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Abstract. The National Water Model (NWM) provides crit-
ical analyses and projections of streamflow that support wa-
ter management decisions. However, the NWM performs
poorly in lower-elevation rivers of the western United States
(US). The accuracy of the NWM depends on the fidelity
of the model inputs and the representation and calibra-
tion of model processes and water sources. To evaluate the
NWM performance in the western US, we compared obser-
vations of river water isotope ratios (‘80 /10 and 2H/'H
expressed in & notation) to NWM-flux-estimated (model)
river reach isotope ratios. The modeled estimates were cal-
culated from long-term (2000-2019) mean summer (June,
July, and August) NWM hydrologic fluxes and gridded iso-
tope ratios using a mass balance approach. The observa-
tional dataset comprised 4503 in-stream water isotope ob-
servations in 877 reaches across 5 basins. A simple regres-
sion between observed and modeled isotope ratios explained
57.9% (8'30) and 67.1 % (8°H) of variance, although obser-
vations were 0.5 %o (8'30) and 4.8 %o (82H) higher, on aver-
age, than mass balance estimates. The unexplained variance
suggest that the NWM does not include all relevant water
fluxes to rivers. To infer possible missing water fluxes, we
evaluated patterns in observation-model differences using
8180uifr (8'80gps — 818Omoa) and daifr (8*Haigr — 8 - 818 Ouifr).
We detected evidence of evaporation in observations but
not model estimates (negative dgifr and positive 8180gip) at
lower-elevation, higher-stream-order, arid sites. The catch-

ment actual-evaporation-to-precipitation ratio, the fraction of
streamflow estimated to be derived from agricultural irriga-
tion, and whether a site was reservoir-affected were all sig-
nificant predictors of dgi in a linear mixed-effects model,
with up to 15.2 % of variance explained by fixed effects. This
finding is supported by seasonal patterns, groundwater lev-
els, and isotope ratios, and it suggests the importance of in-
cluding irrigation return flows to rivers, especially in lower-
elevation, higher-stream-order, arid rivers of the western US.

1 Introduction

The western United States (US) is experiencing multi-
decadal drought (Williams et al., 2022) and declining stream-
flows (Milly and Dunne, 2020). Major rivers are running
dry (Kornfield, 2022), lakes are shrinking (Ramirez, 2022;
Fergus et al., 2020, 2022), and water users are experienc-
ing shortages and cuts (Bureau of Reclamation, Depart-
ment of the Interior, 2022). These decreases in streamflow
and groundwater fluxes are projected to continue in coming
years (Miller et al., 2021a, b), with projected decreases in
snowpack (Mote et al., 2021; Siirila-Woodburn et al., 2021)
and increases in temperatures (Hicke et al., 2022). Under
drought and snow drought stress as well as changing win-
tertime precipitation patterns, river flows may become more
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difficult to forecast (Hammond and Kampf, 2020; Siirila-
Woodburn et al., 2021). Thus, with decreasing water avail-
ability, water managers and other stakeholders tasked with
managing and responding to current and future water supply
increasingly depend on accurate streamflow predictions.

Fully routed, high-spatiotemporal-resolution streamflow
models — like the National Oceanic and Atmospheric Admin-
istration’s National Water Model (NWM), which is an appli-
cation of the Weather Research and Forecasting (WRF) Hy-
dro model (Gochis et al., 2018) — provide short- and medium-
term streamflow prediction in the US as well as analyses of
past stream discharge at ungauged locations. The accurate,
detailed, frequent results from the NWM may be used by
emergency managers, reservoir operators, floodplain man-
agers, and farmers to aid in water use decision-making and
flood or pollution risk evaluation. The accuracy of predic-
tions and current snapshots produced by the model depend
on (1) inclusion and faithful representation of relevant water
sources and hydrologic processes, (2) appropriate calibration
of parameter estimations, and (3) the fidelity of the model
inputs.

With respect to the faithful representation of water
sources, the major water sources to streams in the moun-
tainous west include two broad water flux categories: runoff
(which is also called “quickflow” and may comprise sur-
face or subsurface waters) and groundwater discharge (also
called “baseflow”). Runoff during the summer comes from
late-season snowmelt, rain, and irrigation water. Groundwa-
ter discharge comes from shallow or deep in-ground water,
typically recharged at high elevation by snowmelt. Rivers in
the west derive the majority of their water from springtime
melt of the high-elevation wintertime snowpack (Li et al.,
2017; Hammond et al., 2023), whereas little water is con-
tributed to streams at lower elevations where there is mini-
mal snowpack (Miller et al., 2021b). Some of the meltwater
enters streams as surface runoff during late-spring and sum-
mer, while the remainder recharges shallow and deep ground-
water and, later in the season or in subsequent years, enters
the stream as groundwater discharge (Barnhart et al., 2016;
Miller et al., 2021a; Brooks et al., 2021; Wolf et al., 2023).
Rain contributes runoff to streamflow; however, even in areas
receiving a substantial proportion of their total annual precip-
itation during summer in association with the North Ameri-
can monsoon, only a small proportion of the total precipita-
tion makes it to the stream (Solder and Beisner, 2020; Tulley-
Cordova et al., 2021) — most is evaporated from soils or
transpired by plants (Milly and Dunne, 2020). Thus, lower-
elevation streams, particularly later in the summer, depend
heavily on groundwater discharge from higher elevations to
sustain their flows (Miller et al., 2016), and the majority of
streams in lower-elevation, arid areas are likely to lose water
to shallow groundwater recharge (Jasechko et al., 2021).

Within this hydrologic framework, human water use and
management introduces complexity via reservoirs and man-
aged release schedules; trans- and interbasin transfers, con-
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veyances, and surface and groundwater withdrawals; and ir-
rigation for agricultural crop or turf grass growth. Turf irriga-
tion in cities composes the majority of household water use
in most municipalities, and agricultural irrigation can com-
prise up to 80 % of total statewide water use in western US
states (Dieter et al., 2018). Water used for agricultural crop
or turf grass growth locally intensifies water balance fluxes
via increases in both water application and evapotranspira-
tion in these select tracts of land. Depending on the method,
both agriculture and turf grass irrigation can contribute to lo-
cal groundwater recharge (Grafton et al., 2018), with greater
recharge coming from flood irrigation compared with sprin-
kler or drip irrigation methods. Water for irrigation can come
from either surface or groundwater withdrawals. The irriga-
tion water source may have both direct and indirect influ-
ences on streamflows, particularly during low-flow seasons,
and may, depending on conditions, contribute to streamflow
increases, decreases, or delays in discharge (Essaid and Cald-
well, 2017; Condon and Maxwell, 2019; Ketchum et al.,
2023). However, these processes and fluxes are not currently
explicitly included in the NWM.

Past NWM evaluations have leveraged stream gauge mea-
surements (Hansen et al., 2019; Seo et al., 2021; Towler
et al.,, 2023), and model evaluation using stream gauge
measurements is included in the NWM WRF-Hydro work-
flow (Gochis et al., 2018). Using measured discharge to eval-
uate the NWM is useful because the data are publicly avail-
able at a high spatial and temporal resolution (e.g., dataset
used in Towler et al., 2023). However, evaluation of stream-
flows with measured discharge (1) may allow modelers to
get the correct total streamflow values and temporal patterns
at a reach for the wrong process reasons or (2) may suggest
that the model could be improved due to mismatches between
measured and modeled data, but it cannot provide informa-
tion on the specific process(es) or sources responsible for the
erTors.

Among the climatic regions covered by the NWM, model
streamflow evaluation metrics perform the most poorly in
lower-elevation reaches in the western US. Metrics like
the Kling—Gupta efficiency (KGE) indicate pervasive mis-
matches between measured and modeled streamflows, while
the percent bias (PBIAS) results show that simulated stream-
flow volumes tend to be overestimated in the west (Towler
et al., 2023). Similarly, Hansen et al. (2019) found that the
NWM has difficulty estimating flows during drought or low-
flow years in the Colorado River basin. In the low-elevation
stream reaches of the western US, disagreement between the
NWM flows and observations within anthropogenically al-
tered reaches may come from the incomplete representation
of anthropogenic water sources or processes in the NWM.

In the western US, low-elevation waterways have a mod-
erate to high potential for anthropogenic alteration (Fergus
et al., 2021). Rivers and surface water supplies are managed
by dams, and a large proportion of total water use is allo-
cated to irrigating agriculture (Dieter et al., 2018). However,
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the NWM does not explicitly include surface water removal
for agricultural irrigation nor subsurface return flows from ir-
rigation in its streamflow computations. Likewise, the NWM
represents inflow and outflow of lakes and reservoirs as pas-
sive storage and releases, with no active reservoir manage-
ment. Both of these omissions may be contributors to the
large errors observed in the NWM in lower-elevation areas
where land use includes large amounts of along-river agricul-
ture and streamflow is heavily managed through reservoir op-
erations. Unfortunately, the effects of contributions of these
two water sources on streamflow are difficult to identify and
quantify through evaluations of streamflow records alone.
Elemental or isotope ratios in media associated with hy-
drologic processes (i.e., water, dissolved gases, suspended
sediments, and dissolved ions) are used to track the contribu-
tions of specific water sources (e.g., groundwater and runoff)
to rivers or other surface waters (Cook and Solomon, 1995;
Hall et al., 2016; Gabor et al., 2017). Tracers are useful be-
cause they provide information that is otherwise impossible
to disentangle from direct measurements of streamflow.
Stable water isotopes (O and H) have been used to ex-
tract hydrologic process information (Jasechko et al., 2014;
Evaristo et al., 2015) and diagnose process limitations in
other modeling contexts (Nusbaumer et al., 2017; Putman
etal., 2019). Water comprises three commonly measured sta-
ble isotopologues: light-atom-bearing ' H®O (the most abun-
dant) as well as heavy -oxygen-bearing ( H180) and heavy-
hydrogen-bearing ('H?H!60) isotopologues. Measurements
of stable water isotopes use the ratio of the heavy to light
isotopologue for each atom: R='30/190 or ?H/'H ex-
pressed in delta notation (8'80 and 8%H), where § = 1000 -

(M) Samples with higher ratios may be de-

scribed as ! “enriched” with respect to an isotope relative to a
reference, whereas those with lower ratios may be described
as “depleted” with respect to an isotope and relative to a ref-
erence.

The utility of any tracer comes from its spatial and tem-
poral variability. In the case of water isotopes as tracers,
variability arises from isotopic fractionation, a physically
governed sorting of heavy-atom-bearing water molecules

H!80 and 'H?H'°0) from those bearing only light atoms

%60) that occurs during phase changes (i.e., evaporation,
condensatlon sublimation, deposition; Bowen et al., 2019).
Spatial and temporal patterns of §'0 and 52H are very simi-
lar, as evidenced by the strong correlations between 880 and
82H in precipitation (Craig, 1961; Putman et al., 2019) and
in other waters, including those in the ground, surface, and
soil (Evaristo et al., 2015; Tulley-Cordova et al., 2021).

Linear relationships between §'30 and §?H in precipita-
tion and in waters derived from precipitation (e.g., ground,
river, lake, and soil) are the basis for the ubiquitous water
line (WL) framework, in which the best fit lines of the form
82H = B8'80+1 are calculated for different water types (e.g.,
meteoric water line, MWL; ground water line, GWL; and
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surface water line, SWL) and are defined either for specific
points (local, e.g., local meteoric water line LMWL) or for
regional or global datasets (e.g., global meteoric water line,
GMWL) comprising multiple points. Slopes and intercepts
of these lines have useful physical interpretations (Putman
et al., 2019), particularly as they relate to the global average
conditions. Global average conditions are represented by the
GMWL, which has a slope of 8 and intercept of 10. Differ-
ences between §'80 and §%H, relative to an expected, global
average relationship are calculated using a secondary param-
eter called deuterium excess (defined as d = §2H — 8- §180).
Deuterium excess (d) is used to detect evaporation of precip-
itation and surface waters, evaporation under a vapor pres-
sure gradient, or nonequilibrium condensation processes, like
snow formation in mixed-phase clouds or isotopic fractiona-
tion during the melting of snow (Ala-aho et al., 2017; Putman
et al., 2019; Bowen et al., 2018; Sprenger et al., 2024).

Because hydrologic processes including groundwater
recharge, discharge, and precipitation runoff do not cause
isotopic fractionation, we can use water fluxes from hydro-
logic models with estimates of the isotope ratios of those
fluxes on the appropriate timescales to produce river water
isotope estimates. This works well because the groundwater
and runoff fluxes to summertime streamflow in the western
US have distinct stable isotope ratios due to seasonal and spa-
tial controls on precipitation isotope ratios. The signatures of
groundwater inflow and snowmelt tend to have the lowest
isotope ratios of the water sources in the hydrologic system
and tend to be relatively temporally invariant (Bowen, 2008;
Feng et al., 2009; Jasechko et al., 2014; Solder and Beisner,
2020; Tulley-Cordova et al., 2021). In contrast, summer pre-
cipitation, which contributes runoff to streams, tends to have
higher isotope ratios than groundwater (Jasechko et al., 2014;
Tulley-Cordova et al., 2021).

Anthropogenic modifiers of streamflow that are not in-
cluded explicitly in the NWM (i.e., irrigation and reservoirs)
may be expected to alter the isotopic signature of streamflow
downstream of the headwaters. Agricultural irrigation can
contribute both runoff to streams and recharge groundwa-
ter (Essaid and Caldwell, 2017; Gochis et al., 2018). Evapo-
ration occurring during conveyance and application increases
the isotope ratios in water recharged by irrigation and de-
creases d (Craig and Gordon, 1965; Yang et al., 2019). This
isotopic signature is passed along to the plants (Oerter et al.,
2017). Thus, irrigation-sourced recharge (runoff or ground)
exhibits an evaporated isotopic signature that is distinct from
naturally recharged groundwater or precipitation runoff. The
effects of evaporation on the isotope ratios of the return flows
are expected to be greater in arid areas with higher summer
temperatures and higher vapor pressure deficits. Although
lakes can be isotopically enriched with lower d (isotopically
evapoconcentrated) relative to other surface waters (Bowen
etal., 2018), we do not expect similar signals of evaporation-
driven isotopic enrichment from reservoirs. Relative to natu-
ral lakes across the US, evaporation rates from western lakes
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are low relative to inflow (Brooks et al., 2014). Instead, reser-
voirs may alter the isotope ratios of streamflow through re-
tention and later discharge of spring snowmelt. Thus, reser-
voir outflow may have lower isotope ratios and higher d than
the upstream rivers during the summer months.

In this study, we compared hydrologic-model-informed
estimates of long-term mean streamflow isotope ratios with
stream water isotope observations across the western US.
The model-informed estimate of river water isotope ratios
used an isotope mass balance methodology that combined
the long-term average water fluxes of the NWM and wa-
ter stable isotope datasets. If the NWM constrains all wa-
ter sources affecting streamflow, we expect that the differ-
ences between the isotope mass balance results and isotopic
observations (observation—model differences) will be small
and uniformly positive or negative throughout each basin. If
we observe spatial and/or seasonal variability and structured
patterns in observation—model differences within basins (i.e.,
patterns with elevation, stream order, or aridity), particularly
with respect to the sign of the difference, we may infer that
the NWM is incorrectly partitioning runoff and groundwater
fluxes or is missing important water sources. We hypothesize
that, if we observe spatial variability and structured patterns
in our observation—-model difference data, we will observe
higher isotope ratios and lower d in more arid reaches, re-
flecting the influence of irrigation return flows, which we ex-
pect bear an isotopic signal of evaporation, on streamflow
compared with higher-elevation, humid or seasonally snowy
reaches with minimal anthropogenic influence.

2 Methods

This study analyzes spatial patterns in observation—model
differences to evaluate missing sources of streamflow in the
NWM in the western US. The “model” estimates are pro-
duced using an isotope mass balance approach, where wa-
ter fluxes were supplied by NWM simulations of ground-
water and surface runoff fluxes (National Oceanographic
and Atmospheric Administration, 2022) and isotope ratios
came from gridded groundwater and precipitation stable iso-
tope products (Fig. 1, Sect. 2.3; Bowen, 2022b; Bowen
et al., 2022). These mass balance estimates were compared
to a large collection of stable river water isotope observa-
tions, and both the compiled observations and mass balance
estimates are publicly available (Fig. 1, Sect. 2.4; Reddy
et al., 2023). Differences between observations and mod-
eled data were compared in an error-partitioning framework
(Sect. 2.5), and we tested the hypothesis that spatial variabil-
ity in observation—-model differences contains a signature of
agricultural water use (Sect. 2.6). A groundwater isotope ra-
tio dataset and a well water surface elevation relative to river
surface elevation dataset from Jasechko et al. (2021) were
used as independent lines of evidence supporting our analysis
of observation—mass balance estimate differences (Sect. 2.7).
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2.1 Temporal domain

Our analysis was constrained to summer months (June, July,
and August) between 2000 and 2019. The specific months
chosen reflect those with greatest evapotranspiration, and
thus consumptive water use, and correspond to the season
with the largest number of spatially distributed river water
isotope observations.

2.2 Spatial domain

We selected five basins with two-digit hydrologic unit codes
(HUC2 basins) (U.S. Geological Survey, National Geospa-
tial Technical Operations Center, 2023) in the western US
to compose our study area: the Upper Colorado (14), Lower
Colorado (15), Great Basin (16), Pacific Northwest (17), and
California (18). All basins were characterized by rivers sus-
tained by wintertime snowpack mediated by groundwater in-
filtration and discharge. All basins also included water man-
agement through impoundments and substantial water use
for agriculture. In a simplified Koppen climate classifica-
tion (Rubel and Kottek, 2010), the southern and central por-
tions of the study area were characterized as arid, whereas
much of the northern and mountainous portions of the study
area was classified as warm temperate or seasonally snowy.
The spatial domain and streamflow routing were rep-
resented by a network of flow lines (reaches) and catch-
ments (n = 15787, with one flowline for each catchment)
derived from the National Hydrography Dataset Plus (NHD-
Plus; U.S. Geological Survey, 2019; see also Sect. S1 in the
Supplement of this work for network processing details) and
clipped to the spatial domain of our study. Catchments had a
median size of 51 km? and a mean size of 221 km2, and flow
lines had a median length of 20km? and a mean length of
32 km?. All data used in this analysis were spatially joined to
this network, and we retained attributes provided by NHD-
Plus for analysis, including catchment area, Strahler stream
order, reach length, minimum and maximum catchment el-
evation, and feature code, which denoted the flow line path

type.

2.3 Using isotope mass balance to estimate long-term
mean river isotope ratios

Using estimates of long-term mean groundwater and precipi-
tation isotope ratios (Bowen et al., 2022; Bowen, 2022b), we
applied an isotope mass balance to the NWM groundwater
and surface runoff fluxes to streams (Fig. 1). The operational
hydrologic model is based on the open-source community
hydrologic model WRF-Hydro (Gochis et al., 2020a, b) and
simulates and forecasts major water components (e.g., evap-
otranspiration, snow, soil moisture, groundwater, surface in-
undation, reservoirs, and streamflow) in real time across the
conterminous US (CONUS), Hawaii, Puerto Rico, and the
US Virgin Islands. In the NWM framework, surface and
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Section 2.3.3 Calculating mass-balance-derived long term mean surface water isotope ratios

Section 2.3.2: Gridded precipitation and groundwater isotope data
Text S2: Filling gaps in groundwater isotope ratios
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gridded isotope data (estimates)
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point isotope data (observations)

inputs
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National Water Model data
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Section 2.5: Comparing the isotope mass balance results
with observations
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2000-2021
- Assign to catchment

Figure 1. Diagram showing methods and datasets, as described in Sect. 2.3-2.5. Four data streams were used to formulate the long-term
isotope mass balance estimates of river isotope ratios: gridded precipitation isotope estimates (Bowen, 2022b), gridded groundwater isotope
estimates (Bowen et al., 2022), gridded precipitation data (University of East Anglia Climatic Research Unit et al., 2021), and NWM
data (National Oceanographic and Atmospheric Administration, 2022). Three data categories contributed to the observational river isotope
dataset: USGS (U.S. Geological Survey, 2022), EPA (U.S. Environmental Protection Agency, 2016b, 2020; Brooks, 2024), and literature
datasets accessed from the WaterIsotopes database (Putman and Bowen, 2019).

soil evaporation are wrapped into the evapotranspiration flux
variable, and direct evaporation from rivers and reservoirs
are not considered in the NWM surface water balance. Thus,
we did not apply any additional isotopic fractionation to
the groundwater and surface runoff isotopic fluxes. This ap-
proach produced an estimated long-term mean isotope ratio
for river reaches in the western US. These estimates were
directly comparable to river water isotope observations.

2.3.1 National Water Model data

We accessed lateral surface runoff (NWM variable qSfcLa-
tRunoff, m3s~!) and groundwater (qBucket, m3s~1) fluxes
from the NWM v 2.1 analysis assimilation dataset (National
Oceanographic and Atmospheric Administration, 2022) for
our mass balance estimates (Fig. 1). The NWM runoff

https://doi.org/10.5194/hess-28-2895-2024

term (qSfcLatRunoff) only includes surface runoff and does
not include subsurface runoff. Instead, subsurface runoff is
routed from the bottom of the soil layer to the groundwa-
ter bucket (qBtmVertRunoff). We also accessed streamflow
(streamflow, m3s™!) fluxes as a reach-scale quantity to be
included in the analyses of results. All of the NWM variables
that we used are available at the NHDPlus reach scale at an
hourly time step between 2000 and 2019. We divided these
variables into subsets for the summer months (June, July, and
August) and calculated the mean water fluxes to each reach
for the summer season of each year. The interannual variabil-
ity in the summer fluxes was leveraged as an estimate of the
uncertainty of the long-term mean summer water fluxes.

Hydrol. Earth Syst. Sci., 28, 2895-2918, 2024
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2.3.2 Gridded precipitation and groundwater isotope
data

The precipitation and groundwater stable isotope ratios (82H
and 8'30) that we used to perform the isotope mass balance
came from two publicly available gridded products. Both
represent long-term means or climatologies and provide esti-
mates of uncertainty.

We obtained monthly precipitation isotope ratio clima-
tological predictions and uncertainty estimates (1 standard
deviation) for both H and O from Bowen (2022b). The
monthly US grids were available at 1 km and were produced
with the Online Isotopes in Precipitation Calculator (OIPC)
v3.2 database (Bowen, 2022a) following methods described
in Bowen et al. (2005). Monthly grids have been adjusted
for consistency with annual values (see version notes for
OIPC2.0; Bowen, 2006). In general, isoscape accuracy de-
pends on the spatial and temporal coverage of point datasets
available to produce the isoscape. The Bowen (2022b) prod-
uct is the highest-resolution gridded product available for
CONUS and, in contrast to other global or regional grid-
ded isotope products, is produced using precipitation isotope
ratio data from not only the Global Network of Isotopes in
Precipitation (GNIP) but also the US Network of Isotopes in
Precipitation and a host of other precipitation samples col-
lected and stored in the WaterIsotopes database (Putman and
Bowen, 2019). In our input dataset, the median standard de-
viations of both §’H and §'30 are about 0.12 %o, but they
may be as large as 2 %o—3 %o, depending on the region and
isotope, based on a N-1 jackknife approach to error estima-
tion (Bowen and Revenaugh, 2003).

We calculated the precipitation-weighted long-term mean
summer (June, July, and August) and winter (December, Jan-
uary, and February) seasonal isotope ratio climatologies with
long-term monthly mean precipitation climatologies calcu-
lated from the Climatic Research Unit (CRU) mean monthly
precipitation amounts (Harris et al., 2020; University of East
Anglia Climatic Research Unit et al., 2021) for the period
from 2000 to 2020. The precipitation-weighted mean sea-
sonal climatology error was calculated analytically from the
time series.

The groundwater isoscapes used in this analysis were pro-
duced by Bowen et al. (2022) for seven depth intervals rang-
ing from 1 to 1000 m. The groundwater isoscapes were not
temporally resolved. The authors report errors smaller than
0.71 %o and 1.07 %o in 8'80 and §?H estimates, respectively,
based on a cross-validation approach. The approach was val-
idated using an independent dataset, and it was found that
variance in the modeled groundwater predicts 92 % of the
variance in the validation dataset, with no bias. The authors
suggest that, as it estimates groundwater isoscapes at dif-
ferent depth intervals, the approach results in more accu-
rate estimates than methods for producing bulk groundwater
isoscapes.
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Because this project focuses on groundwater discharge to
streams, we preferentially utilized the 1-10 m depth interval.
However, this layer contained some data gaps where insuffi-
cient well data were present to perform an estimate. Where
available, we filled these data gaps using either other ground-
water depths or mean winter precipitation (December, Jan-
uary, February), as described in Sect. S2. The groundwater
isotope ratio data included estimates of uncertainty, which
were retained for the characterization of uncertainty around
the mass balance isotope ratio estimates.

The gridded precipitation and groundwater isotope
datasets and their uncertainties were assimilated to the NHD-
Plus spatial framework. Because the raster data grid sizes
were larger than the catchment sizes, we employed a distance
minimization approach using the centroid of the catchment
and the centroids of the grid cells.

2.3.3 Calculating mass-balance-derived long-term
mean surface water isotope ratios

To estimate the long-term mean surface water isotope ratio
(Rsw,r) at each reach (r) in the spatial domain (Eq. 1), we
accumulated the groundwater (gw) and surface runoff (ro)
isotope fluxes (i.e., the isotope ratio multiplied by the water
flux, R - F) for all reaches (i) from the headwaters down-
stream to the reach. The isotope ratio for surface runoff (Ry,)
came from the summer mean gridded precipitation isotope
ratios, whereas the isotope ratio for the groundwater flux
(Rgw) came from the gridded groundwater isotope ratios (see
Sect. 2.3.2). The summed isotope fluxes were divided by the
summed surface runoff and groundwater fluxes.

Z;:ORgW,i : Fgw,i + Rro,i : Fro,i
st,r = 7 (1)
Z,’;oFgw,i + Fro,i

Our long-term mean estimates of Rgy, , are subject to un-
certainty from (1) interannual variations in the mean summer
volumetric contributions of groundwater and surface runoff
to streamflow and (2) because the long-term mean estimates
of the groundwater and precipitation isotope ratios are sub-
ject to uncertainty arising from underlying data coverage as
well as interannual variability. To constrain uncertainty in our
long-term mean estimates of Ry, -, we calculated 200 esti-
mates of Ry, per reach by taking 10 random draws from the
isotope ratio distributions (assuming a normal distribution)
for each of the 20 years of record. This approach uses (1) in-
terannual variability in surface runoff and groundwater fluxes
to constrain the variability in the water flux component of the
calculation and (2) uncertainty in the isotope ratio estimates
to constrain the uncertainty in the isotope ratio component of
the calculation. Joint distributions (of either H and O or iso-
topes with water fluxes) were not used because information
about how the isotope ratios might covary was not available
from the gridded isotope datasets and no assumptions were
made about how the isotopes might vary with interannual
variability in climatic conditions. Similarly, no assumptions
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were made that the precipitation and groundwater isotope ra-
tios covaried in time. These 200 estimates were used to calcu-
late a long-term mean estimated isotope ratio for river water
in each reach of the network and to evaluate uncertainty in
our estimates.

2.4 Compilation of river isotope observations

The results of the mass balance calculations were compared
with observations of stable water isotope ratios from rivers
collected between 2000 and 2021, during the growing season
months of June, July, August, and September. We included 2
additional years (2020 and 2021) as well as data from the
month of September beyond the temporal constrains of the
NWM model domain in our set of observations. This de-
cision was made to maximize the number of data and the
number of unique river reaches in the spatial domain that are
available for analysis, and it reflects the assumption that the
long-term mean river isotope ratios calculated from the mass
balance approach will be insensitive to the inclusion or ex-
clusion of a small number of additional years or an additional
growing season month.

We compiled surface water stable isotope (82H and §'30)
measurements from various sources, including the Environ-
mental Protection Agency (EPA), the United States Geo-
logical Survey (USGS) National Water Information Sys-
tem (NWIS; U.S. Geological Survey, 2022), and published
datasets assimilated in the WaterIsotopes database (Putman
and Bowen, 2019). Not all reaches had one or more stable
water isotope observations, and river reaches with multiple
stable water isotope ratio observations were sometimes, but
not always, from the same sampling site within the catch-
ment.

The EPA surface water stable isotope data came from
the National Rivers and Streams Assessment (NRSA; U.S.
Environmental Protection Agency, 2016b, 2020; Brooks,
2024) and the National Lakes Assessment (NLA; U.S. Envi-
ronmental Protection Agency, 2009, 2016a; Brooks, 2024).
These data were collected once or twice per summer on a 5-
year rotating basis as part of routine sampling campaigns.
Over the time period of our analysis, we obtained three
collections of NRSA samples (20082009, 2013-2014, and
2018-2019). Sites were sometimes, but not always, resam-
pled among the campaigns. Sampling was stratified based on
the Strahler stream order and by state, ensuring that all orders
were sampled within each state in the assessments (U.S. En-
vironmental Protection Agency, 2016b, 2020). This means
that higher-order reaches are less frequently sampled than
medium- or low-order reaches.

The USGS surface water stable isotope data for rivers were
downloaded via the NWIS application programming inter-
face (U.S. Geological Survey, 2022), and the literature data
came from published and unpublished sources that are pub-
licly available through the WaterIsotopes database (Putman
and Bowen, 2019). Stable isotope collections are not part
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of routine measurements for the USGS; rather, these values
are collected by specific USGS projects. Thus, stable isotope
data collections from the USGS and literature datasets tended
to be spatially and temporally clustered.

2.5 Comparing the isotope mass balance results with
observations

The relationships of the NWM isotope mass balance (mod-
eled) to the river isotope observations were evaluated using
correlation and simple regression analyses, where the mod-
eled isotope ratio (either 8°H or §'80) values were used to
predict the observed isotope ratios. We evaluated the results
with all unaveraged observations and the mean isotope ratio
at river reaches with multiple observations. A Pearson cor-
relation analysis was performed using the “corr()” function
of Python’s “pandas” package (McKinney, 2010; The pan-
das development team, 2020). Regression analysis was per-
formed using the ordinary least squares (OLS) function in the
Python “statsmodels” package (Seabold and Perktold, 2010).

We calculated the likelihood that an observation and the
model result came from the same distribution, based on the
variance in the model estimate, and the variance associated
with river water isotope observations (Sect. S3) using a two-
tailed ¢ test. We report p values, where p<0.1 indicates that
the isotope mass balance estimate was statistically different
from the observed surface water isotope ratio for the specific
element (H or O).

2.5.1 Calculating observation—model differences

We calculated the observation—model (obs—-mod) estimate
differences in both §'80 and §*H by subtracting the model
estimate from the observation (8'8Ogigr = 880 0ps—88Omod;
8?Hair = 82Hobs — 8*Hmod)- Using both isotope systems, we
established a framework for the interpretation of our results
(Fig. 2) that utilizes movement along or deviation from the
global mean §2H:8'80 ratio of 8 that is used to represent
fractionation that occurs at equilibrium and defines the slope
of the global meteoric water line (GMWL; Craig, 1961).
Observation—-model differences may arise from either
(1) incorrect model source representation (i.e., missing water
sources or incorrect fluxes of established sources) or (2) er-
rors in the isotope ratio datasets used for the isotope mass
balance calculation. Thus, for positive or negative values of
8'80yisr and 82Hgsr that exhibit a 82Hg;fr : 88 Og;f ratio of 8,
we infer either errors in the NWM with respect to the propor-
tions of surface runoff and groundwater contributed or errors
in the gridded isotope ratios (likely groundwater, due to its
disproportionate contributions to streamflow). For positive or
negative § 180diff and 82Hdiff with 82Hdiff ) 180diff ratios dif-
ferent from 8, we infer that the NWM is missing uncharac-
terized water sources with isotope values bearing a signature
of nonequilibrium fractionation. We quantify differences in
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the 82Hgifs : 818 Qyif ratios from 8 using a metric similar to d
called dgifr (Eq. 2).

daite = 8 Haigr — 8 - "8 Ouige )

We can interpret combinations of 8180gisr and dyist together
as well as dgiff independently to infer the uncharacterized
sources responsible for the observation—model difference.
This framework is useful because the ratios of §2H to §!80
of the isotopic inputs to the isotope mass balance tend to be
close to 8 (Bowen, 2022b; Bowen et al., 2022), whereas those
from the observations more often differ from 8 (U.S. En-
vironmental Protection Agency, 2016b, 2020). This means
that all nonzero dgiff values can be used to identify omitted
water sources with nonequilibrium fractionation signals and
can be used to diagnose where these sources may contribute
to streamflow. The conditions of this study, based on the data
and approach, mean that the mass balance approach repre-
sents a null hypothesis that all processes and sources con-
tributing to streamflow carry an isotopic signal of equilib-
rium fractionation (i.e., precipitation, groundwater, and rout-
ing). In other instances, where the modeled approach could
reflect a combination of equilibrium and nonequilibrium pro-
cesses, the interpretation of observation—model differences,
particularly in terms of the dg;st axis, may change.

2.6 Evaluating variability in observation-model
differences

Following the spatial strength of our dataset, which relies
heavily on the EPA NRSA datasets, we focused on evalua-
tion of spatial variability in observation—model differences in
our dataset. We evaluated temporal variability to (1) support
findings from our analysis of spatial variability and (2) deter-
mine whether there may be spatial-temporal covariance that
influences our results.

The spatial structure in the observation—model differences
was evaluated graphically by comparison of § 1804 and dyigr
with catchment mean elevation, Strahler stream order, and
Koppen climate class (Rubel and Kottek, 2010). The former
two variables were retained from the NHDPlus catchment
dataset (U.S. Geological Survey, 2019). The Koppen climate
class was joined to the spatial framework, as described in
Sect. S4.

The spatial structure in the observation—-model differences
was also evaluated statistically with linear mixed-effects
modeling using the basin (HUC2) as a random variable
with the Python statsmodels module and the “mixedlm()”
function (Seabold and Perktold, 2010). Linear mixed-effects
modeling with basin as the random (grouping) variable was
selected for the analysis method because water in streams at
low elevations is likely to be more isotopically similar to wa-
ter in the basin headwaters than a nearby stream in a different
basin with different water source regions. Thus, we assume
the groups are likely to have different mean values reflecting
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Figure 2. Schematic for interpretations of observation—-model dif-
ferences utilizing dual-isotope difference space and assumptions
about the expected relationships between 8180diff and 52Hdiff. The
annotations associated with “NWM?” specify the sort of hydrologic
model error (i.e., water source apportionment) that could produce
the observation—model comparison result if all isotope data supplied
to the isotope mass balance are correct. The annotations associated
with “Data” specify the sort of error in the gridded isotope datasets
that could produce the observation—model result if all NWM water
source contributions are assumed to be correct. The interpretations
of the secondary mode of variability, captured by dgj¢r, depend on
the model producing results that reflect equilibrium relationships
between 5180 and §2H.

their hydrologic and climatic differences. Although we also
expect that the relationship of the response variable dg;g to
the explanatory variables may differ among basins, both our
response and explanatory variables contain substantial scat-
ter as well as small numbers of high-leverage points in each
basin, such that a more nuanced analysis that includes tem-
poral aspects of variability would be likely to produce mis-
leading results.

Using the linear mixed-effects approach, we tested the sta-
tistical relationship between dgigr and the ratio of actual evap-
oration to precipitation (E}T,a ; Sect. S4), catchment mean ele-
vation (Elev), fraction of streamflow estimated to come from
agricultural return flows (Fiy, Sect. S5), and a categorical
variable indicating the influence of large reservoirs (Res, ca-
pacity > 6.1674 x 10%m?>; Sect. S5.2). We performed statis-
tical analysis on all streams not categorized as intermittent,
ditches, or canals.

To assess how the observation-model difference may
change over the growing season, in which the relative frac-
tion of agricultural water in a waterway may increase due to
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low flows and increased water use, we obtained all site—year
combinations in which there were at least three observations
during at least 3 of the 4 months (June—September) of the
growing season. We required 1 of the months be the month
of June. From the June value(s) of 8180gisr and dgir for a
site—year combination, we subtracted the 81804 and dgife
values calculated for other months at the same site and from
the same year. We evaluated the distribution of the aggregate
results as well as the distributions at the HUC2 basin scale
by comparing their means and inter-quantile ranges.

Interannual variability was also assessed (Sect. S6) to en-
sure that patterns in the other modes of variability did not
arise due to either covariability in spatial and temporal pat-
terns of sampling or the timescale difference between our
isotope mass balance estimates (long-term mean) and obser-
vations (instantaneous).

2.7 Evaluation of independent lines of evidence
supporting the signature of agricultural water use
in rivers

Because it is difficult to disentangle the effects of elevation
and aridity from the effects of human water use and manage-
ment due to their spatial covariance, we utilized analyses of
independent datasets to support the results of our statistical
inference. The analyses evaluated relationships between land
use or cover and groundwater isotope ratios and the fraction
of well water levels that are below the nearby river level in
catchments across the western US.

2.7.1 Associating groundwater stable isotope
observations with land use/land cover types

Estimates of the isotopic evapoconcentration of groundwa-
ter associated with different land use and land cover classes
supports our inferences from observation—-model differences.
We made the associations between groundwater isotope ra-
tios and land use classes at a HUC12 scale (U.S. Geologi-
cal Survey, National Geospatial Technical Operations Cen-
ter, 2023).

We considered five land use type categories that
were aggregations of two or more National Land Cover
Database (NLCD; Dewitz and U.S. Geological Survey,
2021) categories. The “desert” category was composed of
the barren land (NLCD code of 31), shrub/scrub (52), and
grasslands/herbaceous (71) land classes. The “forest” cat-
egory was composed of evergreen, deciduous, and mixed
forests (41-43). The “developed” category was composed of
all the developed classes, including open (21-24). The “agri-
culture” category was composed of pasture/hay (81) and cul-
tivated crops (82). The final category, “water and wetlands”
comprised all other land types, including open water (11),
perennial ice/snow (12), woody wetlands (90), and emergent
herbaceous wetlands (95). We assigned the dominant land
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use/land cover category for each HUC12 using data based on
the land use type with the greatest fractional coverage.

We compiled groundwater stable isotope (8'30 and §2H)
measurements from the USGS NWIS (U.S. Geological Sur-
vey, 2022) and from published datasets assimilated in the
WaterIsotopes database (Putman and Bowen, 2019). The
groundwater isotope ratio observations were spatially joined
to the hydrologic units. We did not place temporal or well
depth constraints on the samples used in our analysis. Not
imposing well depth constraints may contribute to scatter as-
sociated with differences in water sources recharging shallow
groundwater compared with deeper confined aquifers.

2.7.2 Evaluation of NWM groundwater discharge with
well level fractions

The Jasechko et al. (2021) dataset compared river surface el-
evations with river-side well water elevations within catch-
ments. The approach produced the fraction of wells in a
catchment whose water surface levels were lower than the
water surface level of the nearby river. In catchments where
most well water levels are below the river water level (scores
close to 1), we expect the river to lose water to shallow
groundwater recharge under the right geologic conditions
(e.g., permeability). In contrast, in catchments where most
well water levels are above the river water level (scores close
to 0), we expect groundwater discharge to streams.

We predicted the long-term mean summer NWM
“gBucket” magnitude using the Jasechko et al. (2021) dataset
and a simple linear regression. This approach tests the hy-
pothesis that, if NWM accurately represents groundwater
discharge to streams, the relationship of well water eleva-
tions to river surface elevation would predict the summer
mean NWM groundwater discharge flux (assuming a linear
relationship between the two quantities), with some scatter
to account for subsurface permeability and spatial variabil-
ity in groundwater discharge rates. We then evaluated the ef-
fect of agricultural irrigation in a catchment on the relation-
ship between the NWM qBucket (binned by to the 0-20th,
20-40th, 40-60th, 60—80th, and 80-100th percentiles) and
the Jasechko et al. (2021) dataset. The evaluation was split
into reaches influenced by irrigation sourced from ground-
water and irrigation sourced from surface water as well as
reaches uninfluenced by irrigation water. Irrigation contri-
butions and irrigation water sources were determined using
the methods for estimating irrigation water use described in
Sect. S5.1 and used elsewhere in our analysis.

3 Results and discussion

3.1 Evaluation of the isotope mass balance approach
for estimating surface water isotope ratios

Our analysis evaluated 4503 stream stable isotope obser-
vations in 877 unique river reaches across the western US
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relative to NWM-driven isotope-mass-balance-derived esti-
mates (hereafter referred to as “modeled”) of the river iso-
tope ratios. Of these, 448 reaches had more than one ob-
servation (often all at the same sampling site in the catch-
ment, although sometimes at multiple sites; Fig. S1) and
up to 571 observations in a catchment (Figs. S1, S2). On
average, across all data, the observations were significantly
greater than the modeled values, by 0.537 £0.033 %0 and
4.81 40.222 %o for §'80 and 8°H, respectively (Fig. 3). For
8 180, we observed a standard deviation of 3.16 %o for the ob-
served data and 2.96 %o for the modeled data (for all data av-
eraged by catchment). For §2H, we observed a sample stan-
dard deviation of 25.4 %o for the observed data and 24.4 %o
for the modeled data (for all data averaged by catchment;
Fig. 3).

We calculated surface water lines (SWLs) for both the
modeled and observed results using all available data
(Fig. 3). The observations yielded an SWL with a slope of
7.570 (£0.023) and intercept of 1.2301 (£0.320), which was
significantly different from the GMWL slope of 8 and inter-
cept of 10 but was within the range of local MWL (LMWL)
slopes for western North America (6.5-8) (Putman et al.,
2019), as reported in Table 1. The model results yielded a
SWL with a slope of 8.12 (£0.010) and an intercept of 8.06
(£0.14), which was more similar to, although still statisti-
cally different from, the GMWL and differed from LMWLs
for the region (Table 1). Comparison of the observation and
modeled data distributions and water lines reveals evidence
of evaporation of surface waters in the observations but not
in the isotope mass balance results (Fig. 3). This is because
the primary source of streamflow in the modeling frame-
work, high-elevation groundwater discharge, does not bear
an evapoconcentrated isotopic signature in our input dataset,
and lower-elevation water sources (groundwater or surface
runoff) that could bear an isotopic signature of evaporation,
depending on the region, are considered by the model to
be minor contributors to streamflow over the timescale in-
tegrated by our study.

Despite the differences in the data distributions, the mod-
eled isotope ratios and observed isotope ratios were well cor-
related (Table 2, Figs. S4-S7), with correlation coefficients
between 0.761 and 0.866, depending on the isotopologue and
whether individual observations or catchment means were
considered. These correlations translated to statistically sig-
nificant simple linear regressions where the modeled isotope
ratios were used to explain the observed isotope ratios (Ta-
ble 2). Depending on the isotopologue and whether individ-
ual observations or means were considered, the models ex-
plained between ~ 58 % and 75 % of the variance in the ob-
servations. The model explained more variance for §2H than
for 8'80 and explained more variance for catchment mean
values relative to individual observations. For all regressions,
the slopes ranged from 0.879 to 0.937, with catchment mean
slopes tending to be lower than slopes calculated from all
observations. Intercepts for all regressions were close to, but
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Figure 3. The distribution of the catchment mean observation (obs,
blue) and isotope mass balance estimates (mod, gray) (n = 448)
with the global meteoric water line (dotted) and the two datasets’
surface water lines (solid lines). See Table 1 for water line statistics.
Data distributions, including the mean and 2 standard deviations of
each data type (dotted lines), are shown in the plot margins. Ob-
servations plotting below the GMWL indicate evaporation, while
those plotting above the GMWL may indicate mixed-phase cloud
processes or other nonequilibrium condensation processes (Putman
etal., 2019).

less than, zero, with lower intercepts associated with regres-
sions calculated from catchment mean values, relative to re-
gressions calculated from all observations. The statistically
significant slopes of less than 1 and statistically significant
intercepts arise in all observation—-model comparison regres-
sions because the observations tended to exhibit higher iso-
tope ratios than the model estimated at the lower end of the
isotopic distribution (Figs. S4-S7). Many of the catchments
characterized by this pattern were in arid regions. The greater
variance explained by the regressions using catchment means
relative to the individual observations suggests that using
temporally varying inputs rather than calculating a long-term
mean river isotope ratio may further improve observation—
model comparisons.

3.2 Observation-model differences

Of 4503 observations, 1763 §'30 and 3306 §>H observations
were significantly different from the long-term mean isotope
mass balance NWM estimate at p<0.1. Of these, 1756 ob-
servations indicated significant differences for both §'80 and
82H. This corresponded to a median absolute difference of
2.2%o for 8'80 and 9.7 %o for > H. For both, a larger propor-
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Table 1. Surface water line slopes and intercepts (82H =580+1) compared to the global meteoric water line and published precipitation
water line ranges (LMWLs) from different climate classifications in North America (data from Putman et al., 2019). Because all regressions
are highly significant, no p values are shown. The slopes (8) and intercepts (I) with their standard error (SE) as well as the variance explained
and regional slope minimum (min), maximum (max), and average (avg) values are presented.

Surface water lines B (£SE) I (£SE) R?
Model derived 8.12 (£0.010) 8.06 (£0.14) 993 %
Observations 7.57 (£0.02) 1.23 (£0.32) 96.1%

Meteoric water lines

Bmin, Pmax (ﬂavg)

Iinins Imax (Iavg)

Global meteoric water line
Arid and temperate dry summer LMWLs
Temperate humid and continental LMWLs

6.56, 8.02 (7.57)
7.34,7.64 (7.49)

8 10
—10.5, 9.85 (3.02)
—3.82,3.31 (0.62)

Table 2. Correlation and regression results for observation—-model comparisons. Regressions were performed on all data (n = 4503) as well
as on the mean values in a subset of the reaches with more than one observation (n = 448). The number of observations (1), the correlation
coefficient, slopes (8) and intercepts (I) with their standard error (SE), and the variance explained (R2) are presented.

Statistical model n  Correlation coefficient B (£SE) 1 (£SE) R?

818045 ~ 81800q +1 4503 0.761 0.917 (£0.012)*  —0.645 (£0.168)* 57.9%
8'800bs,ave ~ 88 0mod,avg +1 448 0.820 0.879 (£0.029)*  —0.891 (£0.414)* 67.3%
82Hgps ~ 8%Hpmoq +1 4503 0.819 0.937 (£0.010)* —1.90 (£1.06)* 67.1%
82Hobs,ave ~ 8 Hmod,ave +1 448 0.866 0.905 (£0.025)* —3.10 (£2.66) 75.1%
82Hgir ~ 8'180gifr + 1 4503 0.959 6.54 (£0.029)* 1.30 (£0.065)*  91.9%
82 Haye diff ~ 88 Oaye,diff +1 448 0.958 6.70 (£0.094)* 1.46 (£0.190)*  91.9%

An asterisk (*) indicates that the coefficient is significant at p<0.1.

tion of the distribution indicated positive significant differ-
ences, and those differences tended to be greater in absolute
magnitude than the negative significant differences.

We used an observation—model difference interpretation
framework (Fig. 2) to gain process information that can be
used to improve our understanding of terrestrial water bal-
ance and process inclusion in the NWM. The observation—
model differences in 8'80 and §2H were correlated (Fig. 4)
and yielded similar results for analyses performed with all
data compared with means of reaches with multiple observa-
tions (Table 2). Simple linear regressions, where variance in
81804t explained variance in 8%Hifr, with all data and catch-
ment mean data both explained about 92 % of the variance,
were significant, and exhibited slopes of less than 8§ (Table 2),
suggesting the presence of errors arising from NWM omis-
sion of water sources that bear signatures of nonequilibrium
processes.

In our dataset, model estimates do not deviate much from
the GMWL, and they deviate less than the observations
(Fig. 3). The model estimates reflect an assumption that
water sources contributing to streamflow were subject only
to equilibrium fractionation, whereas observations indicate
contributions of waters influenced by nonequilibrium pro-
cesses. This information is quantified using dgirr (Fig. 2).
Positive values of 8§80y tended to be associated with neg-
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ative values of dgifr (Fig. S8). The shape of the relationship
between the two quantities is nonlinear, with a stronger re-
lationship between BISOdiff and dgiff among data from arid
reaches compared with humid reaches.

The relationship between 8180gis and dgigr as well as the
results of our regression (Table 2) and surface water line anal-
yses (Table 1) indicate that the modeling approach for esti-
mating long-term isotope ratios of rivers returns results that
are similar to (but on average lower and exhibit less vari-
ability than) observations. The strongest signal in our data
is that of evaporation, evidenced by combinations of posi-
tive 8'80gisr and negative dgifr in arid regions. We also ob-
serve evidence of nonequilibrium condensation processes in
reaches characterized by negative & lSOdif—f and positive dift.

We suggest that patterns in & 1804 and dy;ir contain useful
model diagnostic information that can be useful for improv-
ing the NWM and our understanding of the terrestrial wa-
ter balance. However, the observational dataset is composed
of a nonuniform compilation that contains spatial, seasonal,
and interannual modes of variability. Due to the underlying
sample collection approaches, the strength of our dataset is
evaluating spatial variability, so we focus our analysis on
that mode to gain information about missing water sources
that may influence the model. We support our findings us-
ing the temporal evolution of observation—model differences
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Figure 4. The relationship of observation—isotope mass balance estimation differences for 8180 and §2H. Interpretations of the scatterplot
follow the framework indicated in Fig. 2. The catchment mean value is plotted, and only sites with at least two observations are shown
(n = 448). The equilibrium line with a slope of 8 is plotted for context (dotted line), and data are color-coded by their site’s ratio of actual
evaporation to precipitation. Data distributions are shown for both (Slgodiff and 62Hdiff in the margins, while the mean differences are
indicated as a solid line. No difference (0) is marked with a dotted line for reference.

through the growing season. Based on an analysis of the in-
terannual variability (Sect. S6) we suggest that the spatiotem-
poral structure of our data is sufficiently robust and evenly
distributed with respect to interannual variability to support
the analysis. Additional sources of variability are discussed
in Sect. S7.

3.3 Spatial distribution of observation-model
differences

If the NWM fully constrained all relevant water sources, we
expect to observe similar values of § 180diff and dg;fr through-
out each basin, irrespective of the location of the observation
in the basin. This is because the majority of water discharged
to streams in these basins comes from higher-elevation wa-
ter source areas, and (based on the assumptions of the NWM
framework) little addition or modification of river waters is
expected downstream of headwater catchments. Thus, we
expect that the observation—-model differences calculated in
headwater areas would propagate to lower-elevation areas in
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the absence of additions from unconstrained water sources
and/or river water modifications from unconstrained pro-
cesses.

Instead, we observed spatial variability (Figs. 5, S9),
where smaller-magnitude 8180diff values occurred in
the highest-elevation, lowest-stream-order, and least-arid
reaches, whereas larger-magnitude, often positive & 1804
values occurred in lower-elevation, arid or intermittent-flow
reaches (Fig. S10). dgiff tended to exhibit higher values
in higher-elevation, lower-stream-order reaches, and lower
values in lower-elevation, more-arid, higher-stream-order
reaches (Fig. 6). We observed a greater range in the abso-
lute magnitudes of 8180gisr and dgig in higher-order, lower-
elevation reaches (Figs. 6, S10). Notably, the pattern was
similar across basins, suggesting the importance of within-
basin processes in determining 8180diff and dgifr, as opposed
to absolute relationships of 8180gisr and dgigr to elevation,
stream order, or climate classification.

https://doi.org/10.5194/hess-28-2895-2024
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The spatial pattern in dgir (Fig. 5) was similar to the pat-
tern observed for the KGE and other metric evaluations of the
NWM (Towler et al., 2023). Areas with negative dgiff tended
to correspond to areas with poor NWM performance (Towler
et al., 2023). However, the isotopic evaluation of NWM and
the Towler et al. (2023) datasets could not be directly com-
pared due to there being only a small number of reaches with
both isotope observations and daily discharge measurements.

The spatial structure of our results was statistically well
explained by the ratio of actual evaporation to precipitation
(%) in a linear mixed-effects model with basin as the group-
ing variable (Table 3). Variability among basins explained
16.2 % of the variance in dgjsf, while the fixed effect of arid-
ity explained 13.9 % of the variability in the dataset. The
regression slope associated with the fixed effects of aridity
was negative (—7.87£0.78) and significant (p<0.01), in-
dicating that sites with higher aridity indices tended to ex-
hibit a more negative dgifr. This regression was stronger than
a linear mixed-effects model with elevation predicting dgir,
where the fixed effects of elevation explained 4.7 % of the
variability in dgisr.

Analysis of the spatial variability in our results sug-
gests that (1) higher-elevation, lower-stream-order, peren-
nial, warm temperate or seasonally snowy reaches had small
SISOdiff and positive dgiff values and (2) lower-elevation,
higher-stream-order, arid and sometimes intermittent stream
reaches had larger and more positive 8180y values and
more negative dgifr values. The first point suggests errors as-
sociated with the challenges of providing input values at ap-
propriate temporal resolutions, including representing direct
snowmelt contributions to streamflow (Sprenger et al., 2024),
whereas the second point suggests that the model is missing
critical evapoconcentrated water sources in more arid, lower-
elevation areas of each basin.

3.3.1 Observation—-model differences in headwater
reaches reflect groundwater isotope ratio
estimates

We observe 880y and dgi values that are statistically dif-
ferent from zero in higher-elevation, low-stream-order, low-
aridity, temperate or seasonally snowy reaches in our dataset
(Figs. 6, S10). These differences tend to be smaller than the
full dataset mean 880y and dgigr. In most of these reaches,
we also observe positive dgifr values (Figs. 5, 6).

The presence of both negative and positive values of
8180y;¢ likely reflect interannual variability in the isotope ra-
tios of actual groundwater and snowmelt discharged to rivers
in high-elevation headwater areas. Although groundwater’s
contribution to streams is conceptualized to be constant in
magnitude and isotope ratio in this study, the isotope ratios
of both groundwater and snowmelt fluxes vary spatially and
interannually. The groundwater flux magnitudes vary inter-
annually based on variations in snowpack magnitudes, an-
tecedent hydrologic conditions (Brooks et al., 2021; Wolf

https://doi.org/10.5194/hess-28-2895-2024
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Figure 5. The spatial distribution of mean catchment dgig
(82Hdiff —-8- 6180diﬁ) in reaches with more than one observation
(n = 448). Reservoirs are marked by yellow stars, with the star
size proportional to the reservoir capacity. Redder symbols corre-
spond to waters with stronger evaporation signals than expected
based on the model estimate. Map data are from © OpenStreetMap
contributors (2023), distributed under the Open Data Commons
Open Database License (ODbL) v1.0, and accessed through Stamen
Open Source Tools (https://stamen.com/open-source/, last access:
2 August 2023). HUC2 basins come from the Watershed Bound-
ary Dataset (U.S. Geological Survey, National Geospatial Technical
Operations Center, 2023), and rivers are modified from the NHD-
Plus streamline network (U.S. Geological Survey, 2019).

et al., 2023), and hydrogeologic (Gentile et al., 2023) con-
trols, including hydrologic residence times. Snowpack iso-
tope ratios vary in response to climate patterns and local con-
ditions (Anderson et al., 2016) and the imprint of snowmelt
on river isotope ratios depends on the melt timing and con-
tributing elevations (Sprenger et al., 2024). The observed
variability in 8180diff does not exhibit a uniform tendency
towards positive or negative values. This suggests that the
mean groundwater isotope ratios used in this study are rea-
sonably representative of the long-term mean estimates of
the isotope ratios of water contributed at high-elevation water
source areas by groundwater and snowmelt fluxes, although
improvements may be made by using a temporally varying
approach, where estimates of groundwater and snowmelt iso-
tope ratios vary with month and year. However, the system-
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Figure 6. Relationship of elevation, Strahler stream order, Koppen climate classification (Rubel and Kottek, 2010), and stream persistence
with dgj¢r in each basin. We observe higher dgjfr in perennial, lower-order streams at middle and higher elevations in each basin. Lower dgjf
is associated with higher-order streams at lower elevations in each basin. This effect was greater in catchments classified as arid or seasonally
snowy compared with those classified as warm temperate. This pattern was generally true in each basin, irrespective of the absolute elevation
or stream order, suggesting the importance of accumulated effects within a basin on djgt.

atic positive dgir result cannot be explained by the timescale
of the isotope input.

Higher-d streamflow relative to weighted-mean precipita-
tion values have been documented in other studies (Nicko-
las et al., 2017). This may be because higher d is associated
with lower precipitation §'80 that falls during the cold sea-
son in midlatitude regions, particularly in areas near open
water (Putman et al., 2019; Corcoran et al., 2019; Aemiseg-
ger and Sjolte, 2018). Secondarily, high d in rivers relative
to precipitation or groundwater may be attributed to frac-
tionation occurring during melt. The snowmelt process has
been demonstrated to begin with the preferential melt of wa-
ter molecules bearing lighter isotopologues and to exhibit
higher d earlier in the melt season (Ala-aho et al., 2017; Be-
ria et al., 2018; Carroll et al., 2022). Further, a recent study
suggested that this signal may be used to identify the eleva-
tion of snowmelt contributing to streamflow during the melt
season (Sprenger et al., 2024). The higher d of the snow and
initial meltwater may be passed along to the rivers via di-
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rect surface runoff to streams or through shallow groundwa-
ter recharge and rapid discharge to streams (see the relatively
higher upper bound on d values for forested land use types
in Fig. 7).

3.3.2 Isotopic signals of evaporation at low elevations
suggest the contribution of irrigation return flows
to streamflow

Greater spatiotemporal variability in both §'8Og;¢r and dy;fr in
lower-elevation, higher-stream-order, arid reaches suggests
the importance of various spatially and temporally hetero-
geneous processes and water sources that may alter stream-
flow isotope ratios relative to upstream values. Positive val-
ues of 8180y and negative values of dgjsf in more arid re-
gions of each basin suggest that evaporated waters comprise
a nontrivial fraction of streamflow in these areas (Figs. 5, 6,
S9, S10), especially in the later part of the growing season
(Fig. 9) when streams depend more heavily on groundwa-
ter fluxes. We observed isotopic evidence of contributions of
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Figure 7. Distributions of groundwater d observations grouped by their NLCD land type (Dewitz and U.S. Geological Survey, 2021). The
data are displayed as letter-value plots (Heike Hofmann and Kafadar, 2017), where the central line is the data median, the innermost box
contains 50 % of the data, and the remaining boxes each contain 50 % of the remaining data (and thus a diminishing proportion of the
total data, i.e., 25 %, 12.5 %, 6.25 %, etc). The black diamonds represent outliers. The plot contains between 85 % and 95 % of the data
available for each land type and, thus, reasonably represents the distribution of d associated with groundwater from each land use type, even
though samples with very low d are not shown. The desert land class includes barren land (often playa or dried lake bed), shrub/scrub, and
grasslands/herbaceous vegetation. The agricultural land class includes pasture/hay and cultivated crops. The developed land class includes
developed land of any intensity. Forest includes evergreen, deciduous, and mixed forest. The wetlands/open-water land class category includes

any type of wetland as well as open water. The distribution of our 4303 river samples is also shown for context.

evaporated waters to rivers in all basins (Fig. 6), although this
was most apparent in Lower Colorado River basin, lower-
elevation regions of the Upper Colorado River basin, Califor-
nia’s Central Valley, near Great Salt Lake in the Great Basin,
and throughout the Snake River Plain (Figs. 5, S9).

The isotope ratios and d values that we observe in low-
elevation, high-stream-order, arid reaches are similar to those
that we would expect to observe in highly evaporative con-
texts, like within lakes (Bowen et al., 2018), intermittent-flow
rivers, or downstream of wetlands. However, the majority of
rivers in our study are perennial, and most are not character-
ized by substantial wetlands. The evapoconcentration in our
dataset is unlikely to arise from river or reservoir evaporation,
as both evaporation of reservoirs and evaporation to inflow
ratios in the region tend to be low, especially for deep arti-
ficial reservoirs (Brooks et al., 2014; Friedrich et al., 2018).
Instead, isotopic evidence of evapoconcentration occurs in
waterways likely to be affected by anthropogenic hydrologic
alteration (Fergus et al., 2021) and characterized by larger
fractions of “young water” (Jasechko et al., 2014; Burt et al.,
2023; Xia et al., 2023).

We tested the hypothesis that the spatial pattern of iso-
topically inferred evaporation could arise from contributions
of irrigation return flows to streams and reservoir releases.
Within each basin, on average, dgiff was most negative, in-
dicating isotopic evidence of evaporation, at sites with the
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highest proportion of total inflows attributed to agricultural
return flows, and it was highest at sites with no apparent con-
tributions of agricultural return flows (Fig. 8). Reservoir in-
fluence was associated with low dgiff more often in regions
where dams are used for water management and water sup-
ply (e.g., Upper Colorado, Lower Colorado, Great Basin, and
California) and was associated with high dgifr in the Pacific
Northwest, where dams are more often used for hydropower.
Intermittent streams and canals in arid regions were some-
times associated with low dgifr as well, even when no water
was contributed by agricultural irrigation.

We demonstrated the relationships of agricultural and
reservoir influence on dgifr statistically in a linear mixed-
effects model (Table 3). The fraction of streamflow esti-
mated to come from agricultural irrigation return flows and a
categorical variable delineating reservoir influence together
explained 8.0% of the variance in dgi, with the whole
model (including random group effects) explaining 14.3 %
of the variance in the dataset. Both explanatory variables
were significant (p<0.01) and, as expected, exhibited neg-
ative slopes, indicating that greater agriculture and reservoir
influences tended to produce lower dgifr values, suggestive
of evaporative effects. When we included the ratio of ac-
tual evaporation to precipitation with these explanatory vari-
ables, all three are significant (p<0.01) and explain 15.2 %
of the variance through fixed effects as well as 23.0 % of the
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variance overall (fixed and random effects). Among the lin-
ear mixed-effects models tested, it exhibited the highest log-
likelihood value, explained the greatest amount of variance
using fixed effects, and reduced the amount of variance at-
tributed to random within-basin effects.

While this statistical model performance is not substan-
tially better at explaining variance in dgifr than the model
that uses aridity alone, the findings do suggest that both agri-
cultural activity and reservoirs influence the isotope ratios
of streamflows across the western US. The low variance ex-
plained by these models is expected, due to the difficulty in-
volved with estimating the true long-term mean agricultural
return flux with the spatiotemporal resolution of the avail-
able data, the confounding influences of season and year on
the response variable, the potential for isotopically hetero-
geneous reservoir effects, the covariance of both irrigation
return flows and the presence of reservoirs with aridity and
elevation, and the spatially variable effect of irrigation on
streamflows (Ketchum et al., 2023). The statistical linkage
between irrigation water use and the isotopic response would
likely be improved by taking a temporally variable approach

Hydrol. Earth Syst. Sci., 28, 2895-2918, 2024

to (1) estimating river isotope ratios and (2) the contribution
of irrigation water in the river., which may be doable with im-
provement to both precipitation isotope datasets and higher-
spatiotemporal-resolution irrigation water use datasets (e.g.,
Haynes et al., 2023).

3.4 Further evidence supporting irrigation
contributions to streamflow

We have statistically quantified isotopic evidence for irri-
gation contributions to streamflow. However, the statistical
model performance is not substantially better at explaining
variance in dgiff than the model that uses aridity alone. To
further investigate our findings, we include analyses of addi-
tional lines of evidence. We evaluate signals embedded in
seasonal patterns in our dataset (as well as those of other
studies), spatial variability in groundwater isotope ratios, and
evaluation of the NWM with a well level relative to river level
dataset.
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Table 3. Results of linear mixed-effects models with 764 observations and 5 groups. The minimum and maximum group sizes were 48
and 387, respectively. Results from regressions with the elevation (Elev), evapotranspiration divided by precipitation (ET/ P), intercept (1),
fraction of river water estimated from irrigation (Fj;), and Boolean variable indicating reservoir influence (Res) are shown. The models
do not include any samples from reaches characterized as an intermittent stream or canal or where the NWM indicates that the maximum
streamflow is 0m> s~!. Random effects apply only to the intercepts. An asterisk indicates that a regression coefficient (8 for slope and / for
intercept) is statistically significant at p<0.01. The conditional R (Cond. R?) value, which gives the total model variance explained, is
reported alongside the fixed R? (Fixed R2), which gives the variance explained by fixed effects (i.e., explanatory variables), and the log
likelihood, which can be used to evaluate the relative performance of different models.

Statistical model B (£SE) I (£SE) HUC?2 (group) Cond. R?  Fixed R? Log likelihood

dgiff ~ Elev +1 Elev: 0.001 (0.00)* —1.93 (1.01) 4.33 20.9 % 4.4 % —2254

dgifr ~ % +1 %: —7.85 (0.77)* 4.86 (1.08)* 4.37 30.2 % 13.9% —2209

dgiff ~ Fir +Res +1 Fir: —3.49 (0.48)* 0.95 (0.59) 1.43 143 % 8.0% —2224
Res: -1.75 (0.45)*

dgifr ~ % + Fipr +1 %: —6.50 (0.88)* 4.39 (0.83)* 1.941 22.8% 14.8 % —2204
Fyp: —1.60 (0.54)*

dgifr ~ % + Fir +Res+1 %: —6.08 (0.88)* 4.32 (0.82)* 1.861 23.0% 15.2% —2200

Fip: —1.67 (0.54)
Res: —1.22 (0.44)*

3.4.1 Seasonal patterns in observation-model
differences

There are systematic patterns in 8180gisr and dgir when ex-
amined across the growing season that support our spatial
assessment of the contributions of irrigation to streamflow.
For example, 8180gis tends to be greater during the latter
months of the growing season relative to the mean 8180diff
value for the month of June for that site and year (Fig. 9a)
in most basins and months. The pattern is especially evident
in the Great Basin and California. Likewise, dgi¢f is lower in
July, August, and September, relative to June (Fig. 9b), in
the Great Basin and California. The contrast between basins
with both increased § lSOdif—f and decreased dgifr (Great Basin
and California) and those with only increased 81804is and
little change in dgif (Upper and Lower Colorado and Pa-
cific Northwest) suggests that two different mechanisms may
drive isotopic change during the growing season.

In California and the Great Basin, which are characterized
by 8180gis increases and dgpr decreases over the growing
season relative to June, we suggest increased contributions
of evaporated waters to rivers later in the growing season. In
California, this may reflect the water use and irrigation return
flows contributing to streamflow in the Central Valley.

In the Upper and Lower Colorado and Pacific North-
west, where we observe small 8§80 increases and lit-
tle dgirf change relative to June, we suggest sustained de-
pendence on groundwater discharge from high elevations to
streamflow during the growing season (Miller et al., 2016;
McGill et al., 2021; Windler et al., 2021). In downstream sec-
tions of the Upper Colorado and the Lower Colorado, where
rivers are characterized by discharges from large reservoirs,

https://doi.org/10.5194/hess-28-2895-2024

the seasonal invariance may reflect that the primary “water
source” regions for these reaches are reservoirs, which retain
snowmelt from early in the season and discharge it later in
the season.

3.4.2 Literature and other datasets

Numerous prior studies have investigated the influence of ir-
rigation on streamflow. Estimates suggest that, depending on
the irrigation type, as much as 50 % of applied water may
recharge groundwater and/or arrive at surface waters through
shallow groundwater infiltration and subsequent discharge to
streams (Grafton et al., 2018). Likewise, irrigation has been
demonstrated to increase streamflows during low-flow peri-
ods (Fillo et al., 2021; Essaid and Caldwell, 2017) if the ap-
plied water comes from surface water diversions.

Local contributions of groundwater to streams from
irrigation-based recharge are supported by the d values of
groundwater in agricultural regions. Groundwater from re-
gions influenced by agricultural irrigation exhibited lower
mean d relative to deserts, including dried terminal lake and
playa areas; developed areas, which may include turf grass
irrigation; forested regions; wetlands or open waters; and sur-
face waters (Fig. 7). Based on the isotope ratios of ground-
water in irrigated areas and prior isotopic inference (Windler
et al., 2021), we hypothesize that inclusion of irrigation-
recharged groundwater discharge as a source of water to
streams in the NWM would decrease the difference between
modeled and observed isotope ratios in our dataset.

The isotopic inference that irrigation return flows are an
important missing process in the NWM is supported by an
independent statistical comparison of the NWM groundwa-

Hydrol. Earth Syst. Sci., 28, 2895-2918, 2024
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Figure 9. Evaluation of seasonal variability in observation—-model
comparisons. Data include all reaches and years with collections
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summer season. (a) The distribution (represented by box plots) of
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from June dgjgr. The box plots show the median (line), the 25th and
75th percentiles (the box), points that lie within 1.5 inter-quantile
ranges (IQRs) of the lower and upper quartile (the extent of the
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ter discharge with the Jasechko et al. (2021) dataset and the
agricultural water use data. The Jasechko et al. (2021) data
are the fraction of well water levels that lie below the prox-
imal river water level in a catchment and provide some esti-
mate of hydraulic head and direction of groundwater—surface
water exchange. When the fraction is high, the river (under
correct permeability conditions) would be expected to lose
water to groundwater, whereas the river would be expected
to gain water from groundwater discharge when the fraction
is low.

We hypothesize that, if the NWM accurately represents
groundwater discharge to streams, the Jasechko et al. (2021)
well water level comparison to stream water level dataset
should be able to predict the summer mean NWM ground-
water discharge flux with a large proportion of variance ex-
plained. However, the Jasechko et al. (2021) data weakly
(R? =0.028, p<0.01) predict the NWM groundwater dis-
charge rates in a simple linear regression. The regression
relationship between the variables is negative, as expected,
where river reaches with a greater proportion of their well
water levels above proximal river water levels correspond to
reaches with greater groundwater discharge fluxes (Fig. S11).
Although the regression is significant, it has almost no pre-
dictive capacity, contrary to expectations.

The weakness of the statistical relationship between
the Jasechko et al. (2021) dataset and the NWM groundwa-
ter discharge flux may be related to shallow aquifers, which
are not considered by NWM, and/or agricultural irrigation
and the water source (surface or groundwater) used for that
irrigation (Fig. S12). We did not assess the potential for
NWM groundwater discharge to reflect the presence of shal-
low aquifers. However, we observe that the influence of irri-
gation on groundwater levels is nonstationary, depending on
both the groundwater discharge magnitude and the source of
irrigation water. For this reason, the relationship is difficult
to assess statistically. In river reaches where the NWM in-
dicates little groundwater discharge (Oth to 20th percentile
qBucket), irrigation sourced from surface water is associ-
ated with a smaller fraction of well water levels below river
level (smaller y value in Fig. S12) than those without irri-
gation. Conversely, in river reaches with substantial ground-
water discharge (80th to 100th percentile qBucket), agricul-
tural irrigation with water from either surface or groundwater
tends to be associated with a larger fraction of well water lev-
els below river level (larger y value in Fig. S12) compared
with reaches without any agricultural irrigation. Based on
these patterns, we suggest that irrigation from surface water
in dry areas appears to contribute to groundwater recharge,
whereas irrigation appears to contribute to decreased water
table elevations in wet areas. At all groundwater discharge
percentiles, surface water irrigation contributes to higher wa-
ter tables, whereas irrigation from groundwater contributes
to lower water tables.

Some part of this signal is regional. Reaches from more
arid basins compose a greater proportion of the lower-
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percentile qBucket reaches, whereas reaches from humid or
seasonally snowy basins compose a greater proportion of the
higher-percentile qBucket reaches. However, when evaluated
by basin, the relationships are similar. This finding is consis-
tent with modeling studies: lower stream discharge when irri-
gation water comes from groundwater and greater stream dis-
charge when irrigation water comes from surface water (Es-
said and Caldwell, 2017). Our analysis suggests that agricul-
tural irrigation is likely to influence groundwater levels and
groundwater discharge at the landscape scale and produces
gaining streams and contributes to streamflow in otherwise
arid, losing reaches of rivers.

3.5 Implications of including irrigation return flows
into NWM calculations

Our evaluation of the NWM-driven isotope mass balance cal-
culations suggest that the NWM accuracy would be improved
by including agricultural return flows in the water sources
sustaining streamflow in the NWM. In effect, agricultural re-
turn flows are simply groundwater fluxes to streams that oc-
cur at lower elevations than the majority of the groundwa-
ter discharge sustaining streams. Based on the magnitudes
of dgifr, these lower-elevation groundwater fluxes can some-
times be large. Because the NWM is calibrated to actual
streamflows that contain these return flows, these fluxes are
currently being misallocated in the model. Inaccuracies in
any of the model terms or fluxes influence the model’s capac-
ity to project accurate streamflows, particularly under nonsta-
tionary hydrologic conditions. Thus, accurate model water
source inclusion, particularly at low elevations where water
use and availability is most critical, has implications for the
model’s utility to stakeholders, including water managers and
users.

Under current conditions, agricultural return flows may be
critical for sustaining streamflow late in the growing sea-
son (August or September) or during drought periods. Sus-
tained streamflow in certain reaches is critical for (1) wa-
ter access for surface water diversions and (2) water avail-
ability for species’ use. For example, the survival of pro-
tected fish species requires that waterways meet thresh-
olds of water quality, temperature, and depth (Dibble et al.,
2020). Water managers make decisions about water allo-
cations and reservoir releases in part to meet these habitat
needs (Bruckerhoff et al., 2022). Agricultural return flows
have the capacity to help sustain streamflow (Fillo et al.,
2021), although with potentially negative effects on water
quality, through agriculture-associated salinization (Miller
et al., 2017; Thorslund et al., 2021; Miller et al., 2024; Put-
man et al., 2024), increased concentrations of nitrate (Lin
et al., 2021) and other nutrients (Stets et al., 2020), contri-
butions of pesticide and fertilizers, or alterations to water
temperature profiles. These contributions of agricultural wa-
ters contribute to sustaining flow but threaten water availabil-
ity. Thus, inclusion of groundwater return flows from irriga-
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tion to rivers in the western US supports improved assess-
ments of water availability both through improved modeling
of streamflows and enhanced ability to model water quality.

Explicit inclusion of irrigation return flows will assist the
NWM in better projecting streamflows during periods of hy-
drologic nonstationarity, as are likely to characterize the hy-
droclimatic elements of climate change. Nonstationary pro-
cesses include hydrologic changes arising from the ongoing
megadrought in the southwestern US (Williams et al., 2022),
associated changes in water use for irrigation (Ketchum et al.,
2023), intense precipitation events (like monsoons or major
storm events) that are observed to be increasing in inten-
sity with climate change (Pfahl et al., 2017; Demaria et al.,
2019), and projected changes to future snowpack depth and
melt timing (Siirila-Woodburn et al., 2021; Hammond et al.,
2023). The ongoing aridification of the southwestern US
is characterized by increased evapotranspiration (Milly and
Dunne, 2020) and changes to groundwater recharge and dis-
charge associated with decreases in snowpack and changes
to snowpack melt patterns (Hammond et al., 2023). Under-
standing the groundwater flux contributions of areas with
shallow water tables to streamflow during major precipitation
events will help better characterize areas at risk for flooding
and inform appropriate water management strategies.

4 Conclusions

The isotope mass balance evaluation of the NWM revealed
similarities between the isotope mass balance estimated iso-
tope ratios (modeled) and observed isotope ratios. The mass
balance approach represented as much as 75 % of the vari-
ance in the observations, depending on the water isotopo-
logue evaluated. This suggests that, on average, the NWM
correctly represents the relative proportions of groundwater
and surface runoff fluxes sustaining streamflow during the
summer and that the gridded isotope datasets are appropriate
for the analysis.

The observation—model differences exhibited a spatial and
seasonal structure, suggesting that the NWM is missing im-
portant additional water sources that contribute to stream-
flow. Specifically, the observation-model differences that
plot above the equilibrium line (Fig. 2) suggest the impor-
tance of direct contributions of snowmelt to streamflow in
humid areas. Those that plot below the equilibrium line sug-
gest the importance of groundwater sources characterized by
evaporation in arid areas. We tested the hypothesis that agri-
cultural irrigation return flows are the missing evaporated
water source in arid regions and found them to be a sig-
nificant predictor of observation—model differences. Future
work may benefit from taking a temporally varying approach
to the estimation of streamflows and agricultural contribu-
tions to streams, as the difference in timescale between the
observations and models is a source of uncertainty. Nonethe-
less, our finding is supported by multiple lines of evidence,
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including the seasonality of observation—model differences,
the relationship of land use to isotopic signals (d) of evapo-
ration in groundwaters, a comparison of NWM groundwater
discharge with an independent assessment of the potential
for groundwater discharge, and isotopic and modeling study
conclusions from the literature.

Our findings suggest that the NWM accuracy would be
improved by including agricultural irrigation fluxes into
the NWM water sources. Agricultural irrigation-recharged
groundwater functions as a lower-elevation baseflow flux,
and this flux is likely to be critical for sustaining streamflow
during drought periods or late in the growing season. Inclu-
sion of this specific source into groundwater fluxes would
improve the ability to meet water manager and water user
NWM data needs. Specifically, water managers use predic-
tions of reach-specific flows at lower elevations during sum-
mer precipitation events and monsoons to assess flood risk or
to inform dam releases (if dam releases are incorporated into
the NWM) in order to assess the volume of water required to
achieve specific management goals, like fish species preser-
vation or dam water level maintenance for hydropower pro-
duction. Likewise, the explicit inclusion of irrigation return
flows in NWM calculations will assist in accurately predict-
ing and projecting streamflows in heavily managed sections
of river in the event of changing irrigation practices, in-
creased evapotranspiration, or water supply reductions and
fallowing of agricultural fields, which would change or halt
irrigation groundwater fluxes. Finally, our findings have im-
plications for areas at risk of diminished water availability
due to issues of quality, arising from the entrainment of fertil-
izer and pesticides and as well as the dissolution and delivery
of salts.
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