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Abstract. Drought is a devastating natural disaster, during
which water shortage often manifests itself in the health
of vegetation. Unfortunately, it is difficult to obtain high-
resolution vegetation drought impact information that is
spatially and temporally consistent. While remotely sensed
products can provide part of this information, they often suf-
fer from data gaps and limitations with respect to their spatial
or temporal resolution. A persistent feature among remote-
sensing products is the trade-off between the spatial resolu-
tion and revisit time: high temporal resolution is met with
coarse spatial resolution and vice versa. Machine learning
methods have been successfully applied in a wide range of
remote-sensing and hydrological studies. However, global
applications to resolve drought impacts on vegetation dy-
namics still need to be made available, as there is significant
potential for such a product to aid with improved drought
impact monitoring. To this end, this study predicted global
vegetation dynamics based on the enhanced vegetation in-
dex (evi) and the popular Random forest (RF) regressor al-
gorithm at 0.1°. We assessed the applicability of RF as a gap-
filling and downscaling tool to generate global evi estimates
that are spatially and temporally consistent. To do this, we
trained an RF regressor with 0.1° evi data, using a host of
features indicative of the water and energy balances experi-
enced by vegetation, and evaluated the performance of this
new product. Next, to test whether the RF is robust in terms
of spatial resolution, we downscale the global evi: the model
trained on 0.1° data is used to predict evi at a 0.01° reso-
lution. The results show that the RF can capture global evi
dynamics at both a 0.1° resolution (RMSE: 0.02–0.4) and
at a finer 0.01° resolution (RMSE: 0.04–0.6). Overall errors
were higher in the downscaled 0.01° product compared with
the 0.1° product. Nevertheless, relative increases remained

small, demonstrating that RF can be used to create down-
scaled and temporally consistent evi products. Additional er-
ror analysis revealed that errors vary spatiotemporally, with
underrepresented land cover types and periods of extreme
vegetation conditions having the highest errors. Finally, this
model is used to produce global, spatially continuous evi
products at both a 0.1 and 0.01° spatial resolution for 2003–
2013 at an 8 d frequency.

1 Introduction

The impacts of natural hazards are felt at a local scale,
but creating impactful risk management strategies requires
a global view regarding the driving processes and impacts
(Ward et al., 2020). Given its complex and multivariate na-
ture, a global perspective is especially necessary when con-
sidering drought hazards. Drought is one of the most dis-
ruptive natural hazards, causing negative repercussions for
the environment, economy, and society and potentially af-
fecting large areas and populations (Naumann et al., 2014;
Vereinte Nationen, 2021). However, a universal definition of
what constitutes a drought event remains elusive. As a re-
sult, we lack a comprehensive understanding of the direct
and indirect effects of drought on the environment and so-
ciety (Blauhut et al., 2016; Vogt et al., 2018; Sutanto et al.,
2019). Remotely sensed products that monitor Earth system
responses during drought periods are one promising tool that
can enable a global perspective on drought hazards and their
impacts (AghaKouchak et al., 2015; West et al., 2019). How-
ever, they suffer from trade-offs between spatial and tempo-
ral resolution: we either have high-resolution, low-frequency
products or the inverse. The production of high-resolution,
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spatially continuous products can facilitate a more holistic
view of drought responses and management by incorporating
more relevant fine-scale processes (Chen et al., 2022; Schnei-
der et al., 2017).

Vegetation is involved in numerous drought impact path-
ways, and using remote sensing to track vegetation responses
has been widely used (Y. Zhang et al., 2021; AghaKouchak
et al., 2015). Drought disrupts terrestrial water and carbon
cycles, which can reduce the integrity of ecosystem dynam-
ics and associated ecosystem services (Banerjee et al., 2013;
Crausbay et al., 2017; Han et al., 2018; Smith et al., 2020).
More subtly, vegetation also affects the dynamics of drought
propagation itself; under favourable antecedent conditions,
vegetation overshoot may exacerbate and facilitate the onset
of rapid and intense droughts (Y. Zhang et al., 2021). Vegeta-
tion is also expected to play a crucial role in shaping drought
resistance under future climate change (Vereinte Nationen,
2021). In the absence of such resistance, interventions to al-
leviate the negative impacts of disrupted ecosystem services
can cost up to USD 1 billion per drought event (Banerjee
et al., 2013; Cammalleri et al., 2020). It follows that formu-
lating appropriate responses to drought and alleviating the
negative effects of ecosystem disruption during these periods
requires accurate predictions.

In recent decades, numerous satellite-based vegetation in-
dices have been developed (S. Li et al., 2021). For example,
the enhanced vegetation index (evi) has proven to be an in-
dispensable tool for monitoring vegetation at multiple scales,
from the fine scale, such as crop patches (Moussa Kourouma
et al., 2021; Sharifi, 2021), to the global scale (Huang et al.,
2021; Vicente-Serrano et al., 2010). However, a persistent
feature among these products is the trade-off between the
spatial resolution and revisit time: high temporal resolution
is met with coarse spatial resolution and vice versa. For ex-
ample, the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) captures the entire Earth at high temporal res-
olution every 1 to 2 d (Zhao and Duan, 2020) with a max-
imum spatial resolution of 250 m. Landsat and Sentinel-2
data have a higher spatial resolution (10 and 30 m, respec-
tively) but longer revisit periods of approximately 10 and
5 d, respectively (Zhu, 2017; S. Li et al., 2021). Revisit times
for Landsat and Sentinel-2 are further prolonged when sen-
sors or retrievals are interrupted by cloud cover, pollution
in the atmosphere, or even technical issues. In addition to
the temporal frequency, temporal coverage is another im-
portant consideration. Coarser-scale products are associated
with older satellites and have more extended temporal cover-
age than the newer ones; MODIS products reach as far back
as 1999, whereas Sentinel-2 products only go back to 2017.
The ideal product for monitoring vegetation dynamics would
have global coverage, few to no data gaps, and high spatial
and temporal resolution.

Machine learning (ML) methods have been used for down-
scaling and gap-filling purposes in remote-sensing products;
thus, they can be seen as one tool that can lead to the pro-

duction of high-quality remote-sensing products, thereby al-
leviating the resolution and coverage limitations that cur-
rent products exhibit (Zhu et al., 2022; Zeng et al., 2013).
ML methods have been successfully applied to a wide range
of drought-related (Hauswirth et al., 2021; Shamshirband
et al., 2020; Tufaner and Özbeyaz, 2020; Shen et al., 2019;
Das et al., 2020; Hauswirth et al., 2023) and remotely de-
tected vegetation studies (Roy, 2021; X. Li et al., 2021; Re-
ichstein et al., 2019). Compared with conventional statisti-
cal downscaling techniques, ML is considered the superior
alternative, as no strict statistical assumptions are required,
complex and nonlinear relationships are well captured, and it
provides high precision (Ebrahimy et al., 2021).

One ML algorithm that has been widely applied for gap
filling and downscaling of remote-sensing data is the Ran-
dom forest (RF) regressor (J. Zhang et al., 2021; Fu et al.,
2022; Liu et al., 2020; Wang et al., 2022). Gap filling can be
achieved by training an RF on available data and then using
the model to predict values where data are sparse or missing
(Wang et al., 2022). Using RF to downscale data involves the
establishment of an RF at a coarse scale and the prediction
of targets at finer resolutions by feeding the algorithm with
high-resolution auxiliary data (Liu et al., 2020). These stud-
ies have highlighted that ML methods can accurately predict
the dynamics of vegetation (Roy, 2021; Gensheimer et al.,
2022). However, studies applying ML methods to global veg-
etation dynamics and assessing their suitability to investigate
drought responses are less prominent, and it remains to be
seen whether this approach is applicable at the global scale
(X. Li et al., 2021; Y. Zhang et al., 2021; Chen et al., 2021).

This study aims to further our understanding of how well
ML methods can be used create vegetation products that are
useful for global drought impact applications. This will allow
us to further quantify the degree to which ML can facilitate
continuous drought monitoring by gap filling and downscal-
ing existing remote-sensing products. We set out to establish
whether ML methods can alleviate the data gap and reso-
lution limitations of remote-sensing-based vegetation health
products by linking vegetation condition (evi) with meteoro-
logical and hydrological data. This was done in three steps.
First, we assessed whether ML is an appropriate tool to pre-
dict the condition of vegetation on a global scale and act as
a gap-filling tool. Second, we determined whether ML can
be used to downscale vegetation conditions and predict val-
ues at spatial scales finer than those provided during training.
High degrees of transferability between scales could allow
for further spatial up- or downscaling of the vegetation sta-
tus in future applications while still providing robust predic-
tions. Finally, to explore how these products can be applied
to drought impact studies, we investigated how well the ML-
based vegetation maps predict vegetation status during peri-
ods of drought.
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2 Materials and methods

The materials and methods are constructed so that each sub-
section corresponds to one of the objectives. We first provide
an overview of the approach used to construct an RF (uti-
lizing a variety of input data); this RF is then employed to
assess how well an ML approach can be used as a gap-filling
and downscaling tool. Next, we detail how we trained the RF
and which data were used as well as how we tested the gap-
filling and downscaling capabilities. Last, the gap-filled and
downscaled products are stress tested by investigating how
well they can be used to derive insights into global vegeta-
tion dynamics, specifically under drought conditions.

The relative abundance of remotely sensed vegetation data
provides an opportunity to effectively establish the suitability
of ML-based methods for gap filling and downscaling. In this
study, we relied on already assimilated data products to test
the applicability of RF as a downscaling and gap-filling tool.
To do this, we first set out to train an RF on a subset of the
available evi data at 0.1°. As a test of its gap-filling abilities,
the model was then used to predict evi values at locations not
seen during training. To determine how viable the RF is for
downscaling, we predicted the evi at a 0.01° resolution by
providing the model with available high-resolution auxiliary
data and regridding the data that were not available at a high
resolution.

2.1 Random forest regressor

2.1.1 Data sources

The data sources (Table 1) and further information in the
following subsections were used to construct a 0.1° resolu-
tion data set to train and test the ML model. The data set
spans 10 years, from 2003 to 2013. The goal was to have
all data at a 0.1° resolution; in cases where the resolution of
the downloaded data was not 0.1°, the relevant treatments are
described below.

Vegetation index

The reference data used in this study are the evi index val-
ues. The evi data provide an observational benchmark for
the training and validation of the ML-based products created
in this study. The evi can be used as an indicator of over-
all vegetation status and health, as it is sensitive to chloro-
phyll content and correlates with primary production, pho-
tosynthesis rates, and vegetation physiognomy (Box et al.,
1989). Compared with the more widely used normalized dif-
ference vegetation index, the evi is considered to be the su-
perior index, as it is less sensitive to atmospheric conditions
and saturation effects in areas of dense vegetation (Gao et al.,
2000). These data arise from MODIS aboard the Terra and
Aqua satellites. Sensors aboard Terra and Aqua are identical,
and the 16 d composite images from each sensor are released
8 d apart. In this study, Google Earth Engine’s Python Ap-

plication Program Interface (Gorelick et al., 2017) through
the geemap package (Wu, 2020) was used to access the
Terra (MOD13A2.061) and Aqua (MYD13A2.061) evi data.
These two products were combined to produce a quasi-8 d
time series (Didan, 2015, 2021). For the experimental setup
used here, we required two sets of evi data: one at a 0.1°
resolution, for training the RF and testing its gap-filling ca-
pability, and another at a 0.01° resolution, to assess the RF’s
downscaling abilities. To enable assessment of the gap-filling
and downscaling capabilities of the RF, we downloaded one
data set at a 0.01° resolution and another at a 0.1° resolution.
The two different data sets (with respect to resolution) were
acquired by relying on Google Earth Engines’ Image Pyra-
miding Policy. This policy aggregates high-resolution data to
the required resolution using the mean for continuous vari-
ables (i.e. evi).

Feature variables

Global vegetation dynamics are largely driven by terrestrial
water and energy balances (Hawkins et al., 2003). Similarly,
the responses of vegetation to drought are regulated, in part,
by water and energy availability (Xu et al., 2010). Conse-
quently, a suite of data indicative of terrestrial water and
energy balances were selected as potential input variables.
These variables are introduced below, and Table 1 provides
an overview.

Meteorology

Hourly data for total precipitation (tp), 2 m tempera-
ture (t2m), volumetric soil moisture layer 1 (swvl1; 0–7 cm),
and soil temperature layer 1 (stl1; 0–7 cm) were retrieved
from the hourly ERA5-Land reanalysis product by the Euro-
pean Centre for Medium-Range Weather Forecasts (Muñoz-
Sabater et al., 2021). In addition, potential daily evapora-
tion (pet) was acquired from Singer et al. (2021). The pet is
calculated following the Penman–Monteith formulation with
ERA5-Land as the input data. This information (pet) was in-
cluded because it is directly correlated with air temperature
and radiation (Thornthwaite, 1948; Monteith, 1965; Priestley
and Taylor, 1972) as well as with the photosynthesis potential
of plants; thus, it can account for a number of other variables.
All meteorological data were resampled to match the 8 d fre-
quency of the evi data. The tp was aggregated by taking the
cumulative sum of the previous 8 d, whereas the remainder
of the variables were averaged over a previous 8 d window.

Drought indices

Aside from short-term changes in water availability, it is also
imperative to understand the long-term dynamics to iden-
tify drought legacy effects on the current vegetation states
(Schwalm et al., 2017). To this end, the standardized precipi-
tation index (spi) (McKee et al., 1993) and standardized pre-
cipitation evapotranspiration index (spei) (Vicente-Serrano

https://doi.org/10.5194/hess-28-2357-2024 Hydrol. Earth Syst. Sci., 28, 2357–2374, 2024



2360 B. van Jaarsveld et al.: A data-driven approach to derive global vegetation dynamics

Table 1. The target variable (evi) and potential features, showing their accompanying name, description, units, spatial resolution (Spat. res.),
temporal resolution (Temp. res.), and reference.

Name Description Units Spat. Temp. Reference
res. res.

Target variable

evi Enhanced vegetation index – 0.01° 8 d Gao et al. (2000)

Feature variables

lc Land cover types – 500 m Yearly Friedl and Sulla-Menashe (2019)

elv Elevation m ∼ 92 m

Static Yamazaki et al. (2019)
hand Height above nearest drainage m ∼ 92 m
aspect Aspect ° ∼ 92 m
slope Slope ° ∼ 92 m

tp Total precipitation mm d−1 0.1°

Hourly Muñoz-Sabater et al. (2021)
t2m 2 m temperature °C 0.1°
swvl1 Soil water volumetric layer 1 (0–7 cm) – 0.1°
stl1 Soil temperature layer 1 (0–7 cm) °C 0.1°

pet Potential evapotranspiration mm d−1 0.1° Singer et al. (2021)

spi1, spi3, . . . spi24 Standardized precipitation index – 0.1° Monthly This study
spei1, spei3, . . . spei24 Standardized precipitation evaporation index – 0.1°

Bold text indicates that features were dropped from further analysis after conducting feature selection prior to model fitting.

et al., 2010) were used to characterize these legacy effects.
The spi and spei were calculated at 1-, 3-, 6-, 9-, 12-, and 24-
month aggregation lengths. The different lengths of aggrega-
tion are related to types of drought: precipitation, soil mois-
ture, and hydrological droughts. Precipitation and soil mois-
ture droughts are mostly associated with short-term soil wa-
ter deficits (1–3 months), and they are important for vegeta-
tion with shallow roots; hydrological drought (6–12 months)
can be a good proxy for impacts on shrubs, bushes, and trees
that have deeper roots and are likely to rely on local ground-
water for water (12–24 months). In addition, the inclusion
of drought indices allows for the characterization of past cli-
mate memory effects on current vegetation growth (Reich-
stein et al., 2019; Schwalm et al., 2017) associated with past
climatic conditions. The equations and steps for calculating
the spi and spei are detailed in Appendix A2.

Land cover types and topography

Land cover type is an important predictor of vegeta-
tion abundance and health (Meza et al., 2020). Here, the
MODIS yearly Land Cover Type (MCD12Q1.061) data
were retrieved from the Google Earth Engine. In this prod-
uct, land cover types are classified according to the In-
ternational Geosphere–Biosphere Programme classification
scheme. Barren land, deserts, permanent snow, and wa-
ter bodies are masked in all further analyses. It is impor-
tant to note that the RF was supplied with the remaining
15 unique land cover types; however, these are collapsed into
eight broader classifications for brevity and clarity in the re-
sults, discussion, and visualizations. Grasslands, wetlands,

croplands, urban, and mixed did not require grouping, and
they represent the corresponding classes in accordance with
the Geosphere–Biosphere Programme classification scheme.
Forests refers to the grouped class that contains evergreen
needleleaf, evergreen broadleaf, deciduous needleleaf, de-
ciduous broadleaf, and mixed broadleaf forests. Shrubland
refers to the grouped class containing closed and open shrub-
land, whereas savannas refer to the grouped class contain-
ing woody savannas and savannas. To capture the varia-
tions in water and energy availability attributable to topo-
graphic effects, elevation (elv) and height from the nearest
drainage basin (hand) were accessed using MERIT Hydro,
a high-resolution global hydrography map (Yamazaki et al.,
2019), also through Google Earth Engine. To enable assess-
ment of the gap-filling and downscaling capabilities of the
RF, we downloaded one data set at a 0.1° resolution and an-
other at a 0.01° resolution using the Google Earth Engine’s
Python Application Program Interface (Gorelick et al., 2017)
via the geemap package (Wu, 2020). The two different data
sets (with respect to resolution) were acquired by relying on
Google Earth Engines’ Image Pyramiding Policy. This pol-
icy aggregates high-resolution data to the required resolution
using the mode for land cover data and mean for continuous
variables (i.e. evi and hand). Last, 0.1° and 0.01° slope and
aspect were calculated from elv using the relevant functions
in xarray-spatial (Hoyer and Hamman, 2017).

2.1.2 Random forest model

While an abundance of ML approaches have been used to
predict vegetation status, here the Random forest (RF) re-
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Figure 1. The five sequential steps followed during the RF fitting
and evaluation.

gressor was selected to link meteorology, land cover, topog-
raphy, and drought inputs to vegetation health. RF is an en-
semble method that fits many decision trees on different sub-
sets of data.

RF is advantageous given its relatively straightforward im-
plementation, ability to incorporate categorical features, abil-
ity to easily identify causal links, and limited risk of overfit-
ting. The general pipeline used throughout consisted of five
sequential steps (Fig. 1). Here, the RF was implemented in
Python 3.9 (Rossum and Drake, 2010) under the scikit-learn
framework (Pedregosa et al., 2011).

Feature selection

In an attempt to include only relevant data in the ML model,
the potential variables described in Sect. 2.1.1 and listed in
Table 1 were evaluated with respect to their ability to pro-
vide meaningful information during model fitting. A pair-
wise Spearman rank correlation was calculated between all
features to ensure that input data correlated with evi. Those
variables that exhibited strong correlations were retained in
further analysis, whereas variables that experienced weak
correlations were excluded. Aspect did not exhibit strong
correlations with evi (Fig. A1). Similarly, spi (at all aggre-
gation times) did not correlate strongly with evi. In addition,
spi was closely correlated with spei; thus, spi was excluded
in favour of spei (Fig. A1). spi and aspect were excluded
from further analyses; features that were excluded are high-
lighted in Table 1. Soil moisture and total precipitation ex-
hibited some degree of cross-correlation in the global sense,
yet these were retained to account for regions in which soil

moisture is independent of precipitation, such as wetlands
and groundwater-dependent ecosystems.

Preprocessing

Given that the RF algorithm accepts 2-dimensional numeric
arrays as input, the 3-dimensional data were processed so that
each unique latitude and longitude combination was associ-
ated with a time series of each variable. The single categori-
cal feature (lc) was converted to a binary numeric form. Each
unique land cover type is assigned to a new feature, with 1 in-
dicating presence and 0 indicating absence.

Split strategy and hyperparameter optimization

To refine the number of estimators and maximum depth,
a 3-fold cross-validation approach using HalvingRandom-
SearchCV was applied. This hyperparameter optimization
provides the optimal configuration for the RF so that
the critical vegetation dynamics are captured while si-
multaneously reducing the RF complexity and preventing
overfitting. The hyperparameter optimization focused on
two parameter settings, namely, maximum_depth and the
number_of_estimators. The maximum_depth determines the
maximum depth of the decision tree, whereas the num-
ber_of_estimators determines the number of decision trees
used. The search space used for the number_of_estimators
and maximum_depth was 1–40 and 1–25, respectively. The
upper bounds of the search space were largely determined
by computational considerations, increasing the upper lim-
its beyond 40 for number_of_estimators and beyond 25 for
maximum_depth would result in impractical computation
times. Nonetheless, even with this constraint, increasing the
maximum_depth and number_of_estimators past 12 and 13,
respectively, yielded only marginal increases in test scores
(Fig. 2a). Given that the risk of overfitting and a longer com-
putational time increases with increasing maximum_depth
and number_of_estimators as well as the fact that only
marginal increases in test scores are observed past 12 and 13,
these values were identified as optimal for maximum_depth
and number_of_estimators, respectively.

After determining optimal parameter settings, the data
were split into training and validation sets. However, 3-
dimensional data could conceivably be split along the tem-
poral dimension, where the model is trained on all loca-
tions with only a subset of the temporal availability (i.e. tem-
poral splitting), or the data could be split according to lo-
cation, where only a subset of the grid pixels are selected
for training but over the entire available period (i.e. spatial
splitting). Given that previous research has highlighted that
RF performance is sensitive to spatial vs. temporal splitting,
this is especially true for extreme events such as droughts
(Hauswirth et al., 2021). We conducted a cursory analysis to
determine whether a temporal or spatial splitting approach
better balanced trade-offs between computational complex-
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Figure 2. (a) Evolution of RF performance during HalvingRandomSearchCV hyperparameter optimization of maximum_depth and num-
ber_of_estimators. (b) RF performance following the incremental increase in the training set size using a location-based split approach
compared with a temporally based split approach.

ity and learning rates. Learning curves for cursory RF models
using each splitting approach were quantified and compared.
Each model was supplied with increasing training sizes, and
test scores were calculated and plotted to visualize learning
curves. This cursory analysis revealed that spatial splitting
yields faster learning curves than the temporal splitting ap-
proach (Fig. 2b); therefore, spatial splitting was identified as
the preferred approach.

Training

For the final RF model, a spatial split with a 0.06 : 0.94
(train : predict) ratio was used to train the final model. A
0.06 : 0.94 split was chosen, as there was very little in-
crease in performance past training sizes of 6 % (Fig. 2b).
The maximum_depth and number_of_estimators were set
at 12 and 13, respectively. The parameters that were not sub-
jected to hyperparameter optimization were set as follows:
the squared_error criterion was used to measure the quality
of the splits in branches; the maximum number_of_features
considered in each split was set to auto, which instructs the
algorithm to consider all features when considering a split;
the minimum samples_per_leaf_node, which determines the
minimum number of samples required in a leaf node, was set
at the default value of 1; and the minimum samples_per_split
was also set at the default value of 2, which means a split will
only be considered if each branch left and right of an internal
node has at least two samples in it.

2.2 Gap filling evi using random forests

As a test of the RF gap-filling capabilities, we predicted evi
for the 94 % of grid cells not used during training. The accu-
racy of these predictions was evaluated against the evi data
obtained from MODIS. As a first-pass assessment of overall
performance, the model was scored using a default coeffi-
cient of determination (R2) scorer in the RF implementation
of scikit. The model predictions were further evaluated by
calculating the root-mean-square error (RMSE) and the Pear-
son correlation coefficient. These were calculated indepen-
dently for each grid cell to provide information on the spatial
variation in errors. Last, to gain insight into which features
were the most essential for predicting evi, global feature im-
portance was calculated using the Shapley Additive exPlana-
tions (SHAP) TreeExplainer (Lundberg et al., 2020).

2.3 Downscaling the evi using random forests

In this section, the focus shifts toward whether RF can be
used to downscale global evi values – that is, whether a
model trained on 0.1° resolution data can accurately predict
evi at a finer 0.01° scale. To this end, a 0.01° resolution data
set was compiled. In cases where data were not at a 0.01°
resolution (i.e. meteorology and drought indices data), the
nearest-neighbour interpolation scheme from xarray (Hoyer
and Hamman, 2017) was used to match the variables to the
same spatial resolution. This data set was used as new in-
put data for the already trained RF model to predict evi at
a 0.01° scale. The evaluation approach for the downscaled
values remained much the same: the overall model accuracy
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was assessed using the R2 and RMSE, and Pearson correla-
tion coefficients were calculated for each grid cell.

2.4 Applicability of ML-informed vegetation status
products during periods of drought

One noticeable shortcoming of the RF is its relatively poor
ability to predict extreme values depending on the training
selection (Hauswirth et al., 2021). To determine the extent
to which this may influence the generality of the two prod-
ucts mentioned above, we further investigated the accuracy
of the predicted evi under low growing conditions by calcu-
lating the anomaly correlation coefficient of the evi (eviACC;
Eq. 1):

eviACCi,j =
evii,j − evij

σ
, (1)

where eviACCi,j denotes the evi anomaly for the month j in
year i, evij denotes the average evi of month j over 2003–
2013, and σ stands for the standard deviation of evi during
the period. We use this metric to assess the applicability of
the RF-based 0.1 and 0.01° evi predictions against remotely
sensed evi. We consider eviACC values greater than 0 as ca-
pable of capturing anomalies beyond the seasonal cycle and
values exceeding 0.2 as good, given the strong seasonal cycle
that is present in evi data.

3 Results

Here, the results are presented in three parts. First, the results
of the model trained on the 0.1° resolution data are presented;
the focus is on the model’s performance and ability to predict
the status of the vegetation at the spatial resolution that it was
not trained at, thereby assessing its ability as a gap-filling
tool. We also touch on which features are most important
for predicting the status of the vegetation. Subsequently, we
present the model’s performance when used to downscale the
evi and predict 0.01° resolution data. Last, we explore how
this model can be used to gain insight into global vegetation
dynamics by assessing the accuracy of both products under
drought conditions.

3.1 Gap filling the evi using random forests

The model was able to reproduce global vegetation patterns
by correctly predicting high vegetation density in tropical
forests and low vegetation density in arid and urban regions
of the world (Fig. 3). SHAP values provided an understand-
ing of the relative importance of each feature with respect
to predicting evi. The most important features were those
associated with meteorology, land cover type, and eleva-
tion; drought indices and slope proved to be less important
(Fig. 4).

When trained on only 6 % of the data (i.e. the point at
which the use of additional data did not result in better pre-

dictions but increased the risk of overfitting), the RF was able
to predict the global evi accurately with a spatial resolution of
0.1° (R2

= 0.86; Figs. 3–6 and 7a). Looking more closely at
the distribution of errors, less than 1 % of grid cells showed
negative correlations, more than 80 % showed correlations
higher than 0.5 (Fig. 7c), and the RMSE ranged between 0.02
and 0.4 (mean: 0.05±0.03; Fig. 7d). However, it is important
to note that the accuracy was neither spatially nor temporally
uniform. Land cover types were an important feature in deter-
mining predictive ability. The evi predictions in areas domi-
nated by urban, mixed, and crop land cover types showed the
highest degree of error (Fig. 6a). On the contrary, the most
natural types of land cover, such as forests and grasslands,
were the most accurately represented by the model (Figs. 5a
and 6a). For all types of land cover, the periods of maximum
and minimum evi were less accurately predicted than the in-
termediate periods (Fig. 6a). Predicted evi was consistently
overestimated by the model for urban land covers (Fig. 6a).

3.2 Downscaling the evi using random forests

When the model trained on 0.1° data was used to predict evi
at the 0.01° spatial resolution, there was a slight drop in ac-
curacy, but the model was still able to capture spatial and
temporal vegetation dynamics when supplied with 0.01° data
(Figs. 5 and 7b). The predictive capacity was still good, al-
though reduced compared with the 0.1° product, with a me-
dian R2 of 0.75 (Fig. 7b). The errors also increased: 5 %
of grid cells displaying negative correlations (Fig. 7c) com-
pared with less than 1 % for the 0.1° product. The RMSE
ranged between 0.04 and 0.6 (mean: 0.09± 0.07; Fig. 7d),
with the majority of the grid cells exhibiting an RMSE of
around 0.05. Accuracy was again dependent on the land
cover, with urban, mixed, and crop land cover types perform-
ing the worst (Fig. 6b). Noticeably, the model consistently
overestimated the evi for urban land cover types.

3.3 Accuracy under drought conditions

The anomaly correlation analysis revealed that the RF was
still able to capture evi anomalies (Fig. 8), although to a
lesser extent compared with overall performance (Fig. 7c).
The majority of grid cells showed positive correlations, with
less than 10 % displaying negative correlations; indicating
that, for that 90 % of the locations where eviACC was posi-
tive, the RF can reproduce anomalies from the average sea-
sonal cycle and, thus, be used to identify periods of nega-
tive or positive evi impacts resulting from droughts or more
favourable growing conditions. More than 50 % of grid cells
exhibited an eviACC of 0.25 for 0.1° resolution data com-
pared with 45 % when the evi was predicted at a 0.01° reso-
lution (Fig. 8).
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Figure 3. Mean evi (2003–2013) for the (a) observed, (b) predicted 0.1°, and (c) predicted 0.01° values by the RF. Barren land, deserts,
permanent snow, and water bodies were masked and are represented using black.

4 Discussion

4.1 Gap filling the evi using random forests

Here, the results show that RF can accurately predict the
evi at unseen geographic locations when trained on rela-
tively few data; in this work, training the RF on only 6 %
of data provides a representative sample of the global distri-
bution of evi values (see Sect. 4.4 for further discussion on
the influence of data representativity). Using RF as a gap-
filling tool has previously been applied to remotely sensed
vegetation indices (Roy, 2021; Sarafanov et al., 2020; Sun
et al., 2023; Wang et al., 2021; Moreno-Martínez et al.,
2018), albeit mostly at a more local scale. Although it is

challenging to directly compare the errors in a global prod-
uct to other regional products, the errors and correlations re-
ported here are comparable with regional studies (R2:≈ 0.9;
RMSE: 0.02–0.4). Two previous studies have, however, ap-
plied ML techniques to predict the evi at a global scale.
These studies relied on long short-term memory (LSTM) net-
works, using only meteorological input data, to predict the
global 15 and 8 d evi at a 0.5° (Chen et al., 2021) and 250 m
(Xiong et al., 2023) resolution, respectively. This study, us-
ing a more simple ML model, reports similar rates of error
(R2: ≈ 0.9; RMSE: 0.02–0.4) compared with the more so-
phisticated methods in Chen et al. (2021) (RMSE: 0.01) and
Xiong et al. (2023) (R2:≈ 0.9; RMSE:≈ 0.07); this suggests
that using multiple sources of input data is beneficial. The
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Figure 4. Feature importance for the RF-based predicted evi at a
0.1° resolution. The features are ordered by level of importance,
with higher mean SHAP values indicating higher importance.

use of multiple sources of Earth data in conjunction with
RF has also been employed for predicting global soil mois-
ture (L. Zhang et al., 2021). In addition to other ML-based
methods, this current work adds to the number of existing
available tools (reviewed in Peng et al., 2017) that can be
used for gap filling and the production of global and spatially
continuous evi data sets.

4.2 Downscaling the evi using random forests

The RF accurately predicted the evi at finer spatial scales
than those used to train the model, successfully predicting
the evi at a scale of 0.01° using high-resolution auxiliary
data. However, it should be noted that this resulted in a re-
duction in precision compared with the 0.1° product. This is
an expected result, given that the evi at a 0.01° resolution will
exhibit greater variances and more extreme values during pe-
riods of high and low growth. Scale-dependent drivers of
vegetation dynamics may be another phenomenon that con-
tributes to decreased precision when predicting the evi at a
0.01° resolution using a model trained at a coarser resolution.
Meteorology has been shown to be tightly coupled to vege-
tation at the ecosystem scale but less so at finer scales, where
biotic processes, such as competition, herbivory, disease,
and fire, are more important (Franklin et al., 2020). When
predicting the evi, the relative increases in error remained
small. Vegetation indices downscaled using ML methods
have been applied to downscale other remotely sensed vari-
ables, such as precipitation (Park et al., 2022), evapotranspi-

ration (Hobeichi et al., 2023), and gross primary productivity
(Gensheimer et al., 2022).

4.3 Random forests for predicting drought effects

The increase in error among extreme values is a known limi-
tation of RF (Hauswirth et al., 2021); thus, RF was less capa-
ble of capturing extreme evi values compared with the overall
performance of the model. During RF training, an evaluation
metric, in this case squared_error, is used to minimize the er-
ror for the model as a whole. In this scenario, optimal fits in-
evitably result in reduced errors for values close to the mean
at the expense of inflated errors for the outliers (Ribeiro and
Moniz, 2020). In the current study, this means that the evi
during normal growth periods is prioritized over periods of
extremely low or high vegetation growth. Nonetheless, given
that the majority of the grid cells exhibited positive anomaly
correlations, the ability to predict the vegetation status under
drought is still a positive result, in accordance with previ-
ous research (Prodhan et al., 2022; Hauswirth et al., 2021).
As more sophisticated ML models tend to predict extreme
values more accurately than the RF model used here (e.g.
Kladny et al., 2024), future studies should aim to evaluate
their feasibility and applicability to predict vegetation sta-
tus under drought conditions at the global scale. However,
in comparison with RF, the more complex algorithms have
larger computational requirements during model training and
are less capable of capturing potential nonlinearities.

4.4 Importance of land cover type and input data

Varying error according to land cover type at the 0.1° and
0.01° resolutions is expected for at least two reasons: the
first relates to the inherent features of the RF algorithm itself,
while the second relates to the environmental process that af-
fects the dynamics of the evi. A limitation of the RF algo-
rithm is that underrepresented groups are less well explained
by the algorithm when data are imbalanced. Accordingly, ac-
curacy varied according to a proportional abundance of land
cover types (Jung et al., 2020). Dominant land cover types,
such as forests and grasslands, displayed the least amount of
error; in contrast, minority land cover types, such as regions
that have undergone human modification (i.e. urban areas and
croplands), were associated with the highest error. Moreover,
the features used in this study may not equally incorporate
processes critical to vegetation status among land cover types
(Moussa Kourouma et al., 2021). Forests, grasslands, and
other natural ecosystems are closely coupled to water avail-
ability determined by climatic variation processes. However,
croplands and urban areas may be less influenced by weather
and more influenced by anthropogenic manipulations of wa-
ter and energy balances (Zhang et al., 2004; Hawkins et al.,
2003; Tang et al., 2021). A potential solution to this problem
is to rely on extreme gradient boosting decision trees, which
have been shown to provide more accurate predictions when
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Figure 5. (a) RMSE for the RF-predicted evi. The close-up inset panels show the Amazon Basin as representative region for forest land
cover, the Great Lakes as a representative region for croplands, and western Europe as a representative region for urban land cover at (b) 0.1°
and (c) 0.01° resolutions.

data are imbalanced (X. Li et al., 2021) or include informa-
tion on anthropogenic water management, to better represent
drought responses (Wanders and Wada, 2015).

Land-cover-specific variations in the model’s ability to
predict vegetation are an important outcome of this study.
Apart from the statistical reasons detailed as potential mech-
anisms for this phenomenon in the previous paragraph, an
additional, and most likely compounding, explanation is that
the data used to predict the evi may be more relevant for some
land cover types and levels of vegetation growth than oth-
ers. For instance, vegetation status in urban areas and crop-
lands shows weak correlation or high errors (Figs. 5 and 6).
The meteorological data used here to predict the evi may

not be the only factor driving the vegetation dynamics in an-
thropogenically modified areas. It is possible that irrigation,
harvesting, and water management influence vegetation. In-
deed, vegetation in urban areas has been shown to grow more
rapidly and have a longer growing season compared with ru-
ral regions; this is thought to be driven by higher tempera-
tures and by a high concentration of airborne phosphorous
and other aerosol pollutants (Sicard et al., 2018a, b; Pretzsch
et al., 2017). In contrast, natural forests and grasslands show
high levels of accuracy and correlations, suggesting that the
data used here are appropriate for the ML models to capture
vegetation dynamics. Similarly, poor accuracy in wetlands
is not unexpected, as wetland vegetation is primarily driven
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Figure 6. Time series of the average and predicted evi per major land cover type at 0.1° and 0.01° resolutions. The abbreviations on the
y axis are as follows: F – forest; Shr – shrubland; Sav – savanna; G – grassland; W – wetlands; C – crops; U – urban; M – mixed.

Figure 7. Scatterplot of the observed and predicted evi at (a) 0.1° and (b) 0.01° resolutions; cumulative distribution function for (c) Pearson
correlation coefficients for all grid points at 0.1° and 0.01° resolutions; (d) violin plot of the RMSE for all grid points at 0.1° and 0.01°
resolutions.
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Figure 8. Cumulative distribution curves of anomaly correlation coefficients for the evi predicted using RF at a 0.1° resolution (blue) and
0.01° resolution (orange).

by water quality, salinity, and pH (Grieger et al., 2021). On
the contrary, forests and grasslands show high accuracy when
using meteorological variables, as these are important drivers
of vegetation growth in these areas. Although not directly re-
lated to vegetation, Hauswirth et al. (2021) showed that the
inclusion of water management practices in ML models re-
sulted in more accurate predictions of groundwater head flow
and streamflow. It is important to note that the relevancy of
predictors in shaping the evi does not only affect the accu-
racy between land cover types but also plays a role in de-
termining the overall accuracy of the model. For instance,
precipitation and soil moisture do not exhibit similar feature
importance, whereas soil temperature and 2 m temperature
do. The amount of precipitation retained in soils is depen-
dent on a number of factors, and these results suggest that
soil water moisture is a more critical variable than precipi-
tation in governing the global evi dynamics; this aligns with
observation of soil precipitated water residence times that are
often much longer than the actual precipitation events (Mc-
Coll et al., 2017). In addition, slope is known to be an im-
portant determinant of vegetation status at fine spatial res-
olutions (Chen et al., 2013). However, the relatively weak
feature importance of slope suggests that the model could
not find much meaningful information regarding vegetation
status and slope at a 0.1° resolution during training and, sub-
sequently, would be unable to use this information when pre-
dicting the evi at a 0.01° resolution.

One other possibility is that uncertainty in the input data
prevents more accurate predictions by the model. The tem-
perature of ERA5-Land is known to show weaker correla-
tions with observed data in the tropics compared with more
northern and southern latitudes (Muñoz-Sabater et al., 2021).

In accordance with that, the errors in the evi predicted using
the RF model largely follow this pattern: errors are higher in
the tropics compared with the temperate zones. The temper-
ature from ERA5-Land shows relatively higher errors along
the Andes, the northern reaches of the African rainforest, and
the Sichuan Basin in China, and the errors in predicted evi
mirror this uncertainty. Similarly, when comparing errors in
the soil water content from ERA5-Land, Gabon forest’s, the
Andes, Vietnam, New South Wales in Australia, and the East
African Rift system have relatively high errors (Lal et al.,
2022). Again, the errors in the predicted evi are also rela-
tively high in these regions. When considering the quality of
land cover data used here, some inconsistencies may affect
the ability of the RF to accurately predict the evi. For exam-
ple, when croplands are smaller than the pixel size used in
MODIS, these areas are incorrectly assigned as natural vege-
tation. Furthermore, temperate evergreen needleleaf forests
are misclassified as broadleaf evergreen forests, and some
grassland areas are classified as savannas. The relatively poor
predictive performance in mixed land cover types further re-
iterates the need to provide models with appropriate input
data sources where string signals are present. In addition,
data that are more relevant to vegetation dynamics could pro-
vide better results; for example, the weak feature importance
of slope and the various spei metrics at their various aggre-
gation times suggests that these variables do not play a rel-
atively important role predicting the evi at the temporal and
spatial scales here. By way of illustration, at fine scales, slope
and aspect are important for determining radiation intensity
experienced by plants, but training the model at a 0.1° res-
olution means that this effect becomes less important and is
not learnt by the model. Perhaps a better result would be ac-
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quired if more scalable variables were included, specifically
for the downscaling component.

5 Conclusions

The results of this study reveal that RF is an appropri-
ate method for predicting the evi at the global scale, at a
0.1° resolution and downscaled 0.01° resolution. In general,
RF was capable of predicting evi dynamics with high accu-
racy; global patterns of vegetation and temporal dynamics
were well captured by land cover, with variables relating to
the energy and water balances experienced by plants having
the most significance. The model was able to capture annual
vegetation growth cycles and distinguish between the main
global biomes with high accuracy. However, it is essential to
note that higher errors were associated with underrepresented
land cover types and periods of extreme vegetation growth,
such a drought periods. Lower accuracy for underrepresented
classes in unbalanced data sets and a hampered ability to
predict extreme values are common criticisms of RF. In ac-
cordance with this study, land cover types that account for
a smaller fractional cover of the Earth’s surface and periods
of extreme vegetation growth were associated with the high-
est error. Predicting the evi at a finer resolution resulted in
increased errors. This is attributed to higher variances in the
0.01° product compared with the 0.1° product, although it is
important to note that the relative increases remained small.

The results here also highlight the use of RF for efficiently
and accurately predicting missing data and downscaling, ul-
timately allowing for the production of spatially continuous
evi data sets at very high spatial and temporal resolutions.
To this end, this study produces a spatially continuous evi
product at 0.1° and 0.01° resolutions; therefore, this approach
could be used to fill existing gaps in satellite observations or
in conjunction with satellite data to improve the monitoring
of drought impacts on vegetation. For example, the Landsat
and Sentinel-2 satellites can produce high-resolution vege-
tation products; however, retrievals are strongly affected by
weather conditions, resulting in data gaps. In addition, the
satellites’ relatively low orbiting altitude means that the spa-
tial coverage for each overpass is low. Using this approach
on such data could produce globally continuous vegetation
products at spatial resolutions lower than 100 m.

This study shows that ML can be used for drought mon-
itoring at high spatial and temporal resolutions; however,
there are trade-offs when it comes to using ML for vege-
tation drought impact monitoring. ML-based evi estimates
can be used to assess the potential impact of droughts on
vegetation, but these estimates still require a meteorological
input data set. The ML model also needs to be trained on
actual remotely sensed evi observations to identify the rela-
tionship between these meteorological variables and vegeta-
tion drought impacts. This inherently makes the ML-based
estimates as good as the remotely sensed product; there-

fore, as long as no reliable alternative exists, it will be diffi-
cult to fully replace remotely sensed evi observations. How-
ever, there is an added benefit of having continuous high-
resolution global coverage derived from an ML-based evi es-
timate. Finally, the ML-based estimates also allow us to ex-
trapolate the evi records to historical periods for which me-
teorological data exist but satellite remotely sensing was not
yet available or for use as post-processing in hydrological
model simulations to directly estimate drought impacts.

This study adds to previous research efforts that have suc-
cessfully applied RF to predict the vegetation status. Here,
RF was used to produce a global, spatial and temporally con-
tinuous evi product at 0.1° and 0.01° resolutions, with a me-
dian R2 of 0.86 and 0.75, respectively. The approach out-
lined in this study could be applied to Landsat and Sentinel-
2 to produce continuous vegetation index data sets at a 30–
10 m spatial resolution. The RF algorithm is a powerful tech-
nique for predicting temporal and spatial vegetation dynam-
ics from remote-sensing data and can be used for gap filling
and downscaling. The novelty of this product, compared with
previous studies, is that it has global coverage and high spa-
tial and temporal resolution.

Appendix A: Feature selection and drought indices

A1 Feature selection

Figure A1. Correlation matrix of pairwise Spearman rank correla-
tion coefficients between all potential variables.
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A2 Drought indices calculations

For the calculation of spi, we utilized the following expres-
sion:

x =

m∑
i

tpi, (A1)

where i is the month in question and m= i− scale.
For the calculation of spei, we utilized the following ex-

pression:

x =

m∑
i

Di, (A2)

where Di = tpi − peti and

xki,j =


12∑

l=13−k+j
tpi−j,l +

j∑
l=1

tpi,l, if j < k

j∑
l=j−k+1

tpi,l, if j ≥ k
. (A3)

This time series is then fitted to a gamma distribution, us-
ing the following steps. First, the α and β fitting parameters
are calculated as follows:

α̂ =
1

4A

(
1+

√
1+

4A
3

)
, (A4)

where A= ln(x)−
∑

ln(x)
n

(with n being number of observa-
tions), and

β̂ =
x

α
. (A5)

The gamma distribution probability density (Eq. A6) func-
tion with respect to x and including the calculated estimates
for α and β can be inserted to produce an equation for the
cumulative probability of a value for (Eq. A7)

g(x)=
1

βα0(α)
xα−1e

−x
β , (A6)

where α is the shape parameter, β is the scale parameter, and

0(a)=
∞∫
0
yα−1e−ydy.

G(x)=
1

β̂ α̂0(α̂)

x∫
0

xα̂e
−x

β̂ dx (A7)

Then, substituting t for x

β̂
results in the incomplete gamma

distribution (Eq. A8):

G(x)=
1

0(α̂)

x∫
0

t α̂−1e−1dt. (A8)

Values of the incomplete gamma function can be computed
using the following expression:

H(x)= q + (1− q)G(x). (A9)

Finally, values computed from Eq. (A9) are transformed into
the standard normal distribution to yield the spi and spei at
the relevant timescales. These calculations were completed
using the relevant algorithms in the climate_indices Python
package (Adams, 2017) using tp, pet, and t2m, as detailed in
Sect. 2.1.2.

Data availability. Google Earth Engine was
used to acquire the enhanced vegetation index
(https://doi.org/10.5067/MODIS/MYD13A2.061, Didan, 2015),
land cover (https://doi.org/10.5067/MODIS/MCD12C1.061,
USGS, 2024), and hydrography (elv, hand, aspect, and slope;
https://doi.org/10.1029/2019WR024873, Yamazaki et al.,
2019) information. Meteorological data (tp, t2m, swvl1, and
stl1) were obtained from the Copernicus Climate Data Store
(https://doi.org/10.24381/cds.e2161bac, Muñoz-Sabater, 2019).
Potential evapotranspiration was acquired from Singer et al. (2020)
(https://doi.org/10.5523/bris.qb8ujazzda0s2aykkv0oq0ctp).
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