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Supplemental text 
Sect S1: Coarsening NHDplus 

Because of the high resolution of the NHDPlus dataset relative to the spatial resolution of our 
surface water sample dataset and gridded isotope datasets, as well as the time requirements 
for performing network operations on large stream networks, we performed a coarsening 
operation on the NHDPlus catchment and flowline datasets. We pruned the stream network to 
include only reaches of Strahler stream order 4 or higher and removed secondary flowpaths at 
divergences. We then aggregated reaches and catchments that no longer contained branches. 
All reaches on stream orders of 3 and above were aggregated to coarsened catchments, and 
the closest order 3 reach was retained for routing. We applied the aggregation to the 
catchment areas (sum), reach lengths (sum), minimum (min) and maximum (max) elevations, 
and long term mean annual discharge (max) and included these as attributes of our coarsened 
network. We dropped any stream network that did not contain at least one catchment with an 
isotope observation. The original network, particularly in flat arid areas, contains flowline 
networks that are internally draining (do not reach a network with a major outlet), and did not 
contain a surface water isotope observation. These reaches were not included in the analysis.   

Sect S2: Filling gaps in the gridded groundwater isotope ratios 

We filled data gaps in the 1-10m depth groundwater isotope layer with data from the 10-25m 
depth interval (Bowen et al., 2022). However, both depth intervals contained data gaps in 
similar places (Bowen et al., 2022, see Figure 3), so some gaps remained. These gaps occurred 
in higher elevation, mountainous areas, as well as unpopulated, lower elevation areas, where 
groundwater data (i.e., levels, isotope ratios, etc) are less frequently measured, due to difficulty 
sampling, lack of available wells, or large depths to groundwater. In mountainous areas in the 
western US, groundwater is recharged through melt of wintertime snow. Thus, for the gaps in 
the gridded groundwater dataset in the shallowest two layers, we used the precipitation 
climatology-weighted average winter (December, January, February) precipitation isotope 
ratios as shallow groundwater isotope ratio estimates. These values may differ from the actual 
groundwater, considering complications with snowmelt fractionation and timing of 
groundwater recharge during the melt season. 

Sect S3: Estimating the variability of surface water isotope ratios 

Because most catchments did not have enough observations to estimate their own variance for 
the t-test for significance of difference between observations and modeled isotope ratios, we 
estimated the magnitude of both within-season and interannual variability in surface water 
isotope ratios, assuming a normal distribution for river isotope ratios. To evaluate the expected 
seasonal and interannual variability at our sites, we selected a subset of original resolution 
NHDPlus catchments with at least 15 observations from at least 4 different years (Figure S3). 
The threshold of 4 years follows evaluations of data requirements for calculating local meteoric 
water lines (LMWLs), which are sensitive to interannual variability. For LMWLs, 4 years was 
sufficient to characterize the majority of the long-term variability in precipitation (Putman et 
al., 2019). Because of the large contributions of groundwater to surface water, which is a less 



isotopically variable water source than precipitation, interannual variability in rivers is typically 
much lower than for precipitation, but higher than for groundwater (e.g., Kirchner, 2016). This 
is most true for headwater streams, which tend to be characterized by a small fraction of young 
water, and less true for lower elevation streams, which may be characterized by a higher 
fraction of young water (Jasechko et al., 2014). 

We evaluated the standard deviation of the suite of observations for the subset of catchments, 
and evaluated possible controls on variability, including stream order, mean annual streamflow, 
region, and elevation, though found no clear relationships among variability and any of the 
variables in our dataset. Thus, we selected the median standard deviation of our subset of sites 
to serve as the standard deviation at all reaches (Figure S3). Although this is unlikely to 
represent the true variability at all sites, it is a conservative approach to representing the 
interannual variability at surface water sites. 

Sect S4: Assigning the Köppen climate classification and calculating the aridity metric  

The Köppen climate classification (Rubel and Kottek, 2010) was assigned to each coarsened 
catchment by intersecting the catchments with the Köppen climate classification raster center 
points using a ‘within’ criteria for a spatial join. The climate class data were simplified to three 
climate types following the simplification applied in Putman et al., (2019): Subtropical arid or 
seasonally hot and dry regions (Köppen classes B and Cs) were termed ‘Arid’. Humid temperate 
(Köppen class Cf) were termed ‘Warm temperate’ and seasonally snow dominated regions (all 
Köppen subclasses within D) were termed ‘Seasonally snowy’. 

To provide climatic context to our analysis, we obtained daily 4 km gridded precipitation (P) and 
actual evapotranspiration (ETa) data from GridMet (Abatzoglou, 2013) for the years 2000-2020. 
The mean annual values for each quantity were computed, and an aridity metric was calculated 
as ETa/P. High values of the aridity ETa/P mean that nearly all precipitation is lost as 
evapotranspiration over the course of the year (typical of arid regions), whereas low values 
mean that total evapotranspiration is low relative to precipitation (typical of more humid 
regions). 

Sect S5: Estimation of river water fractions 

We estimated the fraction of river flow composed of three different water sources: 
groundwater, runoff, and agricultural return flows using NWM variables, water use (Hutson et 
al., 2004; Kenny et al., 2009; Maupin et al., 2014; Dieter, C.A., et al., 2018) and land use 
datasets (Dewitz and US Geological Survey, 2021). We also used reservoir influence as a 
categorical variable in our model to assess the effects of reservoir management on observed 
isotope ratios.  

S5.1 Calculating agricultural water use at catchment scale 

We used water-use data to evaluate and contextualize observation-model isotopic differences 
in our dataset. Water-use data were available at county scale from the 2000, 2005, 2010, and 
2015 National Water Use Census’ (Hutson et al., 2004; Kenny et al., 2009; Maupin et al., 2014; 
Dieter, C.A., et al., 2018). We used the irrigation water categories `Irrigation, total withdrawals, 
fresh' (Rirr, county) and `Irrigation, acres irrigated, total' (Airr, county) in our analysis.  



To convert the water-use information from county-scale withdrawal rates (Rirr, county) to the total 
water applied at the coarsened catchment scale (Wirr, catch, Equation S1), we first calculated the 
water withdrawn for irrigation per irrigated acre per day for each county. We assumed that all 
agricultural areas in a county used water at the same rate, and that the rate of water 
application did not change throughout the season, and all water that was withdrawn was 
applied.  

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ =  𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ ∗ �
𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�                                             (Equation S1) 

To convert the county-based estimate of water use to the coarsened catchment scale, we 
mapped catchments to the counties they resided in using the catchment centroid and a spatial 
join method in python's `Geopandas' package (Jordahl et al., 2020). Because of this, catchments 
were mapped to a single county, even if they might span multiple counties. We then multiplied 
the total county-average fresh water withdrawal per irrigated acre by the total number of acres 
of land in a catchment categorized as `pasture/hay' and `cultivated crops' by the 2019 National 
Land Cover Database (Airr,catch, Dewitz and US Geological Survey, 2021). 

S5.2 Estimating accumulated water fractions comprising river flow 

To calculate the estimated water fractions of the three water types (groundwater (gr), runoff 
(ro), and agricultural return flows (irr)) at each reach (r), we iteratively accounted for water 
inputs, starting at the stream network headwaters (i=0) and moving downstream to the reach 
(Equation S2). The iteration order was established using the python anytree package function 
'PostOrderIter' as applied to a stream network tree composed of the coarsened NHDplus 
reaches. For each reach, we added the incremental water (W) delivered to the stream for each 
water type (type) to the total water added to the stream from all upstream reaches. To 
calculate the fraction of each water type that composed streamflow at the reach (Fr, type), we 
normalized to the total water `added' to the reach from all water types throughout the 
upstream network.  

 

𝐹𝐹𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  
∑ 𝑊𝑊𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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∑ 𝑊𝑊𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖+𝑊𝑊𝑖𝑖,𝑔𝑔𝑔𝑔+𝑊𝑊𝑖𝑖,𝑟𝑟𝑟𝑟
𝑟𝑟
𝑖𝑖=0

                                              (Equation S2) 

For agricultural irrigation return flows, we assumed that all water applied for irrigation 
eventually makes its way back to the nearest waterway. That is, all water estimated to be 
applied for agricultural irrigation in a reach (Wirr, catch, Equation S1) was counted as contributing 
to river flows. This simplifying assumption is unlikely to be correct, as some irrigation water in 
arid regions is likely lost during conveyance to the point of use, as well as to evaporation and 
crop transpiration (i.e., consumptive use). It is estimated that only as much as 50% of the water 
applied for irrigation may make it to recharge or runoff, and that percentage depends on the 
irrigation type (e.g., flood, sprinkler, drip; Grafton et al., 2018) and climatic controls on 
evapotranspiration. A use of any constant would produce the same results. Furthermore, we 
expect that the isotopic evolution of the irrigation water due to evaporation during and after 
application will be largest in arid regions where lots of water must be applied for plant growth. 
Conversely, cooler, wetter areas that apply less water may also lose less water to evaporation 



and exhibit a smaller isotopic evaporation signal. As a result, we expect that the isotopic 
fingerprint of agricultural return flows on river isotope ratios will be greater in places where 
more irrigation water is applied, even if much of the water does not make it back to the river. 
Thus, by simplifying our calculation, we can draw a more direct mechanistic relationship 
between irrigation practices and the isotopic response and avoid complicating estimates of 
actual losses, recharge and actual return flows. 

We estimated the influence of reservoirs on observation-model differences by assigning a 
categorical variable denoting whether a site was or was not ‘reservoir-affected’. A site was 
categorized as being ‘reservoir-affected' when at least a quarter of the water in the stream was 
categorized as being from a reservoir. We calculated these water fractions in a second 
calculation using a similar method to our approach for estimating in-river fractions of the other 
water types (Equation S2). The difference for this approach is that when a catchment was the 
site of a medium or large reservoir (reservoir storage > 50,000 acre-feet, as identified and 
quantified by the National Inventory of Dams (Army Corps of Engineers, n.d.), we assigned all 
water type fractions (groundwater, runoff, and agricultural irrigation) a value of zero, and set 
the total reservoir water fraction to 1. Likewise, the total accumulated water from all water 
types were summed, and the total reservoir values was set to this number and all other water 
type amounts were set to 0. This operation reflects the assumption that when water spends 
time in a large reservoir it mixes with water delivered at different times and evaporates, so 
isotope ratios of river water downstream of a reservoir may be distinct from those upstream of 
a reservoir. This assumption may be truer for reservoirs used for agricultural or municipal uses 
and flood control (i.e., Lake Powell, Flaming Gorge), and may be less valid for dams emplaced 
for hydropower production that do not retain large amounts of water. In all settings, it is likely 
to overestimate the effect of dams relative to other activities or land uses upstream of dams. 

Sect S6: Interannual variability in observation-model differences 

To assess the influence of interannual variability on unexplained variance in our observation-
model comparison, we utilized the years where sampling was conducted by the EPA NRSA 
(2008, 2009, 2013, 2014, 2018, 2019), because these years are likely to have the most 
representative and consistent spatial distribution of samples. Every NRSA-sampled year had 
over 250 observations and represented more than 100 river reaches. No other years exhibited 
similar spatial representation. We calculated the mean and standard deviation of the 
observation-model differences and performed a regression on the differences.  

The annual mean δ18Odiff and ddiff values for NRSA collection years were statistically 
indistinguishable from the mean differences calculated with the whole dataset (Figure S13). 
Though all observation-model difference regression slopes were less than 8, and all intercepts 
were greater than 0, the observation-model difference regression slopes and intercepts were 
significantly different from one another, and the regression calculated from all available data. 
This is consistent with the relatively low interannual variability of river observations (standard 
deviations of less than 2‰, and typically closer to 0.25‰ in δ18O) calculated at sites with at 
least 4 years of data and 15 data points (Text S3, Figure S3).  



One potential source of error in our spatial evaluation of the stable water isotope ratios is the 
potential for interannual variability in sampling distributions imprinting a temporal climate 
signal onto our spatial signal. However, the year-to-year similarity in the regression slopes and 
intercepts, in the context of the relatively low interannual variability, suggests that there is a 
low likelihood of accidental interpretation of temporal climate patterns as spatial patterns. 
Likewise, The EPA method is sufficiently standardized (Theobald et al., 2007) that the regression 
results for each year are unlikely to primarily reflect spatial variability in sampling locations. 
Instead, the observed interannual variability in slopes and intercepts is more likely to arise from 
differences in climate and hydrology, which may arise from variability in snowpack isotope 
ratios and the proportion of surface runoff from rain or snowmelt in the stream relative to 
groundwater.  

Sect S7: Unevaluated sources of variability 

We suggest that contributions of irrigation-based recharge to groundwater and subsequent 
discharge to river flows are likely to be responsible for most of our observation-model 
differences in arid, irrigation-influenced areas and are a likely source of error in the NWM. 
However, there is substantial scatter in the data that is independent of the interannual, 
seasonal, and spatial variability that make an unequivocal demonstration of this mechanism 
statistically challenging. This scatter may be due to (1) reservoirs and lakes altering the isotopic 
composition of streamflow in variable and difficult to predict ways (2) changes in the 
magnitudes of irrigation return flows depending on climate, year, season (Fillo et al., 2021) and 
irrigation type (Grafton et al., 2018) (3) our ability to estimate irrigation recharge and return 
flows from available data, (4) evapoconcentration of waterways due to intermittent 
streamflows and (5) uncertainty in estimating isotopic inputs at an appropriate temporal and 
spatial scale. 

Because lakes exhibit isotopic signals of evaporation (Bowen et al., 2018) relative to other 
surface waters and precipitation, we hypothesize that reservoirs may contribute to isotopic 
alteration of surface waters towards evaporation signals. However, our data and key 
differences between reservoirs and lakes suggest that the relationship between reservoirs and 
isotope ratios may be more complex (Friedrich et al., 2018). First, reservoirs are typically 
created by damming existing rivers. Thus, reservoir bathymetry tends to be deeper and 
narrower than lake bathymetry. This can lead to enhanced stratification, cooler water 
temperatures, and development of preferential flowpaths of surface water through reservoirs 
(Deemer et al., 2020, Putman et al., 2024). Irrespective of sampling depth, isotope ratios 
suggest that deeper, man-made lakes have lower evaporation to inflow ratios than shallow 
natural lakes (Brooks et al., 2014). Second, dams release water from different levels following 
temporally variable water management schedules. If a reservoir is stratified, it may mean that 
the discharged water comes from a more evaporated, warmer surface layer or from a lower, 
less evaporated, colder layer. The level of the reservoir also shifts over time, so depending on 
the season or year, the dam may discharge more or less evaporated water depending on the 
year. Because there are many reservoirs of different sizes, emplaced for different reasons, the 
effects of reservoirs on isotope ratios of surface waters are likely to be heterogeneous and 



unlikely to be efficient at explaining variability in ddiff. Instead, smaller natural lakes or wetlands 
may be more important than large river reservoirs in influencing ddiff. 

Although we examined the potential for irrigation return flows to contribute evaporated water 
at lower elevation reaches, it is difficult to estimate the actual contributions of agricultural 
irrigation recharge to rivers. This difficulty stemmed from ambiguities present in the available 
datasets, in terms of irrigation timing, irrigation type, water user response to climate variability, 
spatial and temporal distribution of surface and groundwater withdrawals, water conveyances, 
estimates of consumptive use (losses to evapotranspiration), variation in groundwater levels, 
and shallow groundwater flowpaths to surface waters. Relationships between observation-
model differences and contribution of agricultural irrigation return flows could improve with 
increased spatial and temporal granularity of surface and ground water use estimates, 
improved estimates of consumptive use and improved characterization of groundwater levels. 

Although we used the NHDPlus flowlines categorization of streamflow persistence to screen for 
streams with intermittent flow, these categorizations are difficult (Zipper et al., 2021) and 
subject to interannual variability. With increasing trends towards intermittent flow in arid 
regions, and challenges categorizing and assessing intermittent flow (Zipper et al., 2021), it is 
possible that some of our observations were influenced by evaporation arising from 
intermittent flows that were not captured by the categorization from NHDPlus. 

There are uncertainties associated with the gridded isotope inputs we used to perform our 
isotope mass balance on the NWM water fluxes. Both the precipitation and groundwater 
products are estimated from data and interpolated based on some conceptual understanding 
of controls on stable isotope ratios. Thus, their quality as mixing endmembers in this approach 
depends on the representativeness of the dataset under conditions similar to those we are 
testing. For example, interannual variability in snow isotope ratios (Anderson et al., 2016) and 
variability in the proportions of streamflow from snowmelt runoff, and the seasonal evolution 
of elevations contributing to runoff, compared with groundwater discharge (Brooks et al., 2021; 
Wolf et al., 2023), influence the actual isotope ratios of rivers, and may not be captured by our 
approach. Likewise, long term average summer precipitation isotope ratios may not adequately 
capture the runoff isotope ratio expected from summer precipitation, as event scale 
precipitation isotope ratios can exhibit substantial variability (Tulley-Cordova et al., 2021), 
sometimes on the order of annual variability (Putman et al., 2017). 

  



Figures 

 

Figure S1: Cumulative distribution function (left axis) and histogram (right axis) showing the distribution of observations per 
catchment. The cumulative distribution function tells us the percentage of catchments with the bin number or fewer 
observations – note the log scale. The right axis corresponds to the number of catchments that contained the bin number of 
observations. The majority (88%) of catchments have fewer than seven observations. However, about 2% of catchments have 
100 or more observations. 

 



 

Figure S2: Spatial distribution of the number of observations per catchment. Catchments with a single observation are indicated. 
Map data is from ©OpenStreetMap contributors 2023, distributed under the Open Data Commons Open Database License 
(ODbL) v1.0, accessed through Stamen OpenSource Tools (https://stamen.com/open-source/). HUC2 basins from the Watershed 
Boundary Dataset (U.S. Geological Survey, 2023), and river reaches are modified from the National Hydrography Dataset Plus 
(U.S. Geological Survey, 2019). 

 

 

https://stamen.com/open-source/


 

Figure S3: Standard deviations of sites with at least 15 samples from at least 4 different years. The 25th and 75th percentiles are 
included. We found no correlation between variability and number of samples, stream order, mean annual streamflow, or 
region. 



 

Figure S4: NWM flux-derived Isotope mass balance estimates (mod) compared to all observations (obs) for δ2H, with dots 
colored by the ratio of actual evapotranspiration to precipitation. The 1:1 line is plotted for reference. Some catchments may 
have multiple observations associated with them. Statistics about the model prediction of observation are available from Table 2 
in the main text. 



 

Figure S5: NWM flux-derived Isotope mass balance estimates (mod) estimates compared to all observations (obs) for δ18O, with 
dots colored by the ratio of actual evapotranspiration to precipitation. The 1:1 line is plotted for reference. Some catchments 
may have multiple observations associated with them. Statistics about the model prediction of observation are available from 
Table 2 in the main text. 



 

Figure S6: NWM flux-derived Isotope mass balance estimates (mod) estimates compared to mean catchment values of 
observations (obs) for δ2H in catchments with at least two observations. Symbol colors indicate the ratio of actual 
evapotranspiration to precipitation for the catchment. The 1:1 line is plotted for reference. Statistics about the model prediction 
of observation are available from Table 2 in the main text. 



 

Figure S7: NWM flux-derived Isotope mass balance estimates (mod) estimates compared to mean catchment values of 
observations (obs)  for δ18O in catchments with at least two observations. Symbol colors indicate the ratio of actual 
evapotranspiration to precipitation. The 1:1 line is plotted for reference. Statistics about the model prediction of observation are 
available from Table 2 in the main text. 



 

Figure S8: Relationship between δ18Odiff and ddiff, with symbols colored by the ratio of actual evapotranspiration to precipitation 
in each catchment. A linear regression line (gray line) with uncertainty (shaded area with dotted line boundaries) indicates the 
strength and direction of the relationship between the quantities. Distributions of the quantities are included in the margin axes, 
and the best fit linear regression and standard error of the regression are also plotted. 

 



 

Figure S9: The spatial distribution of mean catchment δ18Odiff in reaches with more than one observation (n=448). Reservoirs are 
marked by yellow stars, with the star size proportional to the reservoir capacity. Redder shades indicate that observations were 
more 18O-enriched than the model expected, and bluer shades indicate observations were more 18O-depleted than the model 
expected. Map data is from ©OpenStreetMap contributors 2023, distributed under the Open Data Commons Open Database 
License (ODbL) v1.0, accessed through Stamen OpenSource Tools (https://stamen.com/open-source/). HUC2 basins from the 
Watershed Boundary Dataset (U.S. Geological Survey, 2023), and river reaches are modified from the National Hydrography 
Dataset Plus (U.S. Geological Survey, 2019). 

https://stamen.com/open-source/


 

Figure S10: Relationship of elevation, Strahler stream order (U.S. Geological Survey, 2019), and Köppen climate classification 
(Rubel and Kottek, 2010), and stream persistence to δ18Odiff in each basin. We observe lower δ18Odiff with perennial, lower order 
streams at middle and higher elevations in each basin. Higher δ18Odiff is associated with higher order streams at lower elevations 
in each basin. This effect was greater in catchments classified as arid or seasonally snowy compared to those classified as warm 
temperate. This pattern was generally true in each basin, irrespective of the absolute elevation or stream order, suggesting the 
importance of accumulated effects within a basin on δ18Odiff. 



 

Figure S11: Relationship between the fraction of well water levels that are below the river level (Jasechko et al., 2021) and the 
average summer groundwater discharge to a stream (National Atmospheric and Oceanic Administration, 2022). The fractions of 
wells with water levels below river water level have been binned for simplification of displaying data. There is a statistically 
significant, though weak relationship (R2 = 0.007) between the quantities. 



 

Figure S12: Relationship between groundwater discharge in NWM (National Atmospheric and Oceanic Administration, 2022) 
and the Jasechko et al (2021) estimate of the number of well water levels that are below river level, differentiated by presence 
of agricultural irrigation, and the water source for that irrigation. Groundwater (GW) and Surface water (SW) are the two 
categories of irrigation water sources. The boxenplots for each groundwater discharge percentile indicate the distribution 
quantiles. 



 

Figure S13: Interannual variability in observation-model comparisons using data from years with at least 250 samples in 100 
different reaches (NRSA years). (a) The annual mean (blue points) and 95% confidence intervals (solid vertical lines) of δ18Odiff 

compared to the mean (solid horizontal line) and 95% confidence intervals (dotted horizontal lines) of all data. (b) The annual 
mean and 95% confidence intervals of ddiff compared to the mean and 95% confidence intervals of all data. (c) The slope of 
δ2Hdiff ~ δ18Odiff and 95% confidence intervals compared to the slope and 95% confidence intervals of calculated from all data. (d) 
The regression intercept of δ2Hdiff ~ δ18Odiff and 95% confidence intervals compared to the regression intercept and 95% 
confidence intervals of calculated from all data. In all subplots, the all-data mean and 95% confidence interval are plotted for 
reference. 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government. 
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