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Abstract. We introduce a comprehensive and robust theo-
retical framework and operational workflow that can be em-
ployed to enhance our understanding, modeling and man-
agement capability of complex heterogeneous large-scale
groundwater systems. Our framework encapsulates key com-
ponents such as the three-dimensional nature of ground-
water flows, river–aquifer interactions, probabilistic recon-
struction of three-dimensional spatial distributions of geo-
materials and associated properties across the subsurface,
multi-objective optimization for model parameter estimation
through stochastic calibration, and informed global sensitiv-
ity analysis (GSA). By integrating these components, we ef-
fectively consider the inherent uncertainty associated with
subsurface system characterizations as well as their inter-
actions with surface waterbodies. The approach enables us
to identify parameters impacting diverse system responses.
By employing a coevolutionary optimization algorithm, we
ensure efficient model parameterization, facilitating simul-
taneous and informed optimization of the defined objec-
tive functions. Additionally, estimation of parameter uncer-
tainty naturally leads to quantification of uncertainty in sys-
tem responses. The methodology is designed to increase our
knowledge of the dynamics of large-scale groundwater sys-
tems. It also has the potential to guide future data acquisition
campaigns through an informed global sensitivity analysis.
We demonstrate the effectiveness of our proposed method-
ology by applying it to the largest groundwater system in
Italy. We address the challenges posed by the characteriza-
tion of the heterogeneous spatial distribution of subsurface
attributes across large-scale three-dimensional domains upon
incorporating a recent probabilistic hydrogeological recon-
struction specific to the study case. The system considered
faces multiple challenges, including groundwater contamina-

tion, seawater intrusion, and water scarcity. Our study offers
a promising modeling strategy applicable to large-scale sub-
surface systems and valuable insights into groundwater flow
patterns that can then inform effective system management.

1 Introduction

Large-scale groundwater flow models have been developed
in recent years (e.g., Maxwell et al., 2015; Naz et al., 2023)
in response to growing interest in understanding potential
impacts of climate and anthropogenic drivers on water sys-
tems as well as in assessing large-scale patterns and pro-
cesses affecting water security. This progress has been fa-
cilitated by an increased availability of data and computa-
tional capabilities (e.g., Zhou and Li, 2011; Amanambu et
al., 2020, and references therein). Building such large-scale
models often requires consideration of important simplifica-
tions. In some cases, constant properties are assumed along
the vertical direction (e.g., Maxwell et al., 2015; Shrestha
et al., 2014; Soltani et al., 2022), without taking into ac-
count the three-dimensional nature of the spatial heterogene-
ity of the subsurface system. In addition, parameterization
of these models does not rely on rigorous model calibra-
tion against data that are, in turn, typically scarce. Instead,
parameter values are typically inferred from literature infor-
mation (Naz et al., 2023; Maxwell et al., 2015), thus pos-
sibly introducing large margins of uncertainty that are sel-
dom quantifiable. The work of Manzoni et al. (2023) ad-
dresses these challenges by proposing a machine-learning-
based methodology for delineating the spatial distribution of
geomaterials across large-scale three-dimensional subsurface
systems. These authors showcase their approach upon focus-
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ing on the Po River basin in northern Italy. Their work pro-
vides a comprehensive dataset comprising lithostratigraphic
data from various sources and offers a robust framework
for quantifying prediction uncertainty at each spatial loca-
tion within the reconstructed domain. Hence, our study rests
on the findings of Manzoni et al. (2023). In this sense, the
latter serves as more than simply a dataset but as a criti-
cal component upon which we build our groundwater flow
model calibration. Although the literature includes examples
of large-scale and national-scale models covering extensive
areas (∼ 10 000 km2; e.g., Sophocleous and Perkins, 2000;
De Lange et al., 2014; Højberg et al., 2013), these models
are calibrated only across specific portions of the system,
thus challenging their predictive capabilities. Even in these
cases, uncertainty associated with the estimated model pa-
rameters is usually overlooked. De Graaf et al. (2020) present
a detailed geological reconstruction for the same domain
analyzed by Maxwell et al. (2015). Due to computational
constraints, their model could only simulate groundwater
flow within selected portions of the domain and calibration
of model parameters for the entire model domain was not
achieved. Recently, Mather et al. (2022) introduced a three-
dimensional data-driven model of continental-scale ground-
water flow. It is noted that data-driven models are heavily
constrained by the quantity and quality of available training
data. In this context, groundwater flow and pressure data may
not be as readily accessible as, for example, lithostratigraphic
data (see, e.g., Manzoni et al., 2023) across the entire do-
main, especially when considering large-scale scenarios. In
general, a comprehensive calibration strategy encompassing
the entire geographical extent of the model domain is still
lacking.

Groundwater systems are inherently heterogeneous, thus
rendering modeling of flow and transport processes in such
complex domains prone to uncertainty. The latter stems from
the (generally unknown) spatial distribution of medium prop-
erties, boundary conditions and/or forcing terms, and limited
data availability. This issue could be addressed upon rely-
ing on a stochastic framework for model calibration (e.g.,
Neuman, 2003; Riva et al., 2009; Ye et al., 2010; Panz-
eri et al., 2015; Siena and Riva, 2020). However, stochas-
tic model calibration presents significant challenges, particu-
larly in terms of computational cost when dealing with mul-
tiple sources of uncertainty (e.g., Vrugt et al., 2008; Hen-
dricks Franssen et al., 2009; Zhou et al., 2014). Although
stochastic model calibration has become feasible at labora-
tory scales (∼ 10−2–1 m2) and at experimental sites of lim-
ited areal extent (∼ 1–100 km2), the impact on the hydraulic
response across large-scale fields stemming from the inher-
ent uncertainty plaguing our knowledge of the subsurface is
still largely unexplored. In this framework, Bianchi Janetti
et al. (2019, 2021) analyze how the uncertainty related to the
characterization of the subsurface system affects the distribu-
tion of hydraulic heads and subsurface fluxes in a regional-
scale hydrological setting (∼ 1000 km2).

Here, we introduce and test a methodological approach
for stochastic model calibration tailored to large-scale sce-
narios (exceeding 10 000 km2). Our proposed methodology
combines a suite of tools that have not been previously em-
ployed to address groundwater modeling at such a vast scale
and with such a level of system complexity. These include
(a) modeling the dynamics of groundwater flow across a
three-dimensional setting, (b) embedding and analyzing in-
teractions between rivers and aquifers in detail, (c) relying
on a probabilistic reconstruction of geological material dis-
tributions and attributes, (d) resting on multi-objective opti-
mization techniques for stochastic calibration of large-scale
groundwater models, and (e) performing a detailed informed
global sensitivity analysis to assess the degree of spatial vari-
ability and the relative importance of uncertain model pa-
rameters therein. Through incorporation of these tools, our
methodological and operational workflow yields a calibrated
model that enhances our understanding of aquifer dynamics
from a holistic perspective. It also reveals insights into the
spatial pattern of the sensitivity of model outputs to model
parameters. Results associated with the latter element can be
employed to inform future data acquisition efforts to improve
model parameterization and hydraulic head estimates. They
also emphasize the need to balance model complexity with
simplifications that might be required to tackle large-scale
groundwater scenarios. The approach involves the develop-
ment of a groundwater model that includes a probabilistic
three-dimensional hydrogeological reconstruction of the in-
vestigated area. As stated above, we do so upon integrating
the results illustrated by Manzoni et al. (2023). Specifically,
we leverage their probabilistic three-dimensional hydroge-
ological reconstruction, which enables us to infer the spa-
tial distribution of geological properties at a scale that was
previously unattainable. By incorporating this advanced hy-
drogeological reconstruction into our workflow, we address
key challenges posed by uncertainties that are inherent to
large-scale groundwater systems. Multi-objective optimiza-
tion is a key step in assessing the way model parameters im-
pact diverse system responses. This challenge is addressed
by relying on a coevolutionary optimization framework that
is applied to a differential evolution optimization algorithm,
thus ensuring effective control over the optimization process
while preserving computational efficiency (e.g., Dagdia and
Mirchev, 2020; Trunfio, 2015). The resulting algorithm is de-
signed to handle multiple objectives and eliminates the need
to assess their relative weights within the overall objective
function (Khan et al., 2022). The methodology we present
is designed to not only increase our knowledge about the
dynamics of large-scale systems but also guide future data
acquisition campaigns. The latter goal is attained by mak-
ing use of an informed global sensitivity analysis (GSA).
We recall that GSA typically serves as a tool to assess the
relative impact of uncertain model inputs on model outputs
of interest (Morris, 1991; Campolongo et al., 2007; Razavi
and Gupta, 2015; Pianosi et al., 2016; Dell’Oca et al., 2017).
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An informed GSA (Dell’Oca et al., 2020) is performed after
(stochastic) model calibration and enables one to quantify the
influence of residual (i.e., following model calibration) un-
certainty associated with model parameter estimates on pre-
dictions of system dynamics. This strategy aligns with our
focus on tackling major challenges posed by large-scale sub-
surface flow scenarios. It offers critical insights into model
functioning through quantification of the impact of model
parameters on target model outputs. It also provides guid-
ance on the identification of locations where acquiring ad-
ditional information can enhance the accuracy of parameter
estimates and ultimately constrain the uncertainty associated
with model results.

The proposed methodological approach is then employed
to analyze the largest groundwater system in Italy, which
corresponds to the Po River watershed. This region faces a
variety of challenges related to groundwater contamination
(Guadagnini et al., 2020; Balestrini et al., 2021), seawater
intrusion (Colombani et al., 2016), and water scarcity (Boz-
zola and Swanson, 2014). Thus, the design of comprehensive
policies addressing risks to water quality across large-scale
groundwater systems of this kind is grounded on the imple-
mentation of a modeling framework capable of addressing
the key patterns of groundwater flow at the scale of the entire
domain (Giuliano, 1995; Nespoli et al., 2021).

The work is organized as follows. Section 2 provides an
overview of the large-scale groundwater system we consider.
The proposed methodology and workflow are illustrated in
Sect. 3. Section 3.1 describes the modeling approach em-
ployed to assess groundwater recharge. Section 3.2 focuses
on the large-scale groundwater model, which involves inte-
grating data from multiple sources, such as large-scale hy-
drogeological reconstruction, remote sensing, and global-
scale databases. Section 3.3 delves into the inverse model-
ing approach employed and introduces a novel application
of a coevolutionary algorithm to address the multi-objective
function associated with large-scale hydrogeology settings.
Section 3.4 describes the informed GSA approach. Key re-
sults are presented in Sect. 4, while Sect. 5 summarizes main
findings and implications.

2 General setting

Our analysis focuses on the Po River basin. Along with the
Rhône and the Nile, the Po is one of the main Mediterranean
rivers. With an average flow rate of about 1500 m3 s−1, the
Po River has more than 140 tributaries, forming an intri-
cate network of waterways that also intersects with a dense
network of irrigation canals (ISPRA, 2010). This area (de-
noted as Po Plain, Pianura Padana) encompasses the largest
and most exploited groundwater system across Italy, which
provides fresh water to about 24 million residents (ISTAT,
2020). This area holds significant economic importance, con-
tributing nearly 40 % of Italy’s gross domestic product. Due

to the high density of industrial and agricultural activities,
the system is facing a significant risk of overexploitation
and possible exposure to multiple contaminants (AdB-Po,
2021). Seawater intrusion is also a potential negative issue
in the coastal portion of the system (Kazakis et al., 2019;
Antonellini et al., 2008).

As shown in Fig. 1, the domain is geographically bounded
by the Adige River to the northeast and by the Adriatic Sea
to the east, while its remaining boundaries coincide with the
mountain ranges of the Alps and the Apennines.

Our study is framed across the entire Po River dis-
trict (AdB-Po, 2021). The latter covers approximately
87 000 km2, spanning nine Italian regions as well as the
Swiss canton of Ticino and some valleys in the French and
Swiss Alps (see Fig. 1). This area includes the entire catch-
ment area of the Po River (∼ 72 000 km2). The main fea-
tures of the study area vary from the high peaks of the Alps
and Apennines (with altitude exceeding 4000 m above sea
level, steep slopes of more than 15 %, and a population den-
sity of less than 1 inhabitant per km2) to flat terrain and
densely populated areas (with more than 2000 inhabitants
per km2) (SEDAC, 2018). The district also experiences no-
table climatic differences. The lowland area is characterized
by a continental and temperate climate with moderate an-
nual precipitation levels ranging from 600 to 900 mm (Mor-
gan, 1973; Grimm et al., 2023). The Alps include a vari-
ety of climate zones at different elevations, corresponding
to distinct biotic features. These zones are often character-
ized by multiple precipitation patterns, including both snow
and rain (Elsasser and Bürki, 2002; Agrawala, 2007). The
foothill (Prealpi) zone features highest cumulative precipita-
tion levels, with an annual precipitation of 1500–2000 mm
(Fratianni and Acquaotta, 2017; Morgan, 1973).

3 Methods

Steady-state groundwater flow across the large-scale system
described in Sect. 2 is evaluated through a three-dimensional
finite-element model that we develop in the OpenGeoSys
v. 6.4.1 (Bilke et al., 2022). We describe the methodology
used for evaluating groundwater recharge in Sect. 3.1. This
step is performed within the entire Po district (i.e., not only
within the considered groundwater system) to assess (i) sur-
face recharge within the domain and (ii) contributions of the
surrounding basins to lateral flow exchanges with the do-
main. Section 3.2, 3.3, and 3.4 include key details about the
groundwater model, its calibration, and the informed GSA,
respectively. Figure 2 illustrates the conceptual workflow of
the proposed methodology.

3.1 Groundwater recharge

We estimate the spatial and temporal variations in ground-
water recharge at the scale of the entire Po district
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Figure 1. Spatial location of the Po River district, including the Po Plain groundwater system and the sub-basins considered to assess lateral
flow boundary conditions. Dots correspond to locations of wells for which head data are available. The coordinate reference system (CRS)
is ESRI:54012.

Figure 2. Conceptual workflow for stochastic calibration and informed global sensitivity analysis of large-scale groundwater models.
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(∼ 87 000 km2). The study area is discretized into square
cells with a spatial resolution of 250× 250 m (resulting in
approximately 1.4 million cells). Cell elevation data are ob-
tained through the European Digital Elevation Model (ESA,
2019).

Groundwater recharge, R, is evaluated within each grid
cell upon making use of the soil water balance method of
Thornthwaite (1948) and Thornthwaite and Mather (1955,
1957), as implemented in the widely used and tested (e.g.,
Zhang et al., 2016; Shuler et al., 2021; Roland et al., 2021)
USGS SWB model version 2.0 (Westenbroek et al., 2018),
i.e.,

R = RG+SM+ IRR+Rin−ET−Roff− (SWHC−SWC) . (1)

Here, RG is the non-intercepted rain (rainfall reaching the
ground); SM is snowmelt; IRR is irrigation; ET is actual
evapotranspiration; and Rin and Roff are overland inflow and
outflow, respectively. The last term in Eq. (1) corresponds to
the amount of water that can still be stored in the soil at a
given time, SWHC and SWC being soil water holding ca-
pacity and soil water content, respectively. Equation (1) is
solved with a temporal resolution equal to 1 d, covering the
entire period from January 2010 to December 2019. Due to
uncertainty in initial conditions, model results from January
2010 to December 2012 are discarded as they are associated
with the warm-up periods of the hydrological model (see,
e.g., Kim et al., 2018).

Meteorological data (such as precipitation and tempera-
ture) are obtained from the latest generation of ECMWF re-
analysis data from ERA5 (Muñoz-Sabater et al., 2021). This
dataset includes daily maximum and minimum temperatures
evaluated at an elevation of 2 m above ground as well as pre-
cipitation data. The spatial distribution of the required soil
information is collected from the global-scale maps of Pog-
gio et al. (2021). To estimate the land cover type, we inte-
grate crop type spatial distribution data from the EU crop
map (d’Andrimont et al., 2021) into the CORINE land cover
map (European Environment Agency, 2018).

For the evaluation of RG, we account for a water intercep-
tion budget. The latter represents the amount of precipitation
that can be intercepted by vegetation. This interception bud-
get varies across space depending on land use. Precipitation
must exceed the intercepted amount in order to reach the soil
and contribute to the soil water balance. The accumulation
and melting term, SM, is evaluated on the basis of precip-
itation and maximum and minimum daily temperatures, as
proposed by Dripps and Bradbury (2007). We recall that, ac-
cording to previous studies (Farinotti et al., 2016), the inves-
tigated area receives a significant contribution from glacier
melt. The irrigation term, IRR, is triggered only in the ab-
sence of precipitation during a crop-specific irrigation period.
It is evaluated (in each cell) by dividing the crop water need
(i.e., the amount of water required to meet the evapotranspi-
ration losses considering the crop type and its growth stage)
by the field application efficiency. We rely on the FAO-56

model (Allen et al., 1998) to assess the crop water need for
31 diverse types of crops identified in the area for four dif-
ferent growth stages and their related periods. Due to lack of
detailed space- and time-dependent irrigation data, here we
use a constant field application efficiency value, set to the
national average of 0.75 (Wriedt et al., 2009). For the eval-
uation of the actual evapotranspiration, potential evapotran-
spiration is first computed by (i) making use of the model
provided by Hargreaves and Samani (1985) in non-irrigated
regions and (ii) combining the Penman–Monteith model with
the correction crop coefficient in cultivated areas (consistent
with Allen et al., 1998). The latter method has been devel-
oped and widely applied for estimating evapotranspiration in
irrigated soils. Actual evapotranspiration is then computed
on the basis of the soil water content. If SWC is larger than
the potential evapotranspiration, ET is equal to the poten-
tial evapotranspiration; otherwise, ET=SWC. Note that the
Hargreaves–Samani and Penman–Monteith models are im-
plemented without considering any corrections for wind ef-
fects, as the study area experiences weak surface winds, with
an average wind speed of approximately 2 m s−1 (Bonafè
et al., 2014). Overland outflow (or surface runoff) is evalu-
ated upon making use the Soil Conservation Service (SCS)
curve number (CN) method (Mishra and Singh, 2003). Note
that the estimation of Roff requires the availability of maps
of hydrological soil class and land cover type. Hydrological
soil classes are assessed through the broadly used Rosetta
software (Schaap et al., 2001) that makes use of physical
soil attributes such as clay and sand soil content as well as
soil bulk density. Given the presence of very cold temper-
atures in different periods of the year for a large portion
of the study area, we include a runoff enhancement factor
in the case of frozen ground, as proposed by Molnau and
Bissell (1983). Finally, the overland inflow to a given cell
is evaluated as the sum of Roff values computed for the
uphill neighbor cells in the previous time step iteration. A
workflow of the recharge modeling approach is offered in
Fig. 3. Detailed information regarding all input values em-
ployed here can be found on an open-access code repository
(https://doi.org/10.5281/zenodo.10013442, Manzoni, 2023).

3.2 Groundwater modeling approach

We build a large-scale groundwater model that covers an area
of approximately 31 500 km2 within the Po River district (see
Fig. 1). The architecture of the subsurface system is assessed
by curating information embedded in datasets from three dis-
tinct local authorities. In this sense, we obtain an original in-
tegration of data stemming from the hydrostratigraphic sur-
vey of Emilia-Romagna (Regione Emilia-Romagna, 1998),
as well as from the regional water protection plans of the
Lombardia (Regione Lombardia, 2016) and Piemonte (Re-
gione Piemonte, 2022) regions. These studies provide infor-
mation on the lateral extent and the bottom surface of the de-
positional group that includes the groundwater system. This
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Figure 3. Conceptual workflow of the groundwater recharge model.

information has been obtained by local authorities upon in-
tegration of data from geological studies performed in the
area. The evolution of the sedimentary basin, as controlled
by geodynamic and climatological factors, is characterized
by an overall regressive trend from Pliocene open marine
facies to Quaternary marginal marine and alluvial deposits
(Ricci Lucchi et al., 1982; Regione Emilia-Romagna and
ENI-AGIP, 1998; Regione Lombardia and ENI-AGIP, 2002).
The aquifer system is characterized by a dense network of
deep faults that influence the overall depth of the aquifers
(Carcano and Piccin, 2001), driving the variability in the
groundwater system thickness from a few meters (close to
the foothills) to more than 300 m (in the central and east-
ern portions of the plain). A continuous portion of virtually
impermeable material can be found below the base surface.
As already noted in Sect. 3.1, we employ a digital elevation
model (ESA, 2019) to determine the topographic map of land
surface. This information enables us to determine the bound-
ary of the groundwater system. Notably, the highest uncer-
tainties in the hydrostratigraphic reconstruction model are
found beyond the lateral boundaries of the groundwater sys-
tem, where only a limited number of investigations is avail-
able.

We discretize the three-dimensional subsurface domain
through a hybrid mesh, as obtained within the Gmsh envi-
ronment (Geuzaine and Remacle, 2009) through the Open-
GeoSys Data Explorer GUI (Rink et al., 2013). The selected
mesh enables us to capture the irregular shape of the bound-
aries of the investigated domain as well as its natural fea-
tures while preserving the advantages of regular meshes for
modeling layered geological systems. Domain discretization
is performed according to a two-step approach. First, the
ground surface is discretized using triangular elements with
varying sizes (ensuring a maximum edge length of mesh el-
ements of 5 km). Elements are adjusted to closely represent
the ground surface as well as the irregular geometry of rivers
and boundaries. The study employs a vertical discretization
of the numerical grid that favors a balance between computa-
tional efficiency and the vertical distribution of geomaterials
provided by the work of Manzoni et al. (2023). In this con-
text, vertical discretization is finest near the surface, where
thinner layers of geomaterials are documented. This is con-
sistent with the availability of a high density of geological
data at such depths, which has then facilitated identifica-
tion of thin layers. Thus, the surface grid is then extruded
along the vertical direction to the bottom surface underlying
the whole groundwater system to create layers whose thick-
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ness increases with depth according to the following crite-
ria: (i) layers maintain a constant thickness of less than 10 m
within the top 100 m below the surface level; (ii) at depths
comprised between 100 and 200 m, the largest layer thick-
ness is less than 20 m; and (iii) a constant thickness of less
than 40 m is maintained for layers corresponding to depths
larger than 200 m.

To determine the types of geomaterials associated with
each cell of the resulting grid, we rely on the detailed three-
dimensional probabilistic hydrostratigraphic model devel-
oped for the Po River district by Manzoni et al. (2023).
The dataset includes six macro categories (or geomateri-
als, denoted as gravel, sand, silt, clay, fractured rock, and
rock) according to which the data associated with lithostrati-
graphic information across the area can be grouped. Man-
zoni et al. (2023) rely on a fine structured grid (resolution
of 1000× 1000 m along the horizontal plane and 1 m along
the vertical direction) and evaluate the probability that each
cell is associated with one of these six geomaterials. On these
bases, we can evaluate the fraction of the cth geomaterial that
can be assigned to the ith cell of our simulation grid, fc,i , as

fc,i =
1
Ni

∑Ni

j
Pc,j . (2)

Here, Ni denotes the number of cells associated with the hy-
drostratigraphic model of Manzoni et al. (2023) that are in-
cluded in the ith cell of our simulation grid and Pc,j is the
probability that the cth category (or geomaterial) be assigned
to cell j of the abovementioned hydrostratigraphic model.
Figure 4a depicts the percentage of simulation grid cells as-
sociated with given (color-coded) ranges of values for fc,i
for each geomaterial category. One can note that clay and
sand are the most abundant geomaterial categories identified
across our domain. Otherwise, gravel is the most frequent
among the remaining categories, being associated with about
15 % of the simulation grid cells. Categories associated with
silt or rock and fractured rock are found in very limited pro-
portion across the entire simulated domain.

Figure 4b illustrates the spatial distribution of the most
probable geomaterial category within the Po River basin, as
obtained by Manzoni et al. (2023). The reconstruction ex-
tends to a depth of 400 m below ground surface, covering the
entire Po watershed and encompassing the full extent of the
simulation grid.

We then assess the permeability of the ith cell of the grid
as

ki =
∑Nc

c
fc,i kc with Nc = 6 , (3)

where kc is the permeability of the cth category; kc values
are estimated through model calibration, while fc,i is pro-
vided as prior information (see Manzoni et al., 2023). Details
regarding model calibration are illustrated in Sect. 3.3.

As boundary conditions, we set a constant hydraulic head,
h= 0 m, along the coastline and a Cauchy boundary condi-
tion along the Adige River. Flow boundary conditions are

imposed along the remaining lateral boundaries (see Fig. 1).
Here, boundary fluxes are assigned using a mass balance
analysis performed across the 14 main sub-basins surround-
ing the investigated subsurface domain (denoted as sub-
basins, s = 1,2, . . .,14, in Fig. 1). The delineation of these
sub-basins is provided by the Po River District Basin Author-
ity (AdB-Po, 2021). Inflow takes place through the vertical
surface that extends from the ground surface to the aquifer
base along the lateral extent of the aquifer system. Such a
lateral surface is typically characterized by a limited depth
(only a few meters). Thus, lateral inflow is distributed uni-
formly across all layers of the lateral surface associated with
each sub-basin. Making use of the results of Sect. 3.1, we
evaluate within each of these sub-basins the average (in time)
amount of water that infiltrates within a day as

Qs = rqR
′
sSs , (4)

where R′s [L T−1] is the (space–time-averaged) recharge rate
evaluated for the sth sub-basin (with a ground surface area
of the extent of Ss) during the temporal window spanning
the years 2013–2019. To account for possible exfiltration
of infiltrated water or infiltration of water due to surface–
groundwater interaction (e.g., river water infiltration), we
also introduce a correction coefficient, rq . The latter is set at
a constant value for all sub-basins to avoid model overparam-
eterization and is estimated through model calibration, as de-
tailed in Sect. 3.3. Finally, we determine a uniform flow rate
boundary condition for the sth sub-basin as qs =Qs/As, As
corresponding to the lateral surface associated with a given
sub-basin. We assign water flow rate boundary conditions at
the ground surface of the domain upon considering the mean
groundwater recharge (see Sect. 3.3) and domestic water use.
To estimate the volumetric flow rate for domestic use, we
rely on the public water supply data provided by the Italian
National Institute of Statistics (ISTAT, 2020). This dataset
contains values of flow rates (in m3 yr−1) employed for do-
mestic purposes for each municipal administrative area as
well as the share of domestic water associated with ground-
water resources. Such data are available for the years 2012,
2015, 2018, and 2020. We then evaluate the average flow rate
for each municipality on this basis. For a given municipal-
ity, domestic water fluxes associated with the use of ground-
water resources is assessed upon evaluating the ratio of the
total volumetric flow rate associated with groundwater ex-
tractions for drinking water to the surface area covered by
the municipality itself (OpenStreetMap, 2021). Volumetric
flow rates employed in the model are then obtained by mul-
tiplying the portion of the municipality area within the mod-
eled domain by the domestic water flux. Due to the lack of
comprehensive information regarding the location of extrac-
tion wells, we consider such a water flow rate a distributed
sink term located within the deepest layer of the simulation
domain beneath each associated municipality. This assump-
tion is grounded on the notion that drinking water wells are
typically engineered to extract water from locations that are
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Figure 4. (a) Percentage of grid cells characterized by given ranges of values of fc,i (Eq. 2). (b) Spatial distribution of modal categories
obtained by Manzoni et al. (2023). Planar maps are selected at 5, 10, 25, 50, 100, 150, 200, and 350 m below ground surface. Background
map: © Google Maps 2023.

protected from potential contaminants that may infiltrate and
pollute shallower regions of subsurface waterbodies. Finally,
we set Robin boundary conditions along the cells associated
with the main 18 rivers located within the domain (see Fig. 1
for their location), i.e.,

Qr,i =−Cr,i
(
hi −hrs,i

)
, (5)

where Qr,i represents the water flow rate from the segment
of the rth river of length Lr,i within the ith grid cell to the
groundwater systems; Cr,i represents the riverbed conduc-
tance of segment Lr,i ; and hi and hrs,i are the groundwater
hydraulic head at cell i and the elevation of the river stage of
segment Lr,i , respectively. Each river is assigned a uniform
specific conductance, αr = Cr,i/Lr,i , with the exception of
the Po River. The latter is subdivided into three segments
(see Fig. 1), each with a different specific conductance due
to the varying geological characteristics, i.e., (i) the eastern
portion of the river flows over a geologic region mainly char-
acterized by deltaic, floodplain, coastal, and wind deposits;
(ii) the middle portion of the river flows over a geologic re-
gion mainly characterized by terraced alluvium and aeolian
deposits; and (iii) the western portions of the river meander
through hilly regions, which exhibit diverse geological fea-
tures (Compagnoni et al., 2004). This subdivision leads to 20
distinct values of αr , estimated as detailed in Sect. 3.3.

3.3 Calibration data and inverse modeling strategy

In this section, we first report on the procedures applied to
obtain calibration data from raw datasets (Sect. 3.3.1), and
then we describe the main traits of the model inversion strate-
gies (Sect. 3.3.2).

3.3.1 Data curation

Model parameters are estimated using time-averaged mea-
surements of groundwater levels available across the domain
and collected between January 2013 and December 2019.
These data are available for the three main Italian regions
within which the groundwater system resides (i.e., Piemonte,
Lombardia, and Emilia-Romagna). Available data are not ho-
mogeneous in terms of quantities monitored, temporal win-
dows associated with data collection, and data format. Data
curation is therefore a critical element to enable effective use
of the available information. The resulting dataset is pre-
sented and employed for the first time here. It serves as a
basis upon which future studies aimed at further enhancing
our knowledge of the hydrological functioning of this large-
scale groundwater system and designing appropriate water
management strategies therein can be developed.

Hydraulic head data have been collected with a sampling
frequency of 8 h for the Piemonte region (Agenzia Regionale
per la Protezione Ambientale Piemonte, 2020). In the Emilia-
Romagna and Lombardia regions, the sampling frequency
varies among wells, with an average approximately corre-
sponding to 2 and 10 samples per year, respectively (Regione
Emilia-Romagna, 2020; Regione Lombardia, 2021). We ap-
ply a filtering process to the raw data before combining the
different datasets. To avoid seasonal biases, we exclude from
the dataset wells that do not have at least one observation
in two different seasons for each year within the given time
range. Furthermore, we exclude observation wells affected
by local operational activities. For the Nhb = 286 remaining
wells, whose locations are indicated in Fig. 1, we evaluate
the average hydraulic head, hl (with l = 1, . . .,Nhb ), associ-
ated with the investigated period.
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3.3.2 Model calibration

Model parameters are estimated through a multi-objective
optimization approach. The latter is tied to the joint mini-
mization of two objective functions formulated as

fNhb
=

√√√√∑Nhb
l=1
(
hl −hl

)2
Nhb

(6)

and

fNhr =

√√√√∑Nhr
l=1
(
hl −hl

)2
Nhr

, (7)

where hl and hl denote observed and estimated hydraulic
head at well l, respectively. Estimation of permeability of
each geomaterial (i.e., kc in Eq. 3) and of the correction co-
efficient (i.e., rq in Eq. 4) entails minimizing Eq. (6) (consid-
ering all available hydraulic head data, Nhb ). To estimate the
specific conductance of the riverbeds, αr (with r = 1, . . .,20),
we minimize Eq. (7) with Nhr <Nhb , where Nhr is the num-
ber of wells located within a maximum distance of 5 km from
a river (see orange dots in Fig. 1). Including this constraint on
the distance between a river and observation wells enables us
to refine the estimation of αr by considering only hydraulic
head observations that are significantly impacted by the inter-
connection between the groundwater system and the rivers.
Note that minimization of Eqs. (6) and (7) is tantamount
to relying on a maximum likelihood (ML) estimation ap-
proach, assuming that measurement errors in hydraulic head
are not correlated and can be described through a Gaussian
distribution (Carrera and Neuman, 1986). The two objective
functions to minimize are closely interconnected. We imple-
ment an enhanced variant of the differential evolution (DE)
optimization method (Storn and Price, 1997) to effectively
minimize both objective functions simultaneously. Here, we
rest on a modified version of the Cooperative Coevolutionary
Differential Evolution (CCDE) optimization algorithm pro-
posed by Trunfio (2015). The implemented algorithm does
not require defining a single weighted multi-objective func-
tion, as otherwise required by standard DE and standard
CCDE. Thus, our approach eliminates the non-trivial task of
determining the appropriate (relative) weights between each
of the terms that constitute the multi-objective function (e.g.,
Dell’Oca et al., 2023). Resorting to a modified CCDE al-
gorithm enables us to balance between simplicity and the
efficiency documented for coevolutionary algorithms (CAs)
when dealing with multi-objective fitness functions (Khan et
al., 2022).

As nature-inspired optimization techniques, CAs draw
upon principles of biological coevolution, where optimiza-
tion problems are linked to coevolving species (Dagdia and
Mirchev, 2020). CAs share similarities with evolutionary al-
gorithms, as their sampling mechanisms and dynamics are

inspired by Darwin’s theory of evolution. Just as species
evolve based on their fitness to survive and reproduce within
an environment, solutions within a search space evolve to
achieve the minimum of an objective function (Simoncini
and Zhang, 2019). Additionally, the coevolution principle
considers that a change in one species can trigger changes
in related species, thus leading to adaptive changes in each
species (Khan et al., 2022). In this context, Eqs. (6) and (7)
represent optimization functions for two coevolving species.
These are then optimized through the modified CCDE. Our
algorithm differs from CCDE (Trunfio, 2015) primarily in
the way we define the dimensions of the two species. Instead
of employing random or dynamic grouping strategies (Yang
et al., 2008; Trunfio, 2015), we opt for a supervised grouping
strategy linking one of the model parameters (i.e., riverbed
conductance, αr ) to one species and the remaining parame-
ters to the other species.

We choose a modified version of Coevolutionary Differ-
ential Evolution (CCDE) over the widely used NSGA-II (or
its variant, CC-NSGA-II) for our algorithm. Both these algo-
rithms use a divide-and-conquer strategy and are effective for
high-dimensional optimization. However, while NSGA II re-
lies on a genetic algorithm, our algorithm utilizes differential
evolution (DE). According to Tusar and Filipic (2007), DE-
based algorithms outperform GA-based algorithms in multi-
objective optimization due to a more efficient exploration
of the parameter space. This element is particularly critical
when optimal solutions lie on parameter bounds or amidst
many local optima.

Additionally, our implemented algorithm does not explic-
itly optimize a front, which is otherwise a central concept in
NSGA-II. Instead, it focuses on optimizing individual objec-
tive function values without introducing a dominance con-
cept considering both objectives. This approach leads to a
single set of optimized parameters, thus simplifying the op-
timization process through a balance of the contribution of
both objective functions.

The implemented algorithm is designed to address global
optimization problems through alternate evolution of candi-
date solutions between the two different species. The algo-
rithm uses mutation, crossover, and selection strategies to
enhance the quality of solutions, as detailed in the following.
First, we introduce the populations of candidate solutions.
For each of the two species (where sp takes the value of 1 or
2, for species associated with Eqs. 6 and 7, respectively), we
consider a set of NS candidate solutions (or members), de-
noted as Ssp =

[
ssp,1, . . .,ssp,m, . . .,ssp,Ns

]
. Following Storn

and Price (1997), we setNS = 15×Np,Np being the number
of parameters (i.e., Np = 7 or 20 for Eq. 6 or Eq. 7, respec-
tively). Initial candidate solutions are defined by randomly
selecting parameter values from a parameter space whose
extent is designed to encompass a broad range of possible
solutions.

Members of the populations are combined and mutated to
calculate the next generations of candidate solutions as fol-
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lows. We start by computing a mutated vector for each mth
candidate solution of a species associated with the kth itera-
tion of the optimization algorithm (or generation) as

ŝksp,m = sksp,m+F
(
sksp,a − sksp,b

)
. (8)

Here, F represents an algorithm parameter (termed differen-
tial weight) that is set to be equal to 0.5 and sksp,a and sksp,b
(with a 6= b 6=m) correspond to two (randomly selected)
members of the population. We then combine parameters of
ŝksp,m and sksp,m to determine the trial vector s̃ksp,m: if a param-
eter of s̃ksp,m is selected for mutation, its value is taken from
ŝksp,m; otherwise, it is taken from sksp,m. We randomly choose
the parameters of sksp,m that will undergo mutation among
the parameters associated with the sp species, with a proba-
bility of parameter mutation set to 0.5. We finally select the
mth candidate solution of the (k+ 1)th generation, sk+1

sp,m, by
comparing the trial member, s̃ksp,m, and the mth population
member from the kth generation, sksp,m, based on the follow-
ing condition:

sk+1
sp,m =

 s̃ksp,m if fN
(
s̃ksp,m

)
< fN

(
sksp,m

)
,

sksp, m if fN
(
s̃ksp,m

)
≥ fN

(
sksp,m

)
,

with fN = fNhl
or fNhr . (9)

The algorithm steps can be summarized as follows at a
given iteration k:

1. A new generation (k+1) of the first species is calculated
using Eqs. (8)–(9), with fN = fNhl , while keeping the
parameters of the second species fixed.

2. The parameter set with the best performance, sk+1
1,best,

among the members of sk+1
1,m is transferred to the second

species.

3. The parameters of the first species are maintained as
fixed while calculating sk+1

2,m (the next generation of the
second species), thus repeating step 1 for the second
species with sp= 2 and Eq. (7).

4. The parameter set of the member in the second species
with the best objective function value, sk+1

2,best is passed
back to the first species.

5. Steps 1 to 4 are repeated until a stopping criterion is
met.

The patience stopping criterion is employed here for both ob-
jective functions; i.e., the algorithm stops if no improvement
in performance over 80 consecutive iterations (or epochs)
is detected. Figure 5 illustrates the pseudocode of the algo-
rithm.

Figure 5. Pseudocode of the employed algorithm.

Finally, to quantify the residual (i.e., after calibration)
uncertainty associated with each estimated model parame-
ter, we compute the parameter estimation covariance matrix,
6N , as

6N

σ 2
h,N

=

[
JT J

]−1
, with N =Nhb ,Nhr , (10)

where J is the Jacobian matrix (T denoting transpose) of size
[N ×Np,Np] and σ 2

h,N is measurement error variance. The
latter is generally unknown and can be computed a posteriori,
as detailed in Carrera and Neuman (1986). Matrix J contains
the derivatives of h with respect to model parameters. These
are evaluated at the end of the optimization procedure using
a centered difference scheme.

3.4 Global sensitivity analysis

A global sensitivity analysis is performed in the surround-
ing of the parameter values obtained through model calibra-
tion. A GSA provides valuable insights into the impact of pa-
rameter uncertainty in the simulated variable (i.e., hydraulic
head values in our case). Furthermore, an informed GSA of-
fers guidance about where new (hydraulic head) measure-
ments can enhance the quality of parameter estimates. As a
GSA metric, we rely on the Morris indices. These are defined
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through the introduction of elementary effects, EEθp,n .

EEθp,n

=
h
(
θ1, . . .,θp +1θp, . . .,θNp

)
−h

(
θ1, . . .,θp, . . .,θNp

)
1θp

(11)

Here, EEθp,n is the incremental ratio for the uncertain pa-
rameter θp computed along trajectory n within the parame-
ter space and 1θp is an increment evaluated as proposed by
Campolongo et al. (2007). The Morris index, µ∗θp , is then de-
fined as

µ∗θp =
1
M

∑M

n

∣∣EEθp,n
∣∣ . (12)

Here, M represents the number of trajectories (i.e., the num-
ber of diverse parameter combinations) selected employ-
ing a radial-sampling strategy (Campolongo et al., 2007).
Stable results have been obtained with M = 500, requiring
(M + 1)NP forward model simulations. We recall that the
absolute value in Eq. (12) prevents cancellation between pos-
itive and negative values of EEθp,n . Variations in the value of
parameters associated with low values of µ∗θp induce negli-
gible changes in h. Note that we evaluate µ∗θp at all spatial
locations within the simulated domain. This enables us to
create a three-dimensional spatial distribution of Morris in-
dices, providing insights into the impact of each parameter
on hydraulic head values across the entire domain.

4 Results and discussion

This section is devoted to the discussion of the results
related to the groundwater recharge spatial distribution
(Sect. 4.1), groundwater flow model calibration and simu-
lations (Sect. 4.2), and global sensitivity analysis (Sect. 4.3).

We begin by examining the spatial distribution of ground-
water recharge and its impacts on the groundwater flow
model. Our discussion encompasses model parameterization
results and the large-scale three-dimensional flow patterns
obtained through the calibrated model. The insights gained
from model calibration assist the definition of an informed
parameter space for the subsequent GSA.

4.1 Groundwater recharge

Figure 6 depicts (time-averaged, during the years 2013–
2019) spatial distribution of estimated annual groundwater
recharge. The highest rates of recharge are detected in the
northern part of the domain, which is characterized by high
precipitation levels and permeable geomaterials (Poggio et
al., 2021). The eastern area of the domain exhibits shal-
low groundwater conditions and low permeability geomate-
rials, resulting in reduced infiltration rates. These findings
are consistent with the spatial distribution of groundwater
recharge presented by Rossi et al. (2022). These authors es-
timate groundwater recharge in Italy using a water balance

approach and open-access data while relying on a spatial
resolution that is otherwise coarser that the one we consider
(i.e., grid-cell resolution of 10× 10 km). Their study places
annual groundwater recharge for the Po River watershed at
values ranging between 27 and 37×109 m3 yr−1. Our cal-
culated average annual groundwater recharge for the entire
watershed for the period 2013–2019 corresponds approxi-
mately to 38 billion m3 yr−1 and is thus in line with the
above-mentioned range.

Most of the groundwater recharge takes place in the moun-
tain areas of the Po River district, with only approximately
0.4 billion m3 yr−1 being received from the top surface of the
aquifer. This result suggests that the main water inflow to
groundwater is related to the lateral surface located close to
the foothills.

4.2 Groundwater model

To ensure effective convergence of the CCDE algorithm, we
rely on the set of metrics depicted in Fig. 7a–d. Note that the
optimization algorithm leads to a converge of both objective
functions (fNb and fNr ) in less than 50 iterations. The ensu-
ing calibrated model is seen to display a remarkable degree
of consistency with the system behavior observed across the
domain (see Fig. 7c, d). The mean absolute error (in terms
of hydraulic head) in the central and eastern areas of the Po
Plain is consistently low, averaging about 4.5 m for these re-
gions. The highest errors are observed near the foothill areas
and in the planar areas of the Piemonte region. Estimated
model parameter values are listed in Table 1.

Results associated with the entries of the parameter esti-
mation covariance matrices (6Nb/σ

2
h,Nb

and 6Nr /σ
2
h,Nr

) are
depicted in Fig. 8a and b, respectively. As shown by the di-
agonal terms in Fig. 8a, the estimation variance of perme-
ability (k) is higher for geomaterial categories five (fractured
rock) and six (rock) as compared to the other ones. This re-
sult is related to the observation that these geomaterials are
present in small amounts within the domain (see Fig. 4). Fur-
thermore, there is a certain degree of negative correlation be-
tween permeabilities of geomaterial five and rq . This finding
is attributed to the fact that the simulation grid cells with the
highest proportion of geomaterial five can be found in the
mountainous areas and near the foothills (see Fig. 4b), which
are close to the boundary where an inflow boundary condi-
tion is applied. Therefore, in these locations, an increase (or
decrease) in the inflow across the boundaries can be obtained
by increasing (or decreasing) both k5 and rq .

When considering riverbed conductance, it is observed
that rivers with lower flows, such as the Chiese, Lamone,
Savio, and Sesia rivers (associated with parameters α5, α12,
α13, and α17; see Fig. 1 for their planar location), exhibit the
largest parameter estimation variance. In the central part of
the Po River, the estimation variance of α10 is generally low.
This suggests that the available data can effectively inform
and provide valuable insights into the dynamics of river–
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Figure 6. Estimated mean annual groundwater recharge across the Po River district. The coordinate reference system (CRS) is ESRI:54012.

Figure 7. (a) Convergence analysis of fNb and fNr (Eqs. 6 and 7, respectively), (b) normalized frequency distribution of differences between
observed (hl) and simulated (hl) hydraulic heads, (c) observed versus simulated hydraulic heads (values associated with theNhr wells located
close to the rivers are depicted in orange), and (d) post-calibration residuals (hl −hl) versus observed heads.
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Table 1. Uncertain model parameters, associated estimated values resulting from model calibration, and intervals of variability employed in
the GSA.

Parameter Description Parameter estimate Parameter range of variability

k1× 10−9 [m2] Permeability of geomaterial one 1.02 0.64–1.61
k2× 10−9 [m2] Permeability of geomaterial two 3.83 2.24–6.08
k3× 10−13 [m2] Permeability of geomaterial three 2.24 1.41–2.55
k4× 10−10 [m2] Permeability of geomaterial four 1.57 0.99–2.49
k5× 10−15 [m2] Permeability of geomaterial five 2.12 1.34–3.37
k6× 10−18 [m2] Permeability of geomaterial six 5.04 3.18–8.00
rq [–] Lateral inflow correction coefficient 0.99 0.79–1.19
α1× 10−5 [m2 s−1] Specific conductance of Adige 8.18× 10−2 8.18× 10−4–8.18
α2× 10−5 [m2 s−1] Specific conductance of Secchia 7.12× 10−2 7.12× 10−4–7.12
α3× 10−4 [m2 s−1] Specific conductance of Dora Baltea 1.02× 10−2 1.02× 10−4–1.02
α4× 10−7 [m2 s−1] Specific conductance of Ticino 1.10× 10−2 1.10× 10−4–1.10
α5× 10−3 [m2 s−1] Specific conductance of Chiese 3.34× 10−2 3.34× 10−4–3.34
α6× 10−7 [m2 s−1] Specific conductance of Oglio 2.44× 10−2 2.44× 10−4–2.44
α7× 10−5 [m2 s−1] Specific conductance of Tanaro 3.04× 10−2 3.04× 10−4–3.04
α8× 10−2 [m2 s−1] Specific conductance of Po – western section 2.95× 10−2 2.95× 10−4–2.95
α9× 10−2 [m2 s−1] Specific conductance of Po – eastern section 1.34× 10−2 1.34× 10−4–1.34
α10× 10−4 [m2 s−1] Specific conductance of Po – central section 1.16× 10−2 1.16× 10−4–1.16
α11× 10−5 [m2 s−1] Specific conductance of Reno 2.90× 10−2 2.90× 10−4–2.90
α12× 10−5 [m2 s−1] Specific conductance of Lamone 5.53× 10−2 5.53× 10−4–5.53
α13× 10−2 [m2 s−1] Specific conductance of Savio 7.50× 10−2 7.50× 10−4–7.5
α14× 10−5 [m2 s−1] Specific conductance of Adda 3.20× 10−2 3.20× 10−4–3.20
α15× 10−5 [m2 s−1] Specific conductance of Taro 1.83× 10−2 1.83× 10−4–1.83
α16× 10−8 [m2 s−1] Specific conductance of Mincio 7.3× 10−2 7.30× 10−4–7.30
α17× 10−2 [m2 s−1] Specific conductance of Sesia 2.16× 10−2 2.16× 10−4–2.16
α18× 10−4 [m2 s−1] Specific conductance of Orco 1.79× 10−2 1.79× 10−4–1.79
α19× 10−4 [m2 s−1] Specific conductance of Lambro 4.39× 10−2 4.39× 10−4–4.39
α20× 10−6 [m2 s−1] Specific conductance of Naviglio Grande 1.03× 10−2 1.03× 10−4–1.03

Figure 8. Covariance matrix of parameter estimates related to (a) Eq. (6) and (b) Eq. (7).

groundwater interactions in this area. Conversely, estimates
of parameters α8 and α9, characterizing the western and east-
ern portion of Po River, are associated with a high estima-
tion variance. Additionally, a negative correlation can be ob-
served between α8 and α9.

Figure 9 offers an overview of the three-dimensional dis-
tribution of permeability values across the subsurface do-
main. Figure 9a depicts the frequency distribution of the es-
timated permeabilities. These results reveal three dominant

modes (or peaks) in the distribution. These are characterized
by a frequency that is 1 order of magnitude higher with re-
spect to the rest of permeability values. This element sug-
gests that the subsurface domain can be conceptualized (at
this large scale) as a block-heterogeneous system compris-
ing three main macro-areas, each of these being character-
ized by a mildly heterogeneous spatial distribution of per-
meability values. In this sense, the extent of each of these
areas is assessed on the basis of the distribution of geo-
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materials, which in turn drives the spatial distribution of
permeability. The spatial arrangement of these macro-areas
is consistent with the distribution of the three main sedi-
ment types indicated in the Italian geological map (Com-
pagnoni et al., 2004) within the Po Plain (see Fig. 9c). Fig-
ure 9a provides an appraisal of the spatial distribution of the
three macro-areas by means of envelopes obtained through
projection of their otherwise three-dimensional shape on a
two-dimensional (2D) plane. This visualization is comple-
mented by Fig. 9b, which depicts a qualitative represen-
tation of the vertical distribution of log(k) along selected
cross sections (vertical exaggeration of 200). Access to a
detailed grid of the three-dimensional distribution of perme-
ability values is available through a code and data repository
(https://doi.org/10.5281/zenodo.10013442, Manzoni, 2023).

The first macro-area, associated with the lowest perme-
ability values within the modeled domain, generally corre-
sponds to the southeastern portion of the alluvial plain (Adri-
atic sector). Here, finer and less permeable sediments consti-
tute the main features associated with geological deposition
processes. The second macro-area is primarily located near
the northern and western boundary, adjacent to the Alpine
foothill areas, and is characterized by intermediate perme-
ability values. Additional smaller areas with conditions sim-
ilar to the Alpine foothills can be identified in the foothill
areas of the Apennines. Note that, according to Éupolis Lom-
bardia (2016), the planar area adjacent to the foothills in the
Lombardia region is very heterogeneous and features a se-
ries of highly permeable layers interspersed with less perme-
able layers. This is consistent with the intermediate range of
permeability values obtained within our large-scale domain
through model calibration. The third macro-area is character-
ized by high permeability values. It spans the entire depth of
the system in the central-southern portion of the plain, while
it does not reach the surface in the northeastern part of the
domain. This area is influenced by the deposits formed by
the presence of the Po River.

As shown in Fig. 10a, hydraulic heads exhibit a higher
gradient on the western side of the domain. This behavior
can be attributed to the shallow depth of the aquifer and to
the steep gradient of the domain bottom in this area. Fig-
ure 10b illustrates the way velocity magnitude and pattern
are influenced by the three-dimensional distribution of the
geomaterials and the thickness of the domain. As exempli-
fied in section A–A′, our results document that subsurface
flow can be considered chiefly 2D (i.e., vertical flow is neg-
ligible) across regions where the groundwater system is very
thin, and the bottom is fairly parallel to the ground surface.
This is especially evident in the steepest areas within the do-
main. Other than that, velocity distributions across sections
B–B′ and C–C′ exhibit marked three-dimensional character-
istics in terms of flow. With reference to section C–C′, we
note that lower permeability close to the domain bottom re-
sults in reduced groundwater fluxes, as compared to the other
sections. Additionally, the bottom-right side of section B–B′

documents the impact of low-permeability lenses on the local
three-dimensional patterns of fluxes (in terms of magnitude
and direction). Finally, Fig. 10b documents spatial variability
in permeability and groundwater flow across three selected
vertical cross sections near the rivers, highlighting the effects
of river–groundwater interactions.

4.3 Global sensitivity analysis

Ranges of parameter variability employed for the GSA are
listed in Table 1. These are selected to allow for (approxi-
mately) a 100 % variability in permeabilities values, while
values of parameter αr (r = 1, . . .,20) can vary by 4 orders
of magnitude. This choice enables us to account for the ex-
tensive uncertainty associated with the quantification of the
interconnections between subsurface and surface waterbod-
ies, as these variables are typically not monitored in the field.

Figure 11 depicts values of µ∗θp associated with geomate-
rial permeability and correction coefficient rq . These results
suggest that permeability values of geomaterial categories
three, five, and six have a negligible impact on the spatial dis-
tribution of hydraulic heads. We recall that categories three,
five, and six are detected only in a limited amount within the
modeled domain (see Fig. 4). As expected, the permeabil-
ity of geomaterial one (gravel) significantly influences sim-
ulation results in the foothills of the western portion of the
domain, while that of category four (clay) primarily affects
simulation results in the southeastern portion of the domain.
These results are in line with the spatial distribution asso-
ciated with two lithologies. Category two (sand) displays a
noticeable impact on the hydraulic head distribution across
the entire domain, which aligns with the observation that it
is a widely available geomaterial within the system, span-
ning from west to east. Finally, parameter rq significantly
impacts hydraulic heads within all foothill areas, where lat-
eral flow enters the groundwater system. As expected, its im-
portance gradually decreases when moving away from the
boundary. The influence of permeability and rq significantly
diminishes near the main rivers, where the flow field is pri-
marily affected by parameters related to riverbed conduc-
tance (Fig. 12). Most of the riverbed conductance values can
only affect hydraulic head estimates close to the rivers. This
enables us to quantify the extent of the river influence on
groundwater flow and further supports our calibration strat-
egy, i.e., the use of the designed multi-objective optimization
approach.

Rivers with the highest flow rates, such as the Adige (α1),
Ticino (α4), Oglio (α6), Reno (α11), and Adda (α14), as well
as the central section of the Po River (α10), exhibit the high-
est values of µ∗θp . Rivers like the Chiese River (α5) and the
western (α8) and eastern part of the Po River exhibit lim-
ited impact on simulated hydraulic head fields, partially due
to their proximity to specific boundaries. These boundaries
primarily influence groundwater flow through lateral bound-
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Figure 9. (a) Frequency distribution of the natural logarithm of permeability, log(k) (k expressed in m2), estimates, and spatial distribution
of the three macro-areas corresponding to envelopes obtained through projection of their otherwise three-dimensional shape on a 2D plane;
(b) vertical distribution of log(k) along selected cross sections (vertical exaggeration of 100); and (c) visual comparison between the spatial
distribution of permeability estimates across the model top layer and the distribution of the three main sediment types indicated in the Italian
geological map (Compagnoni et al., 2004) within the Po Plain.

Figure 10. Main groundwater flow model outputs: (a) hydraulic head and overall direction of groundwater fluxes across the top layer of the
model and (b) magnitude and overall direction of groundwater fluxes and permeability distribution along cross sections A–A′, B–B′, and
C–C′ (vertical exaggeration of 200).
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Figure 11. Spatial distribution of Morris indices related to geomaterial permeabilities (k1,. . . , k6) and correction coefficient, rq , across the
top layer of the model.

ary conditions (see Sect. 4.2), thus shadowing the effect of
river–groundwater exchanges.

In Italy, irrigation channels have been documented to op-
erate with efficiencies ranging from 0.43 to 0.6 (Wriedt et
al., 2009). Then, a significant amount of the water lost from
these channels enters the groundwater system. In this con-
text, channels and rivers such as the Naviglio Grande and
the Lambro (associated with α19 and α20, respectively) show
a significant influence on the local hydraulic head distribu-
tion, even as they are characterized by a generally low flow
rate. This is related to the observation that they are located
in an area with a dense irrigation channel network (De Caro
et al., 2020) and their contribution to groundwater flow in-
cludes the cumulative effect of a high number of small irri-
gation channels. Figure S1 (see the Supplement) illustrates
the portions of the rivers which recharge or drain the aquifer.

It is worth noting that all Morris indices display only
modest variability along the vertical direction. The com-
plete three-dimensional spatial distribution of µ∗θp and a
grid containing 10 cross sections highlighting our find-
ings about the vertical variability in Morris indices can be
accessed in an open-source Visualization Toolkit (VTK)
format for structured grids (Schroeder et al., 2006).
These data are available on a code and data repository
(https://doi.org/10.5281/zenodo.10664413, Manzoni, 2024).

5 Conclusions

The study introduces a comprehensive methodology that
combines advanced numerical and data analysis methods,
such as multi-objective optimization, informed GSA, and
three-dimensional groundwater modeling, to analyze subsur-
face flow dynamics across large-scale domains. We support
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Figure 12. Spatial distribution (across the top layer of the model) of Morris indices related to specific conductance of the riverbeds.

the suitability of the proposed approach to assess large-scale
complex groundwater systems by employing it to analyze the
main features of Italy’s largest groundwater system, which is
set within the Po River watershed. Our work leads to the fol-
lowing major conclusions.

Groundwater recharge is evaluated across the analyzed
large-scale system, relying jointly on remote sensing infor-
mation and on-site data on land use and soil properties. While
our results are overall consistent with prior findings across
the area based on a global water balance approach (Rossi et
al., 2022), they are also associated with an enhanced spatial
resolution. As such, they provide the basis for future applica-
tions aimed at delineating areas associated with vulnerability
of the groundwater resource.

A coevolutionary algorithm is successfully employed for
the calibration of our large-scale groundwater system model.
Our approach allows for differentiating the use of data de-
pending on the spatial location of the observation wells.
Notably, our approach is tailored to separate calibration of
riverbed conductance, thus addressing surface–groundwater

interactions with a dedicated optimization. Casting model
calibration within a stochastic context yields quantification
of the residual (i.e., after calibration on available informa-
tion) uncertainty associated with model parameters. This ul-
timately enables one to identify model parameters whose es-
timates are associated with large uncertainty (as rendered
through estimation variance) on the basis of the available
dataset. In our scenario, the resulting model parameterization
enables us to subdivide the domain into three macro-areas,
each characterized by mild spatial heterogeneity of perme-
ability. The spatial arrangement of these areas is in line with
the distribution of sediment types documented by available
geological maps associated with the studied domain (Com-
pagnoni et al., 2004). While relying on a characterization of
the system through a block-heterogeneous conceptual picture
is consistent with the scale tackled in our study, a detailed
assessment of heterogeneous conductivity patterns might be
required when targeting local-scale settings. The latter can
then be nested in the context of the large-scale patterns doc-
umented in our study.
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The calibrated model enables us to identify three-
dimensional flow patterns, as driven by the (three-
dimensional) heterogeneous distribution of geomaterials
across the subsurface. This represents a significant advance-
ment as compared to commonly developed large-scale mod-
els based on 2D geological maps.

A global sensitivity analysis (GSA) quantifies the relative
importance of uncertain model parameters on a target model
output (i.e., hydraulic heads) across the whole domain. Our
results document the spatially heterogeneous distribution of
global sensitivity metrics associated with model parameters,
thus providing information about where the acquisition of fu-
ture information could contribute to enhancing the quality
of groundwater flow model parameterization and constrain-
ing hydraulic head estimates. Our findings suggest that the
features of the foothills (an area that is highly unexplored
to date as compared to lowland areas) should be subject to
additional investigation to improve the quality of hydraulic
head estimates. Furthermore, GSA results allow for identify-
ing rivers where information on water exchange with ground-
water could be beneficial to improve piezometric characteri-
zation.
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