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Abstract. Predicting the response of hydrologic systems to
modified driving forces beyond patterns that have occurred in
the past is of high importance for estimating climate change
impacts or the effect of management measures. This kind of
prediction requires a model, but the impossibility of test-
ing such predictions against observed data makes it diffi-
cult to estimate their reliability. Metamorphic testing offers
a methodology for assessing models beyond validation with
real data. It consists of defining input changes for which the
expected responses are assumed to be known, at least qualita-
tively, and testing model behavior for consistency with these
expectations. To increase the gain of information and reduce
the subjectivity of this approach, we extend this methodology
to a multi-model approach and include a sensitivity analysis
of the predictions to training or calibration options. This al-
lows us to quantitatively analyze differences in predictions
between different model structures and calibration options
in addition to the qualitative test of the expectations. In our
case study, we apply this approach to selected conceptual and
machine learning hydrological models calibrated for basins
from the CAMELS data set. Our results confirm the supe-
riority of the machine learning models over the conceptual
hydrologic models regarding the quality of fit during cali-
bration and validation periods. However, we also find that
the response of machine learning models to modified inputs
can deviate from the expectations and the magnitude, and
even the sign of the response can depend on the training

data. In addition, even in cases in which all models passed
the metamorphic test, there are cases in which the quantita-
tive response is different for different model structures. This
demonstrates the importance of this kind of testing beyond
and in addition to the usual calibration–validation analysis to
identify potential problems and stimulate the development of
improved models.

1 Introduction

The availability of hydrologic and meteorological data and
catchment attributes for a large number of catchments in the
USA (Newman et al., 2015; Addor et al., 2017) has greatly
stimulated hydrologic research in the past few years (Kratzert
et al., 2018; Shen, 2018; Kratzert et al., 2019a, b; Razavi,
2021; Ng et al., 2023; Feng et al., 2020). In particular, it
has been shown that the training of machine learning models
jointly with hydrologic data from a large number of catch-
ments leads to an extraordinary performance of these models,
even for the prediction of the output of catchments that had
not been used for training (Kratzert et al., 2018, 2019a, b;
Feng et al., 2020, 2021). Arguably, this breakthrough was
made possible by the combination of two elements:

1. using machine learning models, in particular deep learn-
ing architectures in the form of long short-term memory
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(LSTM) models, that are highly flexible and contain a
large number of parameters;

2. training the models jointly on large sets of diverse catch-
ments using relevant catchment attributes as additional
input to meteorological time series to allow the models
to learn diverse response patterns and their dependence
on catchment characteristics.

Due to the use of a large and diverse data set, overfitting of
the models is mitigated, and the models, to some degree, gain
the capability of acquiring hydrologic knowledge (Kratzert
et al., 2018, 2019a, b). It has been shown that this kind of
hydrologic knowledge can even be transferred across conti-
nents (Ma et al., 2021). The success demonstrated by a large
number of studies based on machine learning models trained
on such data sets has challenged the belief of hydrologists
that the prediction of the output of ungauged catchments
would only be possible with models that are built with the
strong support of hydrologic expert knowledge (Hrachowitz
et al., 2013; Nearing et al., 2021). The availability of many
more data sets for other countries besides the USA, such as
Chile (Alvarez-Garreton et al., 2018), Great Britain (Coxon
et al., 2020), Brazil (Chagas et al., 2020), Australia (Fowler
et al., 2021), Switzerland (Höge et al., 2023), and more, bears
great potential for further development of hydrologic model-
ing across catchments, continents, and climatic regions.

The primary focus of the studies cited above was on model
training and validation for a future part of the time series
or for catchments not used for calibration. The question of
whether this success is transferable to the prediction of the
consequences of modified driving forces in these catchments
has been less investigated (Bai et al., 2021; Natel de Moura
et al., 2022; Wi and Steinschneider, 2022). For the prediction
of the effects of climate change and water management mea-
sures on the hydrology of catchments, it is of particular in-
terest to modify driving forces beyond the patterns observed
in the past. When the perturbation is large enough, there are
no data available for validating the models under such pertur-
bations. The problem is of a different nature for conceptual
hydrologic models compared to for machine learning mod-
els. The prediction of the behavior of catchments under mod-
ified driving forces with conceptual models is challenging
because it is very hard to predict the required modifications
to model parameters induced by changes in vegetation, soil
structure, etc. (Merz et al., 2011). Furthermore, it is also dif-
ficult to extend the models to mechanistically describe these
changes. The prediction with machine learning models could
lead to wrong results due to a poor out-of-domain generaliza-
tion (Wang et al., 2022), or the results could be much better
due to a more comprehensive consideration of adapted catch-
ment properties learned from other catchments in the training
set. Which of these effects dominates may depend on the de-
gree of input modifications and on the diversity of the set of
catchments used for training. For these reasons, it is of inter-
est to compare the predictions of both kinds of models under

modified driving forces and to investigate whether the results
depend on the training data set or on parameters of the opti-
mization algorithm.

It is the goal of this study to compare the behavior of ma-
chine learning and conceptual models under modified driv-
ing forces and to investigate to which degree we can learn
about the deficiencies of models and pathways for their im-
provement based on these results. Such attempts have been
made before and have uncovered problems in the predictions
of LSTM models (Bai et al., 2021; Razavi, 2021; Natel de
Moura et al., 2022; Wi and Steinschneider, 2022). We extend
this kind of study by considering precipitation changes in ad-
dition to temperature changes (this has been done in some of
the previous studies); by using LSTM models trained on a
large set of catchments (this has been done in some of the
previous studies); by investigating responses for different el-
evation classes separately to reduce the uncertainty in the re-
sponse predicted by the experts; and by including sensitiv-
ity analyses regarding catchment attributes, basins used for
calibration, and the numerical seed of the optimization algo-
rithm. We will do model simulations with isolated changes
in precipitation and temperature and compare the resulting
change in outlet discharge with the expected outcomes for
selected basins from the CAMELS data set (Newman et al.,
2015; Addor et al., 2017). Note that this is a metamorphic
testing design (Xie et al., 2011; Yang and Chui, 2021) that
facilitates the formulation of the expected qualitative behav-
ior rather than a realistic climate change scenario that would
consist of coupled temperature and precipitation changes
with a more complex time dependence. Based on this de-
sign, the more specific goals of our study are to answer the
following questions:

1. Are good fits during calibration and validation periods
sufficient to gain confidence in predictions under modi-
fied driving forces?

2. How useful is metamorphic testing of models beyond
the usual calibration–validation analysis?

3. Do machine learning models always improve when ex-
tending the training data set?

4. How do machine learning and conceptual models com-
plement each other in terms of strengths and deficits?

2 Methods

2.1 Metamorphic testing

Metamorphic testing is a methodology for assessing models
beyond validation with real data (Xie et al., 2011; Yang and
Chui, 2021). It consists of

1. defining changes to the model input for which the ex-
pected response of the underlying system is assumed to
be known, at least qualitatively, and
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2. testing the model response to these changes for consis-
tency with these expectations.

Note that metamorphic testing does not replace calibration
and validation, but it is an additional test and complements
the quality of fit that is specifically targeted at situations (in-
puts) for which there are no response data available. The in-
put changes underlying metamorphic testing should be de-
signed in such a way that they reflect aspects of inputs
that are of interest for predicted outputs while still allow-
ing for a qualitative characterization of expected responses.
One methodology to design such input changes is to reduce
the dimension of the problem by modifying just one input
with a relatively simple pattern rather than using correlated
input changes in multiple inputs and complicated temporal
patterns, as would be needed for real predictions. Such ad-
ditional tests to model fit are important as it has been shown
that the quality of fit and prediction accuracy do not neces-
sarily improve in parallel. At least one case study came to the
following conclusion: “Surprisingly, the prediction accuracy
of a model and its ability to provide consistent predictions
were found to be uncorrelated” (Yang and Chui, 2021). The
conclusions may not always be that extreme, but such cases
indicate the need for model testing beyond the quality of fit.

The weakness of metamorphic testing is that it requires
the specification of the expected response of a system under
modified inputs. Even if we define simple input changes to
facilitate the fulfillment of this requirement, it still requires
partly subjective expert judgments that may be biased by the
limited mechanistic understanding of the system’s function
by the experts or, more generally, by the incomplete state of
current scientific knowledge. To further increase the under-
standing of model behavior and reduce the subjectivity of
testing, we use a multi-model approach and extend the test to
the analysis of the sensitivity of the results to model structure
and to different training or calibration options. In particular,
we compare conceptual and machine learning approaches as
we expect complementary strengths and weaknesses. Con-
ceptual approaches, due to their consideration of (simplified)
physical principles, can be expected to provide reliable pre-
dictions if the input changes are small enough to not con-
siderably alter catchment properties, such as vegetation and
soil structure. On the other hand, machine learning models
may be more critical for out-of-sample predictions, but due to
the high diversity of catchments used for training, they bear
the potential to also consider changes in catchment proper-
ties. This allows us to identify the quantitative deviations of
predictions (in relation to modified inputs) between model
structures. The investigation of the sensitivity of the predic-
tions to calibration options further provides insight into the
robustness of the results of the metamorphic test. The cho-
sen model structures are described in more detail in Sect. 2.2
and in Appendix A and B, and the complementary calibration
options are presented in Sect. 3.3.

There are four potential outcomes of this extended meta-
morphic testing approach:

a. Metamorphic test succeeded, models mutually consis-
tent. The predicted response is robust against the inves-
tigated model structures and changes in the calibration
process and agrees with the expectations. This result
confirms the model structures and increases the trust in
the reliability of the predictions.

b. Metamorphic test succeeded, but quantitative responses
of different models disagree. The predicted response
is in qualitative agreement with the expectations, but
the quantitative response is sensitive to the investigated
model structures or to aspects of the model calibration
process. This result shows the limits of metamorphic
testing, but the identified differences between responses
may still stimulate reflections on model structure im-
provements.

c. Metamorphic test failed, some models inconsistent with
others. The predicted response is sensitive to the investi-
gated model structures or aspects of the model calibra-
tion process, with some responses being in agreement
and others being in disagreement with the expert expec-
tations. This indicates problems in some models reliably
predicting the response to the investigated input changes
and indicates the need for a revision of model structures
or training processes.

d. Metamorphic test failed, models mutually consistent.
The predicted response is robust against the investigated
model structures and changes in the calibration pro-
cess, but it disagrees with the expectations. This clearly
demonstrates a serious problem caused either by similar
deficits in all model structures that lead to wrong predic-
tions or by incomplete scientific knowledge that leads
to incorrect expert predictions. This is the most difficult
outcome of the metamorphic analysis, but it still demon-
strates the importance of the analysis as it uncovers a
problem. In this case, it is very important to think of po-
tential mechanisms that may have been overlooked by
the experts, as well as similar structural deficits in all
investigated models. This may initiate an extended re-
search process that depends on the investigated system
and models.

For metamorphic testing, we choose simple, isolated
changes in precipitation (increase by 10 %) and temperature
(increase by 1°) to make it easier for experts to character-
ize the expected response. As mentioned before, this setup
covers inputs relevant for climate change predictions, but it
does not represent realistic input changes for climate change.
Figure 1 shows a visualization of the simplified expected re-
sponse of the catchment outlet discharge to these changes;
this is discussed in more detail below. The simplified ex-
pected responses shown in Fig. 1 represent general trends;
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the true expected response will be less smooth due to shorter-
term precipitation and temperature fluctuations.

1. The first input change is a constant relative increase in
precipitation by 10 %. The investigated response we are
interested is in the change in discharge at the catchment
outlet resulting from the change in precipitation:

1QP =Q(1.1 ·P,T )−Q(P,T ), (1)

where Q is the hydrologic model describing catchment
outlet discharge as a function of the precipitation time
series, P , and the temperature time series, T . 1QP is
the change in catchment outlet discharge resulting from
the 10 % increase in precipitation as predicted by the
model. Note that, according to Eq. (1), such a relative
change does not lead to any input change during peri-
ods without precipitation. An alternative absolute input
modification would not make sense for precipitation as
this would lead to the elimination of dry weather pe-
riods. In terms of the expected response, as shown in
the top row of Fig. 1, we expect an increase in catch-
ment outlet discharge that reflects the discharge pattern
of the base simulation. Only in cases of short events and
considerable traveling of the flood wave do we expect
a decrease in discharge at the falling limb of the dis-
charge peak (following an increase at the rising limb)
due to a shift of the flood peak to earlier times, caused
by a higher flood wave celerity at higher water levels
(Battjes and Labeur, 2017). This expectation is based
on the assumption that a 10 % increase in precipita-
tion is small enough to not fundamentally change veg-
etation, soil structure, and other catchment properties.
For more complex and stronger input changes, more
complex response patterns are possible, as discussed by
Blöschl et al. (2019). In a worldwide analysis of past
trends in water balance and evapotranspiration, Ukkola
and Prentice (2013) found some regions (Europe and
Canada) with increasing precipitation and decreasing
runoff (see Fig. 5 in Ukkola and Prentice, 2013). How-
ever, as this is an analysis of past data, many other fac-
tors also changed; in particular, there was a significant
temperature increase in these regions that contributed
to increased evapotranspiration, whereas we assume no
change in temperature for this input change scenario.

2. A second input change is a constant increase in tem-
perature by 1 °C. The investigated response we are in-
terested in is the change in discharge at the catchment
outlet resulting from the change in temperature:

1QT =Q(P,T + 1°C)−Q(P,T ), (2)

where1QT is the change in catchment outlet discharge
resulting from the 1 °C increase in temperature as pre-
dicted by the model, and the other symbols have the

same meaning as in Eq. (1). In terms of the expected
response, as shown in the bottom-left panel of Fig. 1,
for warm catchments (without snow cover), we expect
a decrease in outlet discharge that is more pronounced
in summer than in winter due to increased evapotran-
spiration. Again, in cases of short events and consid-
erable traveling of the flood wave, we may get a short
increase in discharge at the falling limb of the peak (fol-
lowing a decrease at the rising limb) due to a shift of the
peak to later times, caused by a lower flood wave celer-
ity at lower water levels (Battjes and Labeur, 2017). For
catchments with a seasonal discharge pattern dominated
by snow cover dynamics, we expect an increase in river
discharge in autumn or winter due to a later change in
precipitation from rain to snowfall and an earlier melt-
ing in spring followed by a decrease in river discharge
because the snowmelt will be complete earlier. This re-
sponse pattern is shown in the bottom-right panel of
Fig. 1. There is less empirical evidence for this expected
response in past data (Ukkola and Prentice, 2013) be-
cause in most regions temperature increase is accom-
panied by precipitation increase and thus leads to in-
creased discharge. However, there are some cases, par-
ticularly in North-Asia (see Fig. 5 in Ukkola and Pren-
tice, 2013), where there is increase in temperature and
runoff despite no significant trend in precipitation. This
may be a consequence of a change in snow cover and
vegetation.

As the training data contained precipitation- or temperature-
related catchment attributes, such as mean daily precipita-
tion and the fraction of precipitation falling as snow, we
compared the results to training with an omission of these
kinds of attributes to avoid biased results due to inconsistent
changes in driving forces. Table B1 in Appendix B lists the
full sets, as well as the reduced sets, of catchment attributes
used for this comparison.

The intention of our study is to identify potential problems
in hydrologic models and to learn from them and not to pro-
vide a representative overview of the results of different mod-
els. For this reason, we select catchments that allow us to test
the response pattern described above as well as possible. As
finding reasons for poor fit is a complementary technique in
improving models on which we do not focus in this paper, we
only select catchments for which all our primary modeling
approaches lead to a very good fit during the calibration pe-
riod (Nash–Sutcliffe efficiency (NSE)> 0.8 during the cali-
bration period for all investigated model structures; the range
of NSE values for the selected catchments was 0.82–0.92).
All of these models also lead to a good fit during the valida-
tion period (range of NSE values of 0.67–0.91). To best rep-
resent the conditions for which we can describe the expected
response as described above, we choose the following:
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Figure 1. Simplified expected response to a precipitation increase of 10 % (a, b) and to a temperature increase of 1° (c, d) for low-altitude
catchments (a, c; response to precipitation events within weeks) and for high-altitude catchments (b, d; changes in seasonal snowmelt peak).
Black lines: discharge for unmodified input. Blue lines: discharge and sensitivity (change in discharge) for modified precipitation input. Red
lines: discharge and sensitivity (change in discharge) for modified temperature input.

– Low-altitude warm basins. These basins should only
have a minor amount of snow and thus a relatively sim-
ple response pattern, as described above.

– Very-high-altitude (cold) basins. In these basins, the re-
sponse should be dominated by the shifts in snowfall
and snowmelt.

To complement our study, we also chose intermediate-
altitude catchments:

– Intermediate-altitude basins. For these basins, we ex-
pect a combination of the snow-cover-dominated re-
sponse in winter and spring and the warm-basin re-
sponse in summer. The transition between the two
regimes will depend on altitude and latitude, which
makes the response less clear than in the other two
cases.

2.2 Models

2.2.1 Conceptual hydrologic models

We will compare the conceptual hydrologic model
GR4 (Santos et al., 2018), which is a continuous-time

version of the model GR4J (Perrin et al., 2003) in com-
bination with a continuous-time version of the snow
accumulation model Cemaneige (Valery et al., 2014) and
which we call GR4neige, and a continuous-time version of
the discrete-time model HBV (Bergström, 1992; Lindström
et al., 1997; Seibert, 1999; Seibert and Vis, 2012). All the
equations of these conceptual hydrologic models are given
in Appendix A.

2.2.2 Machine learning models

The great success of machine learning in hydrology is pri-
marily based on the long short-term memory (LSTM) mod-
els (Kratzert et al., 2018, 2019a, b; Feng et al., 2020). We
will thus also exclusively use the LSTM approach to repre-
sent machine learning models. The models deviate from each
other in terms of their consideration of the basins for calibra-
tion and in terms of the set of catchment attributes used for
calibration (see Sect. 2.3 below). Appendix B provides an
overview of the setup of these models.
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2.3 Calibration and training

The parameter values of the models were obtained by opti-
mization of a loss function that quantifies the deviation of
model output from observations, as described below. As it
corresponds to the typical use in the literature, for this opti-
mization, we use the term calibration for the conceptual mod-
els, and we use the term training for the machine learning
models.

The conceptual hydrologic models used daymet altitude
band inputs as provided in the CAMELS data (https://ral.
ucar.edu/solutions/products/camels, last access: 29 January
2021, Newman et al., 2014), aggregated to a maximum of
five bands, for catchment-by-catchment calibration by maxi-
mization of the posterior with a simple, uncorrelated, normal-
error model and wide priors. Optimization was performed us-
ing the LBFGS algorithm (Liu and Nocedal, 1989). As there
are only incomplete banded input data available for the basin
nos. 12167000, 12186000, and 12189500, we calibrated the
model for only 668 of the 671 basins of the US CAMELS
data set.

The LSTM model was jointly trained for all 671 basins
of the US CAMELS data set (https://ral.ucar.edu/solutions/
products/camels, last access: 29 January 2021) using daymet
forcing and the catchment attributes listed in Table B1 in
the Appendix (Newman et al., 2015; Addor et al., 2017)
and maximizing the Nash–Sutcliffe efficiency (NSE). Opti-
mization was performed using the AdaDelta optimizer with
the parameters lr= 1.0 and rho= 0.9 (Zeiler, 2012). As we
encountered some unexpected responses in the low-altitude
basins to a change in temperature (see Sect. 3.2.1 below),
additional training was done, as described in Sect. 3.3.

In both cases, we used the same 15 years for calibration
and the same 15 years for validation as in the original publi-
cation by Newman et al. (2015) (1 October 1980–30 Septem-
ber 19950 for calibration and 1 October 1995–30 September
2010 for validation).

2.4 Implementation

The conceptual hydrologic models were implemented in Ju-
lia (Bezanson et al., 2012, 2017) using the packages Dif-
ferentialEquations.jl (Rackauckas and Nie, 2017), Forward-
Diff (Revels et al., 2016), and Optim (Mogensen and Riseth,
2018).

The LSTM was implemented in Python (Van Rossum and
Drake, 2009) using Pytorch (Paszke et al., 2019).

All our code is publicly available (conceptual models:
https://doi.org/10.25678/000CQ0, Reichert et al., 2024,
LSTM: https://doi.org/10.5281/zenodo.3993880, Shen,
2020).

3 Results and discussion

3.1 Quality of fit

Figure 2 provides an overview of the Nash–Sutcliffe Effi-
ciency (NSE) values achieved for the calibration and valida-
tion periods for all modeling approaches in the 668 basins
for which the conceptual models could also be calibrated,
as well as in the 12 basins selected for metamorphic testing
(see next section). These results clearly confirm the strength
of the LSTM model compared to the conceptual hydrologic
models regarding the quality of fit for the calibration and val-
idation periods. The LSTM has an additional advantage in
that it generalizes very well to catchments not used for train-
ing, but this feature is not investigated in this paper.

3.2 Metamorphic testing

For metamorphic testing, we separately evaluated basins that
belong to the three classes of low-altitude warm basins, very-
high-altitude basins, and intermediate-altitude basins men-
tioned in Sect. 2. For each of the three classes, we selected
four basins. Figure 3 provides an overview of the locations
of the selected four basins within each category. As men-
tioned in Sect. 2.1, these basins were selected by allowing
for an excellent fit for all modeling approaches (NSE> 0.8
during the calibration period; the range of NSE values across
models and selected catchments was 0.82–0.92 for the cali-
bration period and 0.67–0.91 for the validation period). Due
to the limited number of basins in these categories, the strong
requirement regarding the quality of fit for all modeling ap-
proaches, and the wish to have the same number of basins in
each category, it was not possible to compare more basins.
However, as shown in the following sections, there are no-
tably consistent patterns in the responses to changes within
each of these categories.

3.2.1 Low-altitude warm basins

Figure 4 shows the results for the final year of the calibra-
tion period for a typical warm, low-altitude basin. Results
for more years during the calibration and validation periods
and for more low-altitude basins are provided in the Figs. S2
to S17 in the Supplement. These results are systematic across
all studied basins, demonstrating that the features discussed
in this section represent the typical behavior of this kind of
basin and are not just an artifact of the specific basin and
year.

As is shown by the NSE values in the legends of the fourth
panels (Figs. 4 and S2 to S17) for these basins, all of the
compared primary modeling approaches (GR4neige, HBV,
LSTM) provide an excellent fit over the calibration and val-
idation periods (all NSE values are larger than 0.8 during
calibration and are larger – mostly much larger – than 0.65
during validation; see also the overview of NSE values in
Fig. 2).
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Figure 2. Overview of NSE values of all modeling approaches for the calibration period (solid) and the validation period (dashed) for all
668 basins (a) and for the 12 basins selected for metamorphic testing (b); note the different scale of the x axis). The median NSE values are
indicated in brackets in the legend (calibration period, validation period).

Figure 3. Basins used for metamorphic testing. Orange circles in-
dicate low-altitude basins, blue squares indicate very-high-altitude
basins, and green rhombs indicate intermediate-altitude basins. The
large markers represent basins with results shown in the main paper;
the results for all basins are shown in the Supplement. The num-
bers represent CAMELS basin identifiers. Map produced with the R
package usmap: https://CRAN.R-project.org/package=usmap (last
access: 10 March 2024).

The sensitivities to a 10 % increase in precipitation, 1QP

(see Eq. 1), are plotted in the top panel of Fig. 4 (and of
Figs. S2 to S17). All our modeling approaches (GR4neige,
HBV, LSTM) lead to very similar sensitivities to the inves-
tigated relative change in precipitation. The sensitivities to
the investigated increase in precipitation also correspond to
our expectations, as described in Sect. 2.1 (see, in particular,
Fig. 1, top-left panel), as they are positive and larger during
precipitation events than during dry-weather periods (com-
pare time series of the precipitation sensitivities in the top
panel to the time series of discharge in the bottom panel). The
result of this metamorphic test therefore belongs to category
A outlined in Sect. 2.1 (consistent agreement with expecta-
tions across modeling approaches) and makes us confident in
the response of all models to changes in precipitation.

In contrast to the precipitation sensitivities shown in the
first panel, the second panel of Fig. 4 (and of Figs. S2
to S17) shows substantial differences in temperature sensi-
tivities, 1QT (see Eq. 2), between different modeling ap-
proaches (GR4neige, HBV, LSTM). The sensitivities of the
hydrologic models GR4neige and HBV are essentially nega-
tive (the discharge for increased temperature is smaller than
it was with the original temperature), with only some brief
positive excursions associated with small shifts in discharge
peaks. These are the expected sensitivities as described in
Sect. 2.1 (see, in particular, Fig. 1, bottom-left panel). In con-
trast, the LSTM often shows a positive response of catchment
outlet discharge to the investigated temperature increase, in
particular during flood events. This seems to be an implau-
sible response as increased temperature increases evapora-
tion, whereas precipitation does not change in our metamor-
phic testing scenario. The result of this metamorphic test thus
belongs to category C, outlined in Sect. 2.1 (inconsistency
with expectations for some model structures). This raises
the question of which approach may provide the correct re-
sponse. The conceptual hydrologic models may share sim-
ilar deficits with the expected response as both are based
on similar expert knowledge. On the other hand, the LSTM
may, due to its broad coverage of the climatic conditions of
671 CAMELS basins, better consider the effect of changing
catchment properties resulting from the increasing temper-
ature, or its response may be incorrect due to poor out-of-
sample prediction. Since we see here a striking difference in
the behavior of models that fit and predict very well under
current climatic conditions, we have to investigate how con-
sistent the response of the LSTM is across different training
options. This can provide additional hints regarding which of
the two explanations discussed above may be more plausible.
This will be investigated in Sect. 3.3.

https://doi.org/10.5194/hess-28-2505-2024 Hydrol. Earth Syst. Sci., 28, 2505–2529, 2024

https://CRAN.R-project.org/package=usmap


2512 P. Reichert et al.: Metamorphic testing

Figure 4. Results for basin no. 11468500. (a) Modeled sensitivity of discharge to a 10 % increase in precipitation, 1QP (see Eq. 1).
(b) Modeled sensitivity of discharge to a 1° increase in temperature, 1QT (see Eq. 2). (c): Minimum, mean, and maximum temperature.
(d): Observed precipitation (from top, right axis); modeled (lines) and observed (circles) discharge and modeled snow cover in max. five
altitude bands (dashed lines, left axis, zero for this particular basin); NSE for calibration and validation periods in brackets in the legend; and
the values of selected catchment attributes according to Addor et al. (2017) (on the left).

3.2.2 Very-high-altitude (cold) basins

Figure 5 shows the results for the final year of the calibration
period for a typical very-high-altitude cold basin. Results for
more years during the calibration and validation periods and
for more high-altitude basins are provided in Figs. S18 to
S33 in the Supplement. These results demonstrate that the
features discussed in this section represent the typical behav-
ior of this kind of basins and are not just an artifact of the
specific basin and year.

The legends of the fourth panels in these figures (Figs. 5
and S18 to S33) show again that we have an excellent fit

during the calibration and validation periods for all model-
ing approaches (GR4neige, HBV, LSTM), with NSE values
larger than 0.8 during the calibration periods and larger than
0.7 during the validation periods.

The precipitation sensitivities show, in this case, more dif-
ferences than for the low-altitude catchments in Sect. 3.2.1.
All models show the expected positive precipitation sensitiv-
ities (higher discharge for higher precipitation), but the re-
sponse of the LSTM is considerably smaller and smoother
than the responses of the conceptual models. Still, these
results correspond qualitatively to our expectations, as de-
scribed in Sect. 2.1 (see, in particular, Fig. 1, top-right panel).
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Figure 5. Results for basin no. 09066000. (a) Modeled sensitivity of discharge to a 10 % increase in precipitation, 1QP (see Eq. 1).
(b) Modeled sensitivity of discharge to a 1° increase in temperature, 1QT (see Eq. 2). (c) Minimum, mean, and maximum temperature.
(d) Observed precipitation (from top, right axis); modeled (lines) and observed (circles) discharge and modeled snow cover in max. five
altitude bands (dashed lines, left axis); NSE for calibration and validation periods in brackets in the legend; and the values of selected
catchment attributes according to Addor et al. (2017) (on the left).

Also, the temperature sensitivities show the expected be-
havior of a positive sensitivity (higher discharge for higher
temperature) due to the earlier snowmelt process followed
by a negative sensitivity (lower discharge for higher temper-
ature) due to the earlier completion of the snowmelt process;
see Sect. 2.1, in particular Fig. 1, bottom-right panel). There
is a tendency where the positive response starts later and the
negative response ends earlier in the LSTM model compared
to the conceptual hydrologic models. Also, these sensitivities
tend to be smaller and smoother for the LSTM model than for
the conceptual hydrologic models.

The results of these metamorphic tests thus belong to cate-
gory B outlined in Sect. 2.1 (significant differences between
approaches but still in qualitative agreement with the expec-
tations). As mentioned in Sect. 2.1, this result shows the lim-
its of metamorphic testing as it is difficult to judge which of
the quantitative responses is closer to reality. Nevertheless,
metamorphic testing with multiple models demonstrates that
models that provide a similarly good fit during the calibration
and validation periods can still differ considerably in their
response to modified driving forces. This indicates that one
should be cautious with the predictions of such responses.

https://doi.org/10.5194/hess-28-2505-2024 Hydrol. Earth Syst. Sci., 28, 2505–2529, 2024



2514 P. Reichert et al.: Metamorphic testing

3.2.3 Intermediate-altitude basins

Figure 6 shows the results for the final year of the calibra-
tion period for a typical intermediate-altitude basin. Results
for more years during the calibration and validation peri-
ods and for more intermediate-altitude basins are provided
in Figs. S34 to S49 in the Supplement. These results demon-
strate that the features discussed in this section represent the
typical behavior of these kinds of basins and are not just an
artifact of the specific basin and year.

The legends of the fourth panels in these figures (Figs. 6
and S34 to S49) show again that we have an excellent fit
during the calibration and validation periods for all model-
ing approaches (GR4neige, HBV, LSTM), with NSE values
larger than 0.8 during the calibration periods and larger than
0.77 during the validation periods.

The results shown in Fig. 6 combine the results discussed
in the previous sections but resemble more closely the high-
altitude catchments as snow cover still dominates the dy-
namic behavior during most of the season.

Figure 6a and b show clearly that, over the first half of the
considered period, all models show very similar responses
with respect to the change in precipitation, as well as with
respect to the change in temperature. In contrast, in the sec-
ond half of the year, the conceptual models agree with one
another but deviate from the LSTM model. In this part of
the season, the responses of the LSTM model are smoother
and smaller than those of the hydrologic models. Again, the
qualitative nature of metamorphic testing makes it difficult
to assess which of these results are more plausible. These re-
sults are again in category B of our result classification for
metamorphic testing, as outlined in Sect. 2.1.

3.3 Sensitivity to attributes, calibration set, and seed
for low-altitude warm basins

As the results for the temperature sensitivities for the low-
altitude warm basins were most striking, showing, most of
the time, different signs for the LSTM model than for the
conceptual hydrologic models, we tried to learn more about
the reasons for this phenomenon. To investigate this prob-
lem, we performed a sensitivity analysis of the LSTM model
regarding

– catchment attributes considered for training,

– basins considered for training, and

– the seed of the random number generator that affects the
local minimum found by the optimizer.

The idea of using fewer catchment attributes was an attempt
to improve the representation of physical processes by the
LSTM model by only allowing the use of the attributes with
a direct physical influence (e.g., omitting mean elevation as
temperature has a dominant influence on the physical pro-
cesses, whereas elevation is much less relevant but could be

used as a proxy for temperature by the LSTM model) and
removing attributes that would have to be modified for pre-
diction with modified inputs (e.g., all precipitation-related
attributes, such as mean daily precipitation, as this informa-
tion should be inferred from the precipitation time series and
would have to be adjusted when modifying precipitation in-
put). The motivation for reducing the set of training basins
was to reduce the diversity of basins and to primarily keep
basins with low elevation (and still sufficient diversity within
this class). Finally, the test with different seeds was moti-
vated by checking whether the results were caused by a con-
vergence into a “bad” minimum while other local minima
would have lead to better results. Table 1 lists the model ver-
sions used for this sensitivity analysis.

Figure 7 shows the precipitation and temperature sensitiv-
ities of these models at a higher scale and for a shorter time
period than in Fig. 4 to facilitate the distinction of the larger
number of curves.

Results for more years during the calibration and valida-
tion periods and for more low-altitude basins are provided in
Figs. S50 to S65 in the Supplement. The results are quali-
tatively similar throughout all catchments and periods. The
precipitation sensitivities, 1QP (see Eq. 1), are quite insen-
sitive to any of these modifications from the original setup
(see upper panel in Fig. 7 and in Figs. S50 to S65). In particu-
lar, it is remarkable that omitting the mean precipitation (that
had not been changed when increasing the input precipitation
time series) from the input does not change the results. This
indicates that the response pattern for precipitation change is
determined from the input time series rather than from this
specific catchment attribute. Also reducing the training data
set and changing the random seed do not change the observed
precipitation sensitivities.

The results for the temperature sensitivities, 1QT (see
Eq. 2), are quite different for the different modeling ap-
proaches (see lower panel in Fig. 7 and in Figs. S50 to
S65). In particular, those of the original LSTM model
and LSTM_515 are mostly positive, whereas those of
LSTM_211 (trained only with the basins with mean eleva-
tions smaller than 300 m) are negative, except for a single
peak after the tick mark for 19 March 1995. The sensitivi-
ties of LSTM_361 are less visible due to the congestion in
the figure, but the trend from the original LSTM model to
LSTM_211 is very clear.

To better visualize the differences between the tempera-
ture sensitivities of all modeling approaches, Fig. 8 shows a
quantification of these differences. As in metamorphic test-
ing, the quantitative change in results is difficult to assess,
and so we focus on the quantification of differences in sen-
sitivities for which the signs are different between different
model versions. We therefore calculated the mean-squared
differences in the sensitivities of all the combinations of
approaches, setting the differences to zero if the sensitivi-
ties have the same signs and omitting periods of very low
sensitivities (< 0.1 mm d−1). Of these values, we took the
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Figure 6. Results for basin no. 12143600. (a) Modeled sensitivity of discharge to a 10 % increase in precipitation, 1QP (see Eq. 1).
(b) Modeled sensitivity of discharge to a 1° increase in temperature, 1QT (see Eq. 2). (c) Minimum, mean, and maximum temperature.
(d) Observed precipitation (from top, right axis); modeled (lines) and observed (circles) discharge and modeled snow cover in max. five
altitude bands (dashed lines, left axis); NSE for calibration and validation periods in brackets in the legend; and the values of selected
catchment attributes according to Addor et al. (2017) (on the left).

Table 1. Overview of models. The first three rows describe the basic models planned for use in the project; the lower four rows are the
additional model versions used for the sensitivity analysis to analyze the problem of the deviating temperature sensitivities of the LSTM
model for low-altitude catchments.

Model Description

GR4neige Conceptual model GR4neige, as described in Appendix A2
HBV Conceptual model HBV, as described in Appendix A3
LSTM LSTM model, as described in Appendix B, trained with all 671 basins
LSTM_red LSTM model trained with all 671 basins using only catchment attributes marked with “x” in Table B1
LSTM_515 LSTM model trained with the 515 basins with a mean altitude< 1000 m (five different seeds)
LSTM_361 LSTM model trained with the 361 basins with a mean altitude< 500 m (five different seeds)
LSTM_211 LSTM model trained with the 211 basins with a mean altitude< 300 m (five different seeds)
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Figure 7. Sensitivities for basin no. 11468500 and different LSTM calibration options (see Table 1). The sensitivities for the GR4neige,
HBV, and LSTM models are the same as those shown in Fig. 4. In addition, LSTM_red shows the sensitivities when calibrating with a
reduced set of catchment attributes, and LSTM_515, LSTM_361, and LSTM_211 show the sensitivities when calibrating the LSTM model
with different sets of low-elevation basins. For these three cases, results for five different seed values are shown. See text for more details.

square root and the mean across all basins of the same class
(here, low-altitude catchments) and across different random-
number seeds. These results are shown in Fig. 8.

The results in the first two columns clearly show that
the sensitivities of the LSTM model are considerably dif-
ferent from those of the GR4neige and HBV models and
that they approach the results of these models when moving
from the original LSTM model over LSTM_red, LSTM_515,
and LSTM_361 to LSTM_211 (see Table 1 for model def-
initions). In parallel, in this order, the sensitivities deviate
more and more from those of the original LSTM model (third
column in Fig. 8). These quantitative difference measures

thus clearly confirm the qualitative discussion in the previ-
ous paragraph.

The same quantification as shown for the temperature sen-
sitivities in Fig. 8 was performed for precipitation and tem-
perature sensitivities and is shown in Fig. S1 in the Supple-
ment. These results clearly demonstrate that there is no sim-
ilar problem in the signs of calculated sensitivities for pre-
cipitation for all classes of basins and for temperature for
the very-high-elevation basins. The temperature sensitivities
for the intermediate-elevation basins also show problems be-
tween the modeling approaches, but these are more difficult
to interpret as they combine effects for low- and high-altitude
catchments.
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Figure 8. Differences between the temperature sensitivities, 1QT ,
of all modeling approaches, quantified as described in the text
(mm d−1).

Table 2. Summary of results of metamorphic testing. See Sect. 2.1
for a description of the result categories (note that the lowest three
models were designed for low-altitude catchments and were there-
fore not used for intermediate- and high-altitude catchments). The
most problematic outcomes (C) are marked in bold.

Model Low altitude High altitude Intermed. alt.
Prec. Temp. Prec. Temp. Prec. Temp.

GR4neige A A B B B B
HBV A A B B B B
LSTM A C B B B B
LSTM_red A C B B B B
LSTM_515 A C
LSTM_361 A C
LSTM_211 A A

Table 2 summarizes the results of the extended metamor-
phic testing.

Our sensitivity analysis demonstrates that, for the LSTM
applied to the low-altitude catchments, there is a large sen-
sitivity to the training set of modeled catchment outlet re-
sponses resulting from input temperature changes. It is par-
ticularly remarkable that the sensitivities to temperature
change are different despite all of the different calibration
versions providing an excellent fit during the calibration and
validation periods. This suggests that the problem in mak-
ing predictions for new environmental conditions, which is
very relevant, e.g., for climate predictions, cannot be detected
from only comparing the quality of fit during the calibration
and validation and for catchments not used for calibration,
as has been done in most studies so far. As the responses
of LSTM_211 are mostly in qualitative agreement with the

expected responses, it seems plausible that the deviations
shown for the other calibration options from the expected re-
sponse are not caused by an error in the expert opinions but
are rather a question of LSTM calibration. This result seems
to indicate that the LSTM trained with all basins is not as
universal as expected from previous results but that an LSTM
trained more specifically with the low-altitude basins passes
the metamorphic test. It is possible that pre-conditioning the
model to these catchments could have a similar effect.

3.4 Discussion

Our results uncovered problems in LSTM models in produc-
ing consistent (primarily across training data) results for pre-
dictions related to input changes beyond those used during
training. These results provide a motivation for investigat-
ing approaches that either (A) widen the diversity of basins
used for training to expand the potential for learning physi-
cal mechanisms (Wi and Steinschneider, 2022) or (B) try to
combine the strengths of machine learning and conceptual
(or even physical) hydrologic models (Ng et al., 2023; Shen
et al., 2023; Tsai et al., 2021; Jiang et al., 2020). As approach
A failed for the low-level basins in our study (when extend-
ing the training data set to high-elevation basins), our results
indicate that approach B seems more promising for systems
that we have a good mechanistic knowledge of. Examples of
such hybrid approaches are considering physical constraints
or mechanisms in machine learning models (Nearing et al.,
2020; Razavi, 2021; Xie et al., 2021; Zhong et al., 2023),
post-processing the output of mechanistic models with ma-
chine learning models (Konapala et al., 2020), using con-
ceptual model outputs or components (such as evapotran-
spiration estimates) as additional input to machine learning
models (Wi and Steinschneider, 2022), or inferring func-
tional relationships in conceptual hydrologic models by re-
placing parameterized elements or functions with machine
learning models (Jiang et al., 2020; Tsai et al., 2021; Höge
et al., 2022). In the last category, which some referred to
as differentiable modeling (Shen et al., 2023), neural net-
works are seamlessly connected to programmatically differ-
entiable (permitting gradient tracking) process-based equa-
tions, and they are trained together in an end-to-end fashion
(Jiang et al., 2020; Feng et al., 2022; Bindas et al., 2024).
This framework may address the sensitivity problem by hard-
coding (and thus guaranteeing) required physical sensitivi-
ties to forcings and attributes as prior equations or restrict-
ing information flows into and out of neural networks, which
should be investigated in the future. If sensitivity is a primary
concern, one should also use caution with neural networks as
post-processing layers as they can modify the assumed sen-
sitivities.

These results thus lead to the following conclusions re-
garding the questions raised in the introduction:

– A good fit during calibration and validation periods does
not guarantee a good response to changes in driving
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forces. There is a strong need to analyze model pre-
dictions beyond the quality of fit (usually quantified by
NSE) and to compare predictions for different model
structures to gain confidence in predictions and to gain
insight into model prediction uncertainty. This need is
evident as we demonstrated that models that fit similarly
well for calibration and validation periods can still show
strong differences in their response to modified inputs.
Good fits during calibration and validation periods are
thus not a sufficient criterion for a model to predict the
response to modified driving forces accurately. This is a
very important conclusion to keep in mind when using
hydrologic models of climate change prediction.

– With regard to the usefulness of metamorphic testing,
this is a very useful tool to test models beyond the usual
calibration–validation process. The problem with meta-
morphic testing is that it requires the response to be at
least qualitatively known. This can be difficult and even
biased as this requires inputs of expert knowledge that
can be biased by the current state of incomplete sci-
entific knowledge. For this reason, we strongly recom-
mend using “extended metamorphic testing”, in which
we not only check model predictions for modified inputs
with the expected response but, as in a multi-model ap-
proach, also investigate the sensitivity of these results
to the model structure and to training data and algo-
rithmic parameters. This extended analysis can uncover
“objective problems” such as a dependence of the re-
sponse (in our case study, even the sign of the response)
on choices of the training data, which clearly indicates
a problem that is not dependent on the partly subjec-
tive prescription of the expected response. It can also –
and did, in our case study – uncover quantitative differ-
ences in responses between different model structures,
even in cases in which all models passed the qualitative
metamorphic test (see the large number of “B” classifi-
cations listed in Table 2).

– Using more data for training can be deleterious. Our re-
sults seem to be in contradiction to the general principle
that machine learning models always profit from the ex-
tension of the training data set. In our case study, adding
high-elevation basins to the training data set does not re-
duce the quality of fit, but it deteriorates the response of
low-altitude basins to temperature change. This demon-
strates that adding data that are not directly relevant to a
specific prediction (in our case, to low-elevation basins)
can have an adverse effect. On the other hand, when we
further reduced the training data set, the quality of fit
and prediction deteriorated (not shown in the paper). For
this reason, this is not a contradiction to the statement
that adding “useful data” – data that provide informa-
tion directly relevant to the question to be investigated
– improves the quality of fit and the response to input

changes. However, it may raise awareness of the neces-
sity for carefully selecting training data as adding less
relevant data (for this specific question) may have ad-
verse effects.

– With regard to machine learning vs. conceptual mod-
els, the modeling approaches based on machine learning
and on conceptual hydrologic models have complemen-
tary strengths and deficits. Machine learning models
are particularly strong in providing an excellent qual-
ity of fit and prediction accuracy for validation periods,
as well as for the prediction of ungauged catchments.
However, they need to be calibrated based on a large set
of basins, and their performance can be poor when cal-
ibrated based on a single basin. In addition, we provide
examples in which the responses of machine learning
models to changes in driving forces are very sensitive to
the basins selected for training and can be implausible.
On the other hand, conceptual hydrologic models need
much less data; in particular, they can easily be applied
to a single basin. They generally provide an inferior fit
during calibration and validation periods but seem to
show a more plausible and more consistent response to
changes in driving forces beyond those present in the
calibration data set. However, whenever input changes
are strong enough to alter catchment properties, such as
vegetation or soil structure, prediction with conceptual
models becomes unreliable unless the required modifi-
cations to their parameters are known or the vegetation
and soil structure are part of the model. The latter would
lead to a model with mechanisms that are very difficult
to parameterize with sufficient accuracy. In principle,
machine learning models could be better for such pre-
dictions as they could learn the effect of such changes in
catchment properties from other catchments. However,
as we have seen already for relatively small changes in
driving forces, more research is needed to realize this
potential. This would require the development of mod-
els that are trained on a training data set that contains
a large diversity of catchments with different character-
istics and/or that are constrained or pre-conditioned by
physical and biological considerations.

4 Summary and conclusions

We compared the sensitivity of runoff predictions of concep-
tual and machine learning hydrologic models to changes in
precipitation and temperature input for selected catchments
of the US CAMELS data set, for which all modeling ap-
proaches provided a good fit for the calibration and valida-
tion time periods. We found the following results:

– We confirmed earlier results by various researchers that
machine learning models generally provide a better fit
(higher NSE) for both calibration and validation peri-
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ods. In addition, machine learning models are much bet-
ter in extrapolating to basins not used for calibration, but
this was not the main aim of this study.

– In an extended metamorphic testing setup, we found
qualitatively similar responses of the catchment outlet
discharge to precipitation and temperature changes for
intermediate- and high-elevation basins, with the main
quantitative difference being that the responses of the
LSTM were generally smaller and smoother than those
of the conceptual hydrologic models. As metamorphic
testing is a qualitative procedure, it is hard to assess
which of these responses are more plausible. On the
other hand, we found major differences in the responses
of low-altitude basins, for which the LSTM models led
to less plausible results (positive rather than negative
responses of catchment outlet discharge to a tempera-
ture increase). Training the LSTM with a reduced set
of catchment attributes, which should represent the fac-
tors with a direct physical influence, did not resolve
this issue. However, training the LSTM on only low-
elevation catchments reversed the sign of the sensitiv-
ities, which then mostly agreed with those of the con-
ceptual hydrologic models. As for the intermediate- and
high-elevation basins, the response of the LSTM model
was then in qualitative agreement with that of the con-
ceptual models but was generally smaller and smoother.

Our results indicate the need for caution in the prediction
of LSTM models for inputs that were not present in a sim-
ilar form in the training data set. Enlarging the training set
to situations that are not of direct relevance to the investi-
gated problem may even deteriorate the results. In our case
study, this occurred with results for low-altitude basins when
also including high-altitude basins for training. On the other
hand, enlarging the set of low-altitude basins improved the
response for low-altitude basins, which is in agreement with
the experience with machine learning models that a large
training set of basins is important for leveraging their full
potential. These results provide a motivation for intensify-
ing research regarding approaches that try to combine the
strengths of machine learning and conceptual (or even phys-
ical) hydrologic models. Hybrid approaches that profit from
physical constraints and machine learning flexibility could
eliminate the problem of implausible behavior and reduce
the sensitivity of the LSTM models to the training data set
and, on the other hand, improve the quality of fit compared
to the conceptual hydrologic models.

Appendix A: Conceptual hydrologic models

A1 Auxiliary functions

We introduce here auxiliary functions that are used to smooth
transitions between different hydrologic regimes. Smooth

Figure A1. Shapes of the smoothed Heaviside functions.

transitions lead to smoother posterior shapes, facilitate nu-
merics, and are more realistic even in cases of physically
sharp transitions as they represent averages over the catch-
ment where the environmental conditions that determine the
transitions are not homogeneous (Kavetski et al., 2006).

We suggest two parameterizations of a smoothed Heavi-
side function:

f
logistic
SH (x,1x)=

1
1+ exp

(
−4 x

1x

) , (A1a)

f
quadratic
SH (x,1x)

=


0 for x ≤−1x

1
2

(
x+1x
1x

)2
for −1x < x ≤ 0

1− 1
2

(
1x−x
1x

)2
for 0< x ≤1x

1 for x > 1x

. (A1b)

These functions are visualized in Fig. A1.
The two shapes are very similar, but note that the quadratic

version is exactly zero or unity for x ≤−1x or x ≥1x, re-
spectively, whereas the logistic version approaches these val-
ues asymptotically.

The smooth transition function from zero to a linear in-
crease is given by the equation

f
quadratic
SI (x,1x)

=


0 for x ≤−1x

(x+1x)2

41x for −1x < x ≤1x
x for x > 1x

, (A2)

and this is visualized in Fig. A2.
Note that the function exactly matches its non-smooth ver-

sion for x ≤−1x and for x ≥1x.
These two functions will be used in addition to exponential

functions to formulate smooth transitions in the conceptual
hydrologic models.
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Figure A2. Shape of the smoothed start of the linear-increase func-
tion.

A2 GR4neige

The GR4J model is a conceptual hydrologic model formu-
lated with a daily time step (J= journellement= daily) that
has proven to lead to an excellent performance when only
four parameters (thus the “4” in the name) are fitted for a
given catchment (Perrin et al., 2003). As our objective is to
simulate in continuous time, we use the continuous-time ver-
sion, GR4 (Santos et al., 2018).

As the set of catchments extends to high altitudes, we ex-
tend the continuous-time version of the GR4J model (Santos
et al., 2018) with a continuous-time version of the discrete-
time snow accumulation model Cemaneige (Valery et al.,
2014). We thus call this model GR4neige to refer to the orig-
inal models. Our notation is a compromise between the orig-
inal publications and the attempt to use similar parameter
names across different models. Figure A3 gives a schematic
overview of the model.

To formulate the snow model, the catchment is divided
into nb elevation bands for which precipitation and tempera-
ture inputs are required.

Precipitation is divided into snow and rain by using the
fraction of precipitation calculated from the daily minimum
and maximum temperature as follows:

fsnow,i

=


0 for Tmin,i ≥ Tsf,th
Tsf,th−Tmin,i
Tmax,i−Tmin,i

for Tmax,i > Tsf,th and Tmin,i < Tsf,th
1 for Tmax,i ≤ Tsf,th

. (A3)

Here, the index i refers to the elevation band, Tmin,i and
Tmax,i refer to the daily minimum and maximum temperature
in the elevation band i, and Tsf,th is the threshold temperature
for snowfall (see Table A1 for a list of all model parameters
and their default values and ranges).

The snowpack in each elevation band is characterized by
its water equivalent, Ssn,i , and its “cold content” indicated by
a temperature, Tsn,i . The function of this temperature is to
delay the melting process whenever the temperature is very
cold before it climbs above zero. The two state variables,

Figure A3. Schematic diagram of the GR4neige model (Santos
et al., 2018; Valery et al., 2014, modified).

Ssn,i and Tsn,i , fulfill the following differential equations:

dSsn,i

dt
= fsnow,iPi −Qmelt,i, (A4)

dTsn,i

dt
=
− log(θG2)

Ut

(
Tmean,i − Tsn,i

)
. (A5)

The amount of snow (in water units) is given by a simple
mass balance between accumulation and melting. Tempera-
ture follows the daily mean temperature with a rate constant
of − log(θG2)/Ut (note that 0<θG2< 1, and, thus, log(θG2)

is negative; see below for the justification of this parameteri-
zation). The snow melting rate is given by

Qmelt,i =
θG1

Ut
· fSI(Tmean,i − Tsm,th,1Tsm)

· fSH(Tsn,i,1Tsm) ·

(
1− exp

(
−
Ssn,i

Ssn,th

))
, (A6)

which approaches the proportionality with temperature
above the snowmelt temperature, Tmean,i−Tsm,th (fSI), and if
the snow temperature, Tsn,i , is above zero (fSH) and if there
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still is snow present (last exponential term). These conditions
are formulated by smooth transitions based on Eqs. (A2) and
(A1b) and the exponential term.

Note that the analytical solution of Eq. (A5) under con-
stant driving forces (Tmean,i >Tsm,th) and disregarding the
smoothing of the transitions is given by

Tsn,i(t)= Tmean,i +
(
Tsn,i(0)− Tmean,i

)
exp

(
log(θG2)

Ut
t

)
.

After 1 d (Ut ), we thus get

Tsn,i(Ut )= Tmean,i +
(
Tsn,i(0)− Tmean,i

)
θG2

= θG2Tsn,i(0)+ (1− θG2)Tmean,i,

which corresponds to the original time-discrete formulation
(Valery et al., 2014) and thus justifies our continuous-time
approach.

Similarly to our justification for Eq. (A5), if Ssn,i� Ssn,th,
we can neglect the exponential term in Eq. (A6), and if
we further neglect smoothing, integration over 1 d (Ut )
leads to an integrated flux of θG1(Tmean,i − Tsm,th), whereas
for Ssn,i� Ssn,th, we get approximately θG1(Tmean,i −

Tsm,th)Ssn,i/Ssn,th, as given by the discrete-time model
(Valery et al., 2014). This makes our model and the meaning
of the parameters similar but not identical to the Cemaneige
model.

Finally, the input to the hydrologic model (per unit area)
is given by the sum of the precipitation fractions falling as
rain plus the sum of water from melting snow weighted by
the relative areas of the elevation bands:

Peff =

nb∑
i=1

Ai

A

(
(1− fsnow,i)Pi +Qmelt,i

)
. (A7)

Here,Ai is the area of the elevation band, i, andA is the total
area of the catchment.

This continuous-time snow model is now coupled with the
published continuous-time version of the GR4 model (San-
tos et al., 2018) given by the water balance differential equa-
tions for the two reservoirs S (SS) and R (SR) and the cascade
(Sr,i):

dSS

dt
= Ps−Es−Qperc, (A8)

dSr,i

dt
=

{
Pn−Ps+Qperc−

nr
x4
Sr,i for i = 1

nr
x4
(Sr,i−1− Sr,i) for i = 2, . . .,nr

, (A9)

dSR

dt
=Q9+QF−Qr. (A10)

The water fluxes in these equations are given by Santos
et al. (2018):

Pn =

{
Peff−Epot for Peff >Epot
0 for Peff ≤ Epot

, (A11)

En =

{
0 for Peff >Epot
Epot−Peff for Peff ≤ Epot

, (A12)

Ps = Pn

(
1−

(
SS

x1

)α)
, (A13)

Es = En

(
1−

(
1−

SS

x1

)α)
. (A14)

Note that we modified the equation:

Es = En

(
2
SS

x1
−

(
SS

x1

)α)
Qperc =

x
1−β
1

(β − 1)Ut
νβ−1S

β

S , (A15)

Quh =
nres

x4
Sr,nres , (A16)

Q9 =8Quh, (A17)
Q1 = (1−8)Quh, (A18)

QF =
x2

xω3
SωR , (A19)

QR =
x

1−γ
3

(γ − 1)Ut
S
γ
R , (A20)

Q=QR+max
(
0,Q1+QF

)
. (A21)

Note that x2 characterizes groundwater input or output fed
by or discharging into neighboring catchments. Set x2= 0 if
you want to conserve mass within the catchment.

The parameters of the GR4neige model are listed together
with their default values and ranges in Table A1.

A3 HBV

The HBV model is probably the most frequently used
conceptual hydrologic model (Bergström, 1992; Lindström
et al., 1997; Seibert, 1999; Seibert and Vis, 2012). As we
use continuous-time models in this paper, we develop a
continuous-time model that is very similar to the origi-
nal discrete-time HBV model. Figure A4 gives a schematic
overview of the model.

We again distinguish nb elevation bands to model snow
cover. In contrast to the Cemaneige model, the soil is also
resolved into these elevation bands. Within each elevation
band, three state variables are used: snow, snow water (water
content of the snowpack), and soil moisture.

We start with the same equation as for the GR4neige
model to calculate the fraction of precipitation that falls as
snow in each elevation band, i:
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Table A1. Parameters of the GR4neige model. The upper part of the table lists the parameters that are always estimated for individual
catchment fits, the middle part lists optional parameters to be added to the set of estimated parameters, and the lower part of the table lists
parameters that are kept constant for these fits.

Parameter Meaning Unit Default value Range∗

x1 Maximum capacity of production store mm 350 (0,∞)
x2 Intercatchment exchange (inflow) coeff. mm d−1 0 (−∞,∞)

x3 Capacity parameter of routing store mm 90 (0,∞)
x4 Base time of routing cascade d 1.7 (0,∞)
θG1 Maximum melting rate per degree above threshold mm d−1 °C−1 3 (0,∞)
θG2 Cold capacity delay coefficient – 0.5 [0,1]

Tsf,th Threshold temperature for snowfall °C 0 (−∞,∞)

Tsm,th Threshold temperature for snowmelt °C 0 (−∞,∞)

α Production store exponent – 2 (1,∞)
β Percolation exponent – 5 (1,∞)
γ Routing store outflow exponent – 5 (1,∞)

1Tsm Temperature interval for snowmelt initiation °C 1
Ssn,th Threshold snow level for turning off snowmelt mm 1
ω Intercatchment exchange exponent – 3.5
8 Portion of coefficient routing/outflow – 0.9
ν Percolation coefficient – 4/9
nb Number of elevation bands – 5
nr Number of routing cascade reservoirs – 11

∗ To avoid integration problems, the ranges are more strongly constrained during optimization.

fsnow,i =
0 for Tmin,i ≥ Tsf,th
Tsf,th−Tmin,i
Tmax,i−Tmin,i

for Tmax,i > Tsf,th and Tmin,i < Tsf,th
1 for Tmax,i ≤ Tsf,th

. (A22)

The mass balance of snow is then described by the follow-
ing equation:

dSsn,i

dt
= csffsnow,iPi −Qmelt,i +Qrefr,i . (A23)

Here, csf is a parameter to empirically account for errors in
snow measurement and the evaporation of snow. In addition
to the melting flow,Qmelt, the HBV model considers refreez-
ing of snow water,Qrefr. The melting water flow is described
similarly to in the GR4neige model, except that there is no
cold content or snow temperature considered:

Qmelt,i = cmelt · fSI(Tmean,i − Tsm,th,1Tsm)

·

(
1− exp

(
−
Ssn,i

Ssn,th

))
. (A24)

Refreezing is described similarly with the reverse tempera-
ture dependence and with a parameter cfr that reduces the
rate compared to melting:

Qrefr,i = cfr cmelt · fSI(Tsm,th− Tmean,i,1Tsm)

·

(
1− exp

(
−
Ssw,i

Ssw,th

))
. (A25)

The total water flow production in each elevation band is
given by the sum of melting snow and precipitation that fall
as rain,Qmelt,i+(1−fsnow,i)Pi . Only a fraction of this water
flow feeds the snow water reservoir as this flux is limited by
the amount of snow and by approaching the water-holding
capacity of the snowpack, cwh:

Qsw,i =
0 if Ssw,i ≥ cwhSsn(

Qmelt,i + (1− fsnow,i)Pi
)

·

(
1− exp

(
−
Ssn,i
Ssn,th

))
·

(
1− exp

(
−
cwhSsn,i−Ssw,i

Ssw,th

)) if Ssw,i < cwhSsn
. (A26)

The remaining part,Qmelt,i+(1−fsnow,i)Pi−Qsw,i , together
with snow water release, Qrel,i , leaves the snowpack:

Qsn,i =Qmelt,i + (1− fsnow,i)Pi −Qsw,i +Qrel,i . (A27)

Snow water release is the most challenging part of the
continuous-time formulation of the HBV model. It is needed
as the relative water content would increase beyond the
water-holding capacity of the snowpack, cwh, when snow
melts, even in the absence of feeding water. In the original
HBV model, excess water beyond the water-holding capac-
ity is just discharged at each time step. To avoid a discontinu-
ous flux, we accept a deviation from the discrete-time model
by allowing for an increasing release of snow water already
below the water-holding capacity, cwh:
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Table A2. Parameters of the HBV model. The upper part of the table lists the parameters that are always estimated for individual catchment
fits, the middle part lists optional parameters to be added to the set of estimated parameters, and the lower part of the table lists parameters
that are kept constant for these fits.

Parameter Meaning Unit Default value Range∗

cmelt Maximum melting rate per degree above threshold mm (°C d−1) 3 (0,∞)
Sfc Maximum soil moisture level mm 100 (0,∞)
Suz,div Division between lower and upper parts of upper groundw. mm 10 (0,∞)
cperc Maximum percolation water flow mm d−1 1.5 (0,∞)
k0 Water release coeff. from upper part of upper groundw. 1/d 1.5 (0,∞)
k1 Water release coefficient from upper groundwater zone 1/d 0.1 (0,∞)
k2 Water release coefficient from lower groundwater zone 1/d 0.1 (0,∞)
kr Water release coefficient of routing cascade 1/d 2 (0,∞)
kdg Rate coeff. for outflow from gw. to deep gw. 1/d 0 (−∞,∞)

β Exponent for water distribution to soil and groundwater – 3 (2,∞)
Tsf,th Threshold temperature for snowfall °C 0 (−∞,∞)

Tsm,th Threshold temperature for snowmelt °C 0 (−∞,∞)

1Tsm Temperature interval for snowmelt initiation °C 1
Ssn,th Threshold snow level for turning off snowmelt mm 1
Ssw,th Threshold snow water level for turning off refreezing mm 0.2
Ssm,th Threshold water level of unsat. zone for turning off evap. mm 0.5
Suz,th Threshold for turning off percol. from upper groundw. mm 1
csf Snowfall correction factor – 1
cfr Coefficient of reduction of freezing rel. to melting rate – 1
cwh Water-holding fraction in snowpack – 0.1
ce Multiplication factor for potential evaporation – 1
nb Number of elevation bands – 5
nr Number of routing cascade reservoirs – 5

∗ To avoid integration problems, the ranges are more strongly constrained during optimization.

Qrel,i =

{
0 if Ssn,i = 0

Ssw,i
cwhSsn,i

Qmelt,i if Ssn,i > 0 . (A28)

This finally leads to the differential equation for snow water:

dSsw,i

dt
=Qsw,i −Qrefr,i −Qrel,i . (A29)

The water leaving the snowpack, Qsn,i , is now divided
into a fraction that feeds soil moisture and a fraction that
recharges groundwater with the original nonlinear relation-
ship with the exponent β, as in the original HBV model:

dSsm,i

dt
=Qsn,i

(
1−

(
Ssm,i

Sfc

)β)
−Epot(

1− exp
(
−
Ssm

Ssm,th

))
exp

(
−
Ssn

Ssn,th

)
, (A30)

Qrech =

nb∑
i=1

Ai

A
Qsn,i

(
Ssm,i

Sfc

)β
. (A31)

Groundwater is then described by the water content of an
upper zone, Suz, and a lower zone, Slz:

dSuz

dt
=Qrech−Qperc−Q0−Q1, (A32)

dSlz

dt
=Qperc−Q2−Qdg, (A33)

with a percolation flux from the upper to the lower zone given
by

Qperc = cperc

(
1− exp

(
−
Suz,i

Suz,th

))
, (A34)

while outfluxes are given by
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Figure A4. Schematic diagram of the HBV model as used in this
paper.

Q0 = k0fSI(Suz− Suz,div,Suz,th), (A35)
Q1 = k1Suz, (A36)
Q2 = k2Slz, (A37)
Qdg = kdgSlz. (A38)

These process formulations follow exactly the HBV model,
with the single exception of the additional flow to deep
groundwater, Qdg, that, if kdg is negative, can also describe
a feed from neighboring catchments. It turned out that some
higher catchments need such a term that is similar (except for
the sign) to the term characterized by the parameter x2 of the
GR4snow model.

The final model component is the a reservoir cascade that
describes flow routing:

dSr,i

dt
={
Q0+Q1+Q2− nrkrSr,1 for i = 1

nrkr(Sr,i−1− Sr,i) for i = 2, . . .,nr
. (A39)

The catchment outflow is then given as the outflow from the
final routing reservoir:

Q= nrkrSr,nr . (A40)

The parameters of this continuous-time version of the
HBV model are listed together with their default values and
ranges in Table A2.
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Appendix B: LSTM

Table B1. Full and reduced sets of catchment attributes used for the calibration of the LSTM models (Addor et al., 2017).

Attributes Reduced set Description Unit

elev_mean Catchment mean elevation m
slope_mean x Catchment mean slope m km−1

area_gages2 x Catchment area (GAGESII estimate) km2

high_prec_freq Frequency of high-precipitation days d yr−1

high_prec_dur Average duration of high precipitation days
low_prec_freq Frequency of dry days d yr−1

low_prec_dur Average duration of dry periods days
frac_forest x Forest fraction –
lai_max x Maximum monthly mean of the leaf area index –
lai_diff x Difference between max. and min. monthly mean leaf area index –
dom_land_cover_frac x Fraction of catchment area associated with dominant land cover –
dom_land_cover x Dominant land cover type –
root_depth_50 x Root depth at 50th percentiles m
soil_depth_statsgo x Soil depth m
soil_porosity x Volumetric soil porosity -
soil_conductivity x Saturated hydraulic conductivity cm h−1

max_water_content x Maximum water content m
geol_1st_class x Most common geologic class in the catchment –
geol_2nd_class x Second most common geologic class in the catchment –
geol_porostiy x Subsurface porosity –
geol_permeability x Subsurface permeability m2

p_mean Mean daily precipitation mm d−1

pet_mean Mean daily PET mm d−1

p_seasonality Seasonality and timing of precipitation –
frac_snow Fraction of precipitation falling as snow –
aridity PET/P –

The LSTM architecture was already successfully tested for
predictions of streamflow (Feng et al., 2020, 2021; Ma et al.,
2021), soil moisture (Fang et al., 2017, 2019, 2020), stream
temperature (Rahmani et al., 2021), snow water equivalent
(Song et al., 2024; Cui et al., 2023), lake water temperature
(Read et al., 2019), dissolved oxygen (Zhi et al., 2023), and
nitrate (Saha et al., 2023). LSTM is a type of recurrent neural
network (RNN) that learns from sequential data. The differ-
ence from a simple RNN is that LSTM has “memory states”
and “gates”, which allow it to learn how long to retain the
state information, what to forget, and what to output. The for-
ward pass of the LSTM model is described by the equations
outlined below.

Input transformation: xt = ReLU
(
WI I

t
+ bI

)
(B1)

Input node: gt =

tanh
(
D
(
Wgxx

t
)
+ bgx +D

(
Wghh

t−1)
+ bgh

)
(B2)

Input gate: it =

σ
(
D
(
Wixx

t
)
+ bix +D

(
Wihh

t−1)
+ bih

)
(B3)

Forget gate: f t =

σ
(
D
(
Wf xx

t
)
+ bf x +D

(
Wf hh

t−1)
+ bf h

)
(B4)

Output gate: ot =

σ
(
D
(
Woxx

t
)
+ box +D

(
Wohh

t−1)
+ boh

)
(B5)

Cell state: st = gt � it + st−1
�f t (B6)

Hidden state: ht = tanh
(
st
)
� ot (B7)

Output: yt =Whyh
t
+ by (B8)

In the above, I t represents the raw inputs for the time step;
ReLU is the rectified linear unit; xt is the vector to the LSTM
cell; D is the dropout operator; W refers to network weights;
b refers to bias parameters; σ is the sigmoidal function; � is
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the element-wise multiplication operator; gt is the output of
the input node; it , f t , and ot are the input, forget, and output
gates, respectively; ht represents the hidden states; st repre-
sents the memory cell states; and yt is the predicted output.

The LSTM was calibrated using the catchment attributes
shown in Table B1 (Addor et al., 2017).
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