlef et al., 2019;
Sofia, 2020).

In the context of river morphology, specifically in the last
few years, recent studies highlighted their capability to pre-
dict channel types (Guillon et al., 2020), providing a geo-
morphological characterization of channels (Rabanaque et
al., 2022), quantifying below-water (Woodget et al., 2019)
or spatiotemporal changes (Boothroyd et al., 2021) in rivers,
and guiding discharge estimation building upon river mor-
phology (Brinkerhoff et al., 2020). These works highlight
how ML, when properly guided by field-based interpreta-
tion, can offer valuable potential to make geomorphology
an increasingly predictive science (Fryirs and Brierley, 2022;
Brierley et al., 2021). Tackling the opportunities offered by
ML potential, in this study, we sought to understand and
predict the effects of flood-inducing storms on channel con-
veyance and, consequently, flood hazards. To achieve this,
we have utilized a stage–discharge “residual” as a proxy
of the channel capacity change, and we introduced an ML
framework (Sect. 2.3) that characterizes the interdependence
of flood drivers, including atmospheric drivers (precipita-
tion), hydrologic drivers (flow, stage), and geomorphologic
drivers (channel width, depth, drainage area, geophysical
characteristics). Overall, the analysis aims to (1) highlight the
variability of geomorphic responses to flood-inducing storms
across various climatic and geomorphologic regions in the
contiguous US (CONUS) and (2) understand the impact of
these storms on the stage–discharge relationships at gaged
sites as a proxy for changes in flood hazards. The study pro-
vided an independent test of discharge-based results and pro-

duced a tool for generating timely short-term updates of flood
hazard estimates for dynamic rivers.

2 Materials and methods

2.1 Quantifying the impact on flood hazard

For this study, we used data from 3101 U.S. Geological Sur-
vey (USGS) gaging stations distributed across the contiguous
United States (Fig. 2). The dataset allows us to cover a wide
range of physiographic and climatic (see Fig. 2) regions.
We selected stations for which both historical field-measured
data on channel properties and flood stages assigned by the
National Weather Service (NWS) were available. The data
for channel properties were retrieved following a procedure
developed by Slater (2016) and Slater et al. (2015) and using
the codes provided by the authors on GitHub (Slater, 2019).

To model the average state of the conveyance capacity
for each stream gage site, we used theoretical single stage–
discharge relationships (rating curves) at the height associ-
ated with the flood stage, as described by Slater et al. (2015).
The flood stage, from the US National Weather Service, indi-
cates a gage height above which the water level begins to im-
pact lives and human activities, and it generally corresponds
to the first flood warning threshold. The procedure, there-
fore, can be adapted for other gage datasets, in different parts
of the world, by assuming similar warning thresholds. De-
viations from the theoretical stage–discharge relationship in-
dicate that, at a moment in time, a discrete stage–discharge
relationship existed, which highlights that there might have
been temporal changes in channel conveyance. As described
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Figure 2. USGS gage stations considered in this study overlain on physiographic and climatic regions. For abbreviation descriptions of
physiographic regions and climate types, please refer to Tables A1 and A2 in Appendix A.

by Li et al. (2020), Slater et al. (2015, 2019), and Slater
and Villarini (2016), using a constant flood level enables the
quantification of “conveyance residuals (Res)” that represent
temporal changes in the discharge needed to reach the spe-
cific flood level (e.g., due to shifts in the channel capacity).
In a temporal analysis of residuals, a positive to negative shift
indicates a sudden decrease in channel capacity and a poten-
tial increase in flood hazard (Slater et al., 2015), as a lower
discharge is needed to meet the warning threshold. We fol-
lowed this procedure to capture the sudden changes in chan-
nel conveyance following major storm events. We mainly fo-
cus on sudden shifts rather than on permanent shifts. The
main reasons for this were that (1) short-term conveyance
capacity changes are not considered in typical flood hazard
assessments and could substantially overstate or understate
flood threats at any particular time for subsequent floods and
that (2) there is a plethora of complex and sometimes non-
linear processes and coupled feedback that we would need
to “model” in the training set to provide a comprehensive
benchmark for identifying permanent shifts. This could be
potentially interesting research that may be tackled by fur-
ther studies building upon our model.

To define the stage–discharge relationship, we only con-
sidered measured values of stage and discharge, as suggested
in Slater (2016) and Slater et al. (2015). Aside from consider-
ing consistent gages present in the Shen et al. (2017) database
and covered by stream measurements, we applied the same
criteria as Slater et al. (2015), who only considered field mea-

surements in which the discharge is within 1 % of the prod-
uct of channel velocity and cross-sectional channel area, as
reported by the USGS, and those made close to the gage sta-
tion. Following the work of Slater (2016) and Slater et al.
(2015), we detected and excluded sites featuring artificial
controls at the gauging station that could impede the natu-
ral adjustment of the channel’s shape. Additionally, we elim-
inated all field measurements conducted at a different loca-
tion or a potentially different location, along with those taken
under icy conditions, as these factors could impact the accu-
racy of channel geometry measurements. Our selection pro-
cess only retained sites with comprehensive time series data
and, as per Slater et al. (2015), only kept gages with 99.7 %
completeness in streamflow records and 40 channel cross-
sectional measurements. The stage–discharge relationship
was evaluated through a locally weighted scatterplot smooth-
ing (LOESS) fitting (Cleveland, 1979) as suggested by Li et
al. (2020), Slater et al. (2015, 2019), and Slater and Villarini
(2016). The fitting requires the definition of a smooth param-
eter, which we set automatically based on the bias-corrected
Akaike information criterion (AIC) (Hurvich et al., 1998).
We performed the analysis using the R package fANCOVA
(https://cran.r-project.org/package=fANCOVA, last access:
29 May 2024).

Before performing the abovementioned steps, we excluded
from the analysis measurements taken before the most recent
datum change, if any reported measurement datum change
was provided. We have excluded the gages that do not have
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Figure 3. Illustration of the conveyance analysis for the USGS stream gage Quinnipiac River at Wallingford (USGS station 01196500) before
and after the storm of April 2007. The stage–discharge relationship fitted to the flood hazard level is shown in panel (a), and residuals fitted to
the rating curve are shown in panel (b). In panel (b), some outlier residuals are evident, likely due to shifts in measurement locations. These
points were filtered out before performing the ML training. Time series of channel widths as measured in the field (c) and channel capacity
(d) are also shown to highlight that, possibly, the major change in residuals is due to a difference in channel depth, given a constant velocity.

continuous data for the time frame from 2002 to 2013. By
taking into account field data when the discharge was within
a range of half the flood stage depth on either side of the flood
stage, we also accepted the standards employed by Slater et
al. (2015). We evaluated the readings visually to look for
clusters of outliers in the scatterplots of the channel mea-
surements that could be signs of changes in the measurement
location (or datum). We systematically eliminated these met-
rics. According to the information of the gage, the measure-
ments did not shift in location. For the work itself, consistent
with Slater et al. (2015) and the open codes provided in their
work, we removed all field measurements taken at a loca-
tion where there is known infrastructure like a bridge and
all field measurements taken under icy conditions, as these
might affect measurements of channel geometry. Figure 3
provides an example of changes in residuals after a flood-
inducing storm event for the Quinnipiac River in Connecti-
cut. From 15 to 18 April 2007, a spring northeaster hit the
East Coast of the United States. The streamflow gaging sta-
tion recorded stages during this occurrence that were more
than 0.2 m higher than the FEMA-projected 100-year levels
(Ahearn, 2009). For this gage, the flood stage was at 3.05 m,

the peak discharge of the 2007 event was 3.51 m, and the
Quinnipiac River itself (at the gage right upstream of the one
in the figure) measured the maximum discharges for the pe-
riod of record of the station during the 2007 flood. In Fig. 3a,
the stage and discharge data retrieved from field measure-
ments taken after the flood appear to shift toward higher val-
ues of the stage for comparable discharges from before 2007.
The curve fitted at the flood stage (black line in Fig. 3a) ul-
timately aligns between the two sets of data. Looking at the
residuals concerning the fitted curve (Fig. 3b), the shift from
positive residuals, before 2007, to negative is noticeable (out-
lier residual points were filtered out before performing the
ML training). This suggests a loss of conveyance capacity
due to deposition, assuming no changes in velocity. The time
series of widths (Fig. 3c) and capacity (Fig. 3d) confirm this
loss of conveyance; for this site, slightly changed channel
widths (Fig. 3c) and an abrupt change in capacity (Fig. 3d)
can be seen. Such a change may result in a potential increase
in flood hazard for a given flood volume.

https://doi.org/10.5194/hess-28-3161-2024 Hydrol. Earth Syst. Sci., 28, 3161–3190, 2024



3166 M. Khanam et al.: To what extent do flood-inducing storm events change future flood hazards?

2.2 Considered predictors

To obtain information on the watershed’s hydrologic and ge-
omorphologic properties, we collected data for each gage
from the GAGES II dataset (Falcone, 2011). This dataset
provides geomorphologic variables for each gage associated
with the watersheds’ typical characteristics (e.g., drainage
area, elevation). These properties can be considered likely
to change at a speed much slower than river discharge and
localized channel measurements. Hence, we may consider
these variables to be “static” in time. However, even if they
are static in time, these characteristics are highly variable in
space as they are spread across CONUS, providing us with a
large sample of values for the ML training.

We also investigated several flood-inducing events that
occurred from 2002 to 2013 in the same watershed and
that were included by Shen et al. (2017) in the flood event
database. We ended up with 291 201 events in total for the
3101 gages. The minimum and maximum numbers of events
per gage varied from 1 to 520. For each available field mea-
surement of channel properties, we consider all the storms
that happened in the previous 15, 30, 90, 180, and 365 d (ac-
counting for the lag times between each storm and the re-
sponse of the river system) and calculate the median values of
the storm characteristics (as defined in Shen et al., 2017; Ta-
ble 1) in that time frame, excluding situations where we only
had one storm. We only kept the gages in the analysis when
we had more than 10 events. Therefore, for every single field
measurement (i.e., the dots in Fig. 3), we had five different
median storm characteristics – one median storm characteris-
tic for the five different lag times considered. These medians
represent a “typical flood-inducing storm” for that lag time,
reducing the effects of low variability. The information in-
cluded by Shen et al. (2017) reported the percentile of the
peak flows in the entire time series of the watershed, and all
the reported events show a value greater than 80 for all the
storms. The reader should consider that, while the median
characteristic per se is not a “severe” value, given the sample
of data in Shen et al. (2017), it is a value representative of the
typical event for storms which in general encompass events
with peak flows greater than the 80th percentile of the entire
flow series.

From these integrated data sources, we identified three
groups of drivers: atmospheric, hydrologic, and geomorpho-
logic (Table 1). The integrated dataset provided direct and
statistically derived information regarding flows and the as-
sociated precipitation characteristics of each storm event.

2.3 Modeling the impact of flood-inducing storms

The ML-based methodology developed in this study for pre-
dicting the median residual is based on clusters of the gages.
Using a self-organizing map (SOM) with event-specific char-
acteristics, explained in Table 1, we developed a frame-
work for understanding and predicting channel changes due

to flood-inducing storm events. The SOM developed by
Kohonen (1982) is one of the most popular clustering or
classification methods used in many research areas such
as medical science, hydrology, and signal processing (e.g.,
(Zanchetta and Coulibaly, 2022; Rahmati et al., 2019). The
SOM method has become a very useful prediction tool in hy-
drological and environmental studies because it can predict
a target variable without learning any physical relationship
among a collection of variables. The main advantage of the
SOMs is that they allow us to reduce the data dimensionality
by organizing the data into a two-dimensional array (Koho-
nen, 1982) using topology-preserving transformations (Rah-
mati et al., 2019). SOMs, being a form of artificial neural
network, can be thought of as a regression technique with a
higher level of nonlinearity between the dependent and inde-
pendent variables (Geem et al., 2007). The proposed SOM
framework (Fig. 4) consisted of four phases: unsupervised
clustering, supervised mapping, trained regression, 10-fold
validation, and prediction. The whole procedure is described
in the subsections below.

The SOM algorithm is technically conceived for numerical
datasets. This means that SOMs cannot be used to analyze
variables with non-numerical data types, such as categorical
values. To present the categorical variables to the machine
learning model selected for this study, we therefore converted
all the categorical values into binary digits. Each binary digit
was then transformed into one feature column.

Most storm variables (except for Perc – the percentage of
the peak flow; percentile–percentile corresponds to the peak
flow) were normalized considering the range of values avail-
able for each station. This normalization was performed to
account for the influence of the watershed sizes on the var-
ious storm properties. Continuous geomorphologic and hy-
drologic variables not coded in the range 0–1 (or 0–100)
(aside from RRMEAN-Mean – the relief ratio –, RRME-
DIAN – the median relief ratio –, SLOPE_PCT – the mean
watershed slope –, and aspect) were normalized considering
the overall range across CONUS. The stage–discharge resid-
uals were kept as is because they are already “relative” in
value to the stage–discharge relationship fitted at the flood
stage for each gage. To reduce the dataset dimensionality and
avoid collinearity, we performed a variable importance anal-
ysis using the misclassification rate (Sect. 2.3.1).

2.3.1 Unsupervised clustering

The first module used an SOM algorithm to cluster together
gages based on similar characteristics. The main objective of
this step is to group gages with similar underlying patterns
of variables. The SOMs are organized in two-dimensional
space where the neighboring neurons learn similar patterns,
and neurons mapped far away have dissimilar patterns (Ste-
fanovič and Kurasova, 2011). This unsupervised mapping
was performed automatically using the Kohonen package in
R (Wehrens and Kruisselbrink, 2018; Wehrens and Buydens,

Hydrol. Earth Syst. Sci., 28, 3161–3190, 2024 https://doi.org/10.5194/hess-28-3161-2024



M. Khanam et al.: To what extent do flood-inducing storm events change future flood hazards? 3167

Table 1. Readers should refer to Shen et al. (2017) and Falcone (2011) for a complete description of the variables. Variables in bold letters
are those used for ML analysis after the variable importance analysis.

Variable Description Unit Data source

Hydrologic variables

TOPWET Topographic wetness index ln(m) Falcone (2011)

HLR100M_SITE Hydrologic landscape region (HLR) at the stream gage location Unitless Falcone (2011)

Peak Peak flow associated with the storm event Shen et al. (2017)

Res Residual Unitless Estimated

IBF Base flow index m3 m−3 Shen et al. (2017)

Perc Percentage of peak flow: the corresponding percentile of the
peak flow in the entire flow series of the gage

% Shen et al. (2017)

Q2 Second-order moment of the flow Unitless Shen et al. (2017)

Els Mean water travel distance to the drainage outlet m Shen et al. (2017)

EQ Centroid of the flow hydrograph h Shen et al. (2017)

V t Normalized flow volume ∼ average flow volume per unit
drainage area

mm Shen et al. (2017)

HYDRO_DISTURB_INDX Anthropogenic modification Unitless Falcone (2011)

RunoffCoef Runoff coefficient Unitless

CLASS Reference/non-reference class. REF: reference (least-disturbed
hydrologic condition); NON-REF: not a reference

n/a Falcone (2011)

BFI_AVE Base flow index (BFI): base flow to total streamflow ratio,
given as a percentage ranging from 0 to 100. The persistent,
slowly fluctuating component of streamflow that is commonly
attributed to groundwater discharge to a stream is known as base
flow.

% Falcone (2011)

RFACT Rainfall and runoff factor 100s ft-tonf Falcone (2011)
in/h/ac/yr

Geomorphologic variables

GEOL_REEDBUSH_DOM Dominant (highest percent of the area) geology, derived from a
simplified version of Reed and Bush (2001) – the Generalized
Geologic Map of the Conterminous United States

n/a Falcone (2011)

STREAMS_KM_SQ_KM Stream density, kilometer of streams per watershed square kilo-
meter, from NHD 100k streams

km km−2 Falcone (2011)

STRAHLER_MAX NHDPlus’s maximum Strahler stream order in the watershed Unitless Falcone (2011)

MAINSTEM_SINUOUSITY Sinuosity of the mainstem streamline Unitless Falcone (2011)

ELEV_MEAN_M_BASIN Mean watershed elevation (m) from the 100 m National Eleva-
tion Dataset

m Falcone (2011)

ELEV_MAX_M_BASIN Maximum watershed elevation (m) from the 100 m National El-
evation Dataset

m Falcone (2011)

ELEV_MIN_M_BASIN Minimum watershed elevation (m) from the 100 m National El-
evation Dataset

m Falcone (2011)
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Table 1. Continued.

Variable Description Unit Data source

ELEV_MEDIAN_M_BASIN Median watershed elevation (m) from the 100 m National Ele-
vation Dataset

m Falcone (2011)

ELEV_STD_M_BASIN Standard deviation of elevation (m) across the watershed from
the 100 m National Elevation Dataset

m Falcone (2011)

ELEV_SITE_M Elevation at the gage location (m) from the 100 m National El-
evation Dataset

m Falcone (2011)

RRMEAN Dimensionless elevation – relief ratio, calculated as (ELEV_
MEAN – ELEV_MIN)/(ELEV_MAX – ELEV_MIN)

Unitless Falcone (2011)

RRMEDIAN Dimensionless elevation – relief ratio, calculated as (ELEV_
MEDIAN – ELEV_MIN)/(ELEV_MAX – ELEV_MIN)

Unitless Falcone (2011)

SLOPE_PCT Mean watershed slope % Falcone (2011)

ASPECT_DEGREES Mean watershed aspect Degrees Falcone (2011)
(0–360)

ASPECT_NORTHNESS Aspect “northness”. This ranges from −1 to 1. A value of 1
means the watershed is facing or draining due north, and a value
of −1 means the watershed is facing or draining due south.

Unitless Falcone (2011)

ASPECT_EASTNESS Aspect “eastness”. This ranges from −1 to 1. A value of 1
means the watershed is facing or draining due east, and a value
of −1 means the watershed is facing or draining due west.

Unitless Falcone (2011)

Physio Physiographic divisions of CONUS n/a Fenneman and
Johnson (1946)

DRAIN_SQKM Drainage area km2 Falcone (2011)

Atmospheric variables

CovTrLs Covariance of precipitation and water travel distance mh Shen et al. (2017)

Etr Centroid of precipitation h2 Shen et al. (2017)

VarTr Spread of precipitation h2 Shen et al. (2017)

VarLs Variance of the water travel distance m2 Shen et al. (2017)

V b Base flow volume mm Shen et al. (2017)

V p Precipitation volume mm Shen et al. (2017)

P mean Mean precipitation mm h−1 Shen et al. (2017)

Climate types (not included in the ML model) Unitless Beck et al. (2018)

“n/a” stands for not applicable.

2007; Kohonen, 2001, 1982; Wehrens, 2019). The optimal
number of nodes was set at 5 times the square root of the
number of observational data, as per Kohonen’s general rule
of thumb for determining the sizes of two-dimensional grids
(Fytilis and Rizzo, 2013).

Typically, SOM data clustering involves two steps: first,
the dataset is clustered using SOMs, which offer the orga-
nization of the data into the various nodes, and then the
nodes are clustered (Vesanto and Alhoniemi, 2000). Clus-

tering speeds significantly increase when nodes are used in
place of actual data. The result of the first step is that gages
are grouped into neighboring nodes if the underlining pat-
terns of variables are similar. After the SOM is trained, its U
matrix gives insight into how all the data are organized, as
it displays the nodes and the distance that the weight nodes
create between each weight and all its neighbors. This ma-
trix can be used for the second step of identifying and label-
ing the actual clusters, through image analysis tools (Pacheco
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Figure 4. Schematic of the SOM framework proposed in this study.

et al., 2017; Wang et al., 2010; Wu and Li, 2022; Vincent
et al., 1991). In this work, the first unsupervised clustering
was accomplished by using all the data together, including
the residuals in the process. Each gage was assigned a clus-
ter number based on all the variables of that location. Gages
grouped in the same cluster are expected to have similar pat-
terns of the input variables, including the residuals. For each
cluster, then, we retrain the model, retaining only the gages
for that cluster, to provide the most typical residual given by
the combination of hydrologic, geomorphologic, and atmo-
spheric variables.

The most common approach is to segment the U matrix
using the watershed technique of gray-scale image process-
ing (Costa and Netto, 1999; Vincent et al., 1991). Using a
watershed analogy, the U matrix (Fig. 5) can be used to lo-
cate the clusters. Great “heights” and ridges imply significant
distances in the feature space, while little “valleys” represent
data subsets that are similar (Ultsch and Lötsch, 2017). The
segmentation is performed by flooding the valleys (similar
nodes with very close distances from one to the other) until
a ridge (high dissimilarity) is reached. Where the water con-
verges, watersheds will form, having close boundaries. One
cluster is represented by all the items in a segmented area
or watershed. According to this approach, a minimum height
threshold can be selected to define the clusters (valleys). We
followed automatic thresholding and set the threshold to a
statistical value equal to half the standard deviation of the
values. To perform this step, we applied watershed transfor-
mation and watershed-based object detection using the func-
tion “watersheds” in the R Bioconductor package (Torres-
Matallana, 2016).

Figure 5. Example of the (a) U matrix and (b) derived clusters.
Red colors in the U matrix stand for significant distances in the
feature space, whereas blue colors are “valleys” that group subsets
of related data. The watersheds shown in panel (b) are collections
of related data.

We assessed the relevance of each feature according to its
misclassification rate relative to a baseline cluster assignment
produced by a random permutation of feature values to find
the most crucial features and prevent data duplication (Mol-
nar, 2022; Breiman, 2001; Fisher et al., 2019). We preferred
this approach, considering that permutation feature impor-
tance does not call for retraining of the model before the anal-
ysis. This approach states that a variable (feature) is “impor-
tant” if changing its values results in a cluster reassignment
because, in this scenario, the model primarily relies on that
feature to forecast the predictors. In contrast, a feature is con-
sidered “unimportant” if changing its values does not affect
the anticipated cluster. The variable being identified as im-
portant with the shuffling does not necessarily mean it has
high variability among the watersheds. It rather means that
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this variable is highly correlated with the target variable (the
cluster association), because shuffling its values essentially
destroys any relationship between that feature and the tar-
get variable, as indicated by the decrease in the training per-
formance. After randomly permuting the values of a feature,
the model is not refitted to the training data. This technique
has been recognized in the literature (e.g., Breiman, 2016;
Wei et al., 2015; Fisher et al., 2018), and it is widely im-
plemented in many statistics packages as well (e.g., Biecek
et al., 2019, 2023; Molnar and Schratz, 2008). Please also
refer to Wei et al. (2015) for a review. We ran the cluster-
ing algorithm 10 times with different seeds. At each run, we
trained the clustering using 90 % of the data and predicted
the remaining 10 % and, for each run, each feature of the
dataset was permuted 10 times. The permutation misclassifi-
cation rate of a feature was calculated as the number of ob-
servations for which the cluster assignment differed from the
original cluster assignment divided by the number of obser-
vations given a permutation of the feature. The overall aver-
age misclassification rate iterations were interpreted as hav-
ing variable importance. We decided to keep only the vari-
ables producing a misclassification rate higher than the mean
values. Figure 6 shows the most important variables for the
interval N = 365 d. This variable selection indirectly checks
for collinearity by keeping only the variables that have the
largest effect on the changes.

2.3.2 Supervised mapping and trained regression

SOMs are extensively applied for clustering and visualiza-
tion purposes. Nonetheless, they can be used for regres-
sion learning (e.g., Riese and Keller, 2018, 2019). In the
first step, the data (geomorphological, atmospheric, and hy-
drologic variables and measured residuals) are clustered to-
gether, based on patterns of variables. The resulting SOMs
are composed of nodes, each of which is connected to a
“weight” vector that represents the node’s location in the in-
put space. The map can be used to categorize further observa-
tions after training by locating the node whose weight vector
is closest to the input space vector (best-matching unit, or
BMU).

The regression algorithm of the SOM proceeds similarly to
the clustering SOM algorithm. However, the regression dif-
fers for these main points. (1) Within the finalized input SOM
that was created in the first stage, the BMU search is carried
out. (2) For the regression instance, the weights of the super-
vised SOM are based on one single parameter (a continuous
number, which in our case is the residuals). Combining the
unsupervised and supervised SOM allows for the selection of
the BMU for each data point while also connecting the cho-
sen best-matching unit to a particular residual estimation. In
other words, each gage is mapped to a certain cluster, based
on the median characteristics of the storms. For the regres-
sion part, the data extracted from the SOM are restricted to

the best-matching cluster, and given the input storm and wa-
tershed properties, we can predict the most likely residual.

For the supervised mapping and trained regression step,
the gages were tagged to their corresponding SOM clusters.
Once a cluster was defined, we aimed to determine which
features were the most significantly correlated. For this, we
considered the distance correlation index (dCorr) (Székely et
al., 2007) to quantitatively identify the correlation of the im-
portant variables with the residuals within each cluster. The
range of dCorr values, from 0 to 1, represents the dependence
of two independent variables. The stronger the dependence,
the closer the value is to 1, and the statistical independence
of the two variables is implied by a value of 0 (Sofia and
Nikolopoulos, 2020). We used inverse distance correlation
(1-dCorr) to measure the dissimilarity of the variables within
the cluster and create organized dendrograms. The attribute
distances between every pair of drivers that have been suc-
cessively clustered are depicted in a dendrogram.

Having tagged the gages, we performed supervised train-
ing with them to predict the residuals based on the at-
mospheric, hydrologic, and geomorphologic variables. The
main outcome of this part is to have an ML system able to
predict the most probable residual after a storm with certain
properties, for a location with specific watershed characteris-
tics. To this point, we retrained the SOMs independently for
each cluster, using only the data retrieved from the stations
within that cluster. For this part, we applied an extension of
Kohonen’s self-organizing map algorithm, the growing self-
organizing map (GSOM) (Alahakoon et al., 2000; Grow-
ingSOM package | R Documentation, 2020, https://rdrr.io/
cran/GrowingSOM/, last access: 29 May 2024). We chose
a GSOM to refine the analysis and improve the prediction
within each cluster. The GSOM hierarchical clustering tech-
nique enables the data analyst to locate important and unique
clusters at a higher level and to focus on a more precise
grouping of the interesting clusters only (Alahakoon et al.,
2000). The GSOM is computationally expensive, so we de-
cided to apply it to the already clustered data. A spread factor
parameterizes the GSOM. This measure can generate maps
of different sizes without previous knowledge of the dataset,
samples, or attributes. We set the spread factor to 0.8, as sug-
gested by Alahakoon et al. (2000).

Finally, we trained the model by selecting 90 % of the data
randomly and validated its performance using the remaining
10 % for each cluster. The traditional method of identifying
the quality of the SOM, proposed by Kohonen (1982), is to
compute the quantization error by summing the distances be-
tween the nodes and the data points, with smaller values in-
dicating a better fit. This method has been used successfully
by many researchers, requiring minimal computation time,
to compare changes across time series images (e.g., Bação
et al., 2005; Dresp et al., 2018; Wandeto and Dresp-Langley,
2019). For quality assessment, we also followed the approach
used by Swenson and Grotjahn (2019). We performed cross-
validation for a particular SOM, fitting the SOM to the data
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Figure 6. Selected variables based on the misclassification rate (%).

first to ensure a unique cluster assignment. Then we con-
ducted 100 trials, excluding the data used in initialization,
as suggested by Swenson and Grotjahn (2019). We utilized a
typical subdivision of 90–10, which meant that 90 % of the
data were used as training data to fit a new SOM, and the
SOM was then utilized to forecast the cluster assignments
of the remaining 10 % of the validation data. The percentage
of gages whose cross-validation cluster assignment changed
from the original assignment in at least 10 % of the 100 trials
was calculated. We further tested the quality of the ML by
evaluating the RMSE and the correlation distance between
the actual residuals and the predicted ones for the validation
dataset.

2.3.3 Predicting major storm effects on flood hazard

Using the trained model (Sect. 2.3.2), we predicted the resid-
uals for each gaging station, based on all the variables (Ta-
ble 1) selected from Shen et al. (2017), Falcone (2011), and
Fenneman and Johnson (1946). We compared the predicted
residual for a given storm at a given gage, with the av-
erage residual measured in the most recent years focusing
on prediction and showing a sudden deviation from positive
(before the storm) to negative (after the storm). This sud-
den deviation, as illustrated in Fig. 3, can indicate a quick
shift in channel conveyance in response to sediment depo-
sition, which can trigger increased flood hazard even when
the flood event’s return period remains unchanged (Blench,
1969; Lane et al., 2007; Pinter et al., 2006a, b; Stover and
Montgomery, 2001).

To highlight the criticality of this sudden shift, we con-
sidered highly at risk those watersheds for which the pre-
dicted residual, shifting from positive to negative, was out-
side the lower bound of the 95 % confidence interval of the

current stage–discharge relationship. As LOESS smoothers
fit a unique linear regression for every data point by in-
cluding nearby data points to estimate the slope and inter-
cept, the correlation in nearby data points helps ensure that
a smooth curve fit is obtained. Therefore, the µ+ 1.96σ
of the nearby data points considered for each fitted value
can be considered a measure of the 95 % confidence in-
terval. This information is calculated directly from the R
package fANCOVA (https://CRAN.R-project.org/package=
fANCOVA, last access: 29 May 2024) used for the fitting.
Overall, a watershed with positive residuals for the most re-
cent measurements, for which we predict a sudden shift to
negative outside the confidence bound of the stage–discharge
curve, represents a critical condition that should be mon-
itored, as the current flood stage might underestimate the
flood risk.

3 Results analysis

3.1 Variable importance

Figure 6 demonstrates the outcome of the variable impor-
tance. Based on the results shown in Fig. 6, we found that
the same variables were always important for all the interval
analyses. Table 1 shows all the selected variables in bold for
N = 365. In this case, out of a total of 40 variables, we have
selected 30 based on the misclassification rate (%). Of the
selected variables, 15 were geomorphologic variables, fol-
lowed by 10 atmospheric variables and 5 hydrologic vari-
ables. The most important variables were the aspect (AS-
PECT_NORTHNESS, ASPECT_EASTNESS) and stream
density (STREAMS_KM_SQ_KM). The most important hy-
drologic variable was HYDRO_DISTURB_INDX, which
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Table 2. Accuracy assessment parameters of the ML analysis. This
table reports the average correlation and RMSE between the pre-
dicted and observed residuals for the different intervals.

Interval Avg correlation Avg RMSE
(d) (10-fold) (m) (10-fold)

15 0.81 0.13
30 0.84 0.14
90 0.80 0.13
180 0.80 0.09
365 0.86 0.09

explains the condition of the watershed, whether anthro-
pogenically modified or natural.

3.2 Evaluation of SOM accuracy

The quantization error (Table 2) provided a measure of the
accuracy of SOMs. The quantization error reported a higher
accuracy as the number of training samples increased (in-
creasing the number of days and resulting in more channel
measurement and flood properties for each training sample).
Homogeneous areas in the U matrix became more evident
(Fig. 7) as the quantization error diminished (Table 2). As
Table 2 indicates, the 365 d interval had the best quality, as
represented by the lowest quantization error. For this rea-
son, the following sections will present an investigation of
the maps produced with this interval. Table 2 also shows the
SOM quality in terms of the distance to the closest units of
the SOMs trained for each cluster. The results suggest that
the retraining of the individual clusters using the GSOM im-
proved the prediction quality of the SOM significantly.

Table 2 also shows the correlation distance and RMSE be-
tween the measured and predicted residuals for each cluster
of the validation datasets. The average correlation was close
to 1 for all the N values, suggesting that the performance of
the SOM model was satisfactory. The average RMSE was in
the range of 0.09–0.14 m, which indicates a low random er-
ror relative to the dynamic range (−3 to 3) of the predicted
variable. Both the unsupervised correlation distances and the
average correlation showed the best results for N = 365 d.
The RMSE diminished with the increase in the interval.

Figure 8 presents the results of the unsupervised cluster-
ing for N = 365 for the variables used. In the figure, the
contrast between high (red) and low (blue) value areas em-
phasizes the spatial patterns of the various parameters we in-
vestigated. Based on this clustering, a combined U matrix is
produced (discussed in Fig. 7) and a cluster label is assigned
to each gage. Gages with similar characteristics presented by
the variables are tagged with the same cluster number. There
are 12 clusters of gages for the 365 d interval, and we have
plotted the clusters individually on a map showing how they
spread across different physiographic regions and climate
zones in Fig. A1 in Appendix A. Clustering does not have

Figure 7. U matrix for different intervals (N days). The red colors
represent large distances in the feature space, while the blue colors
represent valleys grouping subsets of similar data.

a geographical meaning. Rather, gages behave more consis-
tently between adjacent clusters than non-adjacent clusters,
but this does not necessarily follow the spatial proximity of
the gages. This is reflected in the spatial pattern of the differ-
ent clusters of gages in Fig. A1.

Visually, the SOMs in Fig. 8 highlight the co-oscillation
of hydrologic and geomorphologic variables as a standard
component of watershed behavior. Drainage area (DA) and
discharge or peak flow (Peak), for example, are positively
correlated, with a cluster of high values in the bottom part of
the SOMs. We can see that other hydrologic variables like Els
(mean water travel distance to the drainage outlet), EQ (cen-
troid of the flow hydrograph), Q2 (second-order moment of
the flow), Vp (precipitation volume), Vt (average flow volume
per unit drainage area), and VaTr (spread of precipitation)
have similar patterns. EQ and the hydrograph (ETr) appear
to be highly correlated. Some specific co-oscillations of vari-
ables are evident in multiple regions. The percentage (Perc)
and percentile (Percentile) of the peak flow show the highest
values spread across the SOM nodes. If we focus on the SOM
of Res, we can see that the nodes on the right-hand side of
the SOM seem to be associated with high values of the resid-
uals (Fig. 8). Nevertheless, a small cluster of high residuals
is seen in the upper left-hand corner. At the global level, this
highlights a lack of regional synchrony in stage–discharge
shifts at the yearly scale. Pfeiffer et al. (2019) reported simi-
lar findings on the decadal scale.
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Figure 8. Individual SOMs of all the flood drivers forN = 365. Similar to the U matrix, the red colors represent large distances in the feature
space, while the blue colors represent valleys grouping subsets of similar data.

3.3 Variables associated with shifts in the residuals

Focusing on the changes in the stage–discharge relation-
ship Res, we next investigated the correlation between pre-
dicted and measured residuals on the one hand and other
variables on the other (Fig. 9, Table 3). For the proposed
ML framework, the training was unsupervised. In general,
the predicted and measured residuals were highly corre-
lated, validating the SOM performance. Table 3 summarizes

the correlations among the considered predictors in Fig. 9
for N = 365 d. It presents an analysis of the group of vari-
ables based on the dendrogram branches for different like-
lihoods of change levels (e.g., 0 %–10 %, 10 %–30 %, or
30 %–50 %). This section discusses the correlations for the
30 %–50 % category as an example; the other two categories
showed similar outcomes. We do not have more than 50 %
here in the table because the highest percentage of gages that
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showed sudden change was 30 %–50 %. In Table 3, Level
1 shows the group of variables highly correlated with each
other and with residuals. Level 2 shows variables that are
highly correlated with each other but related to a lesser de-
gree to the variables in Level 1.

For Level 1, the physiography of the basins is represented
by ELEV_* (elevation) highly correlated with EQ, Q2,
and ETr, which are correlated with all the other variables
in Group 2. For Level 2, Res is shown to be correlated
with different variables. A noticeable pattern is in Group
1 containing mostly hydrologic variables, while Group 2
contains atmospheric variables. In Group 1, Res belongs
to the tree containing the variables RFACT (rainfall and
runoff factor), HYDRO_DISTURB_INDX (anthropogenic
modification), STREAMS_KM_SQ_KM (stream density),
BFI_AVE (base flow index), ASPECT_NORTHNESS,
ASPECT_EASTNESS, STRAHLER_MAX (maxi-
mum Strahler stream order in the watershed), MAIN-
STEM_SINUOUSITY (sinuosity), DRAIN_SQKM
(drainage area), peak (peak flow), and CovtrLs (covari-
ance of precipitation and water travel distance) (Level 2
in Table 3). RFACT, the rainfall runoff factor, directly
affects rainfall runoff influencing the channel changes.
HYDRO_DISTURB_INDX (see Sect. 3.1) represents
the channel condition, whether the channel is altered
by artificial construction or not. A group of highly con-
nected elements comprises a series of drainage properties
(STREAMS_KM_SQ_KM, STRAHLER_MAX, MAIN-
STEM_SINUOUSITY, DRAIN_SQKM) that modulate
the way precipitation is routed through the basin and that
directly affect flood properties.

In Level 2, Group 2, the tree contains Pmean (mean precip-
itation), Els, EQ, Q2, Vp, Vt , VaTr, VarLs (variance of the
water travel distance), Vb (base flow volume), and Runoff-
Coef (runoff coefficient). These are mostly related to rainfall
properties. While they are important fingerprints for the attri-
bution of regional flood changes, these variables are related
to changes in flood hazard to a lesser degree than physiogra-
phy and flow properties.

Overall, the results of our analysis highlight how the im-
pacts of a flood-inducing storm event on channel properties
and flood hazards are highly correlated with flow character-
istics and a region’s geophysical signature.

4 Discussions

4.1 Channel changes and watershed characteristics

Our model highlighted in Fig. 6 that the most important hy-
drologic variable was the condition of the watershed, whether
anthropogenically modified or natural. This confirms that hu-
man modifications are an important element to be consid-
ered when analyzing flood hazard changes (Bormann et al.,
2011; Pinter et al., 2006a, b). Ahrendt et al. (2022) demon-

strated that channel regulation is important to conveyance
changes, which resonates with the variable importance anal-
ysis results from Fig. 6. Similarly, the construction of dikes,
bridges, dams, meander cutoffs, channel constriction by wing
dikes, groins, and other engineering projects can alter chan-
nel conveyance within rivers and the characteristics of their
floodplains (Bormann et al., 2011; Pinter et al., 2006a, b).
The importance of this variable in the model highlighted the
potential interaction of flood-inducing events that generate
high sediment deposition with the effects of channel modi-
fication. Also, numerous works in the literature (Feng et al.,
2021; Mazzoleni et al., 2022) highlighted how urbanization
processes and landscape changes induced by human activi-
ties have large impacts on flood hazards worldwide.

The model gave high importance to drainage density,
which is an essential characteristic of Earth’s surface that
regulates erosion and the movement of water and sediments
(Clubb et al., 2016). Drainage density is also correlated with
subsurface permeability (Luo et al., 2016). The control these
factors exert on sediment production and delivery and soil
permeability may explain the importance of these variables
to post-storm changes in river conveyance. Drainage density
is also correlated with other hydrologic and climatic vari-
ables such as precipitation and climate types (Moglen et al.,
1998).

Based on the visual interpretation of the unsupervised
SOMs (Fig. 8), taking the atmospheric, hydrologic, and
current geomorphologic conditions as single independent
drivers is not sufficient to predict the magnitude of the shift in
stage and discharge at the flood stage. This suggests that the
co-occurring fluctuations in the various parameters, rather
than variation in a single peak parameter, are the primary
drivers of change in flood hazard at the continental scale.
The patterns visible in the SOM depend on existing rela-
tionships among the processes. For example, along with the
drainage area, the duration and spatial pattern of rainfall are
responsible for the variability in lag time and basin response
(Granato, 2012; Woods and Sivapalan, 1999). The correla-
tion between DA, Peak, and mean water travel distance to Els
is evident for various clusters, as is the correlation between
Vt and Vb.

This is not surprising, considering that the basin size is
generally the most important basin characteristic in deter-
mining the amount and timing of surface runoff at the outlet
(Gupta and Dawdy, 1995). The relationship between flood
flow quantiles and drainage area is expressed by power-law
equations (Villarini and Smith, 2010). It also confirms how
catchments with larger drainage areas display higher val-
ues of specific discharge and how morphodynamic proper-
ties (including frequent flows such as the bankfull discharge)
tend to cluster with drainage network characteristics and
scaling properties (Saghafian, 2005; Reis, 2006; Sofia and
Nikolopoulos, 2020). Further cross-cluster variability occurs
with some atmospheric and hydrologic variables, i.e., the
centroid of precipitation (ETr), EQ, and spread of precipita-
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Figure 9. Example of intercorrelation among the flood drivers for N = 365 d for the likelihood of change between 30 % and 50 %. The white
color signifies that there is no correlation between those variables. The color bar from blue to yellow shows high to low correlations.

tion (VarTr). All the previously mentioned variables present
their co-occurring peaks in Cluster 6 (the Upper Mississippi
and Missouri region), which is in line with the fact that, for
this area (and cluster), snowmelt, rain on snow, or rainfall can
cause major flooding.

The physiography of the basin deeply controls the com-
plex land–atmosphere interactions and storm types, resulting
in rainfall runoff. Thus, it is no surprise that physiography
alone is highly correlated (Fig. 9, Table 3) with all other (hy-
drologic, geomorphologic, and atmospheric) variables used
in this study. This highlights the importance of basin at-
tributes in prompting stage–discharge variability at gage lo-
cations. Investigations of the influence of the flow stage on
channel conveyance often focus on the impacts of peak or
minimum bankfull discharge. From Fig. 9 and Table 3, we
can see that recession rates matter in sediment delivery, as
highlighted in the literature (e.g., Hassan et al., 2006), and
these two properties are highly correlated with the impact of
large storms on flood hazards. The findings of this study pro-
vide needed insight, and managers could use the results to
determine the flow hydrograph shapes that potentially alter
short-term flood hazards. Such knowledge is necessary for
the design of river infrastructure. Many papers in the liter-
ature (e.g., Borga et al., 2008; Woods and Sivapalan, 1999;
Smith et al., 2004, 2005, 2002; Zhang et al., 2001) have high-
lighted the relationship between the centroid of precipitation
and runoff production. Most of these works have shown that,

for example, the position of the storm centroid relative to the
watershed outlet is an important driver of runoff: storms with
a precipitation centroid positioned in the central portion of
the watershed tend to produce a higher runoff than storms
with a centroid near the outlet or head of the watershed. This
is in line with the fact that rainfall runoff spatial variabil-
ity influences flash flood severity relative to basin physiog-
raphy and climatology. Flash flood severity, or flashiness, as
defined by Saharia et al. (2017), assesses a basin’s capacity
to produce severe floods by considering both the volume and
timing of a flood. It is, therefore, not unexpected that the cen-
troid of precipitation appears to be highly correlated with the
shifts in residuals.

Also, as shown in Fig. 9, the significance of “Aspect” at-
tributes can be understood in terms of the various runoff and
soil loss yields that can result from changes in slope proper-
ties. For example, soils on south-facing slopes always seem
to be much more eroded or degraded than those on more hu-
mid north-facing slopes, due to differences in aspect, steep-
ness, lithology, and flora type. ASPECT_NORTHNESS and
ASPECT_EASTNESS influence the daily cycle of solar radi-
ation affecting the temperature, humidity, and soil moisture
(Desta et al., 2004) that control the vegetation and, hence,
the sediment movement of the floodplain. The variability of
these factors can, therefore, affect sediment production and
movement, with consequences for flood hazard changes.
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Table 3. Highly correlated variable groups for different percentages (%) of the “likelihood of change” from the interpretation of the dendro-
gram in Fig. 11. Levels in the table represent the main branches of the dendrograms, and groups represent the sub-branches under the main
levels.

0 %–10 % 10 %–30 % 30 %–50 %

Variable groups Level 1 Level 1 Level 1

Group 1 Group 1 Group 1

ELEV_MEAN_ M_BASIN,
ELEV_MAX_M_BASIN,
ELEV_MIN_M_BASIN,
ELEV_ MEDIAN_M_BASIN,
ELEV_STD_M_BASIN,
ELEV_SITE_M,
RFACT
Group 2: all the other variables

ELEV_MEAN_ M_BASIN,
ELEV_MAX_M_BASIN,
ELEV_MIN_M_BASIN,
ELEV_ MEDIAN_M_BASIN,
ELEV_STD_M_BASIN,
ELEV_SITE_M, EQ, Q2
Group 2: all the other variables

ELEV_MEAN_ M_BASIN,
ELEV_MAX_M_BASIN,
ELEV_MIN_M_BASIN,
ELEV_ MEDIAN_M_BASIN,
ELEV_STD_M_BASIN,
ELEV_SITE_M, EQ, Q2, ETR
Group 2: all the other variables

Level 2 Level 2 Level 2

Group 1 Group 1 Group 1

HYDRO_ DISTURB_INDX,
STREAMS_KM_SQ_KM,
Res,
ASPECT_ NORTHNESS,
ASPECT_EASTNESS,
Vp, Pmean, CovtrLs, Vb, Vt , Els,
IBF, VarLs
Group 2: EQ, ETR, Q2,
VarTr, RunoffCoef, Peak,
STRAHLER_MAX,
MAINSTEM_SINUOUSITY,
DRAIN_SQKM

RFACT, HYDRO_DISTURB_INDX,
STREAMS_KM_SQ_KM,
BFI_AVE,
Res,
ASPECT_NORTHNESS,
ASPECT_EASTNESS,
Pmean, Els, IBF, VarLs
Group 2: Vp, CovtrLs, IBF, Vb,
Vt , ETR, VarTr, RunoffCoef, Peak,
STRAHLER_MAX,
MAINSTEM_SINUOUSITY,
DRAIN_SQKM

RFACT, HYDRO_DISTURB_INDX,
STREAMS_KM_SQ_KM,
BFI_AVE,
Res,
ASPECT_NORTHNESS,
ASPECT_EASTNESS,
STRAHLER_MAX,
MAINSTEM_SINUOUSITY,
DRAIN_SQKM, IBF, Peak, CovtrLs
Group 2: Pmean, Els, VarLs, Vp, Vb,
Vt , VarTr, RunoffCoef

In Fig. 9 and Table 3, our model suggests that drainage
properties related to the routing of the precipitation and flood
water are highly correlated with residual changes and indi-
rectly linked to post-storm modifications of flood hazards.
Greater network sinuosity lowers peak flows and flooding
(Seo and Schmidt, 2012; Seo et al., 2015; Saco and Ku-
mar, 2002). Higher peak flow, a faster time to the peak, and
a shorter duration are produced by lower variability of flow
path lengths (Saco and Kumar, 2002). Also, flood frequency
or event increases with the decrease in the fractal dimension
of the river network (Zhang et al., 2015). Lastly, the base
flow index and peak discharge are intricately connected to
runoff and, consequently, alterations in channel conveyance.
This connection is evident as they characterize the volume
of water within the channel. When the volume surpasses the
channel’s conveyance capacity, flooding is anticipated, and
substantial sediment movement implies potential channel ad-
justments. The significance of these properties is a reaffir-
mation of the established notion that regular flows, such as
base flow below bankfull levels, are sufficient to determine
channel shape, as they prevent the substantial accumulation
of fine sediments and organic matter (Phillips, 2002). On the
other hand, rare extreme floods are essential for transport-

ing coarser bed material and eroding channel banks (Phillips,
2002).

4.2 Changes in flood risk after major floods

Figure 10a shows the groups of gages representing differ-
ent percentages of “likelihood of change”. If the reported
value is<10 %, for example, the predicted residuals for those
gages show a sudden change from negative to positive in
less than 10 % of the storms. The higher the percentages
are, the more likely we expect a drastic abrupt reduction in
channel capacity to be after a large storm. Comparing with
the literature (Slater et al., 2015), we can see that, in our
study, the locations with the highest likelihood of change
coincided with those with significant channel capacity and
net changes in flood hazard frequency. While the post-storm
change was not as widespread as the effects highlighted by
Slater et al. (2015), this was expected, as we were analyzing
post-storm effects and not considering the persistence in time
of these changes at this stage. Also, a higher rate of change
(high percentage) might be representative of very dynamic
rivers, whose changes are likely to smooth out in time. On the
other hand, rivers changing less frequently might be witness-
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ing changes with a magnitude sufficient to last longer. This
fact should be addressed carefully. Another thing to consider
is that, because USGS gages are purposely placed at stable
locations, our analysis, as well as other works (e.g., Li et al.,
2020; Slater et al., 2015), probably underestimates the con-
sequences of conveyance changes.

Nonetheless, our results highlighted how substantial
changes had occurred even for these locations. When we fo-
cused on the amount of change relative to the current confi-
dence bound of the stage–discharge relationship (Fig. 10b),
we could see that the magnitude of change was higher for
gages that changed less frequently. The northwestern part of
CONUS was where Slater et al. (2015) highlighted cluster-
ing of increases in hazards due to consistent channel capacity
changes with clusters of gages for which we predicted neg-
ative residuals outside the confidence bound of the stage–
discharge relationship. For the northeast, on the other hand,
our model predicted high-magnitude changes for areas iden-
tified by Slater et al. (2015) as areas significantly impacted
by flow frequency effects. It is known that existing stage–
discharge relationships present uncertainty in estimating the
discharge because of the variation in the individual measure-
ments from which the estimation is derived. Our model high-
lighted that the post-storm increased change lay outside the
range of acceptable uncertainty at many gages. As Fig. 10b
shows, this change was as widespread as the effects high-
lighted by Slater et al. (2015) for the total positive changes
in flow hazard frequency (FHF). For gages, the total FHF in-
creased logarithmically in Slater et al. (2015), and our model
predicted changes further in the negative domain, outside the
lower confidence bound.

From the predicted results of the channel changes at the
gage level, we next analyzed which locations were more
prone to changes based on the number of gages with pre-
dicted changes within each physiographic region and cli-
mate type (Fig. 11). Overall, one must keep in mind the lim-
its and the variability of the gage coverage across CONUS,
as described in the chapter related to the model limitation.
Nonetheless, observing how variability changes across re-
gions allows us to grasp how variable the post-storm ef-
fects are. Overall, rivers across the US are highly dynamic
per se, and their variability depends on a combination of
factors mostly driven by how sediment moves across the
landscape (Montgomery and Buffington, 1998; Flores et al.,
2006). This, in turn, depends on a variety of landscape prop-
erties, climate conditions, and human modifications (Wu et
al., 2023).

Among the physiographic regions (Fig. 11a), the Lauren-
tian uplands and intermontane plateaus had the most changes
(75 % of all gages in this region). The Rocky Mountain
and Pacific Mountain systems followed the trend with the
second-most changes (50 %–75 %). The changes in <10 %
of the gages were in the Interior Highlands, Atlantic Plains,
and Appalachian Highlands. The Appalachian Highlands re-
gions are mountainous. In contrast, the interior plains are

mostly flat agricultural lands whose river system consists
of the upper Mississippi River, the Ohio River, parts of the
Great Lakes, and small wetlands. This region has a very dy-
namic hydrology, with very cold winters and hot summers.
Snowmelt in the spring and heavy precipitation in the sum-
mer and winter result in big floods. Naturally, this can po-
tentially lead to changes in the river reaches. While the At-
lantic Plain is also relatively flat, it covers the Mississippi
Delta, the Gulf of Mexico, and the Atlantic seaboard in the
east (see Fig. 2). Moving toward the coastline, frequent trop-
ical storms and cyclones are recorded, which could increase
sediment activity overall (Tweel and Turner, 2014). Also,
lots of human activities can alter river morphology, espe-
cially in the deltas, due to sediment movements (Nienhuis et
al., 2020). The literature (Bracken and Croke, 2007; Kalan-
tari et al., 2019; Croke et al., 2013; Sofia and Nikolopoulos,
2020; Wohl et al., 2019) has highlighted sediment connec-
tivity as a potentially critical factor in flood hazards, being
linked to both changes in channel characteristics and increas-
ing decadal trends in flood hazards, independent of scale. In
addition, for these regions, and in the eastern United States
more generally, peak flows are highly variable (Villarini and
Smith, 2010), and tropical cyclones affect the distribution of
sediments as well (Tweel and Turner, 2014). All these char-
acteristics contribute to the presence of very dynamic rivers,
which, as confirmed by our model, quickly react to flood-
inducing events, adjusting their geometry and altering flood
hazards in the case of subsequent floods.

We made the same comparison for the climate types
(Fig. 11b). We detected high predicted variability, mainly
in hot and humid climate regions, while cold and dry re-
gions showed minimal changes. Humid continental climate
(Dsb, Dfa, Dfb) led with the highest variability (>75 % of
the gages in these climate regions). The gages with 50 %–
75 % channel changes were in the tundra climate (ET) and
warm-summer Mediterranean climate (Csb). Gages with the
least changes (<10 %) were located in humid continental hot
summers with dry winters (Dwa), continental subarctic–cold
dry summers (Dsc), cold desert climate (Wk), and hot semi-
arid climate (BSh). These climate zones are mostly dry, ei-
ther year-round or seasonally. The impact of major storms on
rivers depends on both underlying long-term climate signa-
tures (Chen et al., 2019; Stark et al., 2010) and short-term
(year-to-year) climate variability (Slater et al., 2019). For
many river systems, coarse sediment mobilization and trans-
portation rates are controlled by regional climate (Anderson
and Konrad, 2019). Climate variability is projected to trigger
a chain reaction of geomorphic responses, including changes
in downstream channel properties (East and Sankey, 2020;
Wendland, 1996; Harrison et al., 2019; Knight and Harri-
son, 2012). Other studies focusing on long-term changes
rather than flood-inducing events have shown how decadal-
scale changes in river morphology may be accounted for as
a downstream-propagating channel reaction to regional cli-
mate variability, which is frequently accompanied by cyclical
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Figure 10. Predicted changes as compared to the results of Slater et al. (2015) showing channel capacity (CC) and flow frequency (FF) effects
on flood hazard frequency (FHF). In panel (a), “likelihood of change”, the percentage represents the number of times the model predicts a
residual change from positive to negative after a major flood (for N = 365). Panel (b) shows the ratio between the average prediction and the
lower 95 % confidence bound of the current stage–discharge relationship for the stations showing a drastic change from positive to negative.
In panels (a) and (b), gages with small variations from this study have been reduced for clarity. Panels (c), (d), and (e) show the results of
Slater et al. (2015).

changes in channel geometry and conveyance (Scorpio et al.,
2015; Slater et al., 2019). The joint contribution of physio-
graphic regions (as a proxy for sediment characteristics) and
climate properties has also highlighted the nonlinearity of
system response and the potentially harmful and sequential
effects that result from the coupled direct impacts of climate
conditions and sediment connectivity (Lane et al., 2007).

5 Advantages and limitations of the framework

This work is based on gage measurements, and across
CONUS there is a known bias of stream size representation
and spatial density in the gaging network, whereas some river

sizes and landscape areas are vastly underrepresented and
overrepresented (Kiang et al., 2013). Regarding the coverage
of stream gages, the intrinsic limits of the dataset, in general,
have been addressed in the literature and are very well sum-
marized in the publication by Kiang et al. (2013). Broadly
speaking, the eastern United States has better coverage com-
pared to its western counterpart. In particular, the arid south-
western United States shows notably lacking spatial cover-
age. Discrepancies in hydrology contribute to variations in
the statistical uncertainty calculated across different parts of
the country (Kiang et al., 2013). The central and southwest-
ern United States, characterized by arid and semiarid condi-
tions, generally display higher interannual variability in flow,
resulting in increased uncertainty in flow statistics. Despite
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Figure 11. Percentages of gages presenting changes in channel capacity in different (a) physiographic regions and (b) climate types.

these distinctions, it is essential to recognize that any re-
search relying on gaging sites faces similar limits and is over-
all affected by potential overrepresentation or underrepresen-
tation of flows. We believe that, as USGS stream gage infor-
mation could potentially be transferred from nearby stream
gages if there is sufficient similarity between the gaged wa-
tersheds and the ungaged watersheds of interest, our model
could also be applied to ungaged sites. However, one must
always keep in mind that the successful “translation” to un-
gaged environments depends on the correlation of the stream
gages in the surrounding areas. For example, there are ar-
eas of CONUS (mostly mountainous) that show highly cor-
related stream gages (Kiang et al., 2013), whereas the central
United States and coastal areas of the southeastern United
States show highly uncorrelated gages. Therefore, the good-
ness of the information transfer might not work as well. Also,
transferability would be most likely to be successful when
basin attributes show high similarity and storm properties
are within the range of variability of the training set used
for this work. We do not recommend the use of this model
for engineered rivers, where channel changes are expected to
be limited by infrastructures such as concrete levees, as the
model was trained excluding specifically sites featuring ar-
tificial controls at the gauging station that could impede the
natural adjustment of the channel’s shape.

The ML model was trained considering both storm prop-
erties and watershed properties. The system is not capable
of highlighting which element triggers the change. Nonethe-
less, we provided an assessment of feature importance to
stress that the shifts in how the model works are mostly ex-
plained by a combination of storm and watershed properties.
We would not suggest using the model, as it is trained cur-
rently, to predict changes without having information on the
storm properties. Regarding storm properties, this study uses
a published dataset (Shen et al., 2017) of storm events rang-
ing from 2002 to 2013. The framework displays the intercor-
relation of the different event properties that can affect chan-
nel changes, and this framework could be used to identify

variable gages outside the time range covered by the storm
event database. Nonetheless, researchers can use the trained
model with additional years of data if they have available
the same storm properties proposed by Shen et al. (2017) for
more recent events.

A further thing to consider refers to the watershed prop-
erties considered in the model. The gage dataset includes
several hundred watershed characteristics compiled from na-
tional data sources. Actual stream density, like other proper-
ties, for example, could be different from those derived from
national data sources due to time and landscape changes hap-
pening in the watersheds. The advantage of the considered
dataset, however, is that it is available consistently for all
the gages. Researchers could also consider using different
methods to define the watershed properties and consider im-
proved geomorphological parameters from high-resolution
terrain data derived from, e.g., lidar sources (Passalacqua et
al., 2015). In this case, it would be recommended to retrain
the model and verify once again the importance of this pa-
rameter in the retrained model, as the literature strongly high-
lights the higher variability of geomorphological and hydro-
logical parameters derived from variable-resolution terrain
(Sofia, 2020).

One must note that the permutation feature importance
changes with the shuffling of the feature; this process in-
troduces randomness to the process (Molnar, 2022), which
might not be representative of a physical process. When re-
peating the permutation, the results may vary considerably
(Molnar, 2022). To increase robustness and stabilize the mea-
sure, we repeated the permutation and averaged the impor-
tance measures over the various reiterations. A further aspect
to consider is that, if the features are correlated, the permuta-
tion feature importance may be biased, with unrealistic data
examples. The randomness added by the permutation might
result in an unlikely combination of the parameters. This is-
sue is more evident if real-world variables are directly or in-
versely correlated; by shuffling one of the features, we may
be creating new unlikely or physically impossible instances.
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Therefore, as Molnar (2022) suggested, we may be poten-
tially looking at a decrease in the model performance only
due to values that we would never observe in the real world.

We should point out that channel conveyance change is
known to vary spatially across a region and strongly corre-
lates with climate variations and landscape properties. The
feature permutation randomness for our study case was, how-
ever, counteracted by the two main features of SOMs: (1) the
topological preservation of the neighborhood, which results
in spatial clusters of comparable patterns in the output space;
and (2) the adaptation property in which the winner neuron
and its neighbors are changed to make the weight vectors
more similar to the input. The SOM method can recognize
new patterns during the training process. Besides that, using
multiple attributes, such as combined atmospheric, hydro-
logic, and geomorphologic variables, can improve the pat-
tern generated by the SOM. In our approach, the variable
importance did not change, considering the various N in-
tervals used to group storm properties. The high correlation
between estimated residuals and measured ones during the
10-fold validation confirmed the accuracy of the model.

Careful interpretations that explain how and why chan-
nel conveyance changes happen as they do are essential for
guiding reliable predictions of river conveyance behavior and
evolution. Another aspect to consider, as for any ML ap-
proach, is that SOMs are stochastic, as there are no physical
constraints in their prediction. The use of randomness as a
feature in the SOM analysis exerts confidence in the results,
mainly when the results are in agreement with the theoretical
aspect of the variables. We suggest referring to Brierley et al.
(2021) for a recent review of ML limitations in geomorphol-
ogy in general.

6 Conclusions

The variability of geomorphologic processes and future flood
patterns can only be understood by evaluating all the crit-
ical flood drivers responsible. In this era of flood-inducing
events and rapidly changing landscapes, accurate flood haz-
ard assessment is paramount. Atmospheric, hydrologic, and
geomorphologic parameters constitute both the main driv-
ing force behind and the detector of changes resulting from
a flood-inducing event. This study focused on the impact
of flood-inducing events on flood hazards by exploring the
channel changes following them. We utilized the interdepen-
dencies of the atmospheric, hydrologic, and geomorphologic
flood drivers to gain an understanding of the impact of flood-
inducing events on channel capacity and identified impor-
tant drivers for predicting residuals from the average stage–
discharge curve.

Our results confirm existing knowledge of watershed hy-
drology and further strengthen the compound importance of
climate and geomorphology as drivers of changes in flood
hazards. The sequential processes during and after a big flood

event can only be understood by considering the contribu-
tion of all the flood drivers together. The results show how
the variables of different flood drivers are interrelated and
can create effects that are more adverse together. Channel
conveyance change is often regarded as stationary in flood
hazard modeling and is acknowledged as one of the most im-
portant sources of uncertainty. The bankfull discharge and
flood occurrences are directly related to channel conveyance
capacity. Our research reveals that the assumption of chan-
nel stationarity may result in either overprediction or under-
prediction of the river discharge for a certain flood stage,
as the existing stage–discharge relationship might be tem-
porarily (or permanently if the shift pertains) underperform-
ing. This would in turn eventually overestimate or underesti-
mate flood hazard (recurrence interval, duration, depth, and
inundation extent of flooding), especially in the case of sub-
sequent floods. These models incorrectly feed flood control
planning procedures, which raises the level of uncertainty in
evacuation and rescue operations. Additionally, flood insur-
ance plans created using these models’ results are likewise
incorrect. Furthermore, if engineering designs are based on
data collected before periods when major flood events have
lowered channel conveyance, there is a risk that surveyed
channel dimensions and flood conveyance will be overesti-
mated in the long run.

The proposed ML model allows us to identify dynamic
rivers more prone to changes in the stage–discharge relation-
ship after major flood events. The proposed model does not
account for the persistence of changes. That being said, the
results highlight the risk of an abrupt reduction in channel ca-
pacity after a large storm. For rivers more prone to changes,
periodic revision of flood frequency statistics is advisable for
hazard assessments to keep pace with altered conditions. Un-
derstanding the temporal duration of these changes would
offer valuable insights into the practicality of implementing
these updates or exploring alternative approaches to assess-
ing flood risk, especially if the process exhibits significant
variability over time. The model predicts a shift in the dis-
charge at the flood stage (residuals) as a proxy for flood haz-
ard changes, implying that a certain discharge expected to
produce floodings will be reached for lower stages than ex-
pected (residual shifting from positive to negative at a spe-
cific gage). The approach starts from the concept that, typi-
cally, discharge time series are derived from water level mea-
surements through an existing stage–discharge relationship.
This is the general case for most gaging sites in the US as
well as other realities in other countries. As rating changes
often happen during episodic storms, the proposed model
can be adapted for other gage datasets in different parts of
the world by assuming the operational existence of a similar
approach.

The gages used in the study, although distributed across
CONUS, have intrinsic limitations in terms of the stream
size representations and spatial coverage of the river network.
Therefore, careful considerations should be applied while
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considering the model for predicting the impact of flood-
inducing storms on abrupt loss of channel capacity outside
the basins used in our study. This study considered a limited
set of drivers, excluding, for example, human activities in the
watersheds and vegetation properties. Channel changes can
be due to other geographically significant events (e.g., land-
slides, debris flow). However, such occurrences could also
be triggered by the storm events that caused the flood haz-
ards. At this stage, we have a complete database of storm
properties, but we did not include an analysis of additional
event parameters such as mass movements and the volume (if
known) of sediment or debris delivered during such events.
Future research could improve the method by adding predic-
tors and investigating the sensitivity of median storm char-
acteristics to different intervals (lag times). In response to
increased flow, we do not expect channel conveyance to rise
consistently everywhere. The intricate interaction of dynamic
anthropogenic and climatic factors and their consequential
processes within each basin are expected to be evident in the
fluvial changes. Hence, sediment connectivity, land use, and
land cover change anthropogenic factors could also be in-
cluded to retrain the model to produce changes in the stage–
discharge relationship at the flood stage and potentially cre-
ate scope for the prediction of channel changes due to flood-
inducing events.
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Appendix A

Figure A1. Gages with clustering identification assigned by SOM unsupervised clustering (a–l). For the abbreviation descriptions of the
physiographic regions and climate types, please refer to Tables A1 and A2.
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Table A1. Description of the climate types from the Köppen–Geiger climate classification (Beck et al., 2018) used in Figs. 2 and A1.

Climate types Description

Af Tropical rainforest
Am Tropical monsoon
Aw Tropical savanna (wet and dry climate)
BWh Hot desert climate
BWk Cold desert climate
BSh Hot semiarid climate
BSk Cold semiarid climate
Csa Hot-summer Mediterranean climate
Csb Warm-summer Mediterranean climate
Csc Temperate dry summers and cold summers
Cwa Warm oceanic climate/humid subtropical climate
Cwb Subtropical highland climate or temperate oceanic climate with dry winters
Cwc Cold subtropical highland/subpolar oceanic
Cfa Humid subtropical climate
Cfb Temperate oceanic climate
Cfc Subpolar oceanic climate
Dsa Humid continental climate – dry warm summers
Dsb Humid continental climate – dry cool summers
Dsc Continental subarctic – cold dry summers
Dsd Continental subarctic – dry summers and very cold winters
Dwa Humid continental hot summers and dry winters
Dwb Humid continental mild summers and dry winters
Dwc Subarctic with cool summers and dry winters
Dfa Humid continental hot summers and year-round precipitation
Dfb Humid continental mild summers, wet all year
Dfc Subarctic with cool summers and year-round rainfall
Dfd Subarctic with cold winters and year-round rainfall
ET Tundra climate
EF Ice cap climate

Table A2. Description of the physiographic regions (Fenneman and Johnson, 1946) presented in Figs. 2 and A1.

Physiographic regions Description

ApHigh Appalachian Highlands
AtlPlain Atlantic Plain
IntHigh Interior Highlands
IntPlain Interior Plains
IntermPlat Intermontane plateaus
LaurUpl Laurentian uplands
PacMounSys Pacific Mountain System
RockMounSys Rocky Mountain System
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