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Abstract. An event-based approach has been used to explore
the potential effects of climate change on the spatial and tem-
poral coherence of widespread flood events in Great Britain.
Time series of daily mean river flow were generated using
a gridded national-scale hydrological model (Grid-to-Grid)
driven by a 12-member ensemble of regional climate pro-
jections from UK Climate Projections 2018 (UKCP18), for
30-year baseline (1980–2010) and future (2050–2080) time
slices. From these, sets of widespread extreme events were
extracted. The question of what defines a “widespread flood
event” is discussed; here it was defined as an event exceeding
an at-site 99.5th percentile (equivalent to 2 d per year) simul-
taneously over an area of at least 20 km2, with a maximum
duration of 14 d. This resulted in a set of 14 400 widespread
events: approximately 20 events per year, per ensemble
member, per time slice. Overall, results have shown that
events are more temporally concentrated in winter in the
future time slice compared to the baseline. Distributions of
event area were similar in both time slices, but the distribu-
tion of at-site return periods showed some heavier tails in the
future time slice. Such information could be useful for adap-
tation planning and risk management for floods under climate
change, but the potential future changes have to be inter-
preted in the context of some differences in event character-
istics between the baseline climate-projection-driven model
runs and an observation-driven model run. While the focus
here is Great Britain, the methods and analyses described
could be applied to other regions with hydrological models
and climate projections of appropriate resolution.

1 Introduction

River floods are a major natural hazard globally, occurring
at a range of spatial and temporal scales (Kundzewicz et
al., 2019). Managing flood risk (the combination of hazard
with exposure and vulnerability) is important, both from an
economic and social perspective. Flood prediction, and more
generally flood frequency estimation, is crucial to mitigat-
ing these hazards to reduce impact. Flood frequency esti-
mation is often carried out on a single-site basis, comput-
ing the frequency of floods at specific locations in isolation.
However, the management of flood risk on a regional or na-
tional basis requires an understanding of how likely it is that
multiple locations will experience floods at the same time.
Widespread flooding presents a huge challenge for commu-
nities and emergency response services and has long-lasting
impacts, as demonstrated by the extensive flooding expe-
rienced in north-west England as a consequence of Storm
Desmond and Storm Frank in winter 2015–2016 (Barker et
al., 2016); Hurricane Katrina in 2005 in the United States
(Irish et al., 2014); flooding in Kerala, India, in 2018 (Vishnu
et al., 2019); and the flooding in central Europe in July 2021
(Mohr et al., 2023).

One approach to risk quantification is catastrophe mod-
elling (CAT modelling), which is used in the insurance in-
dustry to assess annual average losses. CAT modelling typi-
cally makes use of three components: property data, stochas-
tic hazard event sets, and a relationship between magnitude
of hazard and the expected loss for each property (Grossi and
Kunreuther, 2005). The present work focuses on the second
component: developing a set of widespread flood events, here
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characterised by river flow and the probability of exceed-
ing that flow. Simply making use of observed widespread
events typically does not provide enough data to reliably de-
termine hazard probability. Therefore, developing a larger set
of events for analysis is desirable to improve the uncertainty
of risk estimates, particularly for events which have a re-
turn period (or average recurrence interval) greater than the
length of observed records. For example, return periods as
long as 1 in 200 years are often used as the design standard
for large-scale engineering projects. This can involve making
use of hydrological models driven by large ensembles of data
from climate models (ensembles of model runs using per-
turbed initial conditions and/or parameter sets) over a shorter
time period (Kelder et al., 2020) or through predominantly
stochastic event-based models (Filipova et al., 2019).

Climate change affects flow regimes globally (Jimnez Cis-
neros, 2015), and studies suggest that flooding in some parts
of Europe and the UK could become more frequent and se-
vere in future (Thober et al., 2018; Collet et al., 2018). Spatial
coherence of flooding events – whether flood timings at dif-
ferent locations have become more correlated – is of key in-
terest to national-scale actions to mitigate the associated loss.
The dependence structure of river flow has been analysed
on a Europe-wide scape (Berghuijs et al., 2019) and for the
United States (Brunner et al., 2020), focusing on synchrony
of events within a given range. The UK’s Third Climate
Change Risk Assessment (CCRA3) included work which
analysed the changes in risk caused by possible changes in
flood dynamics (Sayers et al., 2020). CCRA3 adds to the
breadth of guidance that has been developed for policymak-
ers and water managers to try and account for such changes
(Reynard et al., 2017).

This paper makes use of a grid-based hydrological model
for Great Britain (GB) and the most recent set of regional
climate projections for the UK to generate two sets of over
7000 hazard events for the recent past (1980–2010) and
the future (2050–2080). The question of what defines a
“widespread flood event” is discussed, and differences be-
tween events in terms of extent, likelihood and duration are
analysed in the context of possible changes in the spatio-
temporal structure of widespread events in the future. Often
flooding is considered on a site-by-site or regionally sum-
marised fashion, particularly when looking into projections
of the future. This paper hopes to show the benefits of consid-
ering widespread flooding events over a large area using grid-
based, rather than catchment-based, hydrological modelling
to expand our knowledge of the extent of possible flooding
events. While the focus here is GB, the methods and analyses
could be applied to other areas where appropriate hydrologi-
cal models and high-resolution climate projections are avail-
able. Note that, within the context of flood frequency, this
paper refers to floods or flooding events, although in reality
many of these will be merely high flows that do not exceed
bankfull.

2 Data

Hydrological model runs are performed using both
observation-based data and baseline and future climate pro-
jection data. The model (Sect. 3.1) requires gridded time se-
ries of precipitation and potential evaporation (PE), in addi-
tion to temperature for the optional snow module.

2.1 Observation-based driving data

The observation-based run uses daily 1 km precipitation from
CEH-GEAR (Tanguy et al., 2019), monthly 40 km short
grass PE from MORECS (Hough and Jones, 1997) copied
down to 1 km, and daily 1 km minimum and maximum tem-
peratures (Met Office and Hollis, 2019). Precipitation was
subdivided uniformly through the day, PE was subdivided
uniformly through the month, and temperature varied sinu-
soidally between the daily extremes (as Kay et al., 2023).
Data are applied for 1980–2010 (the same period as the cli-
mate model baseline; Sect. 2.2).

2.2 Climate projections

UK Climate Projections 2018 (UKCP18) provides informa-
tion on potential changes in a range of climate variables over
the 21st century, via a number of different products (Mur-
phy et al., 2018). The projections have previously been used
to assess how river flows in the UK may differ in the future
due to climate change (Kay, 2021; Kay et al., 2021; Lane and
Kay, 2021).

The UKCP18 Regional Projections (Met Office Hadley
Centre, 2018) comprise a 12-member perturbed parameter
ensemble (PPE) of the Hadley Centre ∼ 12 km regional cli-
mate model (RCM), nested in an equivalent PPE of their
∼ 60 km global climate model (GCM). The ensemble cov-
ers the period December 1980 to November 2080 under an
RCP8.5 emissions scenario (Representative Concentration
Pathway) (Riahi et al., 2011). The 12 ensemble members
are numbered from 01 to 15, where 01 uses the “standard”
parameterisation of the Hadley Centre RCM, and ensemble
members 02, 03 and 14 are not available. The data are avail-
able re-projected from the native climate model grid to a
12 km grid aligned with the GB national grid, for a synthetic
360 d year (30 d per month). The re-projected daily precip-
itation and daily minimum and maximum temperatures are
used here, along with daily 12 km PE calculated from other
meteorological variables available from the RCM ensem-
ble (Robinson et al., 2021, 2023). The precipitation data are
downscaled to 1 km using patterns of standard average an-
nual precipitation (Kay et al., 2023), the PE data are copied
down to 1 km, and the temperature data are downscaled to
1 km using elevation data and a lapse rate (as Kay, 2021).
The data are then temporally distributed through the day as
for the observed data (Sect. 2.1). Data are applied for 30-year
baseline (1980–2010) and future (2050–2080) time slices.
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In common with all climate model data, there are biases in
the UKCP18 Regional data (Murphy et al., 2018, Sect. 4.4),
including a tendency to overestimate winter precipitation
rates and fraction of wet days. Often, statistical methods are
applied to adjust distributions of climate model data to match
those from observed data. However, there are many issues
and assumptions inherent in such methods (not least the as-
sumption that the same “bias” seen in the baseline period
will apply in any future period), and they can potentially in-
troduce artefacts into the data (e.g. Ehret et al., 2012; Maraun
et al., 2017). A previous study showed that applying a simple
monthly mean correction to precipitation led to flood peaks
that had a greater tendency to underestimation, compared to
the use of raw precipitation data (Kay, 2022, Fig. S1 in the
Supplement); thus it was decided to use the raw precipitation
data here. Future work could investigate the sensitivity of the
results to alternative options, including the use of process-
informed (rather than purely statistical) methods currently in
development.

3 Methods

3.1 Hydrological model

The Grid-to-Grid (G2G) is an area-wide runoff-production
and routing model which typically uses a 1 km grid and
15 min time step and employs digital datasets to simulate the
natural flow response to rainfall across the model domain,
producing river flow outputs on a 1 km grid aligned with the
GB national grid (Bell et al., 2009). G2G uses 1 km flow net-
works (Davies and Bell, 2008), derived from the UK 50 m
Integrated Hydrological Digital Terrain Model (Morris and
Flavin, 1990) using the network-derivation scheme of Paz
et al. (2006). The routing component of G2G applied here
uses kinematic wave approximations for sub-surface land
and river flow paths and for surface land flow paths but the
Horton–Izzard nonlinear storage approach for surface river
flow paths (Bell et al., 2009). In urban and suburban areas,
identified through the LCM2000 spatial dataset of land cover
(Fuller et al., 2002), responsiveness is increased through the
use of an enhanced routing speed and reduced soil storage,
leading to a faster response to rainfall. While flows are sim-
ulated for every 1 km cell, they are only output here for cells
with a catchment drainage area of at least 50 km2, due to the
use of daily driving precipitation data.

G2G has been widely tested and applied to explore climate
change impacts on river flows across GB, for both floods
(Bell et al., 2009, 2012; Lane and Kay, 2021; Kay, 2022;
Kay et al., 2023) and droughts (Kay et al., 2018; Rudd et
al., 2017, 2019; Lane and Kay, 2021). G2G is used for op-
erational flood forecasting by the Flood Forecasting Centre
for England and Wales (Price et al., 2012) and by the Scot-
tish Flood Forecasting Service for Scotland (Cranston et al.,
2012), and a substantial amount of model evaluation has been

performed to support operational use (e.g. Moore et al., 2006,
2012; Cole et al., 2013; Wells et al., 2016).

Previous work assessing the performance of G2G driven
by daily observed rainfall data across GB has shown gener-
ally good performance for median flows (Q50) and high flow
volumes (Q5–Q30) but a tendency to underestimate flood
peaks to the north-west with a more mixed picture, including
overestimates, in the south-east (Kay, 2022). Similar patterns
were shown for simulation of the index flood (Formetta et al.,
2018), where it was noted that “overestimation in southern
and eastern Britain can, for many groundwater-dominated
catchments, be attributed to the effects of artificial abstrac-
tions which are not currently included in the G2G” and that a
“significant factor contributing to the underestimation is the
contribution of short-duration intense rainfall events to peak
river flows”. Use of hourly, rather than equally disaggregated
daily, precipitation data was recently shown to improve per-
formance for flood peaks but to make little difference to sim-
ulated future changes in peak flows (Kay and Brown, 2023).
Beylich et al. (2021) also showed that hydrological mod-
elling at an hourly time step (with stochastic disaggregation
of daily data) gave future flood changes of similar magni-
tude to modelling at a daily time step, despite underestima-
tion of absolute values of flood peaks by daily modelling, for
six catchments in central Germany (areas 39.1–823.5 km2).
Only daily RCM precipitation data are available, so they are
used here, and thus some underestimation of absolute values
of peak flows is expected, but future changes in peak flows
are assumed to be representative. The effect of any bias in
RCM precipitation will also be moderated (to some extent)
by the derivation of peak flow thresholds for each ensemble
member separately (Sect. 3.2).

This application of G2G used gridded driving data pro-
vided by (i) observations and (ii) the UKCP18 Regional Pro-
jections (Sect. 2) and provides gridded outputs of daily mean
river flows. The results from the observation-based model
run (SIMOBS) are used to enable an evaluation of the per-
formance of the baseline climate model data for simulating
the characteristics of widespread flood events. The G2G out-
puts of the SIMOBS run show good agreement with observed
flows (from NRFA, 2021) for extreme events in 1043 catch-
ments across GB (Fig. 1 shows the 20-year event based on
the 1980–2010 time slice). Bias varies spatially across Great
Britain (Fig. S1) but mostly with positive bias in central ar-
eas.

3.2 Event extraction

For each RCM ensemble member, two time slices were con-
sidered, 1980–2010 and 2050–2080, to serve as baseline and
future viewpoints. Event time series were extracted using a
peak-over-threshold (POT) approach as used by the NRFA
(UK National River Flow Archive; Robson and Reed, 1999).
In this approach, peaks are identified as exceedances above
some predetermined threshold. To improve the independence
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Figure 1. Scatter plot of estimate of 20-year flood (stationary estimate based on 1980–2010) for GB gauging stations based on observations
and observation-driven G2G simulation.

of events, they must be sufficiently far apart (based on the
average time-to-peak of storm hydrographs). Additionally,
consecutive events are checked to see if the minimum flow
between the two peaks is less than two-thirds of both peaks,
otherwise the lower peak is discarded (this process is iterated
until no more events are removed).

To determine the most appropriate exceedance threshold
to use at each 1 km grid square, five different percentiles of
flow were investigated, ranging from five events per year to
one event every 10 years on average. As a result, for each
grid square the following numbers of days were selected for
each 30-year time slice:

– five events per year (POT5) – 150 d per grid square,

– two events per year (POT2) – 60 d per grid square,

– one event per year (POT1) – 30 d per grid square,

– one event in 5 years (POT0.2) – 6 d per grid square,

– one event per decade (POT0.1) – 3 d per grid square.

Note this is independent of the distribution of the data due
to the use of empirical percentiles rather than fixed, absolute
values of flow.

We define widespread events as time points for which
a large number of locations experience very high flow
(i.e. above the POT threshold) simultaneously. To determine
when widespread events occurred, different levels of extent
above the threshold were investigated to ensure that a good
range of widespread events were captured, whilst ensuring
that only events that could be described as “extreme” in
some way were retained. To this end, the extent of an event
was measured by the percentage of grid squares on the river
network which were simultaneously above their respective
threshold values (denoted “inundated”). Five minimum ex-
tents were investigated: 5 %, 2 %, 1 %, 0.5 %, and 0.1 %.
Note that for the GB river network, 19 914 1 km× 1 km grid
squares were regarded as being in the network, so an extent
of 1 % corresponds to ∼ 200 km2 of inundated grid squares.

To select the at-site threshold and minimum extent, all the
combinations above were trialled on a single ensemble mem-
ber (01) for the 1980–2010 time slice, and the number of days
fulfilling both inundation criteria (at-site threshold and mini-
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Table 1. Number of days where national inundation according to
a given threshold (rows) exceeds a certain percentage (columns).
PoE: daily probability of exceedance.

Extent lower threshold

No. Daily 5 % 2 % 1 % 0.5 % 0.1 %
exceedances PoE

POT5 5/360 839 1510 1981 2418 3427
POT2 2/360 353 727 1027 1340 2031
POT1 1/360 160 401 589 826 1345
POT0.2 1/1800 25 77 144 239 444
POT0.1 1/3600 14 35 74 117 262

mum extent) over the 30-year time slice is shown in Table 1.
Very similar patterns of events extracted (not different at a
statistically significant level) were observed for all of the en-
semble members.

The POT2 threshold and the 0.1 % minimum extent
were selected for the following reasons. POT2 provided
a good balance between having enough exceedances to
derive widespread events and keeping the threshold high
enough to reasonably model the peaks-over-threshold using
an extreme-value distribution. The 0.1 % inundation cover-
age was selected to ensure that small, very extreme events
were not excluded. For applications in risk estimation, these
events of smaller extent may occur in areas with high poten-
tial economic losses, and so they are important for accurately
estimating national annual damages.

With this set of parameters for inundation, the specific at-
site thresholds were calculated for each grid square under
each RCM ensemble member, using the thresholds from the
1980–2010 time slice for both baseline and future events.
This was to allow the future events to be described in terms
of baseline return periods. For the SIMOBS run, there is only
a 1980–2010 time slice, but the same approach was used to
determine at-site thresholds.

At this point, the event set only consisted of single-day
events, which may not truly represent widespread events in
the temporal sense, owing to the way in which storms move
across a region over time and the typical time taken for water
to travel downstream. To correct this, multi-day events were
also defined. For the selected inundation threshold (POT2),
event lengths were defined as the number of consecutive
days for which the extent exceeded the selected spatial limit
(0.1 %).

For the RCM 01 ensemble member in the 1980–2010 time
slice, the distribution of event lengths is shown in Fig. 2.
Here it can be seen that beyond 7 d, there are very few events
which fall under the definition above. There are some argu-
ments that one should consider events up to 21 d (De Luca
et al., 2017), but this may lead to a greater likelihood of
two independent events of small geographical spread being
recorded as a single, larger event. Such pairs (or larger group-

Figure 2. Number of events with different durations, based on
0.1 % extent lower threshold and at-site exceedance of 2 d per
year (POT2).

ings) of events may arise from different weather systems
in, for example, the north-west and south-east of England.
As a compromise therefore, events were limited to 14 d. If
an event exceeded this time limit, the 14 d surrounding the
day at which spatial spread was highest was retained as “the
event” (6 before, 7 after).

To keep the events simple to interpret, multi-day events
were summarised. For each grid square, each event was sum-
marised by the highest single-day value at that grid square
during that event. Taken nationally, this retains the maximum
flow at each point over the whole region, which should cap-
ture the most extreme flows within an event and will also be
helpful for estimating upper bounds of risk associated with
such events. A more in-depth investigation into multi-day
events could be the focus of future work.

To assess the change in spatial extremal datasets, one can
investigate whether the spatial dependence changes between
time slices; χ and χ , two measure of extremal dependance
(Coles, 2001), are calculated between pairs of points. χ̄ de-
scribes the level of asymptotic independence between two
random variables if both are above given thresholds. χ com-
plements this: if two random variables are asymptotically de-
pendent, this describes the strength of that asymptotic depen-
dence. For two points i and j ,

χi,j =
lim
x→∞P [Qi > x]

∣∣ [Qj > x
]
. (1)

If C∗(u,v)= 1− u− v+C(u,v), for a copula C, then

χ =
2log(1− u)
logC∗(u,u)

. (2)

χ describes the level of asymptotic dependence; if χ > 0,
then the variables are asymptotically dependent, and χ = 1
automatically. But if χ = 0, they are asymptotically indepen-
dent. In this case, χ describes the dependence for large but
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not asymptotic values of flow. χ close to 1 indicates the vari-
ables are highly dependent except at the asymptotic limit.

3.3 Return periods

To ensure a good fit of return periods for the most extreme
events, the top 60 independent peaks in each ensemble mem-
ber and time slice were found using the peak-extraction algo-
rithm as described in Sect. 3.2. For values over the threshold,
a generalised Pareto distribution (GPa) was used with distri-
bution function

FGPa(x)= 1−
(

1+
κ(x− u)

α

) 1
κ

= P
[
Flow> x

∣∣Flow> u
]
, (3)

with the threshold u, scale parameter α > 0 and shape param-
eter −1≤ κ ≤ 1. This was fitted to the series of independent
peaks over the threshold to give a modelled daily probabil-
ity of exceedance. u is the flow threshold at a specific loca-
tion, and P [x > u] = 2/360, since this investigation uses the
POT2 threshold defined in Sect. 3.2.

To convert from a per-exceedance PoE to a more widely
used annual PoE, a simple scaling factor was applied based
on there being 60 events per location over 30 years:

pANNUAL = pEVENT×

(
60
30

)
. (4)

In the rest of this work, plots are presented using annual prob-
abilities of exceedance. Due to the limits of using 30-year
time slices of data, return periods are capped at 1000 years
since the uncertainty on exceedance probabilities is very high
for the most infrequent events.

4 Results

Figure 3 shows four example events extracted from the 1980–
2010 time slice from RCM ensemble member 01, with re-
turn periods described in years. The coloured extent of an
event was restricted to those points with a daily probability
of exceedance of less than 2/360. On the whole, the events
are spatially contiguous, and the example events suggest that
the return period is highly peaked around one location and
quickly tapers off away from the “epicentre”. These are four
of the largest events in the 1980–2010 time slice and show a
broad range of different events covering Scotland, southern
England and central England, with key patches of very ex-
treme flow in Fig. 3b–d, whereas Fig. 3a shows a widespread
but less severe event (in terms of return period of flow). In the
rest of this section, return periods reported in the text and fig-
ures are the maximum return period observed (across space
and time) within a single event. The analysis focuses on the
differences between past and future and across space, though
differences between the RCM ensemble members should be
mentioned.

Figure 4 shows that the event areas are fairly consistent be-
tween the RCM-driven runs and the SIMOBS run, although
with a bias in the baseline RCM-driven runs to larger events
with lower return periods. The RCM-driven runs show a
slightly flatter distribution of return periods in the 2050–2080
time slice, with little change in the distribution of areas. Fig-
ure S2 shows how the results vary between ensemble mem-
bers. Ensemble members 07 and 08 show a slightly more uni-
form distribution of events across log(area), and ensemble
member 11 shows a slightly higher number of small events,
around 200 events with a footprint of less than 100 km2. En-
semble member 01 shows the greatest difference between the
1980–2010 and 2050–2080 time slices (more than 50 fewer
events with a return period of less than 8 years).

In the rest of this section, the event sets from all ensem-
ble members are combined and given equal weighting. In
the Supplement, ensemble members are treated as separate
sources of equal weighting. Ensemble members are shown
in different colours and have the convex hull of the points
from each ensemble member highlighted to show in particu-
lar variation in the extremes.

Taking the union of events extracted from all the ensem-
ble members, changes in extent and duration can be exam-
ined. Figure 5 shows the number of widespread events by
boreal season. There is relatively similar seasonal pattern be-
tween SIMOBS and the RCM baseline (with the RCM en-
semble range encompassing the SIMOBS numbers, except
in autumn), although the RCM tends to accentuate the sea-
sonal pattern of more flood events in winter and fewer in
summer. Overall there are a greater number of widespread
events in the future (7553) than in the baseline time slice
(7225 events). However, in the months of March to August,
and particularly in June to August (boreal summer), there are
fewer widespread events in the future time slice.

In terms of event duration, Fig. 6 shows how this varies by
season and time slice and how that is linked to return period.
The SIMOBS run appears to generate shorter events on aver-
age compared to the RCM-driven runs, suggesting a slightly
stronger temporal autocorrelation in the effects of the use of
UKCP18 input data. The return periods (as seen in Fig. 4)
are broadly similar in distribution. The figure suggests that
duration and return period are somewhat correlated, in that
the longest duration events are very unlikely to have a low
return period (i.e. to occur frequently). However, there are
a number of events which are of short duration but high re-
turn period. As one might expect, events are shorter in sum-
mer (JJA), with very few summer events extending longer
than 5 d. In the future time slice, event duration seems to
be slightly shorter on average, and this is more pronounced
in spring (MAM) and summer (JJA), reducing from 3.54 to
2.99 d in spring, 2.20 to 2.04 in summer. The events with the
highest return periods are in autumn (SON) and winter (DJF),
in both time slices, though the distribution of return periods
in the future has heavier tails (note the return period axis is
on a logarithmic scale). Figure S3 shows that there is some
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Figure 3. Example events from 1980–2010 time slice from a single RCM ensemble member, showing return period in years. The percentages
shown refer to the number of river grid cells “inundated” (i.e. the percentage of river grid cells where flow exceeds the POT2 threshold), not
the percentage of GB land area flooded.

variability between ensemble members, particularly in the
extremes, but the overall pattern is preserved throughout, as
expected from Fig. 4.

Figure 7 shows how area and peak return period vary
by season in the two time slices and in comparison to the
SIMOBS run. As one might expect, there is a correlation
between area and peak pointwise return period across both
RCM-driven time slices. The changes between the two time

slices are subtle, but there is an overall trend towards an in-
crease in the range of peak return period: the 95th percentile
of return periods increases in all seasons, from an increase
of 10 years in spring to 205 in summer, with the 5th per-
centile being ∼ 1.2 in all seasons and time slices. The extent
of widespread events appears to stay consistent between the
1980–2010 and 2050–2080 time slices, with a possible slight
reduction in extent of the largest events in the future sum-
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Figure 4. Bar plots comparing the distributions of (a) event return period and (b) event area for the SIMOBS run and the baseline time slice
of the RCM-driven runs (averaged across ensemble members), and then (c) event return period and (d) event area for the baseline and future
time slices of the RCM-driven runs (averaged across ensemble members). The error bars show minima and maxima across RCM ensemble
members for baseline and future time slices. Note SIMOBS only has one run.

mer. In all seasons there are a small number of events with
return periods exceeding 1000 years, particularly in winter
and autumn. Figure S3 shows that this pattern is matched be-
tween ensemble members, but there is some variability in the
relative patterns of duration and rarity in the extremes.The
SIMOBS run shows a broadly similar distribution to the
baseline (1980–2010) time slice, although the variability and
reduced smoothness appear to be increased, due to the much
smaller number of events from that single run (∼ 500 com-
pared to ∼ 7000 from all 12 RCM ensemble members).

Figure 8 shows how dependence varies between pairs of
points across the river network. Here asymptotic dependence
appears to have a limit at most location pairs of around
120 km (χ is only shown for pairs of locations for which
the upper bound of a bootstrapped uncertainty bound of χ
exceeds 0.99). The figure suggests that asymptotic depen-
dence decreases as distance increases. In the asymptotically
independent case (Fig. 8, right), we see a similar pattern in
dependence for large values of flow, with high dependence

at short distances, even if they are independent in the limit.
There seems to be little change in dependence between the
two time slices, although the asymptotic dependence appears
to extend slightly further in the baseline time slice. When
compared with the SIMOBS run, a shorter radius of asymp-
totic dependence is exhibited, and at a distance of around
200 km, values of χ are more concentrated around 0.5 com-
pared to the baseline and future time slices.

If the events are subdivided by season, subtle differ-
ences can be observed (Fig. 9). Overall, spring and sum-
mer show less asymptotic dependence (lower values of χ
and χ ) than autumn and winter: mean χ is 0.641 and mean χ
is 0.222 for spring and summer (March–August), compared
to mean χ 0.673 and mean χ 0.363 for autumn and win-
ter (September–February). Also, the 50 % contour for χ is
longer in spring (MAM) (max distance of 495 km in base-
line, 545 km in future) than summer (JJA) (max distance of
431 km in baseline, 462 km in future) in both time slices,
suggesting that the variance in χ exhibits seasonal variation.
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Figure 5. Bar plots comparing the number of widespread events, split by season, for the SIMOBS run and the baseline and future time slices
of the RCM-driven runs (averaged across ensemble members). The error bars show minima and maxima across RCM ensemble members for
baseline and future time slices.

Figure 6. Heat maps showing joint distribution of return period and event duration, split by season, for the SIMOBS run and the baseline
and future time slices of the RCM-driven runs (summed across ensemble members). Count is scaled so that the total of events in each time
slice adds up to 1.

Between baseline and future, as for Fig. 8, the differences
are marginal, but both χ and χ show smaller 50 % contours
in autumn compared to the other seasons, suggesting reduc-
ing variation in asymptotic dependence in this season. For
other percentile contours, patterns are very similar and follow

the shapes of Fig. 9. For the SIMOBS run, the smaller sam-
ple size (one run compared to multiple ensemble members)
leads to a less regular contour. Overall, within- and between-
seasonal variability is higher in the SIMOBS run. This is
also mirrored in Fig. S5, which shows this split by ensem-
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Figure 7. Heat maps showing distribution of events with different areas and return periods, split by season, for the SIMOBS run and the
baseline and future time slices of the RCM-driven runs (summed across all ensemble members). Count is scaled so that the total of events in
each time slice adds up to 1.

ble member, where spatial variation in coherence is strongly
preserved between ensemble members.

5 Discussion

5.1 GB results

A non-trivial number of very extreme events were observed
in the RCM-driven runs for both baseline and future time
slices. Tawn et al. (2018a) point out that, within the observed
annual maxima series, the chance of a 100-year return period
flood event occurring somewhere within a set of 916 gauging
stations in England and Wales is approximately 78 % in any
one year, and so over a gridded dataset of more points, and
with more years, the occurrence of these rare events is sta-
tistically plausible. Also, due to the probability distributions
used, a small change in event peak flow magnitude in the up-
per tail of the distribution can lead to a large change in return
period (when the shape parameter κ is positive, which is the
case for most of the UK; Griffin et al., 2019). Variability in
extent, duration and return period in the modelled baseline
and future time slices seems to be much increased compared
to the SIMOBS runs, but this may be in part due to the greatly
reduced sample size in the SIMOBS run (1 run vs. 12 ensem-
ble members). The present and future time slices do seem to
overestimate duration and rarity compared to the SIMOBS
run, which may be due to a difficulty in capturing smaller,

less extreme events in the UKCP18 data and the subsequent
model outputs.

The number of widespread events (based on a POT2
threshold derived from 1980–2010 data) was found to in-
crease in total in the future time slice (Fig. 5) but was slightly
lower in the future for spring and summer (March–August)
events. The typical spatial extent of events was found to
be fairly consistent between time slices, but summer (June–
August) events appeared smaller in the future across all re-
turn periods. A pairwise analysis suggested that inundated
locations were asymptotically independent beyond a radius
of around 120 km, but the distribution of dependence was
slightly less concentrated in the future. Event duration de-
creased on average in all seasons between the two time slices.
Patterns were similar across all RCM ensemble members.
This suggests an increase in seasonality in widespread flood
events, with more widespread flooding in winter and possibly
a shift towards smaller intense flooding in spring and sum-
mer.

The increased number of widespread flood events is con-
sistent with work by Lavers and Villarini (2013), which
shows the possible increase in atmospheric rivers, especially
in western Europe, which drive extreme precipitation events.
The limited change in extent of widespread events in fu-
ture is consistent with Bevaqua et al. (2021), who anal-
yse multi-thousand-year climate model simulations and show
non-significant changes in the spatial footprint of winter ex-
treme precipitation over most of Britain, although there are

Hydrol. Earth Syst. Sci., 28, 2635–2650, 2024 https://doi.org/10.5194/hess-28-2635-2024



A. Griffin et al.: Widespread flooding dynamics under climate change: characterising floods 2645

Figure 8. Heat maps showing asymptotic dependence for 100 000 random pairs of points on the river network. χ is only shown for pairs of
locations which are asymptotically dependent based on χ > 0.99.

significant changes across most of the rest of the Northern
Hemisphere extratropics. The seasonality changes are con-
sistent with Kay et al. (2022), who show that projections of
soil moisture change point towards drier summers and au-
tumns, and Blöschl et al. (2017), who suggest that UK floods
are closely linked to soil moisture timing. But seasonality
changes may also be linked to a change in the size of flooding
events in the future in summer, which, in the UK, are typi-
cally linked to short-duration, intense summer storms. It may
be that these intense storms become smaller in extent, below
this paper’s definition of “widespread”, but Chen et al. (2021)
suggest that convective storms may cover a greater area in the
future. Between ensemble members (Fig. S4), variability of
flood extent is higher in summer (JJA), even more so in the
future time slice, and one member actually shows an increase
in summer (JJA) events in the future time slice (Fig. 5).

The simulated future changes in the characteristics of
widespread flood events have to be interpreted in the con-

text of some differences in event characteristics for the
baseline climate-projection-driven model runs compared to
the observation-driven model run. The baseline RCM-driven
runs tend to give larger events with lower return periods
and accentuate the seasonal pattern of more events in win-
ter and fewer in summer. Differences could be due to RCM
biases, but are also probably related to the 12 km resolution
of the RCM data, which likely means that rainfall inputs oc-
cur more homogeneously and simultaneously over larger ar-
eas than for 1 km observed data, leading to flood events of
typically larger extent but lower return period. Future work
could investigate the sensitivity of the results to bias correc-
tion options, including use of process-informed (rather than
purely statistical) methods currently being developed. The
UKCP18 Local data (Kendon et al., 2021) could also be ap-
plied; these provide an ensemble from a higher-resolution
(2.2 km) convection-permitting model (CPM), nested in the
RCM ensemble, and have been shown to give some differ-
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Figure 9. Contour showing asymptotic dependence for 100 000 random pairs of points on the river network. Contours show smallest area
that contains 50 % of point pairs, split by season and time slice. χ and χ as in Fig. 8.

ences in at-site changes in flood peaks (Kay, 2022). It would
be interesting to assess whether there are also differences
in seasonal widespread flooding characteristics, both for the
baseline time slice and in terms of possible future changes.

5.2 Methodology

While the focus here was GB, the methods and analyses de-
scribed could be applied to other regions with hydrologi-
cal models and climate projections of appropriate resolution.
The most suitable definition for a “widespread flood event”
may vary for other countries/regions. For example, other ap-
plications may only be interested in events with more ex-
treme flows, so the POT threshold could be increased, or only
interested in events with much greater extents, so the extent
threshold could be increased. The event duration would also
need to be considered in the context of basin size, typical
event flashiness (related to, for example, geology and steep-
ness) and typical storm duration for the region.

The event extraction method developed here did not ex-
plicitly require events to be spatially contiguous. While this
does generally appear to be the case for the largest events,
the event shown in Fig. 3a suggests that some potentially si-
multaneous but independent events are captured. This may be
due to capturing two consecutive or overlapping events, due
to the method of event length determination; thus a more so-
phisticated form of event delineation could improve the pro-
cess. Brunner et al. (2020) make use of a spatial dependence
function (“F-madogram”) and hierarchical clustering to de-
termine events for which points are mutually dependent to a
sufficient degree, which could improve event identification.

In addition, future work could expand on the methods
developed here by investigating ways of expanding the set
of widespread flood events using computationally cheaper
methods such as emulation or statistical Monte Carlo meth-
ods.
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To highlight spatial dependence in a simpler way than χ ,
Berghuijs et al. (2019) use a metric of flood “synchrony”,
measuring how often extreme floods occur at the same time
within a given radius of a target point. Gridded datasets like
those used here could be evaluated using this metric or one
like it.

6 Conclusions

This paper has used the latest regional climate projections
for the UK (UKCP18 Regional) and a national-scale grid-
based hydrological model (Grid-to-Grid, G2G) to generate
grids of daily mean flows across GB, from which a set of
widespread flood events was extracted. The question of what
defines a “widespread flood event” was investigated; here it
was defined as an event exceeding an at-site 99.5th percentile
(equivalent to 2 d per year, POT2) simultaneously over an
area of at least 20 km2, with a maximum duration of 14 d. The
event set was used to investigate potential changes in spa-
tial structure of river flooding across mainland GB between
the 1990s and 2060s. In summary, the number of widespread
events was found to increase in total in the future time slice
but was slightly lower in the future for spring and summer
(March–August) events. The typical spatial extent of events
was found to be fairly consistent between time slices, but
summer (June–August) events appeared smaller in the future
across all return periods.

While the focus here was GB, the methods and analyses
described could be applied to other regions with hydrologi-
cal models and climate projections of appropriate resolution.
The most suitable definition for a “widespread flood event”
may vary for other countries/regions. The analysis of Be-
vaqua et al. (2021) suggests larger spatial footprints of winter
precipitation extremes in future across much of the Northern
Hemisphere (apart from Britain and parts of western Europe
and Africa), which could lead to larger widespread flood ex-
tents in such regions. Future changes in widespread flood-
ing could have important implications for flood incidence
response and flood risk management; for example, insurers
want to be able to understand and mitigate their risk of re-
ceiving concurrent claims from large numbers of homes and
businesses. However, the potential future changes have to be
interpreted in the context of any differences in event char-
acteristics between the baseline climate-projection-driven
model runs and an observation-driven model run.

This paper and the data generated therein form the ba-
sis for a wider scheme of work generating extreme flood-
ing events for risk analysis, which is the subject of a num-
ber of subsequent papers: Griffin et al. (2022b) discussing
statistical methods to generate large numbers of plausible
widespread events with long return periods and Sayers et
al. (2024) on applying the statistical event sets to risk anal-
ysis through catastrophe modelling methods. Further work
could look at more sophisticated methods of event identifi-

cation and look at describing or separating simultaneous or
temporally overlapping events. This work focuses on fluvial
flooding, but surface water flooding (not from inundation of
rivers and water bodies) is also a large factor in estimating
economic losses due to flooding. It would be of interest to
use the Grid-to-Grid model including surface water (Rudd et
al., 2020) applied to the framework of this paper to see if the
different types of flooding will change in different ways over
time.
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