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Abstract. Root zone soil moisture (RZSM) is critical for
water resource management, drought monitoring and sub-
seasonal flood climate prediction. While RZSM is not di-
rectly observable from space, several RZSM products are
available and widely used at global and continental scales.
This study conducts a comprehensive and quantitative evalu-
ation of eight RZSM products using observations from 58 in
situ soil moisture stations over the Huai River basin (HRB)
in China. Attention is drawn to the potential factors that con-
tribute to the uncertainties of model-based RZSM, including
the errors in atmospheric forcing, vegetation parameteriza-
tions, soil properties and spatial scale mismatch. The results
show that the Global Land Data Assimilation System Catch-
ment Land Surface Model (GLDAS_CLSM) outperforms the
other RZSM products with the highest correlation coefficient
(R = 0.69) and the lowest unbiased root mean square er-
ror (ubRMSE= 0.018 m3 m−3), while SMOS Level 4 (L4)
RZSM shows the worst performance among eight RZSM
products. The RZSM products based on land surface mod-
els generally perform better in the wet season than in the dry
season due to the enhanced ability to capture of the temporal
dynamics of in situ observations in the wet season and the
inertia of remaining high soil moisture values even in the dry
season, while the SMOS L4 RZSM product, derived from
SMOS L3 surface moisture (SSM) combined with an expo-
nential filter method, performs better in the dry season due to
the attenuated ground microwave radiation signal caused by
the increased water vapour absorption and scattering in the

wet season. The underestimated SMOS L3 SSM triggers the
underestimation of RZSM in SMOS L4. The overestimated
RZSM products based on land surface models could be asso-
ciated with the overestimated precipitation amounts and fre-
quency, the underestimated air temperature, and the underes-
timated ratio of transpiration to the total terrestrial evapotran-
spiration. In addition, the biased soil properties and flawed
vegetation parameterizations affect the hydrothermal trans-
port processes represented in different land surface models
(LSMs) and lead to inaccurate soil moisture simulation. The
scale mismatch between point and footprint also introduces
representative errors. The comparison of frequency of nor-
malized soil moisture between RZSM products and in situ
observations indicates that the LSMs should focus on reduc-
ing the frequency of wet soil moisture, increasing the fre-
quency of dry soil moisture and the ability to capture the
frequency peak of soil moisture. The study provides some
insights into how to improve the ability of land surface mod-
els to simulate the land surface states and fluxes by taking
into account the issues mentioned above. Finally, these re-
sults can be extrapolated to other regions located in similar
climate zones, as they share similar precipitation patterns that
dominate the terrestrial water cycle.
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1 Introduction

Soil moisture plays a key role in the hydrological cycle and
land–atmosphere interactions. It controls water and energy
balances (Calvet, 2000; Brocca et al., 2010; Xing et al., 2021)
and has been recognized by the World Meteorological Or-
ganization (WMO) as one of the 50 essential climate vari-
ables (Cho et al., 2015). In particular, root zone soil moisture
(RZSM) has important applications in agricultural drought
monitoring, water resource management, flood forecasting
and seasonal climate prediction (Reichle et al., 2017a; Zhou
et al., 2020; Beck et al., 2021; Xing et al., 2021; Xu et al.,
2021; Fan et al., 2022). RZSM is the amount of water held in
the top 1 m of the soil column that is available for plant tran-
spiration and biomass production, which is crucial for agri-
cultural drought monitoring. Different ecosystems in differ-
ent climate and topography conditions have different rooting
depth, and root zone water storage capacity (Gao et al., 2014;
Kleidon, 2014; Fan et al., 2017; Gao et al., 2019a). The depth
of root tissue can vary from a few centimetres to about 2 m.
However, in large-scale modelling studies, the term “root
zone” commonly refers to the 0–100 cm soil layer. This as-
sumption is based on the fact that the vegetation root tissue is
mostly densely distributed in this area (Baldwin et al., 2017).
In the context of climate change, extreme events such as
floods, droughts and heat waves are becoming more frequent
around the world, with significant impacts on RZSM (Lorenz
et al., 2010; Hauser et al., 2016; Al Bitar et al., 2021). For ex-
ample, flash droughts are severely affecting RZSM and agri-
cultural production in the Huaibei Plain, China (Gou et al.,
2022).

Recently, microwave-based satellite missions have pro-
vided global soil moisture retrievals with approximately 3 d
temporal resolution, but these are limited to the top few
centimetres (0–5 cm for L-band) due to the limitations of
microwave penetration depth (Kerr et al., 2001; Reichle et
al., 2017b). Therefore, various approaches have been devel-
oped to estimate the RZSM and are roughly divided into
three categories (Liu et al., 2023), including (1) statistics-
based methods, such as linear regression (Zhang et al., 2017)
and the cumulative distribution function (Gao et al., 2019b);
(2) data-driven machine learning methods, such as random
forest (Carranza et al., 2021) and artificial neural network
(Kornelsen and Coulibaly, 2014); and (3) physically based
methods, such as data assimilation of satellite-derived ob-
servations into land surface models (LSMs; Albergel et al.,
2017; Bonan et al., 2020). Among them, the assimilation of
satellite-derived observations into LSMs is considered the
most accurate method to estimate RZM due to the explicit
physical mechanism, while it requires large amounts of input
data (precipitation, air temperature, radiation, etc.). To date,
several RZSM products have been developed for broader
global-scale applications, such as from the Global Land Data
Assimilation System (GLDAS_NOAH and GLDAS_CLSM)
(Rodell et al., 2004), the China Land Data Assimilation Sys-

tem (CLDAS) (Shi et al., 2014), the Soil Moisture Active
Passive (SMAP) Level 4 (L4) (Reichle et al., 2012, 2017a),
the European Centre for Medium-Range Weather Forecasts
(ECMWF) fifth-generation reanalysis (ERA5) (Hersbach et
al., 2020), the Modern-Era Retrospective Analysis for Re-
search and Applications version 2 (MERRA-2) (Gelaro et
al., 2017) and the National Centers for Environmental Pre-
diction Climate Forecast System version 2 (NCEP CFSv2)
(Saha et al., 2014). These RZSM products are generated
by combining LSMs driven by meteorological forcing fields
from atmospheric general circulation model (AGCM) and
satellite-derived data using different data assimilation tech-
niques (Calvet and Noilhan, 2000; Rodell et al., 2004). In ad-
dition, the Soil Moisture and Ocean Salinity (SMOS) Centre
Aval de Traitement des Données (CATDS) provides SMOS
L4 RZSM products, which are derived from SMOS Level 3
(L3) 3 d SSM retrievals using a statistical exponential filter
model (Albergel et al., 2008; Al Bitar and Mahmoodi, 2020).

The accuracy of RZSM products is strongly influenced by
the quality of meteorological forcing data, especially pre-
cipitation and air temperature (Zeng et al., 2021). Numer-
ous studies have shown large uncertainties in global climate
atmospheric forcing data, particularly for precipitation fre-
quency, intensity and heavy-precipitation events (Sun et al.,
2005; Piani et al., 2010; Velasquez et al., 2020; Jiao et al.,
2021). Accurate representation of soil properties is also criti-
cal. Many global LSMs rely on the FAO/UNESCO (Food and
Agriculture Organization, United Nations Educational, Sci-
entific and Cultural Organization) World Soil Map (Reynolds
et al., 2000), including GLDAS products (Bi et al., 2016;
Yang et al., 2020), NCEP CFSv2 (Yang et al., 2020), ERA5
(Qin et al., 2017; Yang et al., 2020), SMOS L4 (Al Bitar et
al., 2021) and MERRA-2 (McCarty et al., 2016; Gelaro et
al., 2017). However, this soil map contains limited soil infor-
mation in many regions, including China (Shangguan et al.,
2013), leading to increased uncertainty in soil moisture sim-
ulations. In addition, the lack of representation of soil strat-
ification can significantly affect the simulation of RZSM by
LSMs. In the Huaibei Plain, the stratification of the plough
layer, the black soil layer and the lime concretion layer can
hinder the vertical movement of water from the surface layer
to the root zone layer (Li et al., 2011; Zha et al., 2015; Gu et
al., 2021). Finally, the accuracy of soil moisture simulations
is also affected by inadequate model structures and imper-
fect parameterization schemes, especially for representation
of vegetation in LSMs, such as the land cover and vegeta-
tion canopy and root tissue parameterizations (Nogueira et
al., 2020; Stevens et al., 2020; van Oorschot et al., 2021)
and soil evaporation and transpiration model representation
(Lian et al., 2018; Dong et al., 2022; Feng et al., 2023). Veg-
etation is usually represented by land cover maps (that are
usually prescribed similar to soil maps) and can be very dif-
ferent for the different models. Large uncertainties are shown
in simulating the water and energy exchange between the
land surface and the atmosphere. For example, Nogueira et
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al. (2020) found that the misrepresentation of the vegeta-
tion coverage results in a cold bias in land surface temper-
ature during summer; they proposed an improved represen-
tation of vegetation with an update of the leaf area index
(LAI) and high- and low-vegetation fractions, types and den-
sity, which effectively reduces the cold bias. Van Oorschot
et al. (2021) proposed a climate-controlled root zone stor-
age capacity by calculating a time-varying total soil depth
based on a moisture depth model instead of using a constant
of 2.89 m in the original HTESSEL LSM, which improved
the water flux simulations. Dong et al. (2022) demonstrated
that the inaccurate partitioning of evapotranspiration into soil
evaporation and vegetation canopy transpiration results in
warm bias in air temperature due to the inadequate utiliza-
tion of RZSM for transpiration, which results in the underes-
timated ratio of transpiration to evapotranspiration. Different
LSMs are used in LDAS or reanalysis products, such as the
Noah LSM in GLDAS_NOAH and NCEP CFSv2 (Rodell
et al., 2004; Saha et al., 2014); HTESSEL in ERA5 (Hers-
bach et al., 2020); CLSM in GLDAS_CLSM, MERRA-2 and
SMAP L4 (Koster et al., 2000; Reichle et al., 2017d, 2021);
and the Common Land Model (CoLM) and the Community
Noah LSM with multi-parameterization options (Noah-MP)
in CLDAS products (Wang et al., 2021a). The exponential
filter technique is used in SMOS L4 (Al Bitar et al., 2021).

Numerous studies have been conducted to validate and
assess the utility of SSM using in situ observations in the
topsoil layer (Collow et al., 2012; Cui et al., 2017; Beck et
al., 2021; Zheng et al., 2022). On the other hand, validation
studies for RZSM are relatively rare, especially over China
(Xing et al., 2021; Xu et al., 2021; Fan et al., 2022). Given
the importance of the Huai River basin (HRB) as an agricul-
tural grain production area in China, it is crucial to evalu-
ate the performance of different RZSM products in this re-
gion. RZSM products can be validated against in situ obser-
vations, which serve as a reference dataset. Differences be-
tween in situ RZSM observations and RZSM products can be
attributed to errors in meteorological forcing data, soil prop-
erties, parameterization and scale mismatch.

The objectives of this study are to (1) compare eight
global RZSM products (ERA5, MERRA-2, NCEP CFSv2,
GLDAS_CLSM v2.2, GLDAS_NOAH v2.1, CLDAS v2. 0,
SMAP L4 and SMOS L4) with in situ soil moisture obser-
vations over the HRB from 1 April 2015 to 31 March 2020;
(2) compare the RZSM products with each other over the
HRB; and (3) investigate the potential sources of errors on
the performance of the RZSM products, including meteoro-
logical forcing data, soil properties, soil stratification, vege-
tation parameterization and scale mismatch. The paper is or-
ganized as follows. The gridded RZSM products and in situ
validation datasets (precipitation, air temperature, soil tex-
ture) are presented in Sect. 2. Section 3 describes the RZSM
pre-processing methods and the statistical metrics used to
evaluate the different datasets. The validation and the inter-
comparison of the RZSM products are presented in Sect. 4.

Section 5 discusses the potential sources of error in various
RZSM products. Section 6 provides the main conclusions.

2 Datasets

2.1 The Huai River basin study area

The HRB is the transitional zone between the northern sub-
tropical and warm temperate climates, and it is one of the
most important commodity grain production areas in China.
It is located in eastern China (30°55′–36°36′ N, 111°55′–
121°25′ E) and covers an area of 270 000 km2 (Fig. 1). The
HRB has a typical humid and sub-humid monsoon climate.
The average annual precipitation is 888 mm and increases
from north to south. More than 60 % of the annual precipita-
tion falls between June and September (Zhang et al., 2009).
The HRB suffers from frequent floods and droughts due to
the spatial and temporal variability of precipitation and evap-
oration. The main land cover types in the HRB are rainfed
croplands, followed by irrigated croplands, forests and grass-
lands. Overall, the terrain of the HRB is relatively flat, with
a large plain covering 90 % of the area. The cultivated area
in the HRB is approximately 127 200 km2, of which 76 % is
irrigated according to the Manual of the Huai River Basin
Irrigation Area (Chap. 2.1) and Summary of Flood Control
Planning for the Huai River Basin (http://www.hrc.gov.cn,
last access: 17 May 2024). The water resource infrastructure
includes reservoirs, electromechanical wells, diversion locks
and pumping stations built along lakes and rivers. Most crop-
land fields are irrigated by irrigation canals or a combination
of wells and canals (Wang et al., 2021a). Annual evaporation
can exceed precipitation. It ranges from 900 to 1500 mm and
decreases from north to south (Wang et al., 2021a). Heavy
irrigation in the HRB can explain the extra water available
for evaporation.

2.2 HRB in situ measurements

The HRB soil moisture network was established by the Min-
istry of Water Resources of the People’s Republic of China.
It consists of 58 in situ stations (see Fig. 1) and provides
soil moisture measurements at four depths of 10, 20, 40 and
100 cm (Liu et al., 2023). At each station, volumetric soil
moisture measurements in units of m3 m−3 are collected at
08:00 local solar time. These probes are calibrated using
gravimetric measurements taken at each soil depth. The de-
ployment of the soil moisture stations and the collection of
soil moisture measurements follow the specifications for soil
moisture monitoring (MWR, 2015). Since the study aims to
evaluate the accuracy of eight RZSM products (0–100 cm)
which are summarized in Table 1, the depth-weighted av-
erage of the in situ soil moisture measurements at the four
depths is calculated to obtain the 0–100 cm soil moisture
data.
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Figure 1. Overview of the study area (including elevation, stream and land cover) and distribution of in situ soil moisture stations (green
star). The squares in Fig. 1b and c represent a 0.25° grid. Publisher’s remark: please note that the above figure contains a disputed territory.

The China Daily Gridded Ground Precipitation and Air
Temperature dataset V2.0, provided by the China Meteoro-
logical Administration (CMA) (http://data.cma.cn, last ac-
cess: 17 May 2024) with a spatial resolution of 0.5°× 0.5°
(approximately 55.6 km), serves as a reference dataset for
validating the meteorological forcing fields used in reanal-
yses and LDAS. The CMA dataset is derived by spatial inter-
polation using the partial thin-plate smoothing spline method
from 2474 ground-based meteorological station observations
across China, following stringent quality controls and neces-
sary corrections. At the national level, the average coverage
of gauging stations in a grid cell is 38 %. However, in the
eastern part of China, where the HRB is located, the cov-
erage reaches up to 77 %. The dataset has been extensively
validated against ground observations and is of high quality.
For example, the precipitation data have a root mean square
error (RMSE) of 0.49 mm per month and a correlation coef-
ficient (R) of 0.93 with a significance level p smaller than
0.01 (CMA, 2012b). The annual air temperature data have a
mean bias and RMSE ranging from −0.2 to 0.2 °C and from
0.2 to 0.3 °C, respectively (CMA, 2012a).

2.3 Soil map

Soil databases used in many global LSMs have traditionally
relied on the FAO/UNESCO 1 : 5 million scale World Soil
Map with a spatial resolution of 5 arcmin (approximately
10 km). However, this FAO/UNESCO soil map contained
limited soil information in different regions, including China.
Consequently, the uncertainties in soil properties contributed

to larger errors in the land surface variables simulated by the
LSMs (e.g. RZSM), especially over China (Nachtergaele et
al., 2009; Shangguan et al., 2013). To address these uncer-
tainties, the Harmonized World Soil Database (HWSD) was
developed by FAO and the International Institute for Applied
Systems Analysis (IIASA) with a resolution of 30 arcsec (ap-
proximately 1 km). The HWSD combines recently collected
regional and national updates of soil information with the
FAO/UNESCO 1 : 5 million scale World Soil Map (FAO et
al., 2012). HWSD also incorporates the 1:1 million scale soil
map of China provided by the Institute of Soil Science, Chi-
nese Academy of Sciences (ISSCAS).

A dataset of soil properties in China was developed by
Shangguan et al. (2013) that integrates the physical and
chemical properties of 8979 soil profiles along with the soil
map of China, and it is employed in the CLDAS product
(Qin et al., 2017). The dataset provides information on soil
properties for eight layers (0–2.3 m) at a spatial resolution
of 30× 30 arcsec (approximately 1 km). The FAO/UNESCO
and HWSD V1.2 soil datasets are employed in different
LSMs, respectively. The China dataset of soil properties de-
veloped by Shangguan et al. (2013) is used as a reference
to evaluate the soil properties (i.e. sand and clay content,
bulk density and soil organic matter) of FAO/UNESCO and
HWSD V1.2 datasets in Sect. 5.2.

2.4 Gridded RZSM products

The eight products considered in this study (Table 1) are pre-
sented below.

Hydrol. Earth Syst. Sci., 28, 2375–2400, 2024 https://doi.org/10.5194/hess-28-2375-2024
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Table 1. Description of global and regional RZSM gridded products used in this study.

Dataset Land surface Time Resolution Soil Soil References
model period map layers

ERA5
(global)

HTESSEL January
1979–present

Hourly/
0.25°

FAO 0–7 cm,
7–28 cm,
28–100 cm,
100–289 cm

Hersbach et al. (2020),
Xu et al. (2021)

MERRA-2
V2.0 (global)

CLSM January
1980–present

Hourly/
0.25°

FAO 0–5 cm,
0–100 cm

Gelaro et al. (2017),
Reichle et al. (2017d)

NCEP CFSv2
V2.0 (global)

Noah January
2011–present

6-hourly/
0.20°

FAO 0–10 cm,
10–40 cm,
40–100 cm,
100–200 cm

Qin et al. (2017)

GLDAS_NOAH
V2.1 (global)

Noah January
2000–present

3-hourly/
0.25°

FAO 0–10 cm,
10–40 cm,
40–100 cm,
100–200 cm

Bi et al. (2016),
Xing et al. (2021)

GLDAS_CLSM
V2.2 (global)

CLSM February
2003–present

Daily/
0.25°

FAO 0–2 cm,
0–100 cm

Li et al. (2019)

CLDAS V2.0
(Asia)

CLM
CoLM
Noah-MP

January
2008–present

Hourly/
0.0625°

Shuangguan
et
al. (2013)

0–5 cm,
0–10 cm,
10–40 cm,
40–100 cm,
100–200 cm

Chen and Yuan (2020),
Wang et al. (2021a)

SMAP Level 4
V5 (global)

CLSM March
2015–present

3-hourly/
9 km

HWSD 0–5 cm,
0–100 cm

Reichle et al. (2017a),
Ma et al. (2019)

SMOS Level 4
V301 (global)

Exponential
filter (no LSM)

January
2010–present

Daily/
0.25°

FAO 0–100 cm Tangdamrongsub et al. (2020),
Al Bitar et al. (2021)

Note that precipitation, air temperature and soil texture have the same resolution as soil moisture.

2.4.1 ERA5

ERA5 is the fifth-generation global atmospheric reanalysis
produced by ECMWF (Hersbach et al., 2023). ERA5 is de-
veloped using the 4-Dimensional Variational (4D-Var) data
assimilation method that incorporates a 10-member ensem-
ble and model forecasts from the ECMWF Integrated Fore-
cast System (IFS) into CY41R2 with 137 hybrid sigma/-
pressure model levels in the vertical and the top level at
0.01 hPa (Hersbach et al., 2020). ECMWF IFS mainly as-
similates satellite-derived precipitation data, such as from
the Advanced Microwave Scanning Radiometer 2 (AMSR-
2), the Global Precipitation Measurement (GPM), FengYun-
3-C (FY-3-C), and the Tropical Rainfall Measuring Mission
(TRMM), and ground-based radar precipitation composites,
provided by the World Meteorological Organization Infor-
mation System, to obtain the best precipitation estimates.
The near-surface atmospheric forcing field at the lowest level
of the atmospheric model (about 10 m a.g.l.) is used to force
the HTESSEL LSM, which serves as the land surface com-

ponent of the ECMWF IFS to model the land surface vari-
ables. HTESSEL uses the FAO/UNESCO World Soil Map
and the Global Land Cover Characteristics (GLCC) database
(Nogueira et al., 2020). The diffusivity form of the Richards
equation is used to describe the vertical water flow within
the soil column that is discretized into four layers in the HT-
ESSEL. Besides, HTESSEL ignores the exchange of lateral
water fluxes between adjacent grid cells. The screen-level pa-
rameter analysis (2 m temperature and relative humidity) is
carried out first, and then its increments are incorporated into
the soil moisture analysis.

2.4.2 MERRA-2

MERRA-2 is the latest version of the global atmospheric
reanalysis product produced by NASA Global Modelling
and Assimilation Office (GMAO, 2015). It uses the God-
dard Earth Observing System Model (GEOS-5.12.4) atmo-
spheric data assimilation system, which consists of (1) the
GEOS atmospheric model and (2) the Gridpoint Statistical
Interpolation assimilation system. The precipitation forcing

https://doi.org/10.5194/hess-28-2375-2024 Hydrol. Earth Syst. Sci., 28, 2375–2400, 2024



2380 E. Liu et al.: Evaluation of root zone soil moisture products

is the weighted average of model background precipitation
generated by GEOS-5 FP-IT (Forward Processing system for
Instrument Teams) after 31 December 2014 and precipita-
tion generated by AGCM, with weights dependent on lati-
tude. The National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC) Unified Gauge-
Based Analysis of Global Daily Precipitation (CPCU) prod-
uct is used to correct the model background precipitation.
The CPC Merged Analysis of Precipitation (CMAP) product
is rescaled to match the climatology of the Global Precipi-
tation Climatology Project product, version 2.1 (GPCPv2.1),
and is fully used in Africa, which allows the observed pre-
cipitation to impact, via evapotranspiration, the near-surface
air temperature and humidity, thereby yielding a more self-
consistent near-surface meteorological dataset (Reichle et al.,
2017d). CLSM uses the FAO/UNESCO World Soil Map and
the Global Land Cover Characteristics (GLCC), version 2.0
(Reichle et al., 2017c), and is used as the land surface compo-
nent of MERRA-2 to perform the land surface analysis. The
CLSM used in MERRA-2 simulates the average soil mois-
ture in the surface layer (0–5 cm), the root zone (0–100 cm)
and the varying profile (from the land surface to the bedrock)
and does not take into account lateral water fluxes (ground-
water or river flow) between catchments, which is used as the
basic computational unit (Reichle and Koster, 2003).

2.4.3 NCEP CFSv2

NCEP CFSv2 is the third-generation global atmospheric re-
analysis product developed by the Environmental Modelling
Center at NCEP. It is a global, high-resolution, coupled
atmosphere–ocean–land surface–sea ice system designed to
provide the best estimate of the state of these coupled do-
mains (Saha et al., 2011). The global atmospheric data assim-
ilation system (GDAS) employed in the climate forecast sys-
tem simulates 64 sigma-pressure hybrid layers vertically. The
Noah LSM is forced by the atmospheric forcing variables at
the lowest level from the Climate Forecast System Reanaly-
sis (CFSR) GDAS and the blended precipitation forcing. The
global precipitation analysis from CMAP and CPCU and the
model background precipitation from GDAS are integrated
based on a latitude-dependent weighting method to provide
the optimal global precipitation forcing for a reliable land
surface simulation (Meng et al., 2012). The Noah LSM is
first used in the coupled land–atmosphere–ocean model to
provide the initial conditions of the land surface states and
fluxes and then in the semi-coupled CFSR Global Land Data
Assimilation System (GLDAS) to perform the land surface
analysis and provide the evolving land surface states and
fluxes (Saha et al., 2010, 2014). The Noah LSM employed
in NCEP CFSv2 uses the FAO/UNESCO World Soil Map
and the land cover classification based on the Advanced Very
High Resolution Radiometer (AVHRR) 1 km dataset.

2.4.4 GLDAS_NOAH

GLDAS_NOAH version 2.1 is the mainstream land surface
analysis product developed by NASA Goddard Earth Sci-
ences Data and Information Services Center (GES DISC)
that aims to provide the optimal fields of land surface states
and fluxes by incorporating large amounts of satellite- and
ground-based observations (Rodell et al., 2004; Beaudoing et
al., 2020). No data assimilation procedure was implemented
in the GLDAS_NOAH version 2.1 product. The offline (not
coupled to the atmosphere) Noah LSM is forced with a com-
bination of model- (NOAA/Global Data Assimilation Sys-
tem (GDAS) atmospheric analysis fields) and observation-
based precipitation (the disaggregated Global Precipitation
Climatology Project (GPCP) V1.3 Daily Analysis precip-
itation fields) and radiation data (the Air Force Weather
Agency’s AGRicultural METeorological modeling system
(AGRMET) radiation fields) to provide optimal fields of land
surface analysis. The soil column is discretized into four lay-
ers for describing the movement of soil moisture based on
the diffusive form of the Richards equation in NOAH LSM,
which is the same as NCEP CFSv2. GLDAS_NOAH uses
the hybrid STATSGO/FAO World Soil Map and the modi-
fied IGBP MODIS (Moderate Resolution Imaging Spectro-
radiometer) 20-category vegetation classification (Rui et al.,
2021).

2.4.5 GLDAS_CLSM

GLDAS_CLSM version 2.2 is one of the most popular anal-
ysis dataset of land surface states and fluxes developed by
NASA Goddard Earth Sciences Data and Information Ser-
vices Center (GES DISC). The CLSM embedded in the
GLDAS is forced by the meteorological analysis fields from
the operational ECMWF IFS. These meteorological forcing
fields are obtained by assimilating large amounts of atmo-
spheric observations to update the model background pre-
dictions (e.g. precipitation) derived in the forecast step and
are available at a 0.25°, 3-hourly interval (Li et al., 2019,
2020). The CLSM used in GLDAS does not have explicit
vertical levels for soil moisture and only simulates the soil
moisture represented by the surface layer (0–2 cm), root zone
(0–100 cm) and varying profile. The lateral water fluxes be-
tween catchments are also not taken into account in the cur-
rent CLSM (Reichle and Koster, 2003). The FAO/UNESCO
World Soil Map and the University of Maryland (UMD) land
cover classification based on the AVHRR land cover map are
used in the GLDAS_CLSM (Rui et al., 2021). Unlike the
open-loop GLDAS version 2.1 product, the GLDAS version
2.2 product assimilates observations of the total terrestrial
water (TWS) anomaly from the Gravity Recovery and Cli-
mate Experiment (GRACE). Temporal changes of TWS are
influenced by changes in soil moisture, snow and ice, surface
water and biomass, and groundwater storage.
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2.4.6 CLDAS

The CLDAS-2.0 is the Asian atmospheric and land surface
analysis product with high temporal and spatial resolution
developed and released by CMA. It is produced based on a
multi-LSM operational system consisting of CLM, CoLM,
and Noah-MP, with a spatial coverage of 0–60° N and 70–
150° E and temporal coverage from January 2008 to present
(CMA, 2015). The production of CLDAS-V2.0 involves the
following three processes. Firstly, nearly 40 000 automated
meteorological station measurements, ECMWF and NCEP
numerical analysis/forecast products, satellite-derived pre-
cipitation (FY2), and a digital elevation model (DEM) are
used to produce 0.0625°, hourly estimates of meteorological
forcing data by operating the Space-Time Multi-Scale Anal-
ysis System (STMAS) (Shi et al., 2014; Wang et al., 2021a).
Meanwhile, the meteorological forcing is validated using na-
tional automatic station observations (more than 2400 sta-
tions). Second, the meteorological forcing is used to drive the
multi-LSM system to obtain a multi-layer ensemble of soil
moisture estimates. Finally, the ensemble mean is applied to
each soil layer to produce a soil moisture ensemble analysis
product. CLDAS utilizes the soil property dataset developed
by Shangguan et al. (2013) and simulates five soil layers for
the diffusion for water flux and the transmission for heat flux
vertically.

2.4.7 SMAP L4

The SMAP Level-4 soil moisture (L4-SM) is produced by
assimilating SMAP radiometer Level 1C brightness temper-
ature observations into CLSM and provides global, 3-hourly,
9 km resolution estimates of SSM (0–5 cm) and RZSM (0–
100 cm) from March 2015 to present (Reichle et al., 2020;
Reichle et al., 2021). The Goddard Earth Observation Sys-
tem, version 5, LDAS (GEOS-5 LDAS) uses a spatially dis-
tributed ensemble Kalman filter (EnKF) to assimilate the ob-
servations into CLSM (Rienecker et al., 2008). The EnKF
has a 3-hourly update time step and is used to interpolate
and extrapolate the brightness temperature and model esti-
mates in time and space (Reichle et al., 2017a). The GEOS-5
CLSM is driven by surface meteorological data (precipita-
tion, radiation, etc.) from the GEOS-5 Forward Processing
(FP) system, where large amounts of observations are assimi-
lated into a global atmospheric model. The CPCU, 0.5°, daily
precipitation observations are used to correct the GEOS-5
FP model background precipitation. Prior to the GEOS-5 FP
precipitation correction, both the CPCU precipitation data
and the hourly background precipitation are scaled to the cli-
matology of the GPCPv2.2 pentad precipitation product. The
SMAP L4 product uses the updated HWSD V1.2 soil prop-
erty dataset and the MODIS land cover product based on the
UMD classification (Reichle et al., 2012).

2.4.8 SMOS L4

The SMOS L4 soil moisture product is disseminated by
SMOS CATDS and provides global, daily estimates of
RZSM (0–100 cm) over a 25 km EASE-2 grid from January
2010 to present (Al Bitar and Mahmoodi, 2020; CATDS,
2021). The SMOS L4 RZSM is derived from the SMOS L3
3 d SSM product using a modified exponential filter linking
the characteristic time length T (the transfer time of water
from the surface layer to the root zone layer) to the soil prop-
erties (Pablos et al., 2018). The soil parameters (i.e. saturated
water content, the soil moisture at wilting point and the soil
moisture at field capacity) are calculated based on the soil
texture from the FAO soil texture map (Al Bitar et al., 2021).
The product is based on SMOS descending orbit (18:00) ob-
servations and other ancillary datasets such as MODIS obser-
vations, NCEP climate data and an updated FAO/UNESCO
soil properties’ map. The soil column is divided into three
layers (layer 1, 0–5 cm; layer 2, 5–40 cm; and layer 3, 40–
100 cm) in a water bucket model. The scaled 0–5 cm soil
moisture is modified using a logarithmic function and filtered
to obtain the layer 2 soil moisture. The scaled layer 2 soil
moisture is then filtered using a different value of T to give
the layer 3 soil moisture. Finally, the RZSM (0–100 cm) is
calculated as a depth-weighted average of the soil moisture
of the three layers (Al Bitar et al., 2021).

3 Methods

3.1 Statistical metrics

Four widely used statistical metrics were used to quantita-
tively assess the performance of RZSM products against in
situ measurements. The Pearson correlation coefficient (R)
measures the linear correlation between the in situ measure-
ments and the RZSM products. Mean bias error (MBE) re-
flects the mean systematic deviation of the model simula-
tions relative to the measurements. Accuracy is assessed us-
ing the root mean square error (RMSE). The unbiased RMSE
(ubRMSE) measures the standard deviation of the differ-
ences. In addition, the probability of detection (POD), false
alarm ratio (FAR) and critical success index (CSI) are used to
assess the ability of the global gridded rainfall to reproduce
the measured rainfall (Su et al., 2019). POD is the propor-
tion of real precipitation events simulated by AGCM rela-
tive to the actual precipitation events, reflecting the ability of
AGCM to detect precipitation. FAR is the fraction of unreal
precipitation events of the total precipitation events simu-
lated by AGCM. CSI is a more balanced score that combines
the characteristics of false alarms and missed events, repre-
senting the probability of successful simulation of AGCM
precipitation. In this study, these metrics are calculated at
daily time steps after aggregating all sub-daily products to
daily time steps. Note that the number of observations at each
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in situ station used to calculate the scores is 1827. Detailed
statistical metrics are summarized in Table 2.

3.2 Calculation and validation of RZSM

As the in situ measurements are available at several specific
depths (10, 20, 40 and 100 cm), the RZSM is calculated us-
ing a depth-weighted average of the four soil moisture layers
(Xing et al., 2021). The equation is as follows:

θRZSM =
2θ1L1+ (θ1+ θ2)L2+ . . . (θn−1+ θn)Ln

2(L1+L2+L3+ . . .Ln)
, (1)

where θRZSM refers to the 0–100 cm RZSM (m3 m−3), θn
is the volumetric soil moisture at the nth observation depth
(m3 m−3), andLn is the soil layer thickness between adjacent
observation depths (m).

For the RZSM products, in addition to the
GLDAS_CLSM, MERRA-2, SMAP L4 and SMOS L4,
which directly provide the 0–100 cm RZSM, other RZSM
products are provided in different soil layers; i.e. NCEP
CFSv2, CLDAS and GLDAS_NOAH provide θ0–10 cm,
θ10–40 cm and θ40–100 cm, and ERA5 provides θ0–7 cm, θ7–28 cm
and θ28–100 cm. For example, the GLDAS_NOAH RZSM can
be calculated as

θRZSM = 0.1×θ0–10 cm+0.3×θ10–40 cm+0.6×θ40–100 cm, (2)

where θRZSM denotes 0–100 cm RZSM (m3 m−3), and
θ0–10 cm, θ10–40 cm and θ40–100 cm denote the soil moisture es-
timates at 0–10, 10–40 and 40–100 cm, respectively.

3.3 RZSM products aggregation and validation
strategies

In terms of the temporal resolution, GLDAS_CLSM and
SMOS L4 products provide RZSM data at daily time inter-
vals. NCEP CFSv2 and GLDAS_NOAH products provide
RZSM data at a 3-hourly and 6-hourly time interval, re-
spectively, which do not have consistent hours of soil mois-
ture data with in situ observations only available at 08:00.
To maintain consistency, the other sub-daily RZSM datasets
(hourly, 3-hourly and 6-hourly time steps, shown in Table 1)
are aggregated to daily average values to match the daily
sampling frequency of the in situ observations. In terms of
spatial resolution, we did not change the spatial resolution
of any RZSM products and used the RZSM time series for
each grid where the in situ stations are located. Two valida-
tion strategies were used in the study. The first is to compare
the RZSM time series averaged over all in situ stations with
the RZSM time series averaged over all model grids where
the in situ stations are located (Figs. 2 and 3 shown in this
study). The second one is the point-grid validation, whereby
the RZSM measurements at each in situ station are compared
directly with the RZSM values for the grid where the in situ
station is located, and if there is more than one in situ station
within a grid, the RZSM measurements at each station are

compared to the grid values separately. The point-grid vali-
dation is provided in Figs. 4 and S1.

The global precipitation and air temperature forcing data
are used in the production of model-based RZSM prod-
ucts except for SMOS L4, which are validated against the
China daily gridded ground precipitation and air temperature
dataset V2.0 described in Sect. 2.2. The soil properties’ data
used in the eight RZSM products were all derived from the
FAO/UNESCO World Soil Map except for CLDAS, which
used the soil data developed by Shangguan et al. (2013), and
SMAP L4, which used the HWSD V1.2 soil properties over
China. The China soil dataset developed by Shangguan et
al. (2013) is used as a reference to evaluate the accuracy of
FAO/UNESCO and HWSD V1.2 soil properties (clay and
sand content, organic carbon content and bulk density).

3.4 Calculation of seasonal anomaly

Soil moisture products can show large differences at different
timescales (e.g. subseasonal, mean seasonal and interannual)
(Draper and Reichle, 2015; Gruber et al., 2020). To avoid
seasonal effects, the soil moisture products are typically de-
composed into different frequency components (e.g. the raw
soil moisture and monthly soil moisture anomaly). In this
study, the monthly anomaly time series of the RZSM are cal-
culated based on the moving average decomposition method.
The difference from the mean is divided by the standard de-
viation for a moving average window of 5 weeks (Rüdiger
et al., 2009; Albergel et al., 2012). The moving window F is
defined as follows for each RZSM estimate or observation on
day (t), F = [t−17 : t+17]. If at least five measurements are
available in this period, the moving average and the standard
deviation of the root zone soil moisture are calculated. The
anomaly is given by the following equation:

RZSManomaly(t)=
RZSM(t)−RZSM(F )

SD(RZSM(F ))
, (3)

where RZSM(t), RZSManomaly (t) and SD denote the raw
RZSM, the seasonal anomaly of RZSM at day t and standard
deviation, respectively. Equation (3) is applied to gridded and
in situ RZSM for comparison.

4 Results

4.1 Comparison between gridded and in situ RZSM

Figure 2 shows scatterplots of RZSM products against the in
situ measurements averaged across all in situ stations over
the HRB, from 1 April 2015 to 31 March 2020. The statis-
tical metrics are shown in Table 3. Regarding the bias, ex-
cept for the underestimation by SMOS L4 (−0.047 m3 m−3),
all the other products overestimate the RZSM observa-
tions by 0.030 to 0.117 m3 m−3 (SMAP L4 and ERA5,
respectively). ERA5 and CLDAS have the largest RMSE
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Table 2. List of the statistical metrics for evaluation of RZSM products and corresponding precipitation forcing data using in situ measure-
ments.

Statistical metrics Unit Equation Optimal value

Pearson correlation coefficient (R) –
∑n
i=1
(
θest,i−θest,i

)(
θobs,i−θobs,i

)√∑n
i=1
(
θest,i−θest,i

)2√∑n
i=1
(
θobs,i−θobs,i

)2 1

Mean bias error (MBE) m3 m−3
∑n
i=1(θest,i−θobs,i)

n 0

Root mean square error (RMSE) m3 m−3

√∑n
i=1(θest,i−θobs,i)

2

n 0

Unbiased root mean square error (ubRMSE) m3 m−3

√∑n
i=1
((
θest,i−θest,i

)
−
(
θobs,i−θobs,i

))2
n 0

Probability of detection (POD) – H
H+M

1

False alarm ratio (FAR) – F
H+F

0

Critical success index (CSI) – H
H+M+F

1

Normalized RZSM (RZSMnor) – RZSM−RZSMmin
RZSMmax−RZSMmin

–

Note that n is the number of gap-filled daily observations (1827) used at each of the 58 in situ stations (see Table S1). θest,i and θobs,i are RZSM products
and in situ measurements (m3 m−3), respectively; θest,i and θobs,i are the means of θest,i and θobs,i over the entire research period; H is the number of
precipitation events detected by model and in situ measurements; M is the number of measured precipitation events not recognized by the model product;
and F is the number of model-based precipitation events not detected by in situ measurements. RZSMnor represents the normalized RZSM, and RZSMmin
and RZSMmax represent the maximum and minimum of RZSM, respectively.

values among all the RZSM products due to the large
bias. Regarding correlation and ubRMSE, GLDAS_CLSM
(R = 0.69, ubRMSE= 0.018 m3 m−3) outperforms the other
RZSM products, followed by MERRA-2, ERA5, CLDAS,
SMAP L4 and GLDAS_NOAH, NCEP CFSv2 and SMOS
L4. Overall, GLDAS_CLSM performs best among the eight
RZSM products in terms of R, ubRMSE and bias values,
while SMAP L4 presents the lowest RMSE and the lowest
bias. SMOS L4 presents the worst performance with the low-
est R value. The detailed statistics are shown in Table 3.

Figure 3 shows the time series of observation- and model-
based RZSM averaged over all in situ stations and the grids
where the in situ stations are located. ERA5, SMOS L4 and
GLDAS_CLSM show the highest overestimation, the lowest
underestimation and the best overall agreement with in situ
observations, respectively. In general, all RZSM products
capture the rapid temporal variations of the in situ soil mois-
ture observations and respond well to precipitation events,
except for SMOS L4, which shows less rapid changes and
smoother time series. The model-based RZSM products gen-
erally perform better in the wet season than in the dry season,
while SMOS L4 performs better in the dry season than in
the wet season (Figs. 4 and S1). The in situ RZSM observa-
tions show a variation in the range of 0.1 to 0.4 m3 m−3. The
range of NCEP CFSv2 and SMAP L4 RZSM is similar to
the observed RZSM range. ERA5 and CLDAS present larger
RZSM values, ranging from 0.2 to 0.5 m3 m−3. MERRA-2,
GLDAS_CLSM and GLDAS_NOAH RZSM values range
from 0.2 to 0.4 m3 m−3, which is a narrower interval com-

Table 3. Statistical metrics of eight RZSM products validated by
in situ measurements (0–100 cm) averaged over all stations from 1
April 2015 to 31 March 2020 (Fig. 2). Mean score values are given.
Best score values are in bold. The number of observations used to
calculate the scores is 1827 for each product.

Dataset In situ validation

R Bias RMSE ubRMSE
(m3 m−3) (m3 m−3) (m3 m−3)

ERA-5 0.58 0.117 0.122 0.033
MERRA-2 0.58 0.040 0.046 0.023
NCEP CFSv2 0.54 0.041 0.055 0.036
GLDAS_NOAH 0.54 0.071 0.077 0.030
GLDAS_CLSM 0.69 0.046 0.049 0.018
CLDAS 0.56 0.107 0.114 0.023
SMAP L4 0.53 0.030 0.040 0.027
SMOS L4 0.35 −0.047 0.055 0.027

pared to the other products. SMOS L4 displays the smallest
RZSM values, ranging from 0.1 to 0.3 m3 m−3.

4.2 Intercomparison of gridded RZSM products

Figure 5 displays the pairwise comparison of the eight
RZSM products for grid cells located above the in situ sta-
tions. Overall, there is good agreement between all RZSM
products, except for SMOS L4. The correlation coeffi-
cient R between each of the other seven RZSM products
varies from 0.30 (MERRA-2 versus SMOS L4) to 0.95
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Figure 2. Scatterplots of RZSM products vs. in situ RZSM observations averaged across all in situ stations from 1 April 2015 to 31 March
2020. Scores are given in Table 3. Darker regions show a higher density of data points, and the blue line in each panel represents the fitted
trend for the data points.

(SMAP L4 versus MERRA-2), with an average value of
0.71. The mean bias varies from −0.067 m3 m−3 (MERRA-
2 minus CLDAS) to 0.165 m3 m−3 (ERA5 minus SMOS
L4), with an average value of 0.037 m3 m−3. The ubRMSE
varies from 0.010 m3 m−3 (MERRA-2 versus SMAP L4) to
0.040 m3 m−3 (NCEP CFSv2 versus SMOS L4), with an av-
erage value of 0.024 m3 m−3. SMOS L4 differs most from
the other products. The correlation coefficient R between
SMOS L4 and the other seven RZSM products varies from
0.30 (MERRA-2 vs. SMOS L4) to 0.41 (GLDAS_NOAH
versus SMOS L4), with an average value of 0.35, and
the mean bias varies from 0.077 m3 m−3 (SMAP L4 mi-
nus SMOS L4) to 0.165 m3 m−3 (ERA5 minus SMOS L4),
with an average value of 0.112 m3 m−3. The ubRMSE varies
from 0.023 m3 m−3 (GLDAS_CLSM versus SMOS L4) to
0.400 m3 m−3 (NCEP CFSv2 versus SMOS L4), with an av-
erage value of 0.031 m3 m−3.

Figure 6 shows the histograms of the normalized RZSM
of the eight products and the in situ observations. The rel-
ative frequency distribution corresponding to the normal-
ized soil moisture interval varies considerably between the

different RZSM datasets. All soil moisture datasets are al-
most normally distributed with a clear peak. The observed
RZSM distribution is skewed towards low values and has a
peak frequency around 0.3. The MERRA-2, GLDAS_CLSM
and SMAP L4 products exhibit the similar distribution pat-
terns with a peak frequency around 0.4. In contrast, the fre-
quency distribution of the other RZSM products show an
obvious offset towards wet soil moisture compared to the
in situ observations, with a peak frequency in the range of
0.4 to 0.5. In particular, GLDAS_NOAH shows a peak fre-
quency in the range of 0.6 to 0.7 that is clearly skewed to-
wards the wetter end of the distribution. It is obvious that the
histograms of MERRA-2, GLDAS_CLSM and SMAP L4
show better agreement with the in situ observations than the
other RZSM products, although they slightly overestimate
the frequency of wet soil moisture. However, they all do not
capture the peak frequency and underestimate the peak fre-
quency of normalized soil moisture ranging from 0.2 to 0.4.
The other RZSM products show significant overestimation
of frequency of wet soil moisture and underestimation of dry
soil moisture and of peak frequency. Therefore, the Richards
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Figure 3. Time series of RZSM (0–100 cm) products and in situ soil moisture observations averaged across all in situ stations from 1 April
2015 to 31 March 2020. The dark line and the grey-shaded areas represent the mean and standard deviation of in situ stations observations.
Coloured lines represent different RZSM products. Daily precipitation is represented by the orange vertical bars.

Figure 4. Single-station RZSM anomalies’ comparison between model-derived RZSM and in situ soil moisture observations for different
periods, including the full period (from 1 April 2015 to 31 March 2020), wet period (from June to September) and dry period (from October
to May). Each outlier (“+”) represents an in situ station. The five horizontal lines of the box plot represent the minimum, 25th percentile,
50th percentile, 75th percentile and maximum from bottom to top, respectively.
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equation used to simulate the water content in different soil
layers in LSMs should focus on producing less wet soil mois-
ture and more dry soil moisture to obtain a more accurate
frequency distribution of modelled soil moisture by modify-
ing the soil water retention curve or changing the initial and
boundary conditions.

4.3 Validation of atmospheric forcing and soil
properties

4.3.1 Precipitation and air temperature

Figure 7 shows the differences between the model and
ground-based precipitation. A daily precipitation amount
of less than 1 mm is considered a no-rain criterion. Dur-
ing the period from 1 April 2015 to 31 March 2020,
the annual mean precipitation amount from global prod-
ucts (SMAP: 1024 mm yr−1, GLDAS_NOAH: 988 mm yr−1,
MERRA-2: 974 mm yr−1, NCEP CFSv2: 951 mm yr−1,
GLDAS_CLSM: 912 mm yr−1, ERA5: 880 mm yr−1) over-
estimates the ground-based observations (840 mm yr−1) by
22 %, 17 %, 16 %, 13 %, 9 % and 5 %, respectively. In addi-
tion, the mean frequency of rainy days (131, 114, 105, 113,
114 and 126 d yr−1) is larger than observed (97 d yr−1) due
to the drizzle effect often produced by AGCM (Piani et al.,
2010; Velasquez et al., 2020). In contrast to the global prod-
ucts mentioned above, CLDAS (806 mm yr−1) slightly un-
derestimates the mean annual precipitation amount by 4 %,
and the precipitation frequency (99 d yr−1) is close to the
ground-based observation. Furthermore, the global precipi-
tation products tend to underestimate the in situ precipita-
tion observations for precipitation events above 50 mm d−1

(Fig. 7). Overall, theR values between precipitation products
and the observed precipitation are higher than 0.4 (Fig. 8a, c,
e). MERRA-2, ERA5, GLDAS_CLSM and SMAP L4 show
a strong ability to detect precipitation, with a POD value
above 0.6 (Fig. 8b, d, f). The R value between modelled and
ground-based precipitation is directly related to the CSI value
except for GLDAS_NOAH.

The daily air temperature data derived from ERA5,
MERRA-2, NCEP CFSv2, GLDAS_CLSM, CLDAS,
GLDAS_NOAH and SMAP L4 are validated against in
situ observations of daily air temperature after aggregating
all sub-daily products to daily time steps. Figures 9 and
S2 show that the modelled air temperature captures the
observed temporal variation well, with R values above 0.96.
However, all of them show underestimation, indicated by
negative bias values ranging from −4.0 to −5.2 K. In terms
of the comprehensive scores of the four statistical metrics,
GLDAS_NOAH air temperature outperforms the other
datasets and SMAP L4 shows the worst scores. Detailed
statistics are shown in Table 4.

Table 4. Statistical metrics of air temperature products validated by
in situ measurements averaged over all stations from 1 April 2015
to 31 March 2020. Mean score values are given. Best score values
are in bold. The number of observations used to calculate the scores
is 1827 for each product.

Dataset In situ validation

R Bias RMSE ubRMSE
(K) (K) (K)

ERA-5 0.98 −4.8 5.2 2.1
MERRA-2 0.98 −5.1 5.7 2.4
NCEP CFSv2 0.98 −4.9 5.3 2.1
GLDAS_NOAH 0.98 −4.3 4.8 2.1
GLDAS_CLSM 0.98 −4.5 4.9 2.1
CLDAS 0.96 −4.0 4.9 2.8
SMAP L4 0.97 −5.2 5.7 2.4

4.3.2 Soil properties

In this study, four soil properties’ indicators, including clay
and sand content, organic carbon content, and bulk den-
sity, were selected to investigate the differences among the
FAO/UNESCO World Soil Map, HWSD and the reference
soil dataset developed by Shangguan et al. (2013). Figure 10
shows the reference dataset and HWSD generally exhibit
similar properties, although the reference dataset has slightly
higher organic carbon content and lower sand content. Both
of them clearly differ from the FAO/UNESCO soil proper-
ties’ data. FAO/UNESCO overestimates the clay content for
the upper (0–30 cm) and subsurface (30–100 cm) soil layers.
Sand content is also overestimated for the subsurface layer,
but it is underestimated for the surface layer. In addition,
FAO/UNESCO overestimates the organic carbon content for
both layers significantly, resulting in the underestimated bulk
density.

4.3.3 The mismatch of spatial and temporal scales

In addition to the model- and observation-based soil moisture
errors, the mismatch of spatial scales between grid-scale soil
moisture simulations and point-scale observations also intro-
duces additional errors. The eight RZSM products are evalu-
ated against in situ observations using two validation strate-
gies described in Sect. 3.3. The statistical scores for spatial-
average validation are generally better than that for point-grid
validation; they are shown in Tables 3 and S1, respectively.
For the point-grid validation, the spatial representativeness
of in situ soil moisture observations at the grid scale is in-
sufficient due to the heterogeneity of the underlying surface
and precipitation forcing. This leads to an error in represen-
tativeness (Xia et al., 2014). In contrast, the spatial-average
validation improves the representativeness of the grid-based
RZSM and reduces the spatial noise (Wang and Zeng, 2012;
Xia et al., 2014; Bi et al., 2016; Zheng et al., 2022). In ad-
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Figure 5. Comparison of different RZSM products (volumetric water content, m3 m−3) with each other. The scatterplots and their corre-
sponding statistics are located on opposite sides of each other; that is, the scatterplot of the data pair SMOS L4-ERA5 is in the top left-hand
corner, while the respective statistical values are found in the bottom right-hand corner. Darker regions show a higher density of data points,
and the blue line in each panel represents the fitted trend for the data points.

Figure 6. Histograms of the relative frequency (vertical axis) of the various normalized RZSM datasets and in situ observations.
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Figure 7. Comparison of cumulative precipitation events and cumulative precipitation amounts between model-derived precipitation and in
situ precipitation observations averaged over all in situ stations from 1 April 2015 to 31 March 2020.

Figure 8. Summary of error metrics of gridded precipitation data against in situ precipitation observations (a, c, e). Panels (b), (d) and
(f) show the detection ability of gridded precipitation to reproduce the observed precipitation. The blue histogram represents the median and
black error bar represents the standard deviation.

dition, upscaling the sparse ground-based observations to the
footprint-scale satellite soil moisture retrieval or model grid
scale through the temporal stability concept, block kriging,
field campaign data or LSM reduces the uncertainty of spa-
tial resampling and further improves the reliability of soil
moisture validation (Crow et al., 2012). Finally, the tempo-
ral mismatch between model-based RZSM values which are
aggregated to daily average values and in situ observations
available at 08:00 could also induce partial bias, but this type
of bias is generally small due to the low variability of soil
moisture during the day.

5 Discussion

5.1 What is the impact of uncertainties of
meteorological forcing data?

The accuracy of LSM simulations is influenced by the qual-
ity of the meteorological forcing, which is considered to be
one of the most important and direct factors, especially pre-
cipitation and air temperature (Reichle et al., 2012; Yang et
al., 2020; Zeng et al., 2021). In different LSMs, the diffu-
sive form of the Richards equation is used to describe the
vertical movement of water in the soil column. Precipitation
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Figure 9. Scatterplots of model- and observation-based air temperature averaged over all stations, from 1 April 2015 to 31 March 2020.
ERA5, MERRA-2, NCEP CFSv2, GLDAS_CLSM, GLDAS_NOAH, CLDAS and CMA products provide the air temperature datasets at
the 2 m screen level. The SMAP L4 product provides the air temperature at the centre height of the lowest atmospheric model layer. Darker
regions show a higher density of data points, and the blue line in each panel represents the fitted trend for the data points.

serves as the upper boundary condition to regulate the tem-
poral dynamics of soil moisture. Therefore, the overestima-
tion of precipitation amounts and the frequency of precip-
itation events (the wet bias excluding CLDAS) could be a
reason for the overestimation of soil water simulated by the
model-based RZSM products. We also investigate the effect
of precipitation accuracy on the performance of RZSM prod-
ucts (Fig. 8). In terms of R, RMSE, CSI, POD and FAR,
MERRA-2 and GLDAS_CLSM precipitation are the best-
performing products. This may explain the relatively better
agreement of MERRA-2 and GLDAS_CLSM RZSM with
in situ data in terms of correlation (Table 3), as precipita-
tion dominates the dynamics change of soil moisture. The
low CSI and high FAR and the overestimated precipitation
frequency indicate that the precipitation for each grid de-
rived from AGCM has more rainy days and less dry days
and struggles to reproduce the temporal pattern of the pre-
cipitation observed at each rain gauge, resulting in the rel-

atively large RMSE values in precipitation generally above
7 mm d−1. This could also explain the low correlation R
ranging from 0.4 to 0.6, although the daily average bias in
model-based precipitation is less than 0.5 mm d−1. For most
reanalysis products, the precipitation used to drive the dif-
ferent LSMs was generated by the AGCM through the as-
similation of atmospheric temperature, humidity and wind
observations (Reichle et al., 2017d). Before driving the land
surface water budget, the MERRA-2 model background pre-
cipitation was corrected using CPCU gauge-based precip-
itation analysis in the coupled land–atmosphere reanalysis
system. The correction leads to more accurate precipitation
fields for MERRA-2 and then to more realistic RZSM sim-
ulations. Being driven by in situ precipitation observations,
the CLDAS multi-LSMs should have produced RZSM values
close to the observations. However, the CLDAS RZSM prod-
uct overestimates the in situ observations by 0.107 m3 m−3

(Table 3). Therefore, precipitation may not be the dominant
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Figure 10. Comparison of three sets of soil properties data: FAO used in ERA5, MERRA2, NCEP CFSv2, GLDAS_NOAH, GLDAS_CLSM
and SMOS; HWSD used in SMAP L4; and reference soil properties’ data (Shangguan et al., 2013) used in CLDAS. The histogram (grey bar
– 0–30 cm and white bar – 30–100 cm) represents the median, and the black error bar represents the standard deviation.

factor contributing to the overestimation of RZSM for the
CLDAS RZSM (Bi et al., 2016; Qin et al., 2017).

Air temperature is another key factor in determining the
accuracy of RZSM simulations, as it controls soil evapora-
tion and plant transpiration. The agreement between model-
and observation-based air temperature is much better than for
precipitation due to the high spatial heterogeneity in precip-
itation. The underestimation of air temperature by reanaly-
ses has been illustrated in previous studies (Wang and Zeng,
2012; Yang et al., 2020). In general, the lower air temperature
results in less evapotranspiration and more soil water storage.
Compared to precipitation, air temperature has an overall bet-
ter correlation with in situ observations. Note that ERA5 in-
cludes an analysis of soil moisture and screen-level (2 m) air
temperature and air humidity. Studies have indicated that the
assimilation of screen-level variables improves root zone soil
moisture estimates relative to in situ observations, providing
more realistic lower boundary conditions for numerical pre-
diction models (Douville et al., 2000; Seuffert et al., 2003;
de Rosnay et al., 2012).

5.2 Are soil properties correctly represented?

Time-invariant soil property data (e.g. porosity) are key
model parameters for LSMs because they determine the
physical structure of the soil in the vadose zone, which con-
trols the partitioning of precipitation into surface runoff and
infiltration. In general, soil texture is closely related to the
ability of the soil to retain water, as water molecules ad-
here more tightly to fine-textured clay particles than coarse-
textured sand particles. Consequently, clay exhibits stronger
water retention capacity and higher water content stored

in the soil compared to sand at the same matric potential.
Meanwhile, the sandy soil shows better drainage capacity
and higher hydraulic conductivity than clay soil. In addition,
the overestimated FAO/UNESCO soil organic carbon content
(Fig. 10) leads to higher soil porosity and lower bulk density.
As a result, water can infiltrate more quickly, and more water
can flow through the soil and can be retained in the soil (Bot
and Benites, 2005; Reichle et al., 2017b). Therefore, the use
of inaccurate FAO/UNESCO soil property data used in LSMs
may explain the overestimation of soil moisture by the vari-
ous RZSM products compared to the ground-based observa-
tions. It is promising to improve the accuracy of LSM-based
RZSM using HWSD instead of FAO/UNESCO soil property
data. The soil hydraulic parameters (SHPs), such as the hy-
draulic conductivity and matric potential, are crucial param-
eters to describe the vertical transport of water in the soil col-
umn through the Richards equation employed in the LSMs.
Generally speaking, the SHPs are derived from a combina-
tion of soil properties (clay, sand, silt fractions and organic
content, etc.) with pedotransfer functions (PTFs), which can
be constructed by multivariate regression models, nonlinear
regression models or artificial neural networks (Harrison et
al., 2012). Therefore, different input variables and functional
forms of the continuous PTFs are used to derive SHPs in the
LSMs. The Richards equation relying on the SHPs shows
great uncertainty in the simulated soil moisture. For exam-
ple, the HWSD soil properties used in SMAP L4 are more
consistent with the reference dataset than FAO soil properties
used in MERRA-2 by revising the underestimated sand con-
tent and the overestimated clay content in FAO. In addition,
SMAP L4 adopts PTFs from Wösten et al. (2001) which take
into account the organic carbon affecting soil hydraulic and
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thermal properties. MERRA-2 adopts PTFs adapted from
Cosby et al. (1984) without considering organic carbon (De
Lannoy et al., 2014). The revised soil parameters and new
PTFs employed in SMAP L4 yield a smaller shape parameter
of the water retention curve and result in less water retention
than in MERRA-2 and increase the hydraulic conductivity.
Thus, SMAP L4 has the smaller soil moisture estimates and
less RZSM bias against in situ measurements than MERRA-
2, which is consistent with the result of this study. Therefore,
the soil properties and PTFs could also explain part of the
uncertainty.

Soil stratification can affect the accuracy of LSM-based
RZSM by impeding the water transfer from the surface layer
to the root zone layer. In the Huaibei Plain, the soil col-
umn can basically be divided into three layers, including the
plough layer (0–16.6 cm), the black soil layer (16.6–49.3 cm)
and the lime concretion layer (49.3–138.3 cm) due to the
long-term human activities (e.g. fertilization and ploughing),
which significantly increases the soil organic carbon content
and porosity in the plough layer compared to the deeper soil
layer (Zhang et al., 2001; Li et al., 2011; Zha et al., 2015; Gu
et al., 2021). There is a noticeable difference in soil proper-
ties between the plough layer and the black soil layer, while
the difference between the black soil layer and the lime con-
cretion layer is relatively small (see Fig. 11). High porosity
results in high hydraulic conductivity and infiltration capac-
ity (Zha et al., 2015). Therefore, interflow can occur due to
the difference of infiltration rate between adjacent soil layers.
The interflow may either flow horizontally due to good lateral
drainage conditions or accumulate vertically and evaporate.
These processes may not be well represented by LSMs.

In the study by Fan et al. (2022), RZSM products (SMAP-
L4 V6, ERA5-land V2, GLDAS-Noah V2.1) were evalu-
ated over croplands in Jiangsu Province, which is close to
the Huaibei Plain. A fourth RZSM dataset was derived from
the ESA CCI SSM using an exponential filter. In this study,
SMAP L4, ERA5 and GLDAS_NOAH overestimate the in
situ RZSM. Overall, both studies show similar R values of
RZSM products against the in situ observations but with op-
posite biases. The changes in the sign of the bias could be
attributed to differences in soil properties (see Fig. 11). In
the Huaibei Plain, the main soil type is lime concretion black
soil, whose main characteristics are (1) soil stratification,
(2) poor soil permeability and water retention capacity due
to high clay content, and (3) clay swelling during wet pe-
riods and shrinking during dry periods. For a given soil pro-
file, porosity decreases with depth, and clay content increases
with depth, resulting in a decrease in hydraulic conductivity.
Expansive montmorillonite clay minerals are the main con-
stituents of the lower black soil layer, giving the soil strong
expansion and contraction and a high dry bulk density. Dur-
ing drought, cracks in the soil column widen and deepen,
resulting in capillary breakage. This makes it difficult for
groundwater and RZSM to recharge crops, even though the
groundwater is shallow. In addition, the increased cracks in

the soil column exacerbate the evaporation of soil moisture in
the root zone, ultimately leading to frequent droughts. Dur-
ing wet periods, when precipitation or irrigation occurs, the
soil absorbs water and swells, closing the cracks and pre-
venting water infiltration. Water is then lost mainly through
surface runoff. The crops are prone to waterlogging disasters.
This could explain the lower RZSM values ranging from 0.2
to 0.3 m3 m−3 observed in the Huaibei Plain and the higher
RZSM values ranging from 0.3 to 0.4 m3 m−3 observed in
Jiangsu. The larger amount of precipitation in Jiangsu could
be another possible reason.

5.3 What is the impact of vegetation representation in
LSMs?

Vegetation also plays a crucial role in the exchange of wa-
ter, energy and carbon between the land surface and the at-
mosphere, which has a significant effect on the simulation
of soil moisture by LSMs. First, the land cover map de-
scribes the distribution and fractions of different land use
types, which have different impact on the partitioning of
net solar radiation into ground heat and sensible and la-
tent heat fluxes and the partitioning of precipitation into
canopy interception, runoff and infiltration. The land cover
maps employed in the LSMs are different. For example,
GLDAS_NOAH uses the modified IGBP MODIS (Moderate
Resolution Imaging Spectroradiometer) 20-category vegeta-
tion classification, and GLDAS_CLSM uses the University
of Maryland (UMD) land cover classification based on the
AVHRR (Advanced Very High Resolution Radiometer) land
cover map. MERRA-2 and HTESSEL both use the global
land cover characteristics database, version 2.0 (Reichle et
al., 2017c; Rui et al., 2021). Second, the parameterization
for vegetation canopy (e.g. leaf area index, bare soil frac-
tion, high- and low-vegetation fraction, type and density,
Nogueira et al., 2020) and root tissue (root distribution, root-
ing depth, root density and root zone water storage, Gao et
al., 2014; Stevens et al., 2020; van Oorschot et al., 2021)
varies considerably across different LSMs. The discrepancy
in land cover types, vegetation canopy and root parameter-
izations between different land cover maps not only affects
the exchange of water, carbon and energy between the land
surface and the atmosphere at the local scale but also af-
fects the water and carbon cycle and energy balance at the
terrestrial and global scales. Moreover, the inaccurate par-
titioning of the total terrestrial evapotranspiration into soil
evaporation, canopy interception and vegetation transpira-
tion also affects the exchange of water and energy between
the land surface and the atmosphere. Generally speaking, the
ratio of transpiration to the total terrestrial evapotranspira-
tion is underestimated compared to the observations in most
earth system models (ESMs) (Feng et al., 2023). This phe-
nomenon could be related to the excessive reliance on the
surface soil moisture and canopy-intercepted water storage
rather than the adequate utilization of RZSM for transpi-
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Figure 11. Box plot of soil properties for three soil layers at all in situ stations (Layer 1 (0–16.6 cm) – plough layer, Layer 2 (16.6–49.3 cm)
– black soil layer and Layer 3 (49.3–138.3 cm) – lime concretion layer).

ration, which leads to the overestimated RZSM (Dong et
al., 2022), or the unreliable representation of canopy light
use, interception loss and root water uptake processes in the
ESMs (Lian et al., 2018). In different LSMs, the process rep-
resenting the partitioning of the total terrestrial evapotranspi-
ration into different components differs from each other. For
example, GLDAS_CLSM shows the higher fraction of soil
evaporation, while GLDAS_NOAH shows the higher frac-
tion of transpiration over the Huai River basin (Feng et al.,
2023). In general, soil evaporation is mainly controlled by
surface soil moisture, while the transpiration is controlled by
the available water in the root zone. Therefore, the soil evap-
oration fraction is inversely proportional to leaf area index,
while the transpiration fraction is proportional to leaf area
index. The difference in the fractions of evapotranspiration
components between GLDAS_CLSM and GLDAS_NOAH
could be related to the model parameterization associated
with sol evaporation and transpiration. Furthermore, the tran-
spiration of crops is highly dependent on the growing season,
which might be not well represented in the LSMs.

5.4 What are the difference between the three
CLSM-based RZSM products?

Regarding the in situ validation in Sect. 4.1, the superior skill
metrics of GLDAS_CLSM among the three CLSM-based
RZSM products (GLDAS_CLSM, SMAP L4 and MERRA-
2) can be attributed to its more accurate representation of
precipitation. While GRACE TWS observations have been
assimilated into GLDAS_CLSM, previous studies have indi-
cated that the assimilation of GRACE TWS has no or negligi-
ble effect on RZSM. This could be attributed to the faster re-
sponse of soil moisture to atmospheric forcing than ground-
water (Zaitchik et al., 2008; Houborg et al., 2012; Girotto et

al., 2016), the short in situ data record or insufficient spatial
sampling (Li et al., 2012). Tian et al. (2017) and Tangdam-
rongsub et al. (2020) jointly assimilated terrestrial water stor-
age (GRACE TWS) and SSM products. The soil moisture-
only assimilation improved the performance of soil moisture
estimates relative to in situ measurements but degraded the
performance of groundwater estimates. The GRACE-only
assimilation only enhanced the skill metrics of groundwater
estimates.

Regarding the intercomparison in Sect. 4.2, the very
good correlation and low ubRMSE between MERRA-2 and
SMAP L4 shown in Fig. 5 can be partly attributed to the
fact that both products are based on the CLSM, and both
use atmospheric forcing data generated from GEOS-5. How-
ever, it should be noted that SMAP L4 uses a more recent
version of CLSM with a different representation of soil hy-
draulic and thermal properties. In addition, MERRA-2 and
SMAP L4 use different model background precipitation (i.e.
GEOS-5 FP system for SMAP L4 and GEOS-5 FP-IT system
for MERRA-2) (Reichle et al., 2017d). In MERRA-2, the
CPCU precipitation is used in its native climatology to cor-
rect the GEOS FP-IT model background precipitation, while
in SMAP L4 the CPCU precipitation is rescaled to the clima-
tology of the GPCPv2.2 pentad precipitation product clima-
tology before being corrected by the GEOS-5 FP system.

5.5 Why does SMOS L4 underestimate RZSM?

The SMOS L4 RZSM product is derived from the SMOS L3
3 d SSM by applying a modified exponential filter (Pablos
et al., 2018). Figure 12 shows the comparison of the SMOS
L3 SSM and L4 RZSM with the in situ soil moisture ob-
servations. It is evident that both SMOS L3 SSM and L4
RZSM underestimate the in situ observations with average
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bias values of −0.069 and −0.047 m3 m−3, respectively. By
partitioning the total error composed of the exponential fil-
ter model and the inherent SMOS in situ differences, Ford
et al. (2014) have shown that the mismatch between in situ
observations and the estimates is much larger than the er-
ror caused by the exponential filter method. The underesti-
mation of in situ observations by SMOS L3 SSM has been
reported in previous studies (Djamai et al., 2015; Cui et
al., 2017; Pablos et al., 2018; Ma et al., 2019; Wang et al.,
2021b). Therefore, it can be inferred that the underestima-
tion of in situ observations by the SMOS L3 SSM propa-
gates to the SMOS L4 RZSM. The L-band microwave sig-
nal is sensitive to soil moisture, soil temperature and vege-
tation optical depth (VOD) (Kerr et al., 2012). Using the L-
band Microwave Emission of the Biosphere (L-MEB) model
(Wigneron et al., 2021), SMOS L3 soil moisture and vege-
tation optical depth (VOD) can be retrieved simultaneously
from multiple orbits using multi-angular (∼ 0–60°) and dual-
polarization TB measurements (Al Bitar et al., 2017; Li et
al., 2021). Numerous studies have shown that the SMOS L3
physical surface temperature used in the forward radiative
transfer model was underestimated (Cui et al., 2017; Ma et
al., 2019; Wang et al., 2021b; Zheng et al., 2022). In the
SMOS L3 retrieval algorithm, underestimation of soil tem-
perature leads to overestimation of soil emissivity, which ul-
timately results in the underestimation of soil moisture re-
trieval. In general, the SMOS L3 VOD retrievals are rela-
tively noisy, which may be related to retrieval instabilities
and radio frequency interference (RFI) effects (Cui et al.,
2017; Wang et al., 2021b; Wigneron et al., 2021; Zheng et
al., 2022). Therefore, it is difficult to quantify its relationship
with soil moisture. In addition, the ECMWF ERA-Interim
soil moisture is also used in the operational SMOS L3 SSM
retrieval algorithm. For a given pixel, the total TB is simu-
lated as the sum of several fractional contributions (FNO –
nominal (bare soil, low vegetation); FFO – forest; and others
– urban, water, etc.); i.e. TBtotal =TBFNO+TBFFO+TBothers
(Fernandez-Moran et al., 2017). SMOS L3 retrievals are
computed only over a fraction of the pixel (the “dominant”
fraction where SM retrieval is meaningful over certain sur-
face types) (Fernandez-Moran et al., 2017; Wigneron et al.,
2021). For the remaining fraction of pixels, only their con-
tributions to the total signal need to be estimated using the
ECMWF ERA-Interim SM (0–7 cm) as an auxiliary input,
but no SM retrievals are performed. Previous studies have
shown that the ERA-Interim soil moisture over China is over-
estimated (Yang et al., 2020; Ling et al., 2021). Therefore, the
overestimated ECMWF ERA-Interim SM (0–7 cm) leads to
an underestimation of the forest TBFFO contribution, which
in turn leads to an overestimation of TBFNO and to a dry bias
in the retrieved SMOS L3 SM (as there is a negative correla-
tion between brightness temperature and soil moisture; Rao
et al., 2007).

6 Conclusions

In this study, eight RZSM products were quantitatively eval-
uated against observations from 58 in situ soil moisture sta-
tions over the HRB in China. The impact of several poten-
tial confounding factors on the uncertainty of RZSM prod-
ucts was investigated, including meteorological forcing vari-
ables, soil properties, soil stratification, vegetation parame-
terization and spatial scale mismatch. Nevertheless, there are
still some shortcomings to be overcome in this study. The
land cover type affects the dynamics of soil moisture, so fu-
ture study should focus on the effect of different land cover
types on soil moisture simulation. The main conclusions of
this study are as follows:

1. GLDAS_CLSM outperformed the other RZSM prod-
ucts over the HRB, followed by MERRA-2, CLDAS,
SMAP, ERA5, NCEP CFSv2 and GLDAS_NOAH. The
SMOS L4 product presented the worst performance due
to the fact that SMOS L4 does not contain precipita-
tion information and has a weaker response to precip-
itation. Seven RZSM products based on land surface
models overestimated the in situ observations, with me-
dian bias values ranging from 0.033 m3 m−3 (SMAP
L4) to 0.116 m3 m−3 (CLDAS), while SMOS L4 un-
derestimated the RZSM with a median bias value of
−0.050 m3 m−3.

2. The intercomparison of RZSM products shows that
the correlation coefficient R between any two of the
seven model-based RZSM products varied from 0.68
(ERA5 vs. CLDAS) to 0.95 (SMAP L4 vs. MERRA-
2). In contrast, SMOS L4 presented a lower correla-
tion with the other seven RZSM products, with R rang-
ing from 0.30 (MERRA-2) to 0.41 (GLDAS_NOAH).
The comparison of the frequency distribution between
eight RZSM products and in situ observations indicates
that all RZSM products overestimate the frequency of
wet soil moisture and underestimate the frequency of
dry soil moisture. Besides, the frequency peaks of eight
RZSM products are underestimated and show an obvi-
ous offset towards wet soil moisture compared to the in
situ observations. Therefore, the Richards equation in
LSMs should focus on producing less wet soil moisture
and more dry soil moisture.

3. Except for CLDAS, the overestimated RZSM products
based on land surface models could be associated with
the overestimated precipitation amounts and frequency;
underestimated air temperature; and underestimated ra-
tio of transpiration to the total terrestrial evapotranspi-
ration existing in most earth system models, which con-
sumes less water in the root zone for transpiration. The
underestimation of the SMOS L4 RZSM is related to
the underestimation of the SMOS L3 SSM.
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Figure 12. Comparison of time series (a, c, e) and scatterplots (b, d, f) of SMOS L3 SSM vs. in situ SSM (Fig. 12a and b), SMOS L3 SSM
vs. SMOS L4 RZSM (Fig. 12c and d) and SMOS L4 RZSM vs. in situ RZSM (Fig. 12e and f).

4. The model-based RZSM products generally perform
better in the wet season than in the dry season due to
the enhanced ability to capture of the temporal dynam-
ics of in situ observations in the wet season and the in-
ertia of remaining high soil moisture values even in the
dry season, while SMOS L4 performs better in the dry
season than in the wet season, as the ground microwave
radiation signal is more attenuated in the wet season due
to a substantial increase in water vapour absorption and
scattering, which is propagated to SMOS L4 RZSM.

5. Spatial-average validation could reduce the spatial noise
of in situ soil moisture measured at different locations
and improve the representativeness of soil moisture ob-
servations to model-based grid values.

6. The study could provide some insights into how to im-
prove the ability of land surface models to perform the
land surface analysis by addressing the above issues.
Furthermore, these results can be extended to other re-
gions to improve the numerical simulation capability of
land surface models at global scale.

Data availability. The soil moisture observations in Huai River
basin are not publicly available but can be requested from the
Huaihe River Commission of the Ministry of Water Resources,
PR China (http://www.hrc.gov.cn, last access: 17 May 2024).
We provide a sample dataset of these measurements for a subset
of 10 stations (https://doi.org/10.6084/m9.figshare.23497502,
Liu, 2023). All modelled root zone soil moisture data

are freely available. The ERA5 dataset is openly avail-
able from ECMWF at https://doi.org/10.24381/cds.adbb2d47
(Hersbach et al., 2023). The MERRA-2 dataset is
available from https://doi.org/10.5067/VJAFPLI1CSIV
(GMAO, 2015). The NCEP CFSv2 dataset is avail-
able from https://doi.org/10.5065/D61C1TXF (Saha et
al., 2011). The GLDAS_NOAH dataset is available
from https://doi.org/10.5067/E7TYRXPJKWOQ (Beau-
doing et al., 2020). The GLDAS_CLSM dataset is
available from https://doi.org/10.5067/TXBMLX370XX8
(Li et al., 2020). The CLDAS dataset,
1.2.156.416.CMA.D3.F001.CLDAS.AN.WB.CHN.MUL.HOR.0P
0625.1, is available from https://data.cma.cn/data/cdcdetail/
dataCode/NAFP_CLDAS2.0_NRT.html (CMA, 2015). The
SMAP L4 dataset is available from https://doi.org/10.5067/
9LNYIYOBNBR5 (Reichle et al., 2020). The SMOS L4 dataset is
available from https://doi.org/10.12770/316e77af-cb72-4312-96a3-
3011cc5068d4 (CATDS, 2021).
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