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Abstract. Accurate streamflow estimation is essential for ef-
fective water resource management and adapting to extreme
events in the face of changing climate conditions. Hydrolog-
ical models have been the conventional approach for stream-
flow interpolation and extrapolation in time and space for
the past few decades. However, their large-scale applica-
tions have encountered challenges, including issues related
to efficiency, complex parameterization, and constrained per-
formance. Deep learning methods, such as long short-term
memory (LSTM) networks, have emerged as a promising and
efficient approach for large-scale streamflow estimation. In
this study, we have conducted a series of experiments to iden-
tify optimal hybrid modeling schemes to consolidate physi-
cally based models with LSTM aimed at enhancing stream-
flow estimation in Denmark.

The results show that the hybrid modeling schemes outper-
formed the Danish National Water Resources Model (DKM)
in both gauged and ungauged basins. While the standalone
LSTM rainfall-runoff model outperformed DKM in many
basins, it faced challenges when predicting the streamflow
in groundwater-dependent catchments. A serial hybrid mod-
eling scheme (LSTM-q), which used DKM outputs and cli-
mate forcings as dynamic inputs for LSTM training, demon-
strated higher performance. LSTM-q improved the mean
Nash-Sutcliffe efficiency (NSE) by 0.22 in gauged basins
and 0.12 in ungauged basins compared to DKM. Similar
accuracy improvements were achieved with alternative hy-
brid schemes, i.e., by predicting the residuals between DKM-
simulated streamflow and observations using LSTM. More-
over, the developed hybrid models enhanced the accuracy of
extreme events, which encourages the integration of hybrid
models within an operational forecasting framework. This

study highlights the advantages of synergizing existing phys-
ically based hydrological models (PBMs) with LSTM mod-
els, and the proposed hybrid schemes hold the potential to
achieve high-quality large-scale streamflow estimations.

1 Introduction

Accurate streamflow estimates are essential for sustainable
water resource management, prediction of extreme events,
energy production, decision-making, and the protection of
both human populations and natural ecosystems (Devitt et
al., 2023; Hoy, 2017; Satoh et al., 2022). Collecting spa-
tiotemporally adequate streamflow data through observa-
tions can be challenging. Therefore, various conceptual and
process-based hydrological models have been developed and
applied for streamflow interpolation and extrapolation in
time and space, such as supplementing the missing stream-
flow at stations, transferring the parameters to basins show-
ing high hydrological similarities, and predicting the stream-
flow under future conditions (Beven, 1996, 2020; Devia et
al., 2015). These models are based on a priori knowledge
and physical principles to simulate critical hydrological pro-
cesses, e.g., infiltration, evapotranspiration (ET), runoff rout-
ing, and groundwater movement, and have been widely and
successfully used across domains and scales.

Physically based hydrological models (PBMs) stand out
among those diverse hydrological models and have been
widely used in recent decades due to their sophisticated
structures and advanced parameterizations (Devia et al.,
2015; Fatichi et al., 2016; Pakoksung and Takagi, 2021; Ref-
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sgaard et al., 2022). These features enable PBMs to simulate
complex hydrological processes and facilitate a detailed anal-
ysis at high spatiotemporal resolutions. However, PBMs are
susceptible to biases arising from inadequate inputs, subopti-
mal structural design, or improper parameterization schemes
(Herrera et al., 2022; Dembélé et al., 2020; Silvestro et al.,
2015; Koch et al., 2016). Therefore, the streamflow per-
formance of PBMs is not always satisfactory for practical
applications and may not consistently outperform simpler
lumped and conceptual hydrological models. For example,
some studies have pointed out that PBMs encounter difficul-
ties in capturing peak flows (Baroni et al., 2019; Kumari et
al., 2021; Moges et al., 2021; Sahraei et al., 2020).

The Danish Water Resources Model (DKM) is an exam-
ple of a PBM (Hgjberg et al., 2009) and is based on the dis-
tributed, integrated model code MIKE SHE (DHI, 2020). The
DKM has been calibrated against a large dataset of ground-
water head observations and streamflow measurements uti-
lizing dense national monitoring networks (Henriksen et al.,
2021; Stisen et al., 2020). Streamflow performance is con-
sidered satisfactory, with an average Kling—Gupta efficiency
(KGE) of 0.75, though performance varies both temporally
and spatially. Overall, the DKM tends to exhibit better per-
formance in basins with larger drainage areas compared to
smaller ones (Henriksen et al., 2021). In recent years, several
projects related to hydrological monitoring, national flood
warning, and nitrate modeling have emerged that rely on
DKM-simulated streamflow time series (Henriksen et al.,
2023). Therefore, enhancing the accuracy of DKM simula-
tions using advanced methods, such as deep learning (DL)
algorithms, is deemed necessary and will have far-reaching
implications for a range of applications.

Data-driven techniques are well suited for capturing pat-
terns and relationships within the data without relying on
prior assumptions or models (Kawaguchi et al., 2022; Ke et
al., 2017; Wu et al., 2022). The runoff process is intricately
connected to climate records and other processes in the water
cycle. These relationships can be learned through data-driven
methods, such as LSTM (Wi and Steinschneider, 2024; Wang
et al., 2023; Kratzert et al., 2018). LSTM is a type of recur-
rent neural network proficient in handling time series data
and has proven to effectively capture the variations and de-
pendencies within sequential data (Hochreiter and Schmid-
huber, 1997; Greff et al., 2017). It has found successful ap-
plications in hydrology for estimating streamflow in numer-
ous catchments in particular, with encouraging performance
(Arsenault et al., 2023; Hunt et al., 2022; Cheng et al., 2020;
Zhang et al., 2022; Hashemi et al., 2022; Lees et al., 2021;
Wilbrand et al., 2023; Frame et al., 2022). Nonetheless, con-
cerns exist regarding DL methods, such as their inherently
complex internal structures (Ghorbani and Zou, 2019; Gold-
stein et al., 2015). While these models often demonstrate
higher performance, accuracy may decrease when attempt-
ing to transfer them from gauged basins to ungauged ones,
which is a common concern in the context of physical models
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as well (Winsemius et al., 2009; Ma et al., 2021). Therefore,
the integration of DL methods with PBMs and the develop-
ment of hybrid systems have been recognized as a promising
approach to robustly enhance streamflow predictions (Slater
et al., 2023). In such hybrid modeling schemes, PBMs pro-
vide a substantial amount of sequential data containing con-
solidated hydrological knowledge within the simulation do-
main, while deep learning algorithms have the potential to
exploit multiple data types and uncover information that may
be overlooked or ignored by PBMs.

A straightforward approach to developing hybrid models
is to set up a serial system that uses the outputs of existing
PBMs as inputs for LSTM modeling (Amendola et al., 2020;
Slater et al., 2023). This approach offers several benefits. For
instance, they are efficient and require fewer modifications
to the existing PBMs, which may have undergone decades of
development and contain valuable physical knowledge. At-
tempts have been made in various regions where DL meth-
ods were employed to post-process imperfect PBM simula-
tions (Cho and Kim, 2022; Frame et al., 2021; Konapala et
al., 2020; Liu et al., 2022; Shen et al., 2022). While earlier
studies have explored different hybrid systems, there remain
the following scientific aspects that warrant further investi-
gation:

1. What are the optimal hybrid schemes for combining
PBMs and LSTM in Denmark?

While earlier studies have explored a limited number of
alternative hybrid modeling schemes, the full potential
of intercomparing different hybrid modeling schemes
and a systematic comparison and evaluation of the alter-
native approaches remain untapped. Frame et al. (2021),
Tang et al. (2023), and Liu et al. (2022) evaluated the
potential benefits of PBM outputs and climate forcings
as LSTM inputs, with streamflow as the target variable
for prediction. Their results indicated a significant im-
provement in the performance of streamflow estimation
by hybrid models compared to benchmark models, i.e.,
the National Water Model, global hydrological models,
and WRF-Hydro. Cho and Kim (2022) and Konapala
et al. (2020) investigated the performance of an LSTM
model, which predicts the residuals between WREF-
Hydro-simulated discharge and observations. Koch and
Schneider (2022) proposed that an LSTM model pre-
trained with DKM-simulated discharge as the target
variable followed by fine-tuning with observed dis-
charge yielded superior results. These studies offer in-
triguing approaches to consolidating PBMs with LSTM
in hybrid modeling schemes. It is imperative to evaluate
these approaches to identify the optimal methods.

2. How can we expand the scope of studies on LSTM
models to encompass national scales and groundwater-
dependent systems?
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To date, research on LSTM models has focused on
rainfall-runoff processes in gauged basins, such as
the Catchment Attributes and Meteorology for Large-
sample Studies US (CAMELS-US) dataset (Addor et
al., 2017), CAMELS-UK dataset (Coxon et al., 2020),
and Global Runoff Data Centre (Tang et al., 2023).
Many studies have investigated local basins with limited
data coverage (Cho and Kim, 2022; Hunt et al., 2022;
Liu et al., 2022). However, there is a notable absence of
studies that expand simulations to a national scale, i.e.,
making predictions for all catchments gauged and un-
gauged, and provide a comprehensive map of biases be-
tween DL and PBMs. In our study, Denmark, delineated
in 2830 catchments, serves as the study area, potentially
enriching the geographical scope of this topic.

3. What is the impact of physical processes on LSTM per-
formance in groundwater-dependent areas, and how can
we bridge the gap between LSTM and physical knowl-
edge?

Connecting LSTM with physical knowledge is an active
area of research. Investigating the influence of physi-
cal processes on LSTM performance in complex hydro-
logical settings, such as groundwater-dependent flow
regimes, is crucial. While previous studies have ex-
plored the effects of snow melting on LSTM model-
ing, limited attention has been given to the impacts of
groundwater variations on LSTM rainfall-runoff mod-
eling (Frame et al., 2021; De La Fuente et al., 2023;
Kratzert et al., 2019a; Wang et al., 2022). This gap
may be due to the scarcity of observations or the ab-
sence of well-established groundwater modeling sys-
tems like DKM to support such analyses (Koch et al.,
2021; Schneider et al., 2022b; Henriksen et al., 2023).
Therefore, DKM serves as a valuable test bed for inves-
tigating the enhancement of physically informed data-
driven models in groundwater-dependent regions.

4. What is the potential of LSTM hybrid models for
streamflow estimation in operational frameworks, espe-
cially for extreme events?

As the frequency of extreme events is projected to in-
crease in the coming decades, there is growing demand
for real-time modeling and forecasting (Curceac et al.,
2020; Devitt et al., 2023; Hauswirth et al., 2021). Oper-
ational real-time modeling and forecasting frameworks
are thus under development, with the primary objec-
tive of delivering timely warnings, usually based on
a short simulation period of hindcasting, nowcasting,
and forecasting (Nevo et al., 2022). In this context,
only a few studies have investigated the potential ap-
plicability of LSTM hybrid schemes to short simula-
tion periods with a focus on extreme events. Hunt et
al. (2022) examined the performance of LSTM models
trained to ingest catchment-mean meteorological and
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hydrological variables from the Global Flood Aware-
ness System (GloFAS)-ERAS5 reanalysis and output
streamflow at 10 hydrological stations in the western
US. They utilized the European Centre for Medium-
Range Weather Forecasts (ECMWF) Integrated Fore-
casting System (IFS) to feed the models, predicting
streamflow with a lead time of 10 d. Their study demon-
strated the potential of hybrid LSTM models in the con-
text of operational forecast. The developed LSTM hy-
brid schemes from this study are expected to support
the initiative towards operational modeling in Denmark.
Thus, the developed models are specifically assessed
during extreme events.

The aim of this study is to test various hybrid systems com-
bining LSTM and DKM and identify optimal LSTM hybrid
schemes tailored to streamflow modeling, with applicability
in generating continuous streamflow predictions across Den-
mark with a daily time step.

2 Data and methods

This section begins with a description of the datasets
(Sect. 2.1) used in this study and the definition of two bench-
mark models, i.e., DKM and LSTM rainfall-runoff models
(Sect. 2.2). Subsequently, Sect. 2.3 outlines various candi-
date LSTM hybrid modeling schemes. Details regarding the
experiment designs are provided in Sect. 2.4, and Sect. 2.5
presents the description of evaluation metrics for assessing
model performance.

2.1 Dataset
2.1.1 ID15 catchments

For various water management tasks, all of Denmark is sub-
divided into so-called ID15 catchments (Fig. 1). Each ID15
catchment represents a topographic basin with an average
area of about 15 kmz, and the total number of ID15 catch-
ments is 3351. Out of these, 521 catchments lack a represen-
tation of the stream network in the DKM (mostly because
they are small catchments draining directly to the sea) or are
located on small islands and have been excluded in this study.
With the selected 2830 ID15 catchments, we cover 90.60 %
of the land area of Denmark. Figure 1b shows different scales
of ID15 catchments, and each of the shapefiles represents
a catchment unit, has data on flow direction, and connects
with the upstream routing area, allowing us to obtain the to-
tal aggregated upstream area for all basins; see an example
in Fig. 1c. The catchment boundary to any required points on
river networks is defined by the identity index of the catch-
ment unit. The ID15 catchments have been adjusted to con-
nect with DKM discharge points (Q points), which are the
grid points of the MIKE HYDRO River setup where sim-
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Figure 1. Study area. (a) Geographic location of Denmark. (b) Subregions; ID15 catchments; and the locations of gauging stations, which
have been randomly divided into training (254 stations) and testing groups (64 stations) for LSTM model development. (¢) An outline of a

gauged ID15 catchment (ID no. 32211117) located in northern Zealand.

ulated discharge time series are available (DHI, 2020), and
hydrological stations.

Based on the ID15 catchment dataset, we prepared a
dataset of catchment attributes and hydrometeorological
time series for the 2830 catchments, like the widely used
CAMELS series dataset (Addor et al., 2017; Alvarez-
Garreton et al., 2018; Chagas et al., 2020; Coxon et al.,
2020; Fowler et al., 2021; Hoge et al., 2023). The dataset
includes static catchment attributes, dynamic variables of
climate forcings, streamflow observations, and DKM simu-
lations. Climate forcings include precipitation, temperature,
and potential ET. DKM-simulated streamflow for each ID15
catchment was extracted from the Q points at the catchment
outlets. The other simulations are grid-based spatiotempo-
rally distributed variables originating from DKM at 500 m
resolution, including actual evapotranspiration, average soil
water content, and phreatic depth. They were all spatially ag-
gregated into a time series for each ID15 catchment, includ-
ing the entire upstream area.

2.1.2 Climate forcings and basin attributes

The climate data used in this study include precipita-
tion, mean temperature, and potential ET, which were ob-
tained from the Danish Meteorological Institute (Scharling,
1999a, b). The temporal resolution of the climate data is
daily, and the spatial resolution of precipitation is 10 and
20km for both temperature and potential ET. Precipitation
was corrected based on daily wind speed and temperature
to correct for precipitation sensor undercatch (Stisen et al.,
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2011). The climate forcings are used as inputs for both the
DKM and LSTM model.

Catchment attributes, such as land use, soil type, topogra-
phy, geology, and climate, play a pivotal role in hydrological
modeling, as variations contribute significantly to the hydro-
logical processes taking place in the basin. We selected 27
static catchments attributes which we consider impact the hy-
drological processes in Denmark (Table 1). The spatial dis-
tribution of these attributes is shown in Appendix A. The
average elevation of all the catchments ranges from 0.01 to
144.07 m, with a median elevation of 29.71 m. The median
slope is 1.78 % of all the catchments. The average clay con-
tent is higher in east than in west Jutland. The static catch-
ment attributes include simulation outputs from the DKM:
discharge, actual ET, water content in the root zone, and
phreatic depth (Schneider et al., 2022b; Koch et al., 2021).
The spatial distribution of phreatic depth shows it is low in
north and middle Jutland. The median value of phreatic depth
is —1.76 m in summer and high in winter, with a median
value of —1.24 m. Agriculture is the main land use type oc-
cupying 28 % on average. Southern and central Jutland have
higher chalk aquifer depth and clay thickness above the chalk
aquifer.

2.2 Benchmark models
2.2.1 Danish National Water Resources Model (DKM)

The DKM has been developed at the Geological Survey of
Denmark and Greenland (GEUS) over the course of sev-
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Table 1. Static catchment attributes.

Short name Long name Units Minimum Maximum Median Mean  Standard

deviation
prep* Average precipitation mmd~! 1.80 2.94 2.29 2.33 0.28
temp™ Average temperature °C 8.16 9.41 8.70 8.70 0.29
pet™® Average potential ET mmd~! 1.49 1.77 1.57 1.60 0.07
DKM_qg* DKM-simulated discharge m3s~! 0.00 658.26 0.75 1.13 12.46
DKM_ aet* DKM-simulated actual ET mmd~! 1.06 1.82 1.43 1.43 0.07
DKM_wer* DKM-simulated average water content in root zone  [—] 0.11 0.56 0.26 0.26 0.04
DKM_dtp* DKM-simulated phreatic depth to surface layer —35.57 0.86 —1.55 =274 3.09
area Catchment area km? 0.04 2636.95 23.37 82.27 209.16
dem Digital elevation model (dem) 0.01 144.07 29.71 33.08 21.90
slope Slope calculated from dem [-] 0.04 15.08 1.78 1.90 1.09
clay_a Average clay content across A horizon 0.30 30.67 8.24 8.39 3.84
clay_b Average clay content across B horizon 0.21 32.63 10.15 10.46 5.14
clay_c Average clay content across C horizon 1.07 37.63 11.65 11.43 5.32
clay_d Average clay content across D horizon 0.91 35.19 11.18 11.07 5.09
agriculture Fraction of agriculture 0.00 60.54 29.19 27.67 12.90
forest Fraction of forest 0.00 61.90 5.01 7.53 7.96
lake Fraction of lakes 0.00 52.63 0.37 1.46 3.48
urban Fraction of urban 0.00 69.23 4.97 7.05 6.76
aridity Ratio of mean pet to mean precipitation [-] 1.04 1.93 1.48 1.46 0.23
clay_depth Clay thickness of the uppermost layer [cm] 0.00 1433.44 60.68 99.87 117.20
DKM _dtp_s  Average phreatic depth in summer m —53.32 0.72 —1.76  —3.08 3.52
DKM_dtp_w  Average phreatic depth in winter m —23.52 1.00 —-1.24 =226 2.70
chalk_d Depth to chalk m 4.00 114547  170.80 233.72 194.70
uaquifer_t Thickness of uppermost aquifer m 0.32 158.51 16.06 19.65 13.79
uaquifer_d Depth to uppermost aquifer m 0.00 473.45 6.67 12.46 19.01
uclay_t Thickness of uppermost clay m 0.00 144.36 5.45 9.61 12.14
usand_t Thickness of uppermost sand [-] 0.00 80.79 2.28 6.66 9.93

* These variables include both catchment attributes and daily time series.

eral decades (Henriksen et al., 2021, 2003; Hgjberg et al.,
2013; Soltani et al., 2021; Stisen et al., 2020). It is built on
the MIKE SHE hydrological modeling framework using a
transient, fully distributed, physics-based description of the
terrestrial hydrological cycle (Hgjberg et al., 2013; Stisen
et al., 2020; Abbott et al., 1986; DHI, 2020); 3D subsur-
face flow is coupled with processes in the unsaturated zone,
2D overland flow, and surface water routing in streams. The
model is run with daily climate forcings (Sect. 2.2.2) and is
calibrated against daily streamflow observations from ~ 300
stations across Denmark (stations shown in Fig. 1c) as well
as groundwater head observations. It currently exists at two
horizontal resolutions, 100 and 500 m. For our case, we use
the 500 m version due to its reduced computational demand
and the limited effect of enhanced grid resolution on stream-
flow simulations. For simulation of streamflow, MIKE SHE
is coupled with the surface water model code MIKE HYDRO
River. In the case of the DKM, simple streamflow routing
is applied as the focus is on streamflow simulation (DHI,
2020). The MIKE SHE and MIKE HYDRO River models
are coupled through river links, where water is exchanged
between the river channel and land surface and subsurface.
In the 500 m version of the DKM, approximately 20 000 km
of water courses is represented in this manner.
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2.2.2 LSTM rainfall-runoff model (LSTM-rr)

LSTM is a type of recurrent neural network (RNN) specif-
ically developed to address the shortcomings of traditional
RNNs when confronted with sequences featuring long-term
dependencies (Hochreiter and Schmidhuber, 1997; Sutskever
et al., 2014; Rahmani et al., 2020; Gers et al., 2000; Greff et
al., 2017; Kratzert et al., 2018). These networks possess the
remarkable ability to selectively retain or discard informa-
tion over extended sequences. They achieve this using spe-
cialized memory cells that store and update information as it
traverses the networks (Gers et al., 2000). LSTM networks
are equipped with multiple hidden neurons and incorporate
essential information-processing instants, namely the input,
forget, and output gates. These gates play the main roles in
regulating the flow of sequential information, enabling the
network to determine what information should be preserved
and what should be discarded at each time step. While a com-
prehensive understanding of LSTM networks can be found in
numerous studies, readers with a background in hydrology
are encouraged to explore the works of Kratzert et al. (2018)
for more detailed insights.

LSTM-1r uses meteorological inputs, including precipita-
tion, temperature, and potential ET, as dynamic variables,
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Climate forcings: Precipitation, temperature, potential evapotranspiration (PET)

I |

Inputs Catchment attributes: DEM, slope, land use, soil type, geology, ...
DKM simulations: actual ET, soil moisture, phreatic depth,
discharge (Qsim)
Observed discharge (Qobs)
v l l
Targets Residuals Error factors
Qutis Qs (Qobs - Qsim) (Qobs / Qsim)
Models LSTM- 1t / pf LSTM-q LSTM- qr LSTM- qf

Figure 2. Input data, target variables, and abbreviated names of dif-
ferent LSTM hybrid models.

alongside catchment attributes as embedded static inputs,
with the discharge observed at basin outlets as the target
variable (De La Fuente et al., 2023; Hashemi et al., 2022;
Koch and Schneider, 2022; Kratzert et al., 2021b, 2018).
The networks are usually trained and tested using historical
data from a group of gauged basins and applied to extrapo-
late streamflow for unmonitored periods or ungauged basins.
LSTM-rr has gained popularity due to its ability to capture
complex temporal dependencies and nonlinear relationships,
and the predicted streamflow has often been found to outper-
form traditional hydrological models (Hauswirth et al., 2021;
Frame et al., 2022; Lees et al., 2021; Wilbrand et al., 2023;
Feng et al., 2020).

2.3 LSTM hybrid schemes

We created four LSTM models distinguished by input se-
quences and target variables as candidate hybrid models for
streamflow simulations on a national scale (see Fig. 2). The
tested models include (1) pre-training fine-tuning rainfall-
runoff model, (2) dynamic input model with DKM simula-
tions and climate forcing, (3) residual error prediction model,
and (4) error factor prediction model. The first serves as a
benchmark to assess the accuracy that can be obtained by a
standalone LSTM model without a hybrid scheme. The re-
maining four models represent different implementations of
hybrid models. The following subsections describe the de-
tails of these models.

2.3.1 Pre-training and fine-tuning the LSTM
rainfall-runoff model (LSTM-pf)

Pre-training and fine-tuning are techniques used to improve
the performance of neural networks on specific tasks (Mac-
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Neil and Eliasmith, 2011; Kiding et al., 2017; Cai and Peng,
2021). These techniques are commonly employed in transfer
learning, where knowledge learned from one task or dataset
is transferred to another related task or dataset (Li and Zhang,
2021; Tan et al., 2018). Pre-training involves training a neu-
ral network on a large dataset or a related task before fine-
tuning it for the target task. This helps the model learn use-
ful features and representations from the large dataset and
grasp general patterns of the data. Fine-tuning means that
a pre-trained neural network is taken and further trained
on a smaller dataset specific to the target task, updating its
weights accordingly. In this study, we pre-trained an LSTM-
rr model based on all ID15 catchments, climate forcings as
dynamic inputs, basin attributes as static inputs, and DKM-
simulated streamflow as the target variable. This process en-
ables the LSTM model to learn major features between cli-
mate data and the simulated discharge. Fine-tuning is then
conducted on basins of observed discharge; i.e., the target
variable is changed from DKM-simulated discharge to ob-
servations. The hyperparameters are the same for both pre-
training and fine-tuning. The total number of epochs is equiv-
alent to that of LSTM-rr, with the first half being allocated for
pre-training and the second half dedicated to fine-tuning.

2.3.2 Hybrid dynamic inputs to the LSTM model
(LSTM-q)

In this configuration, the dynamic inputs are expanded with
DKM simulations that impact river streamflow, including the
depth of the phreatic surface, average soil water content, ac-
tual ET, and DKM-simulated streamflow itself. The depth to
phreatic surface varies among basins with different hydroge-
ological properties, like permeability of the subsurface ma-
terials, aquifers, and confining layers. Groundwater pump-
ing for irrigation, industrial use, or drinking water supply
can significantly alter the interaction between phreatic sur-
face depth and river discharge. Pumping can lead to a lower
groundwater table, reducing the groundwater contribution to
river flow. DKM includes water extraction for drinking water
supply and irrigation; thus, the variation in phreatic depth re-
flects the impacts of climate conditions and human activities.

2.3.3 LSTM residual error model (LSTM-qr)

Often, the streamflow of a river exhibits strong seasonality
due to changes in precipitation and temperature throughout
the year. Simulated streamflow and their associated errors of-
ten exhibit systematic patterns, such as overestimating base-
flow or underestimating high flow during specific periods and
rates. This occurs because of the limitations in model struc-
tures and parameters. The misfitting follows certain regular
patterns that can potentially be identified through data-driven
algorithms. Some studies attempted to predict the residuals
between PBM-simulated streamflow and observations (Cho
and Kim, 2022; Konapala et al., 2020). They argue that the
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variabilities in residuals are lower in comparison to the vari-
abilities in the streamflow itself, and their results showed that
the streamflow simulations could be improved after applying
the predicted residuals to PBM-simulated streamflow.

However, special attention should be paid to the residual
time series because data-driven methods cannot effectively
learn or predict them when residuals consistently manifest
as random noise. To test the whiteness of residuals between
DKM simulations and observations, we analyze the autocor-
relation to ensure that the time series of residuals are not
simply related to noise. Figure 3 illustrates an example of
the residuals between simulated and observed streamflow on
a daily scale at a station. The residuals were calculated by
observed streamflow with the DKM simulations subtracted,
so a positive residual indicates that the DKM simulations are
lower than observations. It can be observed in Fig. 3a that
the simulated streamflow is typically underestimated in win-
ter (high-flow seasons) and overestimated in the warm sea-
sons (low-flow seasons), which consistently occurred every
year in the example. The autocorrelation figure reveals sev-
eral spikes outside the 99 % bounds, indicating that the time
series of residuals are not white noise and could potentially
be predicted by LSTM networks.

2.3.4 LSTM error factor model (LSTM-qf)

The configurations of LSTM-qf are similar to those of
LSTM-qr, but the target variables are relative error factors
between observed streamflow and DKM simulations instead
of absolute residuals. The error factors were calculated by
dividing observations by DKM simulations, so a value of
1 means that DKM simulations are equal to observations.
For example (Fig. 3), we can see that DKM underestimates
the streamflow in winter and overestimates the streamflow
in summer. Compared to streamflow residuals, error factors
exhibit more variability and outliers (Fig. 3c). The results of
the simulations are over 2 times lower than the observations
during high-flow events, which could be due to a mismatch
in the peak-flow dates. For instance, the error factors are ex-
tremely high on one date and drop to values of less than 1
on the following day, indicating a mismatch in the peak-flow
times. The plot shows that the error factors in time series are
correlated and can be predicted by data-driven algorithms.

2.4 Experiment settings

To assess the potential of various LSTM hybrid modeling
schemes within both gauged and ungauged basins, we con-
ducted a series of validation experiments. There are 318
gauged basins (Fig. 1), which were randomly partitioned
into training basins consisting of 254 stations (80 %) and
test basins comprising 64 stations (20 %). Streamflow was
divided into a training period from 2000 to 2010, a test-
ing period from 1990 to 1999, and a validation period from
2011 to 2019. The training and testing periods are the same
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as in DKM to ensure the comparability of LSTM models
and DKM simulations. We followed the design by Koch and
Schneider (2022) and created temporal split experiments and
spatiotemporal split experiments to evaluate the performance
of LSTM models in gauged and ungauged basins. The tem-
poral split experiment used the 254 training stations for train-
ing during the period from 2000 to 2010, and the same sta-
tions were used for testing during the test period from 1990
to 1999. The spatiotemporal split-sample experiment uses
254 stations for training during 2000 to 2010, and the trained
model was tested on 64 testing stations during 1990 to 1999.

The NeuralHydrology Python package is used to train
and test all LSTM networks. The package is developed by
Kratzert et al. (2022) and has been widely used in research
after it was made open-source (Frame et al., 2021; Klotz et
al., 2022; Koch and Schneider, 2022; Nearing et al., 2022;
Wilbrand et al., 2023). All the LSTM hybrid schemes are
trained with the NeuralHydrology package based on PyTorch
on a server equipped with an NVIDIA A40 GPU (Paszke et
al., 2019). The standard PyTorch implementation in the Neu-
ralHydrology package, CudaL.STM, is used for LSTM train-
ing due to its efficiency. Dynamic inputs and static attributes
are passed through embedding networks. The optimizer is
Adam, and the loss function is the RMSE for all models.

Before using LSTM networks for specific tasks, it is nec-
essary to determine the values of critical hyperparameters.
Since there is no standard method of finding an optimal set
of hyperparameters for our case, we selected relevant hyper-
parameters based on previous studies and assessed their sen-
sitivity (Cho and Kim, 2022; Hashemi et al., 2022; Kratzert
et al., 2018). The selected hyperparameters include the num-
ber of training epochs, size of hidden neurons, and lookback
length (LL) of the sequence. The other hyperparameters have
fixed values, such as the dropout rate (0.4), batch size (128),
and learning rate (107%). The tested values for these hyper-
parameters are defined in Table 2. To assess the performance
of all candidate hyperparameter combinations, a total of 96
(4-3-8) possible combinations were generated. The com-
bination demonstrating the highest performance in terms of
the mean Nash—Sutcliffe efficiency (NSE) values in the spa-
tiotemporal split-sample experiment is chosen to configure
the final LSTM models. Table 3 shows the optimal hyperpa-
rameters for LSTM models. LSTM-rr has a higher number of
epochs and a greater sequence length compared to the hybrid
scheme, and LSTM-qr has a greater size of hidden neurons.
The standard deviation shows how dispersed the results are
in relation to the mean, and LSTM-q has the lowest standard
deviation, indicating that changes in hyperparameters have
less effect on model performance.

2.5 Model evaluations
The model performance is evaluated by the model NSE co-

efficient, which compares simulations to the average ob-
servations, quantifying the proportion of observed variance
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Figure 3. Daily time series of streamflow residuals (a) and error factors (c¢) between DKM-simulated streamflow and observations at a
hydrological station (ID no. 51350461); the grey area shows observed streamflow time series. Autocorrelation of the time series is displayed
in (b) and (d) to test white noise of residuals and error factors. The horizontal grey lines in (b) and (d) correspond to 95 % (dash) and 99 %

(solid) confidence bands.

Table 2. The potential values of hyperparameters for LSTM models.

Hyperparameter =~ Number of epochs

Size of hidden neurons

Length of sequence

Potential values {20, 25, 30, 35}

{64, 128,256}

{10, 30, 60, 90, 180, 270, 365, 730}

that the model can explain (Gupta and Kling, 2011). NSE
ranges from negative infinity to 1, with 1 indicating a perfect
match between model predictions and observations. We fol-
low the model evaluation guidelines suggested by Moriasi et
al. (2007) to determine if the model performance is very good
(0.75 < NSE < 1), good (0.65 < NSE < 0.75), satisfactory
(0.5 < NSE < 0.65), or unsatisfactory (NSE < 0.5).

Additional metrics, including Kling—Gupta efficiency
(KGE), logarithmic NSE (NSElog), squared NSE (NSE?),
root mean square error (RMSE), high-segment volume
(FHV), low-segment volume (FLV), mid-segment slope
(FMS), and peak timing, are also calculated, and the results
are presented in the Appendix. Details about these signature
measures are explained in the literature (see, for example,
Schneider et al., 2022a; Roy et al., 2023; Yilmaz et al., 2008;
Gupta et al., 2009; and Kratzert et al., 2021a).

3 Results

3.1 Long-term performance of LSTM hybrid schemes

The cumulative distribution function (CDF) of NSE for the
temporal split experiment and the spatiotemporal split exper-
iment is shown in Fig. 4. Mean values of NSE of all the
stations, which were used for ranking model performance,
are listed in Table 4. In general, all LSTM models outper-
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formed the DKM (Fig. 4a), underlining the potential of utiliz-
ing LSTM models for streamflow estimation. LSTM-q (mean
NSE is 0.80) exhibits the best model performance, closely
followed by LSTM-qr (mean NSE is 0.79), LSTM-rr (0.76),
LSTM-pf (0.72), and LSTM-qf (mean NSE is 0.72) in the
temporal split experiment. LSTM-qr has the highest KGE
(0.83) and NSEjqg (0.77), indicating that the scheme is better
for low-flow modeling. LSTM hybrid models show higher
performance but did not alter the performance significantly
compared with the benchmark model LSTM-1r.

The performance of all LSTM models decreased when ap-
plied to ungauged basins (Fig. 4b), as revealed by the spa-
tiotemporal split experiment. LSTM-q outperforms LSTM-
gr according to NSE in the spatiotemporal split experiments,
indicating that LSTM-q is more effective for high-flow mod-
eling. This is further supported by FHV, which measures the
bias of peak flow where LSTM-q shows a lower error com-
pared to LSTM-qr (see Appendix B1). In contrast, LSTM-
qr demonstrates higher performance in low-flow conditions
with lower FLV bias (41 %). The DKM exhibits a higher
peak-timing error, while LSTM-rr and LSTM-q show the
lower peak-timing error, and the other two hybrid models,
ie., LSTM-gr and LSTM-qf, rely on DKM-simulated dis-
charge and also show a higher peak-timing error.

Figure 5 shows the spatial distribution of NSE of DKM
at all stations and the enhancements in NSE achieved by
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Table 3. Optimal hyperparameters for LSTM models and the statistics of mean NSE in the spatiotemporal split experiment.

LSTM models Number of  Size of hidden = Length of Min Max Mean Median Standard
epochs neurons  sequence deviation
LSTM-rr 30 64 730 0.20 0.60 043 0.44 0.08
LSTM-q 20 64 180 0.51 0.64 0.58 0.58 0.03
LSTM-qr 20 128 90 0.38 0.58 0.52 0.52 0.04
LSTM-qf 20 64 60 —-0.26 0.55 0.31 0.36 0.17
(a) Temporal split experiment (b) Spatiotemporal split experiment
1.0 1.0
—— DKM
08 k— LSTM-rr 08 F
=—— LSTM-pf
o = |LSTM-q
% 0.6 s [STMIGF 0.6 |
E —— LSTM-gf
204 0.4 | g
7
0.2 0.2 |
1 1 1 1
0.0 1.0 0.0 0.2 0.4 0.6 0.8 1.0
NSE NSE

Figure 4. Overall performance of benchmark models and LSTM hybrid models.

LSTM hybrid modeling. DKM exhibits satisfactory perfor-
mance (NSE > 0.5) in 73 % of basins from the temporal split
experiment and 64 % from the spatiotemporal split experi-
ment. There are seven stations from the temporal split exper-
iment and five stations from the spatiotemporal split exper-
iment that have negative NSE values. DKM has difficulties
in modeling the streamflow in basins covered by large lake
areas, such as stations situated in Himmerland and northeast
Zealand (Fig. 5a). LSTM hybrid models have improved the
NSE at many stations, as illustrated in Fig. Sb—f. Stations in
Himmerland, western Jutland, and eastern Denmark exhibit
unsatisfactory performance of DKM (colored blue), while
showing improved performance with LSTM models (colored
red). Figure 5a shows the improvements of LSTM-rr com-
pared to DKM. Many blue points in central Jutland, Himmer-
land, and Djursland can be seen, and such basins are located
in areas with deeper groundwater levels (see Appendix A).
Similar patterns are also shown in Fig. 5b, which displays
the results of LSTM-pf. Figure 6d demonstrates that LSTM-
q improved the performance of many stations in both tem-
poral split and spatiotemporal split experiments, with fewer
blue points compared to Fig. 5a and b. However, some sta-
tions that initially showed very good performance with DKM
demonstrate degraded performance with LSTM models, in-
dicating the difficulty in further improving streamflow esti-
mation for already well-performing stations and maintain-
ing their performance. Statistically, LSTM-rr improved dis-
charge estimation at 89 % of stations in the temporal split
experiment, while the improvement ratio is 56 % in the spa-
tiotemporal split experiment. LSTM-q has improved NSE by

https://doi.org/10.5194/hess-28-2871-2024

98 % and 74 % in spatial split/non-split experiments. The re-
sults of LSTM-qr are comparable to LSTM-q, while LSTM-
qf shows limited improvement for ungauged basins, as seen
by the numerous blue points in Fig. 5f. Although LSTM-q
demonstrates the best overall performance, it still fails to en-
hance NSE at some stations, especially in the spatiotemporal
split experiments.

Figure 6 presents the time series of the streamflow for two
example stations from the spatiotemporal split experiment
located in the western Jutland, which we have named basin A
(ID no. 12430739; DKM has satisfactory results) and basin
B (ID no. 37470623; DKM has very good results). DKM un-
derestimates the low flow and overestimates the high flow in
basin A, resulting in a negative NSE (NSE = —0.32). LSTM-
rr and LSTM-q agree well with observations during high-
flow seasons but tend to underestimate streamflow during
low-flow periods. The simulated hydrograph of the LSTM
hybrid models, though the performance is incomparable to
LSTM-1r, improves the estimations during low-flow seasons.
The hydrography shows that the simulated streamflow by
models drops too early in low-flow seasons, while the ob-
served discharge does not, which could be due to the influ-
ence of groundwater. However, the findings differ in basin B,
where the DKM-simulated streamflow aligns well with ob-
servations but overestimates the discharge in some low-flow
seasons and the NSE is 0.85. LSTM overestimated high flow,
LSTM-rr underestimated it, and their performance is not as
good as that of DKM. Basin B is spatially close to basin A,
and the climate forcings are equivalent. We then compared
the basin attributes of basins A and B with those of the basins

Hydrol. Earth Syst. Sci., 28, 2871-2893, 2024
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Table 4. Mean NSE of DKM and the LSTM hybrid models in the temporal split experiment and the spatiotemporal split experiment.

DKM LSTM-rr  LSTM-pf LSTM-q LSTM-qr LSTM-qf
Temporal split experiment 0.58 0.76 0.72 0.80 0.79 0.72
Spatiotemporal split experiment ~ 0.52 0.60 0.52 0.64 0.58 0.55

(a) DKM (NSE)

(b) LSTM-rr

Very good -
Good -
Satisfactory -
Unsatisfactory -
°

(e) LSTM-qr

(c) LSTM-pf

(f) LSTM-qf

Figure 5. Performance of DKM and LSTM model during the testing period (1990-1999) of the temporal split experiment (marked by circles)
and the spatiotemporal split experiments (marked by squares). (a) The NSE of DKM. Panels (b)—(f) show the differences in NSE between

DKM and LSTM (ANSE = NSE; stm — NSEpkm)-

used for LSTM training. The slope of basin B (5.03) is sig-
nificantly higher than that of basin A (1.14) and most train-
ing basins (ranging from 0.258 to 4.580). The forest ratio of
basin B is 27.61 %, whereas it is 5.98 % for basin A. These
distinct differences between basin A and the training dataset
result in the inferior performance of LSTM models. These re-
sults demonstrate the challenges of extrapolating streamflow
to ungauged basins and the importance of selecting training
datasets with diverse catchment attributes.

Figure 7 presents a heatmap of correlation coefficients be-
tween model performance (NSE and ANSE) of the different
models and static basin attributes. Unsurprisingly, basin area
positively correlates with all models’ performance; i.e., per-
formance generally is better for larger basins (Henriksen et
al., 2021). DKM-simulated groundwater levels (dtp, dtp_s,
and dtp_w) positively correlate with the NSE for all mod-

Hydrol. Earth Syst. Sci., 28, 2871-2893, 2024

els, indicating that the models generally struggle to accu-
rately simulate streamflow in basins with deeper groundwa-
ter levels (see the areas with groundwater levels lower than
—5m in Appendix Al). In Denmark, much of the stream-
flow is generated as baseflow and thus controlled by ground-
water levels. With deeper groundwater levels, accurate rep-
resentation of groundwater level dynamics becomes more
challenging. The negative correlation between model per-
formance and the share of lake area can be explained by
the complex interactions in lake water balances, something
both the DKM and the LSTM model struggle with. Similarly,
increased urban share decreases model performance; again,
this is likely due to complexities and heterogeneities in ur-
ban hydrology being inadequately represented in the models.
Geological features such as the depth to the chalk, thickness
of upper uppermost aquifer, and thickness of uppermost sand
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Figure 6. Time series of the streamflow at two hydrological stations which were involved in the spatiotemporal split experiment.

negatively correlate with the performance of both DKM and
LSTM model. The reasons for this require further investi-
gation. The changes in performance of the LSTM models
compared to the DKM (ANSE) exhibit a negative correlation
with basin area, suggesting that LSTM model improvements
decrease with increasing basin size (Fig. 7b). This might be
related to all basin information being aggregated across each
basin for the LSTM models, whereas the distributed nature
of the DKM allows for the representation of more complex
streamflow generation processes (and routing) within basins.
LSTM models show performance improvements for catch-
ments with a higher share of lake areas. The representation
of lake water balances and streamflow through lakes is one
of the weaknesses of the DKM, which can be improved by
LSTM.

3.2 Event performance of LSTM hybrid schemes

The objective of developing different LSTM models is to
identify an optimal hybrid scheme to support the operational
modeling and forecasting framework, which the DKM is al-
ready a part of. A real-time module has been established
to collect daily observations of climate forcings, including
precipitation, temperature, and potential ET, which serve as
inputs for a real-time DKM. Within the operational real-
time framework, emphasis is placed on modeling extreme
events. Therefore, in this section, we investigate the perfor-
mance of LSTM hybrid schemes in modeling extremely high
and low flows. Furthermore, based on the conclusions drawn
from previous sections, LSTM-q outperforms the other hy-
brid models. We exclusively present the results of LSTM-q
in this section. The hybrid model was retrained with addi-
tional data to obtain more accurate results. We set the training
period to be from 1990 to 2010 and evaluated model perfor-
mance on specific extreme events during the latest decade.
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We selected four distinct wet periods (Fig. 8a—d) charac-
terized by high peak flows across many regions of Denmark
as well as two dry periods (Fig. 8¢ and f) marked by severe
drought conditions. Figure 8 displays the observed stream-
flow and simulations from the DKM and LSTM-q averaged
across all stations as well as the line chart of RMSE for
all stations. LSTM-q (chosen based on its superior perfor-
mance) shows improved RMSE compared to the DKM at
most stations but fails at a few stations, as indicated by the
tail of the fitted frequency density curve (Fig. 8a—d). The
average RMSE decreased from 0.68 mmd~' for DKM to
0.45mmd~"! for LSTM-q for the flood events that occurred
on 20 December 2011 (Fig. 8a). Similar improvements can
also be observed for the rest of the flood events, with the
RMSE decreasing from 0.73 to 0.52mmd~"! (Fig. 8b), from
1.05 to 0.78 mmd ™" (Fig. 8c), and from 0.66 to 0.48 mmd !
(Fig. 8d). Capturing peak flows accurately proves challeng-
ing for both DKM and the LSTM hybrid schemes, as the sim-
ulated streamflow values tend to be lower than those of ob-
servations during the four flooding events. The time of peak
flow is consistently earlier in DKM compared to observa-
tions, as demonstrated in all selected events, which are im-
proved by LSTM-q. The issue of miscapturing the peak time
by the physically based DKM requires further investigation
of precipitation time series. Two drought events that occurred
in July 2018 and July 2019 exhibited a very low stream-
flow. LSTM-q demonstrates better performance compared
with DKM, as depicted in Fig. 8e and f. The average RMSE
decreased from 0.12mmd~! for DKM to 0.06 mmd~! for
LSTM-q during these events.
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Figure 7. Correlations between the performance (NSE) and changes in performance (ANSE = NSEjgy, — NSEqxm) of different LSTM
models and catchment static attributes. The black points indicate the correlations that pass the 95 % significance tests.
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3.3 Comparison of LSTM models and DKM at a
national level

After developing and identifying the optimal LSTM hy-
brid schemes, we extended their application from predict-
ing streamflow in gauged basins to ungauged basins, such
as the outlets of all ID15 catchments across Denmark. Fig-
ure 9 illustrates the high/median/low flow of DKM in all
ID15 catchments from 2010 to 2020 and the residuals be-
tween LSTM-q and DKM in all ID15 catchments. Stream-
flow is high in western and central Jutland (Fig. 9a—c), which
is consistent with the spatial distribution of precipitation
(Appendix Al). DKM and LSTM model generally agree
well with each other in most basins, with percentage differ-
ences close to 0. This further underlines the robustness of
the LSTM models, in spatial extrapolation as well, as they
manage to follow the simulated streamflow patterns from the
DKM which is based on a spatially consistent setup, jointly
calibrated for all of Denmark. However, discrepancies arise
in certain basins, as indicated by deep-red and deep-blue col-
ors in Fig. 9d—f, particularly during high- and low-flow con-
ditions. In Jutland, the LSTM models tend to simulate higher
low flows compared to DKM, while in eastern Denmark,
the opposite pattern is observable (Fig. 9d). In western Jut-
land, where precipitation is higher and the DKM-simulated
streamflow is larger than in other regions, the LSTM models
predict lower high flows (Fig. 9e). The spatial patterns here
are inconsistent with the averaged time series in Fig. 8, where
DKM underestimated high flow in gauged basins (Fig. 8a—
d) and overestimated low-flow events compared to LSTM-q
(Fig. 8e and f).

4 Discussion

In this study, a series of experiments was conducted to en-
hance the performance of streamflow estimation on a na-
tional scale in Denmark. The main objective was to assess
various configurations of LSTM models to identify the opti-
mal configuration to serve as a hybrid model for streamflow
prediction. The results revealed that utilizing LSTM models,
especially the hybrid schemes that were coupled with phys-
ically based simulations, exhibited superior performance for
both long-term periods (spanning a decade) and short-term
extreme events (30 d); see results in Sect. 3.1 and 3.2.
Overall, we found that the trained LSTM models were ro-
bust, and their performance was relatively consistent across
the tested hyperparameters. Figure 10 underlines that the
variations in the NSE across the sensitivity analysis of 96
hyperparameter combinations are small. Previous studies of-
ten applied default hyperparameters for LSTM development,
a practice that remains justifiable due to the generally lim-
ited impact of hyperparameter adjustments. However, it is
necessary to mention that the robustness of LSTM models
can be further enhanced through the incorporation of physi-
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cal knowledge into the selection of hyperparameters. For in-
stance, the selection of a lookback length for sequential time
series data traditionally adheres to 365 d for LSTM rainfall—-
runoff models, a choice made to account for the seasonal dy-
namics in hydrological processes. Nevertheless, the lookback
length can be reduced to under 3 months in the hybrid model-
ing schemes, as model performance remains reliably consis-
tent across these diverse temporal scales. This suggests that
in this case, the longer-term hydrological information is con-
tained in the PBM outputs such as groundwater levels. Con-
versely, we find that the LSTM-rr model, without the DKM
as input, benefits from a prolonged lookback length.

The design of the applied temporal split experiment and
the spatiotemporal split experiment aimed at illustrating the
potential performance of LSTM models in gauged and un-
gauged basins. In this study, the performance of LSTM mod-
els (NSE > 0.8) in gauged basins is comparable to previous
studies (Cho and Kim, 2022; Lees et al., 2021; Konapala et
al., 2020; Frame et al., 2021). The performance dropped for
ungauged basins (spatiotemporal split experiment in Fig. 4)
and aligned well with Koch and Schneider (2022). Few stud-
ies conducted a comparable spatiotemporal holdout exper-
iment (Koch and Schneider, 2022); thus, special attention
should be paid to validating the performance of LSTM mod-
els over ungauged basins. Kratzert et al. (2019b) applied
a 12-fold cross-validation experiment over the contiguous
United States and found a limited drop in performance for the
predictions in ungauged basins. However, the applied 8.3 %
spatial holdout may not pose the most challenging validation
test. In our study, we applied a larger, 20 % spatial holdout,
and a more systematic k-fold validation test was hampered
by the inconsistent length of observations across the Danish
discharge stations.

The intricate interactions between groundwater and sur-
face water have posed challenges for simulating stream-
flow using rainfall-runoff models in many basins in Den-
mark (Danapour et al., 2019; Duque et al., 2023). We tested
LSTM-1r for streamflow estimation, and the results were en-
couraging, with the mean NSE improving from 0.58 (DKM)
to 0.76 (Table 4). These improvements indicate the large po-
tential of the LSTM-rr model for streamflow modeling. How-
ever, it is important to note that LSTM-1r may not perform
well everywhere, as evidenced by its limitations in strongly
groundwater-dependent regions, such as northern Jutland.
LSTM-rr simulates quick responses to the variations in pre-
cipitation well but can fail to predict reduced baseflows due
to depleted groundwater storage (Fig. 6a). Also, the perfor-
mance drop between temporal and spatiotemporal holdout is
most pronounced for LSTM-rr (NSE is reduced from 0.76
to 0.59). Therefore, it is important to emphasize the advan-
tages of integrating physical data into the LSTM framework,
and the adoption of hybrid schemes, such as LSTM-q and
LSTM-qr, yielded improvements in the estimation of stream-
flow. These results align with the findings of previous stud-
ies (Feng et al., 2022; Frame et al., 2021; Hunt et al., 2022;
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Figure 9. A comparison of simulated streamflow differences between DKM and LSTM model (LSTM-q). The first row depicts DKM-
simulated streamflow during low-flow, high-flow, and mean-flow conditions; the second row shows the differences between DKM simulations
and the LSTM-q predictions. The percent difference in the figure is defined as the difference between the LSTM model and DKM, calculated
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Zhang et al., 2023; Cho and Kim, 2022; Konapala et al.,
2020; Tang et al., 2023) that assessed the potential of hybrid
modeling.

We tested four different hybrid systems: LSTM-pf,
LSTM-q, LSTM-qr, and LSTM-qf. They all exhibited im-
proved performance for streamflow estimation according to
the evaluation metrics (mean NSE calculated in spatiotempo-
ral split experiment), with the order of priority (from high to
low) being LSTM-q > LSTM-qr > LSTM-rr > LSTM-qf >
LSTM-pf = DKM. The better performance of LSTM-q is
consistent with previous studies; for instance, Cho and Kim
(2022) proved that WRF-Hydro-LSTM has a lower-percent
bias than LSTM-rr. Tang et al. (2023), Frame et al. (2021),
and Hunt et al. (2022) showed that LSTM models with ad-
ditional datasets of hydrological signals as inputs as well
as simulations of global hydrological models outperformed
LSTM-rr. Our results further confirmed that LSTM models
can be further enhanced by providing information from hy-
drological models.

There is an interesting point claiming that LSTM-qr
is slightly better than LSTM-q according to KGE (Ap-
pendix B1). Konapala et al. (2020) pointed out that the
LSTM-qr model was inferior to LSTM-q across the conter-
minous US, which is in line with our study. In their work,
LSTM-qr showed comparable performance with LSTM-q
when the NSE of PBM was larger than 0.75, and the im-
provement of LSTM-qr then decreased as the NSE of PBM
decreased. Thus, the performance of LSTM-qr was overly
constrained by the performance of the underlying PBM,
whereas LSTM-q was found to be more flexible. In our
study, DKM performs better than the PBM in Konapala et
al. (2020) and 27 % of the stations have an NSE higher than
0.75, whereas the percentage is 18 % in their study. Thus, this
can explain the slightly increased performance of LSTM-qr
in our case, because the underlying PBM, the DKM, per-
forms generally very well. Cho and Kim (2022) used a well-
calibrated model, WRF-Hydro (NSE = 0.72 and R = 0.88),
to predict residuals, and they share our conclusion that the
residual model performs better. Therefore, a well-established
PBM is important for the performance of hybrid schemes.
The performance of LSTM-pf is not comparable to the other
LSTM hybrid schemes, which differs from the conclusion of
Koch and Schneider (2022). This can be explained by the fact
that in the pre-training, the model is pre-trained on DKM-
simulated streamflow from all 2830 ID15 catchments as the
target variable, whereas the fine-tuning is performed on only
the observation station data. This may introduce more com-
plexity and noise for LSTM to learn. Koch and Schneider
(2022) only pre-trained using simulated DKM-based stream-
flow at the same basin where observations were available.
We also implemented an experiment that pre-trained a model
on gauged basins only with DKM-simulated streamflow as
target variables, fine-tuned the model with observations, and
made the performance comparable to that of LSTM-rr. To our
knowledge, LSTM-qf is a novel hybrid modeling scheme,
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tested for the first time in the present study. The performance
of LSTM-qf is lower than LSTM-qr. This is likely related
to the use of DKM-simulated streamflow as the denominator
when calculating the error factors, which can be problematic
if simulated streamflow is close to zero, resulting in large and
instable factors. Figure 3 shows that the variability in error
factors is larger, with more outliers than residual time series.
Thereby, we recommend focusing on the residual approach
instead of the factor approach in future work.

We intended to train a skillful LSTM model to be used
to forecast discharge across Denmark in an operational real-
time framework currently under development. However, the
LSTM networks presented in this study were trained us-
ing a limited number of gauged basins, potentially failing
to encompass the full spectrum of hydrological regimes,
which decreased their capacity to capture certain features ef-
fectively. The catchments have a large variety of static at-
tributes spatially, and the hydrological regimes change sig-
nificantly across Denmark. While the hybrid schemes offer
enhanced information and mitigate the issue of limited input
data, such as LSTM-q and LSTM-qr, they fall short in dis-
tinguishing stations requiring further improvement or those
already meeting requirements from the physical model. Con-
sequently, this deficiency may explain why LSTM models
exhibit inferior performance at fewer stations when com-
pared to DKM. Enhancing the neural networks with a multi-
representation approach, with data assimilation, or by devel-
oping specific DL models for different regions distinguished
by regime information could be alternative solutions in the
future (Hashemi et al., 2022; Feng et al., 2020).

Spatially, we predicted the streamflow at a large num-
ber of catchments, namely 2830 outlets, covering most of
Denmark. The comparison between LSTM and PBM perfor-
mance across the entire region gives some insights into the
effect of controlling factors on the different models’ perfor-
mance, potentially guiding further model improvement (es-
pecially of the PBM). Another question that arises in this
case of nested catchments is how LSTM models can be
developed that produce consistent streamflow simulations
along river courses, with as many Q points as there are dis-
tributed hydrological models. This is particularly useful, as
many PBMs currently provide streamflow simulations at ex-
plicit grids or points within the catchment (Harrigan et al.,
2023). Correcting the streamflow at each PBM simulation
point offers advantages, such as improving the prediction of
the extent of local flooding, assessing drought hazards, and
estimating nitrate transport, all of which require a refined res-
olution of streamflow at local scales. This is why LSTM-qr
and LSTM-qf hybrid schemes, which can be predicted at the
basin outlets and, potentially, can be applied to all Q points
within a subbasin, were considered in this study. Ideally, dis-
charge routing in the river channel involves linear accumu-
lation from upstream to downstream, and, therefore, we can
use relative residuals or error factors not only at basin outlets
but also for upstream locations. However, implementing such
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an idea is challenging, given that river-routing processes do
not change linearly from up the stream to down the stream
due to additional water from small tributaries, groundwater
contributions, and river regulation. Further information on
river routing and the relationship of streamflow between up-
stream Q points and outlets should be considered, and ad-
vanced methods should be investigated for distributing resid-
uals and error factors to all the Q points upstream. On the
other hand, the development of advanced DL methods, such
as distributed LSTM schemes (Yu et al., 2024), or graph neu-
ral networks could be the solutions to this topic in the future
(Sun et al., 2022).

5 Conclusion

This study aimed at identifying optimal LSTM hybrid
schemes based on the Danish National Water Resources
Model (DKM) to enhance streamflow estimation on a na-
tional scale. To achieve this, we developed different LSTM
hybrid models with varying dynamic inputs and target vari-
ables and evaluated them under different scenarios, including
temporal and spatiotemporal split experiments. The optimal
LSTM model, i.e., LSTM-q, was further assessed for its per-
formance in extreme events. Lastly, we compared the dispar-
ities between DKM and the optimal LSTM models, seeking
insights into hydrological modeling from both perspectives.
The key conclusions of this study are as follows:

1. LSTM models excel at modeling streamflow in Den-
mark, demonstrating superior performance compared to
DKM. The LSTM-1r model performs satisfactorily in
numerous basins, with a mean NSE of 0.76 in the tem-
poral split experiment and 0.60 in the spatiotemporal
split experiment. However, it faces challenges in sim-
ulating streamflow in groundwater-dominant regions as
well as spatial transferability, which can be mitigated by
employing hybrid LSTM models.

Hydrol. Earth Syst. Sci., 28, 2871-2893, 2024

2. The best-performing hybrid model is LSTM-q, achiev-
ing mean NSE values of 0.80 in temporal split exper-
iments. Also, in ungauged basins, hybrid schemes sur-
pass the DKM performance, with a mean NSE of 0.64,
compared to that of 0.52 of the DKM. In the spatiotem-
poral split experiment, LSTM-qr improved the accu-
racy compared to the DKM for 73 % of stations, while
LSTM-q improved 67 %. Basin attributes such as catch-
ment area, average clay content, and phreatic depth cor-
relate positively with model performance, whereas fac-
tors like slope, DEM, lake ratio, urban ratio, and thick-
ness of uppermost aquifers correlate negatively with
model performance.

3. LSTM hybrid models also contribute to improving the
modeling of extreme events. LSTM-qr and LSTM-q ef-
fectively reduce errors in DKM-simulated values dur-
ing high- and low-flow periods in Denmark. But still,
more efforts should be made to improve the modeling
accuracy toward extreme values in the hydrographs, as
LSTM models underestimate the peak flow of flooding
events. Future considerations may include employing
alternative objective functions like NSE? or manually
augmenting the occurrence of peak flow during model
training.

The utilization of LSTM in river streamflow modeling her-
alds a promising perspective for hydrological predictions.
Previous studies focused more on gauged basins, while this
study contributes to the topic with a national-scale anal-
ysis. We found that the conventional LSTM-rr model has
limited performance in regions with complex hydrological
processes. Information from physical hydrological models
is helpful, as indicated by the benefits across several hy-
brid schemes. Our future plans include evaluating the hybrid
schemes in a real-time forecasting framework forced by fore-
casted climate data and developing distributed LSTM hybrid
schemes.
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Appendix A: Spatial distribution of catchment
attributes

&N

4 clay content (%)

p

R
.

.
e

z E . 045

) P | s &y 3
! s &

T o 53 ot 3

L I é - 020

g Y‘:
™
i uﬁm

Figure Al. Distribution of some catchment attributes.
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Table B1. Additional metrics demonstrating model performance in both the temporal split experiment and the spatiotemporal split experi-

ment.
Temporal split experiment \ Spatiotemporal split experiment

DKM LSTM-r LSTM-pf LSTM-q LSTM-qgr LSTM-gf | DKM LSTM-r LSTM-pf LSTM-q LSTM-qr LSTM-qf
KGE 0.65 0.79 0.70 0.80 0.83 0.77 0.59 0.59 0.54 0.65 0.61 0.61
NSEjoq 0.53 0.71 0.61 0.73 0.77 0.75 0.41 0.42 0.37 0.48 0.49 0.48
NSE? 0.12 0.61 0.57 0.65 0.55 0.19 0.15 0.32 0.38 0.44 0.27 0.20
FHV 0.44 3.47 1.36 1.46 1.25 532 | —0.74 5.27 4.64 0.44 1.32 1.01
FLV 108.23 66.33 144.82 117.27 42.33 64.48 | 84.23 115.81 139.02 132.70 41.09 43.84
FMS —1.39 —13.81 —18.55 —17.73 —4.89 —4.78 7.13 —11.55 —-16.50  —13.07 4.30 4.81
Peak timing 0.80 0.62 0.56 0.61 0.72 0.79 0.79 0.61 0.44 0.57 0.71 0.74
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B2 Overall model performance

(a) Temporal split experiment (b) Spatiotemporal split experiment

J. Liu et al.: A national-scale hybrid model for enhanced streamflow estimation
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Figure B1. Performance of benchmark models and LSTM hybrid models in the temporal split experiment (subplots with a white background)
and the spatiotemporal split experiment (subplots with a grey background).
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