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Abstract. Global hydrological models enhance our under-
standing of the Earth system and support the sustainable
management of water, food and energy in a globalized world.
They integrate process knowledge with a multitude of model
input data (e.g., precipitation, soil properties, and the loca-
tion and extent of surface waterbodies) to describe the state
of the Earth. However, they do not fully utilize observations
of model output variables (e.g., streamflow and water stor-
age) to reduce and quantify model output uncertainty through
processes like parameter estimation. For a pilot region, the
Mississippi River basin, we assessed the suitability of three
ensemble-based multi-variable approaches to amend this:
Pareto-optimal calibration (POC); the generalized likelihood
uncertainty estimation (GLUE); and the ensemble Kalman
filter, here modified for joint calibration and data assimilation
(EnCDA). The paper shows how observations of streamflow
(Q) and terrestrial water storage anomaly (TWSA) can be
utilized to reduce and quantify the uncertainty of model out-
put by identifying optimal and behavioral parameter sets for
individual drainage basins. The common first steps in all ap-
proaches are (1) the definition of drainage basins for which
calibration parameters are uniformly adjusted (CDA units),
combined with the selection of observational data; (2) the
identification of potential calibration parameters and their a
priori probability distributions; and (3) sensitivity analyses

to select the most influential model parameters per CDA unit
that will be adjusted by calibration. Data assimilation with
the ensemble Kalman filter was modified, to our knowledge,
for the first time for a global hydrological model to assimilate
both TWSA andQ with simultaneous parameter adjustment.
In the estimation of model output uncertainty, we considered
the uncertainties of the Q and TWSA observations. Apply-
ing the global hydrological model WaterGAP, we found that
the POC approach is best suited for identifying a single “op-
timal” parameter set for each CDA unit. This parameter set
leads to an improved fit to the monthly time series of both Q
and TWSA as compared to the standard WaterGAP variant,
which is only calibrated against mean annual Q, and can be
used to compute the best estimate of WaterGAP output. The
GLUE approach is almost as successful as POC in increas-
ing WaterGAP performance and also allows, with a com-
parable computational effort, the estimation of model out-
put uncertainties that are due to the equifinality of parameter
sets given the observation uncertainties. Our experiment re-
veals that the EnCDA approach performs similarly to POC
and GLUE in most CDA units during the assimilation phase
but is not yet competitive for calibrating global hydrologi-
cal models; its potential advantages remain unrealized, likely
due to its high computational burden, which severely limits
the ensemble size, and the intrinsic nonlinearity in simulat-
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ing Q. Partitioning the whole Mississippi River basin into
five CDA units (sub-basins) instead of only one improved
model performance in terms of the Nash–Sutcliffe efficiency
during the calibration and validation periods. Diverse param-
eter sets achieved comparable fits to observations, narrow-
ing the range for at least three parameters. Low coverage
of observation uncertainty bands by GLUE-derived model
output bands is attributed to model structure uncertainties,
especially regarding artificial reservoir operations, the loca-
tion and extent of small wetlands, and the lack of represen-
tation of rivers that may lose water to the subsurface. These
uncertainties are also likely to be responsible for significant
trade-offs between optimal fits to Q and TWSA. Calibration
performed exclusively against TWSA in regions without Q
observations may worsen the Q simulation as compared to
the uncalibrated model variant. We recommend that model-
ers improve the realism of the output of global hydrological
models by calibrating them against observations of multiple
output variables, including at least Q and TWSA. Further
work on improving the numerical efficiency of the EnCDA
approach is necessary.

1 Introduction

By quantifying water flows and storages on the Earth’s conti-
nents, global hydrological models (GHMs) contribute to our
understanding of the functioning of the Earth system. GHMs
(including land surface models) are indispensable in the as-
sessment of the past and future impacts of human activities
on the global freshwater system in the Anthropocene, includ-
ing water abstractions, dam construction and greenhouse gas
emissions. In our globalized world, where local decisions af-
fect freshwater systems worldwide, GHMs support sustain-
able water use by enabling the globally consistent computa-
tion of indicators of water availability and water stress.

To generate informative model outputs such a streamflow,
groundwater recharge and soil water content, GHMs inte-
grate a large amount of spatially distributed climatic and
physiographic input data (including data on land cover, soil
characteristics, surface waterbodies and human water use).
However, they draw insufficient benefit from in situ and
remote-sensing observations of model output variables to im-
prove the quality of their output or to determine its uncer-
tainty.

Like all hydrological models, GHMs suffer from uncer-
tainty due to model structure, model input (in particular, cli-
mate forcing) and model parameters (Döll et al., 2016). To
reduce the uncertainty of model output, models can be cali-
brated by adjusting the model in a way that simulated values
of a model output variable optimally match observations of
this variable. In basin-scale hydrological modeling, the esti-
mation of model parameters by calibration against time series
of observed streamflow is standard. This is not the case for

GHMs, which is due to the limited availability of streamflow
observations for many regions and the large effort required to
exploit them, among other things. In global-scale hydrolog-
ical modeling, model structure and input are more uncertain
than in typical basin-scale modeling for large parts of the
global model domain, and the density of available stream-
flow observations is lower. In particular, due to equifinality
(Beven, 1993), uncertainty reduction by parameter estima-
tion for GHMs is best done by utilizing observations not only
of streamflow but also of other model output variables (multi-
variable parameter estimation: Yassin et al., 2017; Stisen et
al., 2018; Dembélé et al., 2020).

Equifinality – or its synonym, non-uniqueness – means
that different combinations of model parameters (and also
of model structures and inputs) may lead to a similarly
good agreement between simulated and observed values of
a model output variable so that it is not possible to deter-
mine an optimal (unique) parameter set (Beven, 1993). Equi-
finality implies that multiple model simulations, generated
by, e.g., running the model with multiple parameter sets, are
acceptable and informative for the model user if they (1) can-
not be easily rejected as infeasible representations of the
system given, in particular, the uncertainty of the observa-
tions and (2) support the specific modeling purpose, e.g., to
project either low flows or floods (Beven and Smith, 2015).
The ensemble of such model runs or parameter sets is re-
ferred to as “behavioral” (Beven and Binley, 1992). The con-
cept of behavioral parameters can be applied to quantify the
uncertainty of the model output that stems from the uncer-
tainty of the observations of model output variables. How-
ever, methodological knowledge on how to best reduce and
quantify model output uncertainty by multi-variable parame-
ter estimation is lacking, in particular in global-scale hydro-
logical modeling.

To do a multi-variable parameter estimation and re-
lated uncertainty quantification with GHMs, observations of
both streamflow (Q) and terrestrial water storage anomaly
(TWSA) should be used. TWSA from GRACE (The Gravity
Recovery and Climate Experiment) has offered spatially un-
interrupted global coverage and almost continuous monthly
time series since 2003. TWSA observations integrate over
all water storage compartments on the continents (glacier,
snow, soil, groundwater and surface waterbodies) and thus
also depend on all water flows on the continents. This is sim-
ilar toQ, which is the integrative result of upstream flow and
storage processes. Thus, TWSA observations complementQ
observations. The coarse spatial resolution of TWSA obser-
vations of about 100 000 km2 (Vishwakarma et al., 2021) is
less problematic for GHMs than for basin-scale hydrological
models.

Currently, most GHMs do not use observed Q (or any
other observations) to estimate parameters in the upstream
basin, i.e., GHMs are not calibrated in a basin-specific man-
ner (Bierkens, 2015). One exception is the GHM WaterGAP
(Alcamo et al., 2003; Döll et al., 2003), which is calibrated
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in a simple manner by adjusting one to three parameters in
each of the 1319 large drainage basins (Müller Schmied et
al., 2014, 2021) such that simulated long-term average an-
nual Q is close to observations. For the standard version of
WaterGAP, adjustment of a larger set of model parameters is
currently not done due to the equifinality problem and com-
putational simplicity. While this limited calibration leads to
a reduction in theQ bias and thus more realistic estimates of
renewable water resources as compared to the uncalibrated
version (and the results of other GHMs that are not cali-
brated in a basin-specific manner), it does not significantly
improve the simulated seasonality and interannual variabil-
ity of Q (Hunger and Döll, 2008). Discrepancies compared
with time series of observed monthly Q (Müller Schmied et
al., 2014) or TWSA (Döll et al., 2014; Scanlon et al., 2019)
can be high even after the standard WaterGAP calibration.
It is therefore desirable to adjust parameters that affect the
seasonality of simulated Q or TWSA, as well as their inter-
annual variability and potential trends.

Multi-variable parameter estimation can be done by vari-
ous ensemble-based approaches such as (1) Pareto-optimal
calibration (POC) using an optimization algorithm (Werth
and Güntner, 2010); (2) the generalized likelihood uncer-
tainty estimation (GLUE) approach for identifying behav-
ioral parameter sets (Beven and Binley, 1992); and (3) data
assimilation with the ensemble Kalman filter, in which model
states and parameters are jointly updated, as suggested in
Eicker et al. (2014) (hereafter, we refer to this as EnCDA).
With each of these approaches, an ensemble of parameter
sets is generated. While parameter estimation using an op-
timization algorithm (POC) is expected to be more efficient
in finding (Pareto-) optimal parameter sets than a GLUE
approach using a random sampling of the parameter space
(Blasone et al., 2008), the GLUE approach is required to
determine behavioral parameter sets that enable a quantifi-
cation of the model output uncertainty given the observa-
tion uncertainty. With EnCDA, we explore here, for the first
time, whether the ensemble Kalman Filter approach, which
is well established for data assimilation (adjustment of model
states), can also estimate model parameters simultaneously
when Q and TWSA observations are assimilated.

Werth and Güntner (2010) developed a multi-variable
POC scheme for WaterGAP and applied it to adjust six to
eight parameters homogeneously in 28 large river basins
(e.g., the Amazon, Mississippi and Lena) using both Q and
TWSA observations. A similar approach was applied by Xie
et al. (2012) to calibrate the SWAT model for 10 large basins
in sub-Sahara Africa using observed TWSA time series and
monthly mean Q values. The GLUE approach has not yet
been applied with WaterGAP or other GHMs. The first suc-
cessful EnCDA efforts to assimilate GRACE TWSA into
WaterGAP while simultaneously estimating model parame-
ters were made for the Mississippi River basin in the US and
the Murray–Darling Basin in Australia by Eicker et al. (2014)
and Schumacher et al. (2016a, b, 2018). While EnCDA with

more than one observation variable (Q and remotely sensed
soil moisture) has already been applied in large-scale hydro-
logical modeling of the upper Danube basin (Wanders et al.,
2014), joint EnCDA of Q and TWSA has not yet been re-
ported. In summary, while the EnKF has been modified for
parameter estimation in hydrology models in the past, no
such efforts have been undertaken when assimilating both Q
and TWSA observations.

The objective of this paper is to analyze how the uncer-
tainty of the output of GHMs can be reduced and quantified
by parameter estimation that utilizes observations of multi-
ple output variables and their uncertainties. For the example
of the Mississippi River basin (MRB), the paper shows how
Q and TWSA observations can be utilized to obtain one op-
timal parameter set (the “compromise solution”), as well as
ensembles of Pareto-optimal and behavioral parameter sets
for the GHM WaterGAP, by evaluating the applicability of
the multi-variable calibration approaches POC and GLUE
and of the newly modified ensemble Kalman filter (EnCDA).
It presents a method for defining performance thresholds for
behavioral parameter sets based on observations and their un-
certainties, as well as the initial GLUE ensemble. It should
be cautioned that “performance” in this paper is mainly de-
fined in terms of the Nash–Sutcliffe efficiency (NSE) met-
rics, following the custom in the hydrological modeling com-
munity, which is different from the RMSE metric, which is
routinely optimized in the data assimilation community. In
each approach, model parameters of all grid cells within so-
called calibration data assimilation (CDA) units, either the
whole MRB or five sub-basin CDAs, were uniformly ad-
justed. We derive conclusions for multi-variable parameter
estimation and quantification of model output uncertainty in
global-scale hydrological modeling, answering the following
research questions:

1. What are the advantages and disadvantages of the three
approaches? Is the ensemble Kalman filter, which aims
at state estimation in the first place, able to compete with
the dedicated model calibration approaches despite its
very different ensemble generation and objective func-
tions?

2. What is the added value of the multi-variable parame-
ter estimation as compared to the standard WaterGAP
calibration for identifying one optimal parameter set?

3. How and to what extent can WaterGAP model output
uncertainty be quantified?

4. How large are the trade-offs between the optimal simu-
lation ofQ and TWSA? To what extent isQ simulation
improved by calibration against TWSA only?

5. What is the added value of individually calibrating sub-
basin CDAs instead of one basin CDA?

6. What are the characteristics of the optimal and behav-
ioral parameter sets?
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The paper is structured as follows. Section 2 describes the
three approaches. Section 3 provides a short description of
the GHM WaterGAP and explains the setup of the study, in-
cluding the selection of the parameters by an initial sensitiv-
ity analysis. In Sect. 4, we present the results of our study.
In Sect. 5, we discuss the research questions, and we draw
conclusions in Sect. 6.

2 Approaches for parameter and uncertainty
estimation in global hydrological modeling based on
observations of multiple model output variables

While model calibration can encompass adjustments of
model structure, initial conditions, input variables and pa-
rameters, model calibration in hydrology focuses on the iden-
tification of optimal or suitable parameter sets. The focus
on parameter adjustment in hydrological modeling is justi-
fied by the necessity of using many parameters that cannot
be measured independently or derived from first principles.
Water flows in the hydrology domain are largely dominated
by the local geometry and local boundary resistances of the
individual flow pathways, which is different from the water
flows in the meteorology and oceanography domains (Beven,
2002). In hydrological models, water flows are expressed as a
function of water storage or potential gradients, as well as of
parameters that represent the highly uncertain average effects
of local geometries and boundary resistances. In comprehen-
sive hydrological models that distinguish various compart-
ments, about 10–50 model parameters result per spatial unit.
In the case of distributed models in which the spatial hetero-
geneity of land and water is accounted for by distinguishing a
large number of spatial units such as sub-basins or grid cells,
each computational unit is described by its parameters set,
leading to a very large number of model parameters. GHMs
covering the whole land area of the globe typically repre-
sent spatial heterogeneity on the continents by distinguish-
ing more than 60 000 0.5° grid cells, with more than 1 mil-
lion model parameters whose values need to be set to enable
computation.

In the GLUE approach, an ensemble of behavioral param-
eter sets is derived, each of which leads to an acceptable
model performance given uncertainties and model purpose;
the ensemble is, in most studies, defined by model simula-
tions exceeding certain performance thresholds. In the POC
approach, an ensemble of Pareto-optimal parameter sets is
generated; this ensemble does not take into account model
or observation uncertainties but does consider the trade-off
that occurs between the fit to various performance metrics.
A parameter set is called Pareto-optimal or non-dominated if
it results in a better simulation performance than any other
Pareto parameter set for at least one of the objectives; none
of the objective functions can be further improved without
degradation of some of the other objective functions (Khu
and Madsen, 2005; Werth and Güntner, 2010). In EnCDA,

model parameters must be integrated into the state vector.
An initial ensemble of parameter sets is then updated at each
intake of observations next to the model states, and parame-
ters ideally converge with increasing intake of observations;
there is a single objective function, in which multiple objec-
tives are implicitly weighted by considering model and ob-
servation uncertainties as given.

It is computationally challenging to work with an ensem-
ble of parameter sets, e.g., in the context of climate impact
studies or seasonal forecasting. Therefore, we also identified
(pseudo-) optimal parameter sets for each CDA unit. In this
section, the three multi-variable calibration approaches POC,
GLUE and EnCDA are described, while a comparison be-
tween them can be found in Appendix A.

2.1 POC

POC aims to identify Pareto-optimal parameter sets. While
the ensemble of Pareto-optimal parameter sets determined
by POC is optimal only under the assumption that there are
no observation, input and model structure uncertainties, they
take into account the fact that there is rarely a parameter set
that leads to a simulation of different output variable that is
equally optimal with respect to all observational variables.
POC as applied in this study implements an optimization al-
gorithm such as the Borg multi-objective evolutionary search
algorithm (Hadka and Reed, 2013). Based on an initial small
ensemble of parameter sets derived from a priori parame-
ter distributions, the parameter sets are updated according to
the value of the objective functions (performance metrics) to
achieve improved performance. Then, the model is re-run;
based on the new values of the objective function, parame-
ter sets are updated again in an iterative fashion for a pre-
selected number of iterations and, thus, model runs to iden-
tify Pareto-optimal parameter sets. Due to model, input and
observation errors, it is unlikely that any parameter set will
lead to the highest values of all objective functions. Without
additional subjective preference information on what objec-
tive function is most important, all Pareto-optimal parameter
sets are considered to be equally good. From the often large
number of Pareto-optimal parameter sets, a “preferred” set
can be selected using a variety of approaches (Khu and Mad-
sen, 2005). The so-called “compromise parameter set” leads
to values of the applied objective functions (OFs) (or perfor-
mance metrics) such that the overall performance deficit Dp
regarding all OFs is minimized (Yu, 1973).Dp is the distance
between the utopia point, where all OF values are at their op-
timal values OF∗, and the OF values of the Pareto-optimal
parameter sets x. According to Yu (1973),

Dp (OF(x))=
[∑n

i=1

(
OF∗i −OFi (x)

)p]1/p
, (1)

where n is the number of objective functions, and p is a pa-
rameter that is larger than or equal to 1 and that needs to be
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selected. By minimizing Dp with p = 2, the Euclidean dis-
tance is selected to determine the compromise parameter set.

2.2 GLUE

In the GLUE approach, a large number of different model
parameter sets are generated first based on assumed a pri-
ori distributions of parameter values. In the next step, a sub-
set of so-called behavioral parameter sets is identified from
this initial set. This is done by running the model alterna-
tively with each parameter set and then computing the values
of a model performance metric using observations of model
output variables, which is called the likelihood measure in
GLUE (Beven and Binley, 2014). In the next step, a threshold
for the performance metric is identified, below which model
performance is so low that these parameter sets are consid-
ered to have a likelihood of zero. Likelihood measures and
thresholds for behavioral parameter sets are subjectively se-
lected based on the expertise of the modeler and should take
into account the uncertainty of model structure, climate forc-
ing and observations, as well as the specific modeling pur-
pose.

Multiple observation variables can be combined for deter-
mining behavioral parameter sets by selecting the subset of
parameter sets for which all performance metrics are better
than their different thresholds. The selection of the metric-
specific thresholds implies a type of weighting between fits
to the different variables. As a subset of all behavioral pa-
rameter sets, Pareto-optimal parameter sets can be identified;
the pseudo-optimal parameter set can be determined using
Eq. (1). Furthermore, the likelihood of each behavioral pa-
rameter set can be derived from the performance metric such
that a probability distribution of model output can be quanti-
fied.

2.3 EnCDA

In the EnCDA approach that we propose here, parameter sets
of each CDA unit are optimized together with water storages
in the various storage compartments and grid cells (i.e., the
model states) by data assimilation with the ensemble Kalman
filter (EnKF; Evensen, 1994). To this end, next to the water
storages, as in all earlier EnKF implementations, we add the
model parameters to the state vector. The basic idea of data
assimilation with the Kalman filter approach is to optimally
combine observations with simulation results at the time of
the observations according to estimates of model and obser-
vation errors (Clark et al., 2008). In EnCDA, an ensemble
of model runs with different parameter sets and perturbed
climate inputs serves to estimate the model error, which is
different from POC and GLUE. EnCDA aims to minimize a
weighted RMSE; the higher the ratio of model error to obser-
vation error is, the more weight is given to the observations
and the larger the adjustment of water storages and model pa-
rameters is. Water volumes and parameters, all of which are

state variables, are updated in each ensemble member when-
ever observations are available (e.g., once per month). State
update depends on the information contained in the covari-
ance matrices of simulated states (water storages and param-
eters), simulated Q and observations. Covariance matrices
of states and simulated Q are derived from differences be-
tween the estimates of each ensemble member and the en-
semble mean. The ensemble mean of all updated water stor-
ages and Q is assumed to be the best estimator (Evensen,
2003) in the case of linear models, which is certainly not true
for the simulation of streamflow, and a bias might thus be
expected. In the case of models with many grid cells and var-
ious storage compartments (10 in WaterGAP), the number of
updated states strongly exceeds the number of observations.
To achieve plausible and stable EnCDA results regarding pa-
rameters and model output variables in complex distributed
hydrological models in which the number of states exceeds
by far the number of observations, the degrees of freedom
may have to be reduced, and rapid changes in parameters
from one time step to the next need to be avoided (Xie and
Zhang, 2013). Schumacher et al. (2018) found that EnCDA
with only TWSA observations is limited in constraining in-
dividual model parameters, even if the number of calibration
parameters is very small, as the calibration or data assimila-
tion system is highly underdetermined. This is why adding
Q observations is promising.

The output of EnCDA regarding parameters can be viewed
as a time series of recursive estimates for the parameter sets
for each ensemble member, even if these parameters are
modeled as stationary in time (as in this study). Here, we
test the hypothesis that the parameter sets of each ensem-
ble member at the end of the calibration/data assimilation
(CDA) period can be further used, without a smoother step,
to generate ensemble predictions during the validation period
(in which no further assimilation is done) that fit better to
observations than predictions with parameters that have not
been altered by the data assimilation. The study of Eicker
et al. (2014), in which only TWSA was assimilated, showed
that, by applying such an approach, the ensemble means of
model output values during the validation period fit better to
observations of Q and TWSA than uncalibrated model out-
put.

3 Methods and data

3.1 The global water resources and use of model
WaterGAP

In this study, we applied WaterGAP 2.2d, which is com-
prehensively described in Müller Schmied et al. (2021).
With a spatial resolution of 0.5° latitude by 0.5° longitude
(55 km× 55 km at the Equator), WaterGAP computes both
water resources, i.e., water flows and storages, and human
water use for all land areas of the globe, except Antarctica.
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Water withdrawals and consumptive water use in the sec-
tors of households, manufacturing, cooling of thermal power
plants, livestock and irrigation are computed by five water
use models. From the output of the water use models, the
linking model GWSWUSE computes potential net water ab-
stractions from groundwater (NAg) and surface water (NAs)
as the difference between all withdrawals from and all return
flows to groundwater and surface water, respectively. Time
series of monthly NAg and NAs are inputs of the WaterGAP
Global Hydrology Model (WGHM), together with time se-
ries of daily climate variables (Müller Schmied et al., 2021).
WGHM computes various water flows (e.g., evapotranspira-
tion, groundwater recharge and Q) and water storage varia-
tions in 10 compartments: canopy, snow, soil, groundwater
and the surface waterbodies of local and global wetlands, lo-
cal and global lakes, global artificial reservoirs, and rivers
(boxes in Fig. 1). The term “local” means that the surface
waterbodies are fed only by the runoff produced in the same
0.5° cell, while “global” wetlands, lakes and reservoirs are
also fed by inflows from the upstream cells. The runoff gen-
erated in a cell from the “vertical” water balance (Fig. 1) is
transported through the groundwater and, if existing, through
the various types of surface waterbodies before reaching the
river. Outflow from the river compartment is Q. Glaciers
are not simulated in this WaterGAP version; while there are
some glaciers in the most upstream parts of the Arkansas and
Missouri river basins, these are not expected to strongly im-
pact the mean TWSA of the large CDA units or the stream-
flow at the outlet of the CDA units (Fig. 2). To calculate
TWSA time series, the sum of all 10 compartmental water
storages is computed and normalized by its mean value over
a reference period.

In the ordinary differential equations describing the dy-
namics of the individual water storage compartment, out-
flows are parameterized as a function of compartmental wa-
ter storage (Müller Schmied et al., 2021). Other important
model parameters determine the maximum values of com-
partmental water storage, such as the maximum soil water
storage in the effective rooting zone (soil compartment) or
the active lake depth, which defines the maximum height
of the water table of local and global lakes above the out-
flow level. Parameters affecting potential evapotranspira-
tion govern the simulated atmospheric demand for water.
Temperature-related parameters are important for snow pro-
cesses.

As a standard, WGHM is calibrated against observed
mean annualQ by adjusting one model parameter, the runoff
coefficient, and, if necessary, two correction factors (Müller
Schmied et al., 2021). In the equation that describes the soil
water dynamics, the runoff coefficient determines, together
with soil water saturation, the amount of runoff from the land
RL; it varies between 0.1 and 5. The larger the runoff coeffi-
cient is, the smaller the runoff becomes. If the adjustment of
the runoff coefficient is not sufficient to not exceed a maxi-
mum discrepancy between simulated and observed mean an-

nual Q of 10 %, a multiplicative areal correction factor for
runoff from land is introduced that also corrects evapotran-
spiration (range of 0.5 to 1.5). If this is still not sufficient
to match observed Q within 10 %, the Q in the grid cell
where the gauging station is located is multiplied by a sta-
tion correction factor. This violates the mass balance but is
done to avoid error propagation to the downstream basins.
In the standard WaterGAP, the calibration period was 1980–
2009 if stream data were available for the station; otherwise,
it was the most recent earlier period. The runoff coefficient
in basins without Q observations is determined by a regres-
sion approach, where calibrated runoff coefficients are re-
lated to various characteristics of the drainage basins (Müller
Schmied et al., 2021). With this calibration and regionaliza-
tion approach, a median Nash–Sutcliffe efficiency of 0.52
and a median Kling–Gupta efficiency of 0.61 are achieved
for the fit of the time series of monthlyQ at the 1319 calibra-
tion stations. The median correlation coefficient of 0.79 indi-
cates an often poor simulation of the timing of monthly Q
both seasonally and interannually. WaterGAP 2.2d tends to
underestimate the variability of monthlyQ in northern snow-
dominated river basins (Müller Schmied et al., 2021). It un-
derestimates the mean annual TWSA amplitude in 66% of
the 143 investigated river basins by more than 10 %. TWSA
trends – in particular, positive trends – are often underesti-
mated (Müller Schmied et al., 2021; Scanlon et al., 2018).

3.2 Calibration setup for the Mississippi River basin

3.2.1 Study period and CDA units

Due to TWSA and climate input data availability, the study
period was limited to January 2003 to December 2016. The
study area excludes the most downstream part of the Missis-
sippi River basin (MRB) due to a lack ofQ observations. The
Q gauging station at Vicksburg in the lower MRB is the most
downstream station with a long-term record (Fig. 2). Here-
after, we refer to the upstream area of Vicksburg as the whole
MRB. We study two variants of the spatial configuration of
CDA units, in which calibrated parameters were uniformly
adjusted. Either the whole MRB is treated as one CDA unit
or the MRB is subdivided into five CDA units. In the latter
variant, four of the five CDA units (Arkansas River basin,
Missouri River basin, upper MRB and Ohio River basin) are
upstream river basins that are defined as the drainage basin
of four gauging stations for which data for the study period
2003–2016 are available (Fig. 2). The fifth CDA unit is the
lower MRB, which receives inflow from the four upstream
CDA units. We divided our study period into a calibration
period for parameter estimation from 2003 to 2012 and a
validation period, in which the model is run with the esti-
mated parameters, from 2013 to 2016. Q is additionally val-
idated at six gauging stations that were not used for calibra-
tion (Fig. 2).
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Figure 1. Schematic of WGHM in WaterGAP2.2d. For each 0.5° grid cell, daily water balances of a maximum of 10 water storage compart-
ments (boxes) are computed from their respective inflows and outflows (arrows) (Fig. 2 of Müller Schmied et al., 2021). Green and red colors
indicate processes that occur only in grid cells with humid and (semi-) arid climate, respectively. Es: soil evapotranspiration, Ep: potential
evapotranspiration, Rg: groundwater recharge from soil, Rs: fast surface runoff and subsurface runoff, RgL,Res,W: groundwater recharge
from surface waterbodies, Qg: groundwater discharge to surface waterbodies and the river, Fswb: area fraction of surface waterbodies. Net
groundwater abstracts are taken from the groundwater storage compartment, while net surface water abstractions are taken from global lakes
or reservoirs in the cell (priority 1), the river (priority 2) or local lakes (priority 3).

3.2.2 Observational data

Q data were obtained from the Global Runoff Data Centre
(https://www.bafg.de/GRDC/, last access: 31 May 2019) and
the US Geological Survey (https://maps.waterdata.usgs.gov/
mapper/, last access: 15 July 2019). For monthly Q obser-
vations, a random error of 10 % is assumed based on the re-
view of McMillan et al. (2012) and the study of Westerberg
et al. (2016) for the UK; the latter determined a median er-
ror for the mean flow of 12 %. Actual percent errors are ex-
tremely variable depending on temporal aggregation, the Q
value itself and various local conditions (Di Baldassarre and
Montanari, 2009). In the EnCDA approach, an additional er-
ror of 10 % of the temporal average of theQ observation time
series was applied as this led to more stable EnCDA results.

To obtain TWSA observations for this study, level-
2 GRACE data (spherical harmonic coefficients, SHCs)
from TU Graz (ITSG Grace2018; Mayer-Gürr et al., 2018)
were evaluated over the CDA units. These data represent
the Earth’s time-variable gravity field as observed by the
GRACE satellites via K-band ranging (KBR) and GNSS
tracking. We derived TWSA from SHCs up to degree and

order 96, applying the DDK3 filter (Kusche et al., 2009) and
corrections for low-degree terms and effects, such as glacial
isostatic adjustment, following Gerdener et al. (2020). As
the temporal mean value of GRACE-derived terrestrial wa-
ter storage is unknown, it is a widely followed approach to
normalize the monthly TWSA values relative to a constant
mean over a certain reference period, here taken to be from
2003 to 2012. Uncertainties (1σ errors) were propagated to
TWSA maps based on the full variance–covariance matrix
of the TU Graz data; this accounts for orbital effects and the
generally meridional behavior of errors. To investigate the in-
fluence of different level-2 GRACE products, we compared
the unit-averaged TWSA time series from ITSG-Grace2018
with TWSA derived from the Release-06 version of the Cen-
ter for Space Research (CSR) and the Geoforschungszentrum
(GFZ). For the whole MRB, 42 % of the CSR and 35 % of the
GFZ monthly values were found to be within 1 standard devi-
ation of the TU Graz solution, and 76 % of the CSR and 61 %
of the GFZ monthly values were within 2 standard deviations
of the TU Graz solution. Unexpectedly, the values are even
higher for all sub-basin CDA units. Therefore, we decided to
use±2 standard deviations of the propagated GRACE uncer-
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Figure 2. The Mississippi River basin as represented by the 0.5°× 0.5° grid cells in WaterGAP, with delineation of the five CDA units.
The CDA units were defined as the upstream cells of the five indicated calibration stations (streamflow gauging stations, shown in red).
The stream network implemented in WaterGAP is shown, indicating the upstream areas of each grid cell by the line width. In addition, the
locations of the six streamflow validation stations are plotted, shown in orange.

tainties for quantifying the TWSA observation error in this
study. Information on the uncertainty of GRACE TWSA data
is provided in Sect. S1 in the Supplement.

3.2.3 Climate forcing

Climate forcing required for both the irrigation water use
model and WGHM encompasses time series of daily near-
surface air temperature, total precipitation, downward short-
wave radiation and downward longwave radiation. In this
study, we applied the 0.5° GPCC-WFDEI data set, where
ERA-Interim reanalysis data of ECMWF have been bias-
corrected by monthly precipitation time series of the Global
Precipitation Climatology Centre and by other observations
(Weedon et al., 2014). Monthly precipitation was corrected
for wind-induced undercatch (Weedon et al., 2014).

3.2.4 Calibration parameters

Experience suggests that no more than five to six parameters
can be estimated for each calibration objective (Efstratiadis
and Koutsoyiannis, 2010). Many parameters in WaterGAP
are spatially distributed, such as the parameter maximum soil
water storage in the effective root zone Smax, which is com-
puted as the product of soil water storage between field ca-
pacity and wilting point from a data set that provides a differ-

ent value for each 0.5° cell and a rooting depth that is a fixed
assigned value for each class of land cover, with one domi-
nant land cover per cell. Other parameters are set globally to
the same value, e.g., the groundwater discharge coefficient.
To enable an adjustment of the cell-specific value of a dis-
tributed parameter like Smax, one may choose to either adjust
the land-cover-specific rooting depth in each CDA unit or
introduce a multiplier of cell-specific Smax as a calibration
parameter. As the number of free (calibration) parameters
should be limited given limited observations and equifinal-
ity, the second approach was chosen. For all spatially dis-
tributed parameters, multipliers were introduced that serve
as calibration parameters, while globally uniform parameters
are directly calibrated.

In Table 1, information about the 24 potential calibration
parameters that were investigated in this study is provided,
including their estimated a priori uncertainty range. They are
ordered mainly according to the water storage compartment
(Fig. 1) that they immediately impact due to inclusion in the
respective water balance equation. In addition, multipliers
for precipitation and net radiation are included as calibra-
tion parameters, which were found to be the parameters that
the TWSAs of the 33 largest river basins worldwide are most
sensitive to (Schumacher et al., 2016b). The two multipliers
for the net abstraction of groundwater and surface water are
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allowed to become negative as, e.g., an initially simulated
positive net abstraction from groundwater (where water is
removed from the ground due to pumping) may, in reality,
be negative. The latter is the case if infiltration of irrigation
water that was taken from surface water sources dominates
groundwater abstractions in the grid cell. For some parame-
ters, the selected range was influenced by previous analyses
of the WaterGAP model performance. Uniform distributions
were assumed for all parameters.

The Q of larger rivers in the MRB is strongly impacted
by the management of the many artificial reservoirs. The wa-
ter balance of large (i.e., global) reservoirs is simulated in
WGHM with an algorithm that distinguishes reservoirs with
the main purpose of irrigation from others; different equa-
tions are used for reservoirs with a large ratio of storage ca-
pacity to mean annual Q compared to those with a small ra-
tio. With any globally applied algorithm, human decisions
on reservoir management are very difficult to simulate, and
adaptation of some parameters is not likely to lead to bet-
ter simulation results unless each reservoir is dealt with indi-
vidually. Therefore, no parameter of the reservoir algorithm
was adjusted in this study. This limits the ability of the cal-
ibrated model to achieve a good fit to observations in river
basins with many reservoirs, such as the Missouri River basin
(Fig. B1a in the Appendix).

From the potential calibration parameters, a small number
of calibration parameters were selected for each CDA unit
by a sensitivity analysis to limit equifinality. The sensitivities
of four output variables (simulated Q, TWSA, snow storage
and water storage in local lakes) to all 24 parameters were
analyzed separately for each of the six CDA units using the
standard version of WGHM. For the sensitivity analysis, the
elementary effect test (EET) method of Morris (1991) was
applied, where the average of the elementary effects, i.e., the
amount of change in the simulated variable due to a change in
a parameter value, is used as the sensitivity measure or sen-
sitivity index. The change in the variable is computed as the
root mean square difference between a reference simulation
and the simulation of the variable after deviating the param-
eter from its reference value. The EET method is computa-
tionally inexpensive and recommended for parameter rank-
ing and screening (Pianosi et al., 2016). A total of 1000 ran-
dom parameter sets were generated by Latin hypercube sam-
pling and were used as the reference parameter values. Then,
one at a time, each reference parameter set was perturbed
for each of the 24 parameters following a radial design pro-
posed by Campolongo et al. (2011), which resulted in a total
number of 25 000 (i.e., 1000× (1+ 24)) parameter sets. Pa-
rameters were ranked separately for each of the four output
variables.

The precipitation multiplier (P -PM) and the net radiation
multiplier (EP-NM) can correct biases of the climate forcing.
P -PM was excluded from calibration, even though it ranked
first in all six CDA units for almost all four test variables,
for two main reasons. First, the precipitation input is per-

turbed in EnCDA, and an additional multiplier would lead to
a double-counting of precipitation uncertainty. Second, mean
annual precipitation in the CDA units of WaterGAP climate
forcing does not differ much from the values derived from
the high-resolution (4 km) PRISM data set for the USA (Ta-
ble S1). Potential evapotranspiration is a function of both net
radiation and the Priestley–Taylor coefficient. Even though
EP-NM ranked somewhat higher in all CDA units than the
Priestley–Taylor coefficient for humid areas (EP-PTh), we
decided to adjust only EP-PTh (Table 1) as it is an actual
model parameter and not a climate forcing correction factor
(the MRB is mainly humid).

Then, we selected, for each variable, those top-ranking pa-
rameters among the remaining 22 parameters that, together,
contribute at least 50 % of the combined total effect, i.e., the
sum of the elementary effect for all parameters. Application
of this threshold ensures that only the most influential param-
eters of a given variable are selected and that the total num-
ber of selected parameters remains rather small. We found
that, in each of the six CDA units, the snow melt temperature
(SN-MT) accounts for more than half of the total effect for
the variable snow storage, and the variable local lake storage
is most sensitive to the parameters of active lake depth (SW-
LD) and discharge coefficient for surface waterbodies (SW-
DC) (Table S2). SN-MT is also much more important than
the other three snow parameters for Q and TWSA. TWSA
andQ are strongly influenced by more parameters than snow
and local lake storage; three to five parameters cover at least
50 % of the total effect in the case of TWSA, and this in-
creases to four to five parameters in the case of Q. The three
most influential parameters for both TWSA and Q are, in al-
most all CDA units, the runoff coefficient (SL-RC), the Smax
multiplier (SL-MSM) and the PT coefficient for humid areas
(EP-PTh). Exceptions are the downstream lower MRB (EP-
PTh and SL-RC not influential for TWSA), where the inflow
into the CDA unit, which is prescribed based on the POC
compromise solution parameter sets, dominates streamflow,
and the driest basin of Arkansas (EP-PTh is not influential
for TWSA) (Table S2). For each CDA unit, 8–10 calibration
parameters were selected (Table 1). As a result, all together,
47 parameters were adjusted if the five sub-basin CDA units
were used for model calibration.

Seven parameters were selected as calibration parameters
in all CDA units (Table 1). For each CDA unit, an addi-
tional one to three calibration parameters were selected as
they had a particularly high sensitivity rank due to the spe-
cific characteristics of the CDA unit. For example, the mul-
tiplier for net abstractions from groundwater (NA-GM) was
selected in four CDA units where these abstractions are high
(Fig. B1d) and lead to groundwater depletion, which strongly
affects TWSA. The multiplier for net abstractions from sur-
face water (NA-SM) was only selected for the Missouri River
basin, with the highest net abstractions from surface water
(Fig. B1e). The maximum groundwater recharge multiplier
(GW-MM), which affects the soil-texture-specific maximum
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Table 1. WGHM parameters, the range of assumed uniform a priori distributions used for sensitivity analysis and calibration, and as the
CDA units in which parameters were adjusted in this study. The parameters are categorized according to the processes or water storage
compartments that they directly affect. P : precipitation, EP: potential evapotranspiration, CA: canopy, SN: snow, SL: soil, GW: groundwater,
SW: surface water, NA: net abstraction of water by humans.

Compartment Parameter Abbreviation Standard Range Selected for
(units if not unitless) WGHM value adjustment in CDA units

P Precipitation multiplier P -PM 1 0.5–2 –
EP Net radiation multiplier EP-NM 1 0.5–2 –
EP PT coeff. humid1 EP-PTh 1.26 0.885–1.65 All
EP PT coeff. (semi-) arid2 EP-PTa 1.74 1.365–2.115 –
CA MCWH3 (mm) CA-MC 0.3 0.1–1.4 –
CA LAI multiplier CA-LAIM 1 0.2–2.5 –
SN Snow freeze temp. (°C) SN-FT 0 −1–3 –
SN Snow melt temp. (°C) SN-MT 0 −3.75–3.75 All
SN Degree-day factor multiplier SN-DM 1 0.5–2 –
SN Temp. gradient (°C m−1) SN-TG 0.006 0.001–0.01 –
SL Smax multiplier4 SL-MSM 1 0.5–3 All
SL Runoff coefficient SL-RC variable 0.3–3 All
SL Maximum EP (mm d−1) SL-MEP 15 6–22 I
GW GW recharge factor mult.5 GW-RFM 1 0.3–3 V
GW Max. GW recharge mult.5 GW-MM 1 0.3–3 I, III, IV
GW Critical precip.6 (mm d−1) GW-CP 12.5 2.5–20 –
GW GW discharge coeff. (d−1) GW-DC 0.01 0.001–0.02 IV
SW River roughness coeff. mult. SW-RRM 37 1–5 IV, V, MRB
SW Active lake depth (m) SW-LD 5 1–20 All
SW Active wetland depth (m) SW-WD 2 1–20 All
SW SW discharge coeff.8 (d−1) SW-DC 0.01 0.001–0.1 All
SW Evapo. red. factor mult.9 SW-ERM 1 0.33–1.5 –
NA NA from GW multiplier10 NA-GM 1 −2–2 I, II, V, MRB
NA NA from SW multiplier11 NA-SM 1 −2–2 II

1 Priestley–Taylor coefficient in humid grid cells. 2 Priestley–Taylor coefficient in (semi-) arid grid cells. 3 Maximum water storage on canopy per leaf area index
(LAI). 4 Multiplier for maximum soil water storage in the effective root zone. 5 Groundwater recharge is capped at 95 % of total runoff from land Rl. 6 In (semi-)
arid grid cells, there is only GW recharge if daily precipitation exceeds the value of the parameter critical precipitation. Otherwise, the potential GW recharge
remains in the soil. 7 For most river basins, including MRB. 8 For lakes and wetlands. 9 To take into account the impact of temporally varying areas of lakes,
reservoirs and wetlands on evaporation. 10 Multiplier for net abstraction from groundwater. 11 Multiplier for net abstraction from surface water (reservoirs, lakes
and rivers).

amount of daily groundwater recharge, was selected in three
CDA units, while the multiplier for the fraction of ground-
water recharge (GW-RFM) was selected for one other CDA
unit. The calibration parameter of maximum potential evapo-
transpiration (SL-MEP), which limits actual evapotranspira-
tion, was found to be influential in the driest CDA unit of the
Arkansas River basin. Altogether, 14 out of the 24 parame-
ters in Table 1 were selected as calibration parameters in the
study on MRB.

3.3 Performance and uncertainty metrics

In this study, we only consider performance metrics for the
simulated monthly time series of Q and TWSA as they
form the basis for calculating hydrological signatures, such
as drought or flow indicators, that are used in global-scale
water resource assessments. While the mean is an important
characteristic in the case of Q, this is not true for TWSA,

which is an anomaly with zero temporal mean during the ref-
erence period. The Nash–Sutcliffe efficiency is a traditional
performance metric in hydrological modeling. It provides an
integrated measure of model performance concerning mean
values and variability and is computed as

NSE= 1−
∑n

1(sim(t)− obs(t))2∑n
1(obs(t)−µobs)2

, (2)

where µobs is the mean of observations, and sim(t) and obs(t)
refer to the simulated and observed values, respectively, at
time step t of a total number of time steps n. The Kling–
Gupta efficiency, together with its three components, enables
one to distinguish model performance regarding correlation,
bias and variability (Kling et al., 2012), with

KGE= 1−
√
(CC− 1)2+ (RBias− 1)2+ (RVar− 1)2, (3)

where CC is the correlation coefficient, and
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RBias=
µsim

µobs
, (4)

RVar=
σsim/µsim

σobs/µobs
, (5)

where σ is the standard deviation, and µ is the mean; the
subscripts sim and obs refer to the simulated variate and ob-
servations of that variate, respectively. Expressing variability
as the ratio of the coefficients of variation (Eq. 5a) ensures
that bias and variability are not cross-correlated (Kling et al.,
2012). In the case of TWSA, the bias is set to 1 in the com-
putation of the Kling–Gupta efficiency (KGE), and

RVar=
σsim

σobs
. (6)

The optimal value of all the above performance metrics is 1.
The uncertainty of model output, as derived from the

model output ensemble, can be quantified by two uncertainty
metrics. In the case of Q, the average uncertainty bandwidth
(AUBW) is expressed as a fraction of the ensemble mean
(modified from Jin et al., 2010), with

AUBWQ =
1
n

∑n

1

UpperLimit(t)−LowerLimit(t)
EnsembleMean(t)

, (7)

where t refers to the month, and n is the total number of
months. In the case of TWSA,

AUBWTWSA =
1
n

∑n

1
UpperLimit(t)−LowerLimit(t) . (8)

AUBWQ can be expressed in percent (%), while the unit of
AUBWTWSA is in millimeters (mm). Here, the highest and
lowest values among all ensemble members are used as upper
and lower limits in each month and make up the uncertainty
bounds of the simulation. The metric “coverage of observa-
tions by model output” (CO) is calculated as the percentage
of monthly observations, including their uncertainty bounds
(derived from observation errors described in Sect. 3.2.2),
that are contained within the uncertainty bands of the model
output. A large CO value and a small AUBW value indicate
a low model output uncertainty.

3.4 Implementation of calibration approaches in this
study

3.4.1 POC

The state-of-the-art optimization algorithm Borg MOEA
(Borg multi-objective evolutionary algorithm; Hadka and
Reed, 2013) was applied to search the parameter space to
find Pareto-optimal parameter sets. Borg MOEA not only
amalgamates search operators (i.e., algorithms to generate a
new generation of solutions from their parents) and strate-
gies from benchmark optimization algorithms like NSGA-II,
ε-NSGA-II, ε-MOEA and GDE3; it also has the capability

to exploit these operators based on their performance in pro-
ducing better offspring for the optimization problem at hand.
Apart from the auto-adaptive operator recombination strat-
egy, Borg MOEA includes a restart mechanism upon the oc-
currence of a search stagnation and strategies like population
resizing and adaptive archive sizing. The NSEs of monthly
time series of Q and TWSA in the calibration period, NSEQ
and NSETWSA, were chosen as the two objective functions.
For all CDA units, the initial population size was 400, and the
improvement threshold ε (i.e., the side length of the ε box)
was set to 0.005 for all objectives. All other parameters of
the algorithm were set to their recommended values (Hadka
and Reed, 2013).

All WHGM model runs for the six CDA units started in
1991. Calibration of the five sub-basin CDA units was done
sequentially as follows. First, the four upstream CDA units
(Fig. 2) were calibrated independently from each other. Q
and TWSA in the downstream CDA unit V, the lower MRB,
depend on inflow from the four upstream CDA units. For
each upstream CDA unit, the parameter set resulting in the
highest NSEQ at the respective calibration station was se-
lected to transfer the best estimate of monthlyQ to the down-
stream CDA unit. These parameter sets were then used in the
calibration of the downstream CDA unit, which required run-
ning the model for the whole MRB. Due to the high compu-
tational demand of WHGM, we restricted each calibration to
a maximum of 20 000 model runs. The POC application was
run in parallel using openmpi-4.0.1 on 401 nodes of a Linux
cluster machine with a Scientific Linux 7 environment. The
total runtime for the six CDA units was 72 h.

3.4.2 GLUE

For each of the six CDA units, a random ensemble of 20 000
parameter sets was generated by Latin hypercube sampling
(Campolongo et al., 2011), only varying the 8–10 influential
parameters indicated in Table 1. Then, individual WGHM
model runs were performed for the MRB and the four up-
stream CDA units (Fig. 2). Similarly to the POC approach,
all ensemble runs for the downstream CDA unit V, the lower
MRB, were performed using, for each of the four upstream
CDA units, the GLUE parameter sets that resulted in the
highest NSEQ at the upstream calibration station. All GLUE
runs started in 1991 and were done on the same Linux cluster
machine as the POC runs. The total runtime for the six CDA
units was 53 h, 26 % less than for POC with the same number
of model runs.

Monthly time series of spatially averaged TWSA and Q
at the calibration and validation stations during both the cal-
ibration and validation periods were written as output, and
the performance metrics (Sect. 3.3) were computed. To iden-
tify behavioral and Pareto-optimal parameter sets, as well as
the compromise parameter sets (Eq. 1), NSEQ and NSETWSA
were used as likelihood measures.
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To assess the impact of observation errors ofQ and TWSA
on model performance, the monthly time series of observed
Q and TWSA were perturbed based on the observation er-
rors described in Sect. 3.2.2. A uniform distribution of errors
with a range of ±10 % was assumed for Q, and ±2 stan-
dard deviations of the computed GRACE error distribution
was assumed for TWSA (see Sect. 3.2.2). A total of 1000
realizations of observations of Q and TWSA were gener-
ated. Then, NSEQ and NSETWSA values for each of the 1000
perturbed observation time series compared to each of the
20 000 WaterGAP time series were computed. Finally, the
Pareto-optimal parameter sets for each of the 1000 realiza-
tions of observations were identified. This approach of tak-
ing into account the observation uncertainty for the selection
of behavioral parameter sets is similar to the approach taken
by Blazkova and Beven (2009).

3.4.3 EnCDA

EnCDA was performed by coupling the Parallel Data Assim-
ilation Framework (PDAF; Nerger and Hiller, 2013), which
implements an EnKF approach, to WGHM (Gerdener et al.,
2023). Regarding the forcing data, an additive error of±2 °C
for the temperature (with a triangular distribution around 0)
and a multiplicative error of ±10 % for the precipitation per-
turbation (with a triangular distribution around 1) (Eicker et
al., 2014) were used. For each ensemble member, these er-
rors were set individually for each month and grid cell and
were applied to the daily forcing values. A spin-up phase
run over 1991–2002 was performed to generate initial con-
ditions for the calibration period. The EnKF is used to simul-
taneously update model parameters and storages during the
calibration period 2003–2012 following Eicker et al. (2014),
Schumacher et al. (2016a, b) and Gerdener et al. (2023) but
considering Q observations in addition to GRACE TWSA.
For this, the state vector is augmented by CDA unit-specific
calibration parameters. To avoid the system being underde-
termined, TWSAs in 4° grid cells instead of TWSA averages
over the CDA units were assimilated. Calibration parameters
and water storages were adjusted with monthly time steps.

In the case of the CDA unit covering the whole MRB, the
EnCDA was performed by the parameters indicated in Table
1 while assimilating GRACE TWSAs in 4° grid cells over
the whole basin, along withQ at the Vicksburg gauge station.
For the sub-basin calibration, the EnCDA was applied sepa-
rately to the four upstream CDA units first. Then, the param-
eter sets of each ensemble member of the four upstream CDA
units were set to the values obtained for December 2012. For
calibrating the downstream CDA unit V with EnCDA, the 32
parameter sets in each of the four upstream CDA units were
held constant, and states in these CDA units were not up-
dated by DA. Parameters were perturbed independently per
CDA unit without generating spatial correlations as different
parameters are considered for the different CDA units (Ta-
ble 1). An attempt to simultaneously calibrate all five CDA

units was not successful. Differently from POC and GLUE,
the performance metric NSE was not used to generate the
optimized parameter set ensemble but only to determine be-
havioral parameter sets and the compromise parameter sets,
as well as for model output validation.

Only 32 ensemble members were generated due to the
very high computational demand of EnCDA state estima-
tion (as compared to POC and GLUE). It is prohibitive to
generate ensemble sizes comparable to model calibration
approaches (several 10 000 s) as, unlike POC and GLUE,
EnCDA estimates not only model parameters but also model
states.

Simulations for the validation period 2013–2016 were
done by continuing the 32 model runs of the calibration pe-
riod with the 32 parameter sets estimated for December 2012
without any data assimilation. The ensemble mean of the
simulated output variables of the 32 ensemble runs during
the validation period is assumed to be the best estimate of the
time series of output variables. The EnCDA application was
run in parallel using openmpi-3.1.4 on a Linux cluster ma-
chine with a Linux CentOS 7.9 environment and 70 nodes.
The total runtime for the six CDA units was 72 h.

4 Results

4.1 Model performance during the calibration period
2003–2012

Multi-objective parameter estimation may be aimed at de-
termining (1) an optimal model parameter set that is iden-
tified by weighting the multiple calibration objectives, e.g.,
the compromise solution (Eq. 1); (2) Pareto-optimal parame-
ter sets; or (3) an ensemble of behavioral parameter sets that
lead to model output that fits reasonably well to observations
given observations and other uncertainties. In any case, the
calibrated parameter sets are specific to the applied model
structure and input, including climate forcing, net abstrac-
tions of surface water and groundwater, and physiographic
characteristics such as the existence of surface waterbodies
or soil properties per grid cell.

4.1.1 Optimal parameter sets

Differences between calibration approaches

Table 2 and Fig. 3 show the performance of the (Pareto-) op-
timal parameter sets as measured by NSEQ and NSETWSA.
As expected, the POC approach is superior to the GLUE ap-
proach in identifying Pareto-optimal parameter sets due to
the applied search algorithm. In all six CDA units, the POC
parameter sets lead to higher NSE values than the GLUE pa-
rameter sets, both for the compromise parameter set and for
the parameter sets that lead to either the highest NSEQ or
the highest NSETWSA. In the case of GLUE, the 20 000 en-
semble members are randomly distributed in the parameter

Hydrol. Earth Syst. Sci., 28, 2259–2295, 2024 https://doi.org/10.5194/hess-28-2259-2024



P. Döll et al.: Leveraging multi-variable observations 2271

space, while the evolutionary Borg MOEA optimization al-
gorithm applied in POC creates many more parameter sets
that are close to the Pareto front while also requiring 20 000
model runs (Fig. S1). For the example of the CDA unit of the
Arkansas River basin, the POC compromise parameter set
leads to NSE values of 0.74 and 0.85 for Q and TWSA, re-
spectively, while the corresponding values of 0.69 and 0.83 in
the case of GLUE are slightly lower. In all six CDA units, the
NSE values of the GLUE compromise parameter set are only
slightly lower than those for the POC compromise set. Ex-
cept in the upper MRB, the performance of EnCDA-derived
parameter sets is lower than that of those derived by POC and
GLUE. EnCDA for the MRB as one CDA unit leads to very
poor results, in particular regarding TWSA in terms of NSE.

Differences between CDA units

Optimal performance strongly varies between the CDA units.
The best performance with optimized parameter sets is
achieved for the humid and hilly Ohio River basin and the
downstream lower MRB, with NSE values exceeding 0.85
for bothQ and TWSA in the POC compromise solution (Ta-
ble 2). Q in the lower MRB is heavily determined by in-
flow from the four upstream CDA units. In the relatively dry
Arkansas River basin, model performance regarding TWSA
is similar to the two best-performing CDA units, but it some-
what worse regarding Q at 0.74. In the Missouri River basin
and, in particular, in the upper MRB, TWSA fit to GRACE
observations is worse than in the other three sub-basins. Inad-
equate modeling of both artificial reservoirs and wetlands is
suspected to cause the low performance regarding TWSA in
both basins. The Missouri River basin is the basin that is most
strongly impacted by artificial reservoirs (Fig. B1a), and the
parameters of the reservoir algorithm were not calibrated (see
Sect. 3.2.4). The northern parts of both basins (dark-blue ar-
eas in Fig. B1c) are characterized by the existence of a high
number of small wetlands, the location and extent of which
are poorly quantified in WaterGAP. This stems from the clas-
sification of this whole area in the Global Lakes and Wetland
Database (GLWD) (Lehner and Döll, 2004) as a “wetland
complex with a 25 %–50 % coverage”, with wetlands at the
maximum extent. This coarse information is included in Wa-
terGAP by assigning a maximum extent of local wetlands of
35 % of the cell area (Döll et al., 2020). Thus, it is not only
the WaterGAP algorithms for simulating the water balance
of wetlands but very likely also the poor localization of wet-
lands that prevents parameter adjustment from resulting in
good fits to observations. We speculate that, for these condi-
tions, modification of water storages in EnCDA leads to an
improved simulation of TWSA and, to a smaller degree, of
Q (Table 2). In the case of the CDA unit of the MRB, where
all grid cells of the whole MRB are assigned the same value
in terms of the calibration parameters (Table 2), NSEQ, with
a value of 0.83 for POC and GLUE, is very similar to the
two best-performing sub-basins of Ohio and the lower MRB.

With a value of 0.73, NSETWSA is within the range of the
values of all sub-basin CDA units.

Benefits of multi-variable calibration

The performance of the compromise solutions is compared to
the performances of the WaterGAP variant that is calibrated
in the standard way (Sect. 3.1) and of an uncalibrated Wa-
terGAP variant. In the standard calibration, the runoff coeffi-
cient (SL-RC) and, potentially, two correction factors are ad-
justed individually for each of the 77 sub-basins (CDA units)
using only observations of mean annual Q at the sub-basin
outlet (Figs. S2 and S3). In the uncalibrated variant, SL-RC
is set to 2, and the correction factors are to 1 throughout the
MRB. For all CDA units, the POC and GLUE compromise
parameter sets result in higher NSE values for both Q and
TWSA as compared to both the uncalibrated and the stan-
dard model variant (Table 2 and Fig. 3). This is also true
for EnCDA, except for the CDA units of the MRB, where
both NSEQ and NSETWSA are worse than in both the uncal-
ibrated and standard WaterGAP variants, and the Ohio River
basin, where NSETWSA is increased but NSEQ is decreased
by EnCDA. In the case of the Ohio River basin, neither the
standard calibration nor the POC or GLUE compromise so-
lutions achieve a significant improvement in the already-high
NSEQ of the uncalibrated model, and even the improvement
in the TWSA simulation is rather small. As can be expected,
the fit to the observed TWSA is improved more strongly
in comparison to the standard calibration than the fit to ob-
servedQ, with the strongest improvement in the small down-
stream lower MRB.

Analysis of the KGE components of CC, RBias and RVar
(Eqs. 3–5) (Tables B1 and B2) shows that the improved
NSEQ and NSETWSA of the compromise solutions of POC,
GLUE and EnCDA as compared to the standard WaterGAP
results are, in all CDA units, mainly due to an improve-
ment in the correlation (CC), the exception being NSEQ
in the case of EnCDA. Thus, calibration mainly leads to
improved timing of monthly streamflow and TWSA. Stan-
dard calibration only improves the bias of Q compared to
the uncalibrated variant, mostly leading to an RBias value
close to 1 (Table C1). The multi-variable approaches de-
crease the overestimation of mean annual Q by the uncali-
brated model, except in the upper MRB and the Ohio River
basin, where the overestimation by the uncalibrated model
is already very small. However, as compared to the standard
and uncalibrated model variants, none of the three calibra-
tion approaches improves the strong underestimation of Q
variability by WaterGAP. Q variability in the compromise
solutions becomes even more strongly underestimated in the
upper and lower MRB and for the whole MRB. TWSA vari-
ability in the Arkansas and Missouri river basins and in the
lower MRB is improved as compared to the standard and
uncalibrated WaterGAP but is worsened in the case of the
wetland-rich upper MRB (Table C2).
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Table 2. Performance of optimal parameter sets quantified by NSEQ and NSETWSA in the different CDA units. NSEs of parameter sets
achieving the highest NSEQ or the highest NSETWSA and of the compromise solution are listed, along with the NSE values of the EnCDA
ensemble mean, the standard WaterGAP 2.2d model and an uncalibrated version of the WaterGAP 2.2d model. Results are provided for the
calibration period 2003–2012. The compromise solutions were identified from Eq. (1) using p = 2. The best-performing calibration approach
per CDA unit, with the highest average NSE, is indicated in bold. The 77 CDA units of the standard calibration are shown in Figs. S2 and S3.

NSEQ and NSETWSA

Arkansas Missouri Upper MRB Ohio Lower MRB MRB

POC: highest NSEQ 0.74/0.85 0.83/0.50 0.82/0.27 0.89/0.82 0.90/0.69 0.90/0.51
POC: highest NSETWSA 0.63/0.89 −0.82/0.81 0.14/0.65 0.73/0.90 0.85/0.93 0.28/0.84
POC: compromise 0.74/0.85 0.73/0.71 0.67/0.48 0.87/0.86 0.87/0.91 0.83/0.73
GLUE: highest NSEQ 0.70/0.79 0.77/0.21 0.78/0.18 0.88/0.81 0.87/0.26 0.88/0.19
GLUE: highest NSETWSA 0.24/0.88 −0.68/0.76 0.01/0.61 0.68/0.90 0.80/0.90 0.33/0.81
GLUE: compromise 0.69/0.83 0.65/0.71 0.61/0.46 0.86/0.84 0.84/0.89 0.85/0.65
EnCDA: highest NSEQ 0.61/0.51 0.69/0.59 0.70/0.49 0.79/0.91 0.83/0.88 0.54/0.13
EnCDA: highest NSETWSA 0.59/0.84 0.40/0.66 0.07/0.67 0.63/0.94 0.74/0.91 0.44/0.23
EnCDA: compromise 0.59/0.84 0.62/0.65 0.68/0.60 0.79/0.91 0.83/0.88 0.51/0.19
EnCDA: ensemble mean 0.61/0.78 0.55/0.57 0.70/0.61 0.73/0.88 0.76/0.90 0.49/0.14
Standard calibration1 0.59/0.55 0.53/0.38 0.54/0.18 0.86/0.77 0.79/ −0.04 0.79/0.35
Uncalibrated2 0.18/0.67 −1.02/0.38 0.56/0.17 0.85/0.72 0.71/0.06 0.71/0.38

1 SL-RC and two correction factors are adjusted in 77 CDA units within the MRB, using observations of mean annual Q (calibration period
1980–2009). 2SL-RC equal to 2 and correction factors equal to 1.

Figure 3. Performance of (1) Pareto-optimal solutions derived by an evolutionary optimization algorithm (POC) (orange dots), (2) the GLUE
ensemble (light-gray pluses) and (3) the Pareto-optimal subset of the GLUE ensemble (black dots); in all cases, the observation error when
computing NSE is neglected. In addition, the performance of (4) the Pareto-optimal GLUE parameter subset for 1000 realizations of perturbed
observations is shown (dark-gray dots), which shows the impact of observation errors on NSE. Compromise solutions of both the POC and
GLUE approaches are shown too, together with the model performance after standard calibration and without calibration, consistently with
Table 2. The thresholds for behavioral parameter sets (Table 3) are indicated by the dashed gray lines.
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Overestimation of observed seasonal low flows prevails
in all CDA units, not only in the compromise solutions
(Figs. 3 and S4) but also in the solutions showing the high-
est NSEQ, while the simulation of high flows was improved
by the multi-variable calibration. The improved correlation
but stronger underestimation ofQ variability as compared to
the standard calibration can be seen in the hydrograph of ob-
served and simulated Q for the CDA unit of the MRB for
the POC and GLUE compromise solutions (Fig. 4a); the sea-
sonal low flows are better captured with the standard calibra-
tion than with the compromise solutions. The correlation of
simulated and observed TWSA is improved by achieving a
small shift towards later in the year by POC or GLUE, but
in some years (e.g., 2008 and 2009), the TWSA rise still oc-
curs too early (Fig. 4b). In addition, the relatively high water
storage at the end of the years of 2010 and 2011 cannot be
captured by any simulation. These discrepancies in average
TWSA over the MRB can be traced back to the Missouri
and upper MRB sub-basins, where, in many years, simulated
TWSA increases too quickly and too much in the first half of
the year (Fig. S4b, d).

In the dry Arkansas River basin, all simulations overesti-
mate summer low flows particularly strongly (Fig. 4c), while
TWSA performance in the compromise solutions is much
better than that of the standard WaterGAP (Fig. 4d). The
Ohio River basin is the CDA unit with the best model per-
formance and little change due to any calibration, except for
a slight improvement in TWSA correlation (Fig. 4e, f). How-
ever, here, an overestimation of seasonal low flows in about
half of the calibration years cannot be improved by param-
eter adjustment (Fig. 4e). Altogether, the visual inspection
of the hydrographs of all six CDA units reveals that, even
if multi-variable calibration leads to improved performance
metrics, the fit to observations can only be slightly improved
(mainly with respect to timing) as compared to the standard
calibration (Figs. 3 and S4), except for the much-improved
fit to TWSA in the lower MRB (Fig. S4f).

Trade-offs between optimal fit to Q and TWSA

Trade-offs are large for all three calibration approaches, as
quantified by the NSE values for the model runs achieving
the highest NSEQ and NSETWSA, except in the two CDA
units with an already-satisfactory NSETWSA in the uncali-
brated model variant (Arkansas and Ohio River basins). The
optimal fit to observed TWSA then results in very poor fits
to observed Q, in particular for the Missouri River basin and
the upper MRB (Table 2). Considering POC, optimal TWSA
performance leads to a stronger overestimation of meanQ of
27 %–73 % as compared to 1 %–18 % in the case of optimal
Q performance (excluding the downstream lower MRB) (Ta-
ble C1). While the ratio of the simulated to observed variabil-
ity of TWSA decreases and thus improves, the corresponding
ratio for Q decreases too but, as a result, becomes worse.
RVarQ ranges from 0.80 to 0.88 in the case of maximum

NSEQ and decreases to the range of 0.53–0.84 in the case
of maximum NSEQ (except for the Arkansas River basin).
Considering POC in the Missouri River basin as an exam-
ple, the parameter set with the best fit to observed TWSA
results in NSETWSA of 0.81 but a negative NSEQ; the pa-
rameter set with the best fit to Q achieves an NSEQ of 0.83,
but NSETWSA deteriorates to 0.50 (Table 2). The parame-
ter set with an optimal fit to TWSA leads to an even higher
overestimation of meanQ (RBias= 1.73) and an even higher
underestimation of Q variability (RVar= 0.61) as compared
to the ensemble member with the best fit to observed Q

(RBias= 1.08, RVar= 0.80), while the correlation slightly
decreases (Table C1). KGE components regarding TWSA for
the same CDA unit reveal that the correlation of observed
and simulated TWSA strongly decreases from 0.91 to 0.77
if optimization is done for Q instead of TWSA, while vari-
ability is overestimated somewhat more (RVar= 1.09 instead
of 1.03) (Table C2). Similar patterns are observed for the
CDA units of the MRB and upper MRB. In the case of the
Arkansas River basin and the lower MRB, trade-offs between
optimal fits to Q and TWSA observations identified by POC
are lower than those identified by GLUE, which shows the
advantage of the search algorithm applied in POC.

4.1.2 Behavioral parameter sets

We identified behavioral parameter sets using thresholds for
the minimum acceptable performance in terms of NSEQ and
NSETWSA, taking into account the observation uncertainties
ofQ and TWSA. To do this, we evaluated the performance of
the 20 000 simulated GLUE ensemble members with respect
to uncertainty-perturbed observations (Figs. 3 and S1), as de-
scribed in Sect. 3.4.2. For GLUE and EnCDA, all param-
eter sets within the thresholds were selected as behavioral,
while for POC, the behavioral parameter sets are the subset
of Pareto-optimal parameter sets above the thresholds. The
Pareto-optimal GLUE model runs for 1000 perturbed obser-
vation time series (dark-gray dots in Fig. 3) served to assess
the impact of observation uncertainty on performance. Not
every dark-gray dot represents a different parameter set be-
cause the NSE for the same parameter set varies with the
perturbed observation time series. The width of the band of
the Pareto-optimal model runs in the case of perturbed obser-
vations close to the compromise solution helped to identify
the thresholds for NSEQ and NSETWSA. In the case of the
poorly simulated upper MRB, we decided to keep the thresh-
olds above those indicated by the observation error analysis
to avoid calling very poorly performing parameter ensem-
bles behavioral (Fig. 3). We chose the compromise solution
as the point of departure as we wish to give equal weight
to the performances of Q and TWSA. Thresholds for be-
havioral parameter sets vary between the CDA units due to
the different optimal performances that can be achieved, in
the different CDA units, by varying parameters given a fixed
model structure and the model input. The selected thresholds
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for behavioral solutions are indicated in Fig. 3 and Table 3,
while Table 3 also provides the number of behavioral POC
and GLUE parameter sets, as well as the number of the be-
havioral EnCDA ensemble members.

In the case of POC and GLUE, an uncertainty band is
delineated by the minima and maxima of monthly Q or
TWSA values when considering all behavioral parameter
sets (Figs. 3 and S4). For EnCDA, these figures also show
the range of all 32 ensemble members because there are no
behavioral EnCDA members in the case of the CDA units
of the Ohio and MRB. AUBW and coverage of observations
(including their uncertainty) by the uncertainty band of the
model output can be expected to correlate (Sect. 3.3). Both
AUBW and the coverage are smaller for POC and EnCDA
than for GLUE (Table 4) due to their smaller number of
behavioral ensemble members. When extending the consid-
ered EnCDA ensemble members to the whole ensemble of
32 members, the coverage increases slightly, but at the same
time, the width of the uncertainty bands increases strongly
(Table 4). Comparing the six CDA units, neither AUBW nor
coverage correlate with the number of behavioral ensemble
members.

For POC and GLUE, the average width of the uncertainty
bands for Q in the six CDA units is 7 %–26 % and 21 %–
60 % of the ensemble mean of monthly Q, respectively. For
GLUE, the lowest AUBW occurs in the downstream lower
MRB, likely due to the dominance of inflow from upstream,
and the highest occurs in the Arkansas River basin (Table 4).
However, even the wider GLUE bands do not cover most of
the observed seasonal low flows (including the rather small
observation error bands) in all CDA units, while high-flow
months are covered more often (Figs. 3 and S4). Coverage
in the GLUE approach ranges from 46 % to 72 % of the ob-
served Q values among the six CDA units, with the lowest
values for the two CDA units with the highest underestima-
tion of Q variability, the Arkansas and upper MRB, even
though the Arkansas River basin has the widest uncertainty
band.

Coverage of observations, including their error range by
the uncertainty band, is, in the case of GLUE and POC,
higher for TWSA than for Q, except for the Missouri and
MRB (Table 4). In the case of GLUE, TWSA coverage
ranges from 59 % to 95 %. The Arkansas River basin has
a low Q coverage but a very high TWSA coverage, while
the Missouri River basin has the highest Q coverage and the
lowest TWSA coverage, even though, for the Missouri River
basin, theQ performance of the compromise solution is rela-
tively poor (Table 2). The TWSA time series for the Arkansas
River basin differs from those of the other CDA units in terms
of its high ratio of interannual to seasonal variability (Fig. 4).

4.2 Model performance during the validation period
2013–2016

Model performance of both the POC and GLUE compro-
mise solutions in the validation periods is similar to that in
the calibration periods regarding Q but much worse regard-
ing TWSA (compare Table 5 to Table 2 for NSE values).
For most CDA units and calibration approaches, the perfor-
mance loss regarding TWSA between the calibration and the
validation period is similarly high for the ensemble members
that were identified as having the best fit to TWSA. We sus-
pect that the poor fit of simulated TWSA to observed TWSA
in the last years of the GRACE mission, where there is also
a large fraction of missing monthly GRACE data (Figs. 3
and S4), is related to increased observational errors (com-
pare Sect. 3.2.2). This suspicion is supported by the fact that
the NSETWSA of the uncalibrated model is lower for the vali-
dation period than for the calibration period, which is not the
case for NSEQ in all CDA units except the Arkansas River
basin.

All compromise solutions perform somewhat better than
the WaterGAP standard variant, except for EnCDA in the
CDA units of the Missouri, Ohio and MRB (Table 5). Per-
formances of the ensemble mean of the behavioral GLUE
parameter sets, the ensemble mean of the behavioral Pareto-
optimal POC parameter sets and the EnCDA ensemble mean
are similar to their respective compromise solutions (Ta-
ble 5). In all CDA units, POC and GLUE perform better
than EnCDA regarding both Q and TWSA. POC results are
slightly better than GLUE results, with the exception being
the Arkansas River basin, where POC performance regarding
TWSA degrades from its high level during the calibration pe-
riod due to overestimation of the mean TWSA (Fig. 4).

The temporal mean value of GRACE-derived TWSA is
generally unknown. The standard approach taken in this
study of normalizing TWSA values to a constant mean over
the reference period, here 2003–2012, may be problematic
as it assumes that the mean derived over longer periods than
the reference period (here 11 years) remains at the reference
period value, which need not be true. Therefore, we addition-
ally calculated, for the example of the EnCDA compromise
solution, the NSETWSA after reducing the TWSA time series
by its temporal mean of the validation period instead of the
mean of the calibration period. The resulting NSETWSA val-
ues are, for most CDA units, somewhat improved (Table 5).

4.3 Characterization of estimated parameter sets

POC and GLUE identify parameter sets that are assumed to
be temporally constant. Here, we compare these two ensem-
bles of estimated parameter sets. Starting with the CDA unit
MRB, we first characterize the parameter sets of the POC
compromise solution and the parameter sets leading to the
best fit to either Q or TWSA. We compare the parameter set
of the GLUE compromise solution to the parameter set of the
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Figure 4. Monthly time series of simulated and observed Q (a, c, e) and TWSA (b, d, f) during the calibration period 2003–2012 and the
validation period 2013–2016 for the MRB (a, b), the Arkansas River basin (c, d) and the Ohio River basin (e, f). Observations and their
assumed errors are shown together with simulated GLUE, POC and EnCDA compromise solutions, along with the range of GLUE and POC
behavioral solutions (maximum and minimum monthly values of the behavioral solutions, Table 3) and the range of all 32 EnCDA ensemble
members, as well as with the WaterGAP variant with standard calibration.

Table 3. Number of identified behavioral parameter sets (or ensemble members) for each CDA unit that lead to simulation results that exceed
both the NSEQ and NSETWSA thresholds. Listed are the number of behavioral parameter sets in the GLUE approach (out of 20 000 per
CDA unit), the number of behavior Pareto-optimal parameter sets in the POC approach (out of 20 000) and the number of behavioral EnCDA
ensemble members (out of 32).

Thresholds for Number of behavioral Number of behavioral Number of behavioral
behavioral ensemble GLUE parameter Pareto-optimal POC EnCDA ensemble

members NSE (Q, TWSA) sets parameter sets members

I Arkansas (0.60, 0.70) 668 8 5
II Missouri (0.60, 0.55) 72 24 3
III Upper MRB (0.60, 0.35) 156 30 19
IV Ohio (0.80, 0.80) 196 11 0
V Lower MRB (0.80, 0.80) 1517 7 6
IV MRB (0.65, 0.65) 138 26 0
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Table 4. Coverage of monthly observations by model output (CO) in percentages (%) of monthly observations contained in the uncertainty
band of observations and average uncertainty bandwidth AUBW during the calibration period 2003–2012 for bothQ and TWSA considering
only the behavioral parameter sets (Table 3). In the case of EnCDA, the values for the whole ensemble of 32 members are also shown in
parentheses. AUBW for Q is listed in percent (%), and AUBW for TWSA is in millimeters (mm).

Q/TWSA

Arkansas Missouri Upper MRB Ohio Lower MRB MRB

POC: coverage 24/70 55/40 29/42 49/67 48/90 52/37
GLUE: coverage 46/94 72/57 45/61 72/87 58/95 58/59
EnCDA: coverage 15/63 (25/67) 36/45 (37/48) 44/75 (53/74) –/–∗ (55/91) 57/67 (60/65) –/–∗ (36/35)
POC: AUBW 22/6 26/12 16/8 17/10 7/23 19/8
GLUE: AUBW 60/49 41/28 35/29 43/43 21/82 32/26
EnCDA: AUBW 20/19 (63/49) 17/10 (60/38) 51/50 (78/56) –/–∗ (96/63) 16/27 (48/37) –/–∗ (24/18)

∗ No behavioral parameter sets identified.

Table 5. Model performance during the validation period 2013–2016 indicated by NSEQ and NSETWSA, as achieved by the three calibration
approaches (POC, GLUE and EnCDA) as well as by the standard WaterGAP 2.2d and the uncalibrated WaterGAP 2.2d models. The best-
performing calibration approach per CDA unit, with the highest average NSE, is indicated in bold. The indication “highest NSETWSA” refers
to the parameter with the best performance during the calibration period. The values in parentheses in the line “EnCDA compromise” are
NSETWSA values that are computed after normalizing TWSA during the validation period by the mean TWSA of the validation period.

NSEQ/NSETWSA

Arkansas Missouri Upper MRB Ohio Lower MRB MRB

POC: compromise solution 0.59/−0.04 0.72/−2.76 0.79/−0.05 0.85/0.75 0.87/0.80 0.85/0.31
POC: ensemble mean1 0.62/0.17 0.73/−3.18 0.81/−0.09 0.84/0.76 0.86/0.81 0.83/0.32
GLUE: compromise solution 0.61/0.66 0.68/−3.44 0.74/0.02 0.86/0.72 0.84/0.77 0.84/0.11
GLUE: ensemble mean2 0.49/0.36 0.65/−2.00 0.71/0.02 0.81/0.70 0.83/0.75 0.73/0.28
EnCDA: compromise 0.07/−3.99 (0.11) 0.02/−0.30 (−0.30) 0.68/−0.07 (−0.07) 0.74/−2.60 (0.20) 0.76/−0.66 (0.43) 0.61/−1.72 (−1.00)
EnCDA: ensemble mean3 0.07/−2.90 −2.71/−0.94 0.62/−0.04 0.75/0.18 0.67/−0.44 0.61/−2.14
POC: highest NSETWSA 0.64/0.36 −0.45/−1.99 0.53/0.13 0.58/0.80 0.85/0.82 0.31/0.45
GLUE: highest NSETWSA 0.45/−0.02 −0.35/−0.77 0.46/0.15 0.50/0.80 0.81/0.82 0.38/0.36
EnCDA: highest NSETWSA 0.07/−3.99 −14.08/−10.60 0.63/0.20 0.75/−0.08 0.66/−1.08 0.56/−2.87
Standard calibration 0.44/−0.85 0.60/−3.70 0.47/−0.40 0.85/0.62 0.76/−6.24 0.76/−2.38
Uncalibrated 0.56/0.22 −0.80/−2.2 0.59/−0.39 0.82/0.52 0.75/−5.60 0.75/−1.58

1 Computed by running WGHM with the ensemble of behavioral Pareto-optimal parameter sets identified using POC (Table 3). 2 Computed by running WGHM with the ensemble
of behavioral parameter sets identified using GLUE (Table 3). 3 Computed by running WGHM with the ensemble of 32 parameter sets identified using EnCDA (Sect. 4.1.3).

POC compromise solution. Then, we describe the POC be-
havioral Pareto-optimal parameter sets, as well as the GLUE
behavioral parameter sets, including parameter correlations.
Finally, we highlight the most interesting results for the five
sub-basin CDA units. The EnCDA parameter sets are not
considered as the EnCDA approach leads to a lower model
performance than POC and GLUE.

4.3.1 CDA unit MRB

Parameter set of the POC compromise solution

In the compromise solution, the runoff coefficient (SL-RC)
is close to the maximum value of 3, minimizing runoff at a
given soil water saturation (Fig. 5f). This SL-RC is in line
with the values obtained by the standard calibration, where
calibrated SL-RC values are also very high (Fig. S3b). While,
in the standard calibration, one or two correction factors are
needed in most standard-calibration CDA units to decrease

mean annual runoff to the observed values, this is achieved
in this study by a high value of SL-MSM, the multiplier for
the standard maximum soil water storage, which is adjusted
in the POC compromise solution to a high value of 2.5. A
“deeper soil” with higher water storage capacity leads to de-
creased soil saturation and lower runoff and, at the same time,
to higher variability in terms of soil water storage and, thus,
TWSA. EP-PTh, affecting potential evapotranspiration, is re-
duced from its standard value of 1.26 to 1.02, which seems
to contradict the adjustment of both SL-RC and SL-MSM as
this should lead to a reduction in actual evapotranspiration
and thus an increase in runoff, in particular at high soil satu-
ration values (Eq. 17 in Müller Schmied et al., 2021).

In addition to SL-MSM, three other parameters are ad-
justed by the calibration in a way that water retention is in-
creased (improving correlation with both observed Q and
TWSA), while, at the same time, a higher TWSA variabil-
ity results (decreasing or at least not improving the fit to the
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Figure 5. Parameter sets determined by POC and GLUE calibration approaches as depicted by parallel coordinate plots for the CDA units
of (a) Arkansas, (b) Missouri, (c) upper MRB, (d) Ohio, (e)lower MRB, and (f) MRB. The parameter abbreviations are given at the bottom
of each plot, where the order was selected to show interesting relations between parameter values. The numbers at the top and bottom of the
plots indicate the a priori range of the calibration parameters listed in Table 1. The number of behavioral solutions is given in Table 3. GLUE
behavioral solutions are shown in gray, the GLUE compromise solution is in black, the POC Pareto behavioral solutions are in orange, and
the POC compromise solution is in red.

observedQ and TWSA). Both maximum wetland (SW-WD)
and lake depths (SW-LD) are increased by calibration, from
2 to 5.7 m in the case of wetlands and from 5 to 8 m in the
case of lakes, and the lake and wetland discharge coefficient
(SW-DC) is adjusted to its minimum value of 0.001 d−1. In
contrast, the adjustment of the river roughness coefficient
multiplier (SW-RRM) to 1.5, i.e., to half of the value in the
uncalibrated model, leads to a doubling of the flow veloc-
ity in the river as compared to the standard value and, thus,
lower water retention (reducing the correlation with observed
Q and TWSA), a higher variability in terms of Q (improv-
ing the fit to observations) and a higher variability in terms
of TWSA (worsening the fit to observations). In addition,
the net abstraction from groundwater is decreased by 80 %
(NA-GM= 0.2). Snow melt temperature (SN-MT) is low-
ered from the standard value of 0 to −2.6 °C with POC.
Overall, most parameters are adjusted to increase the correla-
tion between observed and simulated TWSA (except for SW-
RRM) and to reduce the mean runoff (except for EP-PTh).
Unfortunately, the adjusted parameters increase TWSA vari-

ability (except for SW-RRM), leading to an even stronger
overestimation than for the uncalibrated and standard cali-
brated variants (Table C2) and a worse underestimation ofQ
variability (Table C1).

Parameter sets with optimal fit to Q or TWSA for POC

Regarding trade-offs, the POC parameter set that leads to the
best fit to observed Q is characterized by a higher SW-RRM
(2.2 instead of 1.5 in the compromise parameter set), a two-
third reduction in SW-LD, a higher SN-MT and a value of
NA-GM of approximately 1. The latter shows that the net
groundwater abstractions estimated by the water use models
of WaterGAP lead to a good fit for the monthlyQ time series.
In the POC parameter set leading to the best fit to observed
TWSA, SL-MSM reaches 3 (the maximum value), while
SW-WD attains a value of more than 12 m. This parameter
set includes an SW-RRM value of only 1 (the lower bound,
leading to a minimum flow velocity) and a slightly nega-
tive NA-GM. The latter parameter value means that the net
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water abstractions from groundwater, which are dominantly
positive in the MRB (Fig. B1e) – i.e., more water is with-
drawn from the groundwater than recharged by return flows
– are not only decreased but become mostly net groundwa-
ter recharge through the parameter adjustment. This could
be caused, for example, by an original overestimation of the
fraction of the total water abstraction that stems from ground-
water and not surface water. Return flow from irrigation with
surface water can lead to a net abstraction from groundwa-
ter that is negative, i.e., an artificial groundwater recharge.
However, this might also be caused by an underestimation
of groundwater recharge, such that groundwater storage loss
and the decrease in groundwater outflow to rivers by net
groundwater abstractions would be overestimated if NA-GM
was not adjusted from its standard value of 1.

Parameter set of the GLUE compromise solution

Six out of the nine parameters in the GLUE compromise so-
lution are very similar to those of the POC compromise solu-
tion (Fig. 5f). The GLUE compromise solution has a slightly
higher NSEQ but a considerably lower NSETWSA (due to a
lower correlation but a similar performance of variability)
due to a lower soil moisture capacity and a very minimum
lake water storage. In addition, the snow melt temperature is
much higher.

Behavioral Pareto-optimal POC parameter sets

The 26 behavioral Pareto-optimal parameter sets derived by
POC coincide in the four parameters SL-RC, SL-MSM, SW-
DC and NA-GM (Figs. 5f and 6 and Excel file in the Sup-
plement). The parameter values of the other five parameters
diverge somewhat, indicating conflicts between a good fit to
observedQ and TWSA. The fit toQ decreases, and the fit to
TWSA increases with decreasing EP-PTh, SN-MT and SW-
RRM and with increasing SW-WD. A negative correlation is
visible between the values for SW-WD (wetland depth) and
the values for SW-LD (lake depth) (see also Fig. S5f); this in-
dicates that the same impact onQ and TWSA is achieved by
either a large wetland depth or a large lake depth. The nega-
tive correlation between SW-WD and the three parameters
EP-PTh, SW-RRM and SN-MT is not easily interpretable
(Fig. S5f).

Behavioral GLUE parameter sets

Behavioral GLUE parameter sets are much more diverse than
behavioral Pareto-optimal parameter sets (Figs. 5f and 6).
The GLUE parameter sets take into account, in an approx-
imate manner, the uncertainty of performance indicators that
stems from observation errors (Sect. 3.2.2 and 3.4.2), in ad-
dition to the conflicting goals of achieving a good fit to ob-
served Q and observed TWSA that is also reflected by the
Pareto-optimal parameter sets. The 138 behavioral GLUE
parameter sets, which all result in NSE values > 0.65, vary

widely and, for some parameters, cover the whole parameter
range (Figs. 5f and 6). In most behavioral sets, the SL-RC
values are larger than 2, but there is even a set with a value
below 1. SL-MSM ranges between 1 and 2.7, while the pa-
rameter value of the POC compromise solution is at the upper
end of this range. Differently from the Pareto-optimal POC
solutions, SW-RRM values do not encompass very small val-
ues close to 1 but tend to be higher, mostly between 2 and 3
(Fig. 6). SN-MT and the three parameters related to lakes
and wetlands, namely SW-DC, SW-LD and SW-WD, are not
constrained at all by the calibration (Figs. 5f and 6). Parame-
ter correlations are very low, except for negative correlations
of EP-PTh with SL-RC, NA-GM and SW-DC (Fig. S5f).

4.3.2 The five sub-basin CDA units

For all five sub-basins, except the downstream lower MRB
(with SL-RC= 0.33), calibrated SL-RC is close to the max-
imum value of 3 in the POC compromise solution (Fig. 5).
SL-MSM is at its lower bound in the lower MRB but is larger
than 1 in all other CDA units; the multiplier is almost at its
maximum value of 3 for the Missouri River basin and the
upper MRB; at about 2 for the Arkansas River basin; and
at 1.3 for the Ohio River basin, which is the basin with the
best performance of the uncalibrated model. In all CDA units
but the Arkansas River basin, SW-LD reaches very high val-
ues between 10 and 20 m, and SW-WD is also higher than
the uncalibrated values in all CDA units except the Arkansas
and upper MRB. The SW-DC is at its minimum value in the
Missouri River basin and the upper MRB, close to its uncali-
brated value in the Arkansas and Ohio river basins, and in be-
tween in the lower MRB. Calibrated SN-MT varies strongly
among the CDA units. NA-GM is always below 1 to increase
groundwater retention. The lower MRB is the only CDA unit
where optimal EP-PTh was high (1.65), while, in all other
CDA units, the calibrated value was close to 1.

Overall, there is a particularly high equifinality of param-
eter sets in the lower MRB, with strong negative correla-
tions between parameters of the Pareto-optimal POC solu-
tions (Fig. S5e). Among the POC solutions in the Arkansas
River basin, the parameters of wetland depth (SW-WD) and
surface water discharge coefficient (SW-DC) (Fig. 5a – com-
pare POC compromise solution with POC behavioral solu-
tions – and Fig. S5a) are so negatively correlated that the
parameters alternatively take values at the opposite limits of
the parameter ranges. A high value of maximum storage in
surface waterbodies has a similar effect onQ and TWSA dy-
namics as a low surface water discharge coefficient that keeps
water in storage. Parameters may also show very strong cor-
relations within a very small parameter space, as in the case
of EP-PTh and SW-WD in the upper MRB (Figs. 5c and
S5c).

Hydrol. Earth Syst. Sci., 28, 2259–2295, 2024 https://doi.org/10.5194/hess-28-2259-2024



P. Döll et al.: Leveraging multi-variable observations 2279

Figure 6. Histogram of parameter values in calibrated parameter sets according to POC and GLUE for the MRB (CDA unit VI). All
behavioral parameter sets are considered for GLUE, while the smaller ensemble of behavioral Pareto-optimal parameter sets is shown for
POC (Table 3). The y axis shows the ratio of the number of parameter values in each class to the total number of behavioral parameter sets,
while the x axis shows the a priori parameter range listed in Table 1. The dashed green line indicates the parameter values of the uncalibrated
WaterGAP model.

The GLUE behavioral parameter sets cover an even larger
range in the lower MRB and the Arkansas River basin as
compared to the MRB (Figs. 5 and S7). Correlations between
parameters are generally low (Fig. S6), except for high neg-
ative correlations between EP-PTh and SL-RC in the Mis-
souri River basin and between EP-PTh and SL-MSM in the
Ohio River basin. However, low correlations between the cal-
ibrated parameters do not indicate a low equifinality.

4.4 Added value of spatially more resolved CDA units

An important decision in model parameter estimation is the
choice of CDA units, i.e., the selection of the group of grid
cells for which calibration parameters are assumed to be the
same. A higher number of CDA units within the same geo-
graphic domain leads to the adjustment of more parameters,
causes a higher computational effort and is expected to lead
to an improved representation of reality. We performed two
analyses to evaluate the added value of dividing the MRB
into five sub-basin CDA units.

In the first analysis, we used the compromise solutions
obtained for the CDA unit VI (MRB), where the same cal-
ibration parameter values are assigned to all grid cells in the
whole MRB, to compute Q and TWSA for each of the five
sub-basin CDA units. Model performance of this calibration
variant (“whole-basin calibration”) is compared to the per-
formance that is achieved in the sub-basins if each sub-basin
is calibrated individually, i.e., if five CDA units are used to
cover the whole MRB. Analysis for both the calibration pe-
riod (Table 6) and the validation period (Table S3) clearly
shows the added value of distinguishing five sub-basin CDA
units (calibration variant “sub-basin calibration”) as overall
model performance improves in each of the five sub-basins
as compared to the calibration variant “whole-basin cali-

bration”. Due to the specific search algorithm, performance
gains are more pronounced with POC than with GLUE. Per-
formance gains are very high in the case of EnCDA due to
the poor performance of the whole-basin calibration. Consid-
ering POC and regarding Q, the added value of more CDA
units is highest for the Missouri River basin, followed by the
Arkansas River basin and the upper MRB. However, for these
three sub-basins, there is no added value regarding TWSA.
In the always-best-performing Ohio River basin, there is a
small added value for bothQ and TWSA, while in the down-
stream lower MRB, where Q is dominated by inflow from
the four upstream sub-basins,Q performance remains essen-
tially unchanged, while TWSA performance improves with
more CDA units.

An evaluation of the performance regarding the mean of
TWSA over the entire MRB using the individual parameter
sets of the five sub-basin CDA units shows a small added
value of using sub-basin CDA units in the case of POC and
GLUE, while, in the case of EnCDA, the already-poor fit to
TWSA in the whole-basin variant is further degraded (col-
umn MRB in Table 6). However, EnCDA estimation of Q at
Vicksburg is much improved with five CDA units and reaches
the high values of GLUE and POC, both of which show a
slight degradation in the Q simulation at Vicksburg as com-
pared to the whole-basin calibration.

In the second analysis, we evaluated the ability of the
different calibration variants to simulate Q at six Q gaug-
ing stations that were not used for model calibration in this
study; three are located in the Missouri River basin, and
three are located in the Ohio River basin (Fig. 2). Differ-
ences between the stations are larger than between the cal-
ibration approaches. Good NSEQ values are only achieved
at two stations, Mt. Carmel and Louisville in the Ohio River
basin. The best performance at Mt. Carmel is achieved with
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Table 6. Comparison of model performance in the five sub-basins of the MRB between the calibration of MRB as a whole (only CDA unit
VI) and calibration of the individual sub-basins (five CDA units I–V). In addition, the performance of the model with standard calibration
of 77 CDA units but adjusting only up to three parameters based on observed mean annual Q is shown. Model performance is indicated by
NSEQ and NSETWSA during the calibration period 2003–2012 as achieved by the compromise solutions of the three calibration approaches
POC, GLUE and EnCDA. The sub-basin calibration NSE values are identical to those in Table 2, except for MRB (see footnote 1).

NSEQ/NSETWSA

Arkansas Missouri Upper MRB Ohio Lower MRB MRB

POC: whole-basin calibration 0.65/0.83 0.38/0.71 0.57/0.48 0.82/0.77 0.83/0.69 0.83/0.73
POC: sub-basin calibration 0.74/0.85 0.73/0.71 0.67/0.48 0.87/0.86 0.81/0.90 0.81/0.791

GLUE: whole-basin calibration 0.67/0.84 0.49/0.64 0.64/0.33 0.85/0.75 0.85/0.74 0.85/0.65
GLUE: sub-basin calibration 0.69/0.83 0.65/0.71 0.61/0.46 0.86/0.84 0.77/0.89 0.77/0.771

EnCDA: whole-basin calibration −0.41/0.60 −1.69/0.51 0.36/0.26 0.57/0.55 0.51/0.60 0.51/0.19
EnCDA: sub-basin calibration 0.59/0.84 0.62/0.65 0.68/0.60 0.79/0.91 0.83/0.88 0.83/−0.311

1 Based on Q at Vicksburg and TWSA averaged over the whole MRB computed by a WaterGAP run, in which the calibration parameters in the five sub-basins
(CDA units I–V) were set to their respective compromise solution values.

the whole-basin GLUE approach (NSE= 0.77), while the
POC sub-basin approach achieves the optimal performance
at Louisville, with NSE= 0.91 (Table 7). Sub-basin calibra-
tion strongly improves NSE as compared to whole-basin cal-
ibration in the case of the Platte River station at Louisville
for both POC and GLUE by reducing the bias (RBias) but
decreasing correlation (CC) and the fit to observed Q vari-
ability (RVar) (Table 7) but not during the validation period
(Table S4). There is some added value in the sub-basin cali-
bration regarding Q simulation at the Louisville station on
the Ohio River for both the calibration and the validation
period. For the other four stations, however, sub-basin cal-
ibration leads to worse performance than whole-basin cali-
bration during the calibration period. For the station on the
Cumberland, which is not a calibration station in the stan-
dard calibration, the standard calibration even leads to a bet-
ter performance than all the ensemble-based calibrations for
both the calibration and validation period. At the Bismarck
station on the Missouri River, where model performance is
similarly poor compared to that on the Cumberland, even the
uncalibrated WaterGAP variant performs better or similarly
to the calibrated variants due to the highest correlation. Dur-
ing the validation period, the performance of all three cal-
ibration approaches becomes very low at the three stations
in the Missouri River basin (Table S4), while it remains con-
stant or even improves for the three stations in the Ohio River
basin. No calibration approach performs consistently better
than any other approach; performance rather depends on the
period and the station. Overall, calibration using Q observa-
tions on downstream stations only leads to apparently ran-
dom changes in Q simulation at upstream stations that have
not been used in the calibration.

5 Discussion

5.1 Advantages and disadvantages of the three
ensemble-based multi-variable calibration
approaches

POC is most effective in reducing the uncertainty of GHM
model output by identifying (Pareto-) optimal parameter sets
or one compromise parameter set that leads to the overall
best fit to all observation variables. However, we found in our
study that GLUE is only slightly less effective in doing this;
the differences between the time series ofQ and TWSA com-
puted by POC and GLUE are small compared to the discrep-
ancies between the simulations and the observations (Figs. 3
and S4). The major advantage of GLUE is that, without any
additional model runs, the GLUE parameter ensemble can
also be used to identify behavioral parameter sets and thus
quantify the model output uncertainty given the uncertainty
of the observations. In addition, GLUE has a smaller compu-
tational burden than POC if alternative calibration objectives
are to be tested as no new model runs are required in the case
of GLUE. The computational burdens of POC and GLUE,
which are dominated by the number of parameter sets used
to compute the alternative model output, are rather similar
(Sect. 3.4.1 and 3.4.2).

Theoretically, EnCDA is, similarly to GLUE, capable of
both decreasing and quantifying the uncertainty of GHM
model output. However, unlike POC and GLUE, the “best
estimate” of model output in ensemble Kalman filter meth-
ods is not connected to one specific parameter set but is de-
termined by the mean over the outputs of all ensemble mem-
bers, which are also affected by the forcing perturbations.
Therefore, consistent simulations with an EnCDA-calibrated
model, e.g., for a period without observations, such as the
validation period in our study, require that the model is not
only run once but rather, with the parameter values obtained
at the end of the calibration period, as many times as the
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Table 7. Comparison of model performance at the sixQ validation stations in the Missouri and Ohio sub-basins of the MRB (Fig. 2) between
the calibration of the MRB as a whole (CDA unit VI) or calibration of the individual sub-basins (CDA units I–V). Model performance is
indicated by NSEQ and the three KGE components during the calibration period 2003–2012 as achieved by compromise solutions of the
three calibration approaches POC, GLUE and EnCDA. In the case of EnCDA, the performance metrics for the 2003–2012 CDA run are
shown, and those of a run with the parameter set of December 2012 are not shown. The best-performing calibration variant for each station
is shown in bold. In addition, performances of the standard and uncalibrated WaterGAP model variants are shown.

NSEQ/CC/RBias/RVar

Missouri near Missouri at Platte at Wabash at Ohio at Cumberland at
Landusky Bismarck∗ Louisville∗ Mt. Carmel∗ Louisville Nashville

POC: whole- 0.30/0.73/ −0.04/0.38/ −0.56/0.79/ 0.74/0.91/ 0.78/0.91/ 0.37/0.86/
basin calibration 0.67/1.10 0.68/0.29 1.61/0.95 1.24/0.74 1.11/0.68 1.59/0.46

POC: sub-basin 0.23/0.78/ −0.38/0.41/ 0.54/0.83/ 0.65/0.87/ 0.91/0.96/ 0.32/0.84/
calibration 0.58/1.45 0.41/0.51 0.96/1.26 1.24/0.81 1.08/0.84 1.62/0.54

GLUE: whole- 0.50/0.80/ −0.03/0.32/ −0.55/0.76/ 0.77/0.91/ 0.83/0.92/ 0.42/0.85/
basin calibration 0.80/1.30 0.69/0.40 1.57/0.98 1.20/0.80 1.05/0.80 1.53/0.49

GLUE: sub-basin 0.41/0.77/ −0.15/0.39/ 0.58/0.80/ 0.67/0.87/ 0.87/0.94/ 0.31/0.84/
calibration 0.72/1.25 0.56/0.41 1.00/1.05 1.25/0.76 1.07/0.81 1.62/0.48

EnCDA: whole- 0.20/0.56/ −1.09/-0.32/ −8.98/0.57/ 0.66/0.85/ 0.41/0.71/ 0.24/0.59/
basin calibration 1.00/0.89 1.42/0.45 3.15/0.60 1.09/0.58 0.86/0.55 1.30/0.36

EnCDA: sub-basin 0.48/0.74/ 0.46/0.89/ −1.8/0.42/ 0.59/0.89/ 0.65/0.82/ 0.13/0.69/
calibration 1.12/0.83 1.47/0.53 1.79/0.77 1.38/0.67 1.00/0.64 1.58/0.51

Standard 0.37/0.81/ 0.36/0.64/ 0.04/0.71/ 0.70/0.87/ 0.78/0.89/ 0.52/0.84/
calibration 1.19/1.06 1.03/0.40 0.99/1.40 1.09/0.97 1.03/0.79 1.42/0.56

Uncalibrated 0.40/0.77/ 0.47/0.82/ −6.30/0.69/ 0.69/0.89/ 0.78/0.88/ 0.40/0.84/
1.11/1.08 1.38/0.62 2.26/1.21 1.20/0.88 0.98/0.86 1.54/0.48

∗ Calibration station of standard calibration.

ensemble has members (32 times in our study, Sect. 3.4.3).
These ensemble runs then enable us to compute a best es-
timate and an uncertainty band that takes into account the
uncertainty of the observations and the model, as well as of
some climate input. However, as EnCDA does not compute
a single optimal parameter set but rather a Bayesian mean, it
seems to be less straightforward to use it for many model ap-
plications. In the case of POC and GLUE, the model needs to
be run only once, with the compromise parameter set, to ob-
tain the best estimate of model output given the observations
used for model calibration.

The fact that our EnCDA implementation could not com-
pete with POC and GLUE in simulating Q and TWSA dur-
ing the calibration period might be viewed as surprising as, in
EnCDA, it is not only parameters but also water storages that
are adapted each month. We believe that the lower EnCDA
performance is due to the small ensemble size of only 32 (in-
stead of 20 000 in the case of POC and GLUE); it is common
in EnKF data assimilation to only generate very small ensem-
bles (e.g., Zaitchik et al., 2008; Eicker et al. 2014; Girotto
et al., 2016; Kumar et al., 2016), which is caused by the
high computational demand of the EnCDA approach. This is
because EnCDA estimates state parameters and can run re-

cursively, i.e., providing state and parameter estimates at ev-
ery time step, which POC and GLUE cannot do. With grad-
ually increasing ensemble sizes (e.g., n= 64), one gener-
ally finds gradually improved state and parameter estimates,
but the EnCDA will never be able to be run with ensemble
sizes common in model calibration. Put in other words, the
EnCDA allows for many more degrees of freedom as com-
pared to POC and GLUE since it does not assume the model
itself to be correct but rather only ambiguous due to unknown
model parameters. We caution that EnCDA using only one
CDA unit for the whole MRB even failed in the sense that it
resulted in a worse performance in terms of NSE regarding
both Q and TWSA than the uncalibrated WaterGAP during
the calibration period 2003–2012. Regarding the five sub-
basin CDA units, the performance for all but one CDA unit
was worse than that of POC and GLUE even though it is
not only parameters but also water storages that are adjusted
in EnCDA. Performance was, however, improved over the
standard and uncalibrated model variants for four out of six
CDA units, in particular regarding TWSA. Q simulation by
EnCDA during the calibration period might be improved by
using log Q instead of Q (Clark et al., 2008; Paiva et al.,
2013) and, in the case of dry world regions, by censoring
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no-flow observations (Wang et al., 2020). Note that we de-
fine performance generally in terms of NSE, while EnCDA,
unlike POC and GLUE, does not optimize NSE but rather
does so for the RMSE of model–observation differences. In
the validation period 2013–2016, when EnCDA uses the 32
parameter sets obtained at the end of the calibration period
(December 2012) to compute Q and TWSA without any up-
date to water storages, TWSA and, to a lesser extent,Q “drift
off” from the observations, resulting in very poor fits. This
may be explained by the fact that the monthly parameter up-
dates in EnCDA absorb model misrepresentations that gen-
erate seasonally varying errors such that the December 2012
parameter sets were not able to lead to a reasonable simula-
tion during the entirety of the 4 years of the validation period.
From a data assimilation perspective, where the aim is only to
improve the knowledge about historical conditions, our val-
idation experiment can be viewed as academic since there
would be no reason not to recursively assimilate more recent
TWSA observations once an ensemble assimilation frame-
work has been set up and tuned.

5.2 Added value of multi-variable calibration as
compared to the standard WaterGAP calibration
for identifying one optimal parameter set

The optimal or compromise parameter sets identified by
multi-variable calibration with all three approaches result in
better simulations of both Q and TWSA during the calibra-
tion period as compared to the standard WaterGAP for all
six CDA units, except for EnCDA in the case of the whole
MRB (Table 2). However, the added value of any calibration
is very low in the humid and hilly Ohio basin, where the per-
formance of the uncalibrated model is already good; in their
study on calibrating the VIC model for the USA using ob-
served Q only, Troy et al. (2008) also found that modeled
streamflow that fit well to observations before calibration, as
was the case for the Ohio River, continued to do so.

As expected, the improvement in TWSA simulations is
more pronounced than the improvement in Q. Higher NSEQ
values are mostly caused by improved correlation, while Q
variability is still underestimated and low flow is overesti-
mated in all CDA units, and in three CDA units, this is even
more strongly the case than for the standard and uncalibrated
WaterGAP variants. In two CDA units, the mean Q is over-
estimated by more than 10 % (Table C1). The much higher
NSETWSA values of the compromise solutions as compared
to standard WaterGAP are also mainly caused by much-
improved correlations, with improved or worsened TWSA
variabilities depending on the CDA unit (Table C2). The
analysis of model performance at the same observation loca-
tions for the validation period 2013–2016 confirms the added
value of POC and GLUE.

However, visual inspection of the hydrographs for both
the calibration and validation periods reveals that the fit to
observations can only be improved slightly by the multi-

variable calibration. An exception is the simulation of TWSA
in the lower MRB, which is affected by intensive irriga-
tion in the Mississippi embayment. There, standard Water-
GAP simulates a declining TWSA trend due to groundwa-
ter depletion, which does not occur anymore with the three
multi-variable approaches that make use of observed TWSA
(Fig. S4f). Thus, where GHMs incorrectly simulate TWSA
trends (Scanlon et al., 2018), multi-variable model calibra-
tion is likely to lead to more realistic simulated trends. How-
ever, at least for our CDA units, the variability and probably
also the seasonality of simulated TWSA are not necessarily
improved by such a calibration (Scanlon et al., 2019).

The overestimation of summer low flows in all six CDA
units remains after calibration, not only in the compromise
solutions (Figs. 3 and S4) but also in the POC and GLUE
runs with the highest NSEQ. Likely reasons for the overes-
timation of summer low flows are an inaccurate simulation
of the release from artificial reservoirs or an actual loss of
river water to the subsurface, which cannot be simulated be
WaterGAP (and most hydrological models). In the study of
Troy et al. (2008), the overestimation of summer low flows
in the Arkansas basin, the basin that is affected most by this
behavior in our study (Fig. 4), is reduced but not removed by
the calibration.

An advantage of POC and GLUE over the standard Wa-
terGAP calibration is that, by adjusting 8–10 parameters per
CDA unit, it is possible to achieve higher NSE values for
Q without having to use any correction factors. In the stan-
dard calibration, both areal and station correction factors are
necessary for many CDA units in the western part of the
MRB to reduce simulated mean annual Q to observed val-
ues (calibration status CS3 and CS4 in Fig. S3a). It is par-
ticularly beneficial that station correction factors (Fig. S3d)
are avoided by the new calibration approach as they lead to
abrupt changes in Q and destroy mass conservation (Müller
Schmied et al., 2021). Even by adjusting only nine parame-
ters homogeneously in the whole MRB using monthly time
series of observed Q and TWSA, improved model perfor-
mance is achieved compared to adjusting more than 100 pa-
rameters in 77 CDA units in the standard WaterGAP calibra-
tion, except for the Ohio River basin and Q in the Missouri
basin. This statement only relates to the Q observations con-
sidered in this study and not to the Q at all 77 standard cali-
bration stations.

There appears to be almost no added value in the multi-
variable calibration approaches for the simulation of Q at
upstream locations within the calibrated CDA unit where Q
observations were not used for calibration (Table 7). This
may be due to the very large and heterogeneous CDA units;
the CDA unit of the MRB covers almost 3× 106 km2, while
the largest sub-basin CDA, the Missouri River, basin covers
1.35×106 km2, and the smallest, the lower MRB, still covers
0.25× 106 km2.

The added value of multi-variable Pareto-optimal cali-
bration of WaterGAP for 28 very large globally distributed
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basins using monthly time series of Q and TWSA was in-
vestigated by Werth and Güntner (2010). They found that
improved simulations of TWSA and Q were achieved for
most basins after calibration, but calibrated Q was still poor
compared to the observed values in some basins; a better fit
to GRACE TWSA did not necessarily lead to a better fit of
simulated to observed Q. For the Mississippi basin, the rel-
ative RMSE was reduced by calibration by about 20 % for
both Q and TWSA. A multi-variable model calibration for
the Lake Urmia basin (Iran) showed that satellite observa-
tions of time series of TWSA and irrigated area led to a good
fit to observed TWSA and a reduction in the Q bias, but ad-
ditional in situ observations of Q were necessary to estimate
parameter sets that lead to a good fit (Hosseini-Moghari et al.,
2020). Both studies underline that model calibration should
be based on both Q and TWSA observations.

5.3 Estimation of output uncertainty

Both GLUE and EnCDA aim to estimate model output uncer-
tainty, and compared to these approaches, the small ensem-
ble size of EnCDA seems to prevent a comparable estima-
tion. The uncertainty bands estimated by GLUE underesti-
mate the model uncertainty; only 46 %–72 % of the monthly
Q estimates of the GLUE behavioral model runs fall into the
uncertainty band of observed Q, depending on the CDA unit
(Table 4). With 59 %–95 %, TWSA coverage is higher, ex-
cept in the Missouri River basin.

Low coverage values indicate that the model suffers from
errors in either model input or model structure. An explana-
tion for the overestimated low flows might be that WaterGAP,
like most hydrological models, is not able to simulate water
loss from the river into the groundwater, while a recent study
has found strong indications of extensive losing river condi-
tions in the MRB (Jasechko et al., 2021). Further model un-
certainties that appear to be particularly relevant to the lim-
ited performance of WaterGAP in the different CDA units are
related to the modeling of artificial reservoirs, which may be
particularly relevant to the Missouri River basin, and the poor
specification of the location and extent of small wetlands
(Prairie potholes) in the Missouri River basin and the upper
MRB. The Prairie Pothole Region contains between 5 to 60
wetlands per square kilometer, and their hydrological mod-
eling relies on accurately characterized depth–volume rela-
tionships derived from detailed topographic surveys (Minke
et al., 2010).

The relatively thin uncertainty bands indicate the equifi-
nality of the very diverse behavioral parameter sets (Fig. 5)
for the study period. The widths of the uncertainty bands of
POC and GLUE do not change appreciably between the cali-
bration and the validation period (Figs. 3 and S4), which indi-
cates that calibrated parameter sets are transferable between
the two periods. The exceptions are the TWSA uncertainty
bands in the Arkansas River basin (Fig. 4) and the lower
MRB (Fig. S4), which, for unknown reasons, are wider in

the validation period, indicating that parameter sets that lead
to similar model output in the calibration period might re-
sult in more discrepant model output under changed climatic
conditions.

5.4 Trade-offs between optimal simulation of Q and
TWSA

Trade-offs between the optimal simulation of Q and TWSA
are relevant in all CDA units. POC trade-offs are only slightly
smaller than GLUE trade-offs (Table 2). There are particu-
larly large trade-offs between a good fit to Q and TWSA
in two sub-basin CDA units with many surface waterbod-
ies, i.e., in the Missouri River basin (reservoirs, wetlands and
lakes) and the upper MRB (wetlands and lakes) (Fig. B1),
and, accordingly, also in the CDA unit of the MRB. In the
Missouri River basin, for example, the POC parameter set
resulting in an optimal fit to observed Q has an NSEQ of
0.83 but an NSETWSA of only 0.5, while the POC parameter
set resulting in an optimal fit to observed TWSA improves
NSETWSA to 0.81 but degrades NSEQ to the very poor value
of −0.82 (Table 2). We suspect that the poor knowledge of
the location and extent of small wetlands and the difficulty in
simulating the operation of artificial reservoirs (without ad-
justment of parameters) are the main reasons for the strong
trade-offs. In most CDA units, an optimal TWSA fit leads
to a strong overestimation of mean Q and an even stronger
underestimation of Q variability (Table C1), while a good fit
to Q leads to an overestimation of TWSA variability (to dif-
ferent degrees, depending on the CDA unit) (Table C2). We
speculate that this trade-off cannot be explained by potential
errors of the used GRACE TWSA time series due to leakage
effects, the impacts of which are not included in the values of
GRACE TWSA used in this analysis (see Sect. 3.2.2). For the
lower MRB, the multiplicative leakage re-scaling factor of
1.41 (see Sect. 3.2.2) matches the overestimation of TWSA
variability (RVar= 1.42 for the POC parameter set with the
best fit to Q, Table C2), but this may be by chance. Besides,
the estimated re-scaling factor may be biased by an overesti-
mated negative TWSA trend in the standard WaterGAP run
that was used to compute it.

Much smaller trade-offs between the optimal fits to ob-
served Q and TWSA were found with another hydrological
model in a calibration study for 83 European river basins,
where both Q and TWSA observations were used for adjust-
ing up to 53 parameters in a basin-specific manner (Rakovec
et al., 2016). When TWSA was considered in addition to Q
in the calibration objective, the correlation of observed and
simulated Q decreased slightly, while the bias and variabil-
ity remained almost unchanged. However, TWSA correla-
tions that were achieved by calibration in that study were
extremely low, with a median CC of 0.56 if only Q observa-
tions were used in the calibration, increasing to only 0.67 if,
in addition, TWSA observations were included. In our study,
TWSA correlations are much higher; for the calibration pe-
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riod, they vary between the six CDA units from 0.80 to 0.95
in the case of the POC compromise solution. Even the uncal-
ibrated WaterGAP variant leads to CC values in the range of
0.76–0.93.

Accessible Q observations are rare in many parts of the
globe, while GRACE TWSA observations cover the whole
globe and are freely available and could be used to calibrate
hydrological models in areas without available Q observa-
tions. However, given the trade-offs between optimal model
fits to observed Q and TWSA, one may suspect that calibra-
tion using TWSA only may improve the TWSA simulation
but degrade the Q simulation. Analyzing the performance
metrics of the GLUE a priori ensemble of 20 000 parameter
sets, we find that, in both the calibration and the validation
period, Q simulation degrades in three of the six CDA units
for the variant “highest NSETWSA” as compared to the un-
calibrated WaterGAP. This is the case in the upper MRB,
where WaterGAP struggles with uncertain information re-
garding the location and extent of small wetlands; in the Ohio
River basin, in which, already, the uncalibrated WaterGAP
variant simulates Q well; and in the MRB (Tables 2 and 5).
In the Murray–Darling Basin, EnCDA using GRACE TWSA
only resulted inQ overestimation (Schumacher et al., 2018).
Thus, a calibration against GRACE TWSA only may or may
not degrade theQ simulation as compared to an uncalibrated
model run, and it is difficult to estimate where such degrada-
tion could occur. Further studies are needed to understand un-
der which circumstances we can estimate and remove suchQ
biases to facilitate calibration against GRACE TWSA with-
out degrading the simulation of Q.

5.5 Added value of sub-basin CDAs instead of one
basin CDA

ConsideringQ performance at the outlet of the five sub-basin
CDA units and the aggregated TWSA, overall, model per-
formance is somewhat improved if calibration is done indi-
vidually for the five CDA units instead of adjusting parame-
ters homogeneously over the whole MRB for both the cali-
bration (Table 6) and the validation periods (Table S3). The
added value is smaller for the validation period. However,
in three CDA units, TWSA performance during the calibra-
tion period is not affected by the higher number of CDA
units, while Q at the calibration stations was improved if
the station was used in the calibration. In addition, Q per-
formance at gauging stations inside the two sub-basin CDA
units is not improved by sub-basin calibration (Tables 7 and
S4). Q performance at these gauging stations appears to be
unrelated to the type of calibration done (including no cal-
ibration) as the best-performing calibration approach varies
randomly among CDA units and periods. Therefore, to in-
crease the quality of Q simulations with WaterGAP, we sug-
gest using CDA units that are smaller than the Mississippi
River sub-basins selected for this study, i.e., smaller than
about 400 000 km2. This is also supported by the study of

Mizukami et al. (2017), who selected 531 CDA units for
the continental US. However, for simultaneous calibration
against GRACE TWSA, CDA units should not be smaller
than 100 000–200 000 km2, depending on water variations
in the unit (Vishwakarma et al., 2021; Longuevergne et al.,
2010). Therefore, the joint calibration against multipleQ ob-
servations within a CDA unit should be tested (Xie et al.,
2012; Wanders et al., 2014).

5.6 Characteristics of identified (Pareto-) optimal and
behavioral parameter sets

In (Pareto-) optimal parameter sets, the optimized runoff
coefficient (SL-RC) obtains values very close to its upper
bound in all CDA units, except for the downstream lower
MRB, whereQ is dominated not by runoff generation within
the CDA unit but by inflows from upstream CDA units. High
SL-RC values, which tend to decrease runoff, are also ob-
tained by the standard WaterGAP calibration (Fig. S3). Fur-
ther reduction in runoff is achieved in this study, except for
the downstream lower MRB, by increasing maximum cell-
specific soil water storage by multiplication with optimized
SL-MSM values that are larger than 1, ranging from 1.3 for
the best-simulated Ohio River basin to almost 3 for the Mis-
souri River basin and the upper MRB. A larger maximum
soil water storage leads to decreased soil saturation and lower
runoff and, at the same time, to higher variability of soil wa-
ter storage and thus TWSA. In general, the fit to TWSA is
improved if storage capacities are increased, not only in the
soil but also in wetlands and lakes.

It is surprising that EP-PTh, a factor in the equation of
potential evapotranspiration, is reduced in all CDA units (ex-
cept in the lower MRB) from its standard value of 1.26 to
values around 1, which leads to reduced actual evapotranspi-
ration and thus increased runoff. The multipliers adjusting
grid cell values of human net water abstraction from ground-
water (adjusted in four CDA units) tend to be less than zero,
indicating an overestimation of net groundwater abstractions
by the standard model variant. Water abstraction from sur-
face waterbodies (adjusted only in the Missouri River basin)
might be underestimated. The optimal values of the other
calibration parameters can differ strongly between POC and
GLUE compromise solutions or between the Pareto-optimal
POC solutions (Fig. 5). The correlations between calibration
parameters can be high and differ strongly between the CDA
units; general patterns cannot be seen (Fig. S5). For example,
SL-RC can correlate positively or negatively with SL-MSM
and EP-PTh.

The ranges of most parameters in the behavioral GLUE
parameter sets, which take into account the impact of ob-
servation uncertainty on optimized parameter sets, are only
slightly narrower than the a priori parameter ranges (Figs. 5,
6 and S7). This is the case even though behavioral parame-
ter sets are only a very small fraction of 0.04 %–0.76 % of
the 20 000 a priori parameter sets of GLUE. We found larger
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equifinality in TWSA simulations than in Q simulations, ex-
cept for the downstream lower MRB, where simulated Q is
dominated by the inflow from upstream as quantified by the
compromise parameter sets of the four upstream CDA units
(Excel file in the Supplement). The fact that TWSA observa-
tions constrain parameter sets less than Q observations was
also discovered in the multi-variable calibration study for 10
large basins in sub-Saharan Africa by Xie et al. (2012).

EP-PTh is the only parameter whose distribution shows
a peak (except for the lower MRB, Figs. 6 and S7). Small
peaks are often seen for SL-MSM and the net abstraction
multipliers. SL-RC mostly shows a low frequency of values
below 1 and increasing frequencies towards the upper param-
eter bound. Parameter correlations among the behavioral pa-
rameter sets are mostly low, except for negative correlations
that exist, depending on the CDA unit, between EP-PTh and
parameters such as SL-RC, SL-MSM and SN-MT (Fig. S6).

Multi-variable calibration did not lead to improved iden-
tifiability of parameters, i.e., the determination of a small
range of suitable parameter values, except for the three pa-
rameters SL-RC, SL-MSM and EP-PTh. These three param-
eters control the partitioning of precipitation into runoff and
actual evapotranspiration, as well as the temporal dynamics
of the soil water storage, which is often the most important
storage. SL-RC and SL-MSM, which affect the release of
water from the soil and determine the maximum amount of
water that can be stored in the soil, respectively, were found
to be the most influential parameters for severalQmetrics of
the evaluated 347 global river basins (Kupzig et al., 2023).

The lack of identifiability makes the application of the
“optimal” compromise parameter sets derived by POC prob-
lematic for estimating, e.g., groundwater recharge, ground-
water abstractions and surface water abstractions. Examples
are the multipliers for net groundwater and surface water
abstractions in the Missouri basin, where the POC compro-
mise solution suggests that net groundwater abstractions are
25 % lower and that the net surface water abstractions are
50 % higher than estimated without parameter adjustment
(Fig. 5b and Excel file in the Supplement). Even the be-
havioral Pareto-optimal parameter sets, which are obtained
by optimizing the fit to observations that are assumed to be
error-free, include severe decreases but also slight increases
in net groundwater abstraction as compared to the standard
value, as well as strong increases in net surface water abstrac-
tions, but also a reversal from net abstractions to net additions
of water to surface waterbodies by large return flows from
groundwater-sourced water to surface waterbodies (Fig. 5b
and Excel file in the Supplement). In the Arkansas basin,
the POC compromise solution suggests a strong decrease in
both groundwater recharge and net abstractions from ground-
water to 30 % and 24 % of the standard values, respectively,
but very similar performances regarding the assumedly error-
free observations can be obtained if both values are de-
creased much less or even if groundwater recharge is in-
creased (Fig. 5a and Excel file in the Supplement). The re-

maining equifinality of the parameter sets of our study, even
when using two different observation variables, is in accor-
dance with the results of a calibration study for flood design
in Sweden (Harlin and Kung, 1992). In that study, a large
number of sets of 12 parameters were identified by model
calibration using a Monte Carlo approach, and, like in our
study, it was, for most parameters, not the value of the indi-
vidual parameter that determined if the simulation of Q was
behavioral but rather the combination of the parameter val-
ues within each parameter set. A multi-variable parameter
estimation of a hydrological model for the upper Columbia
River basin in Canada, which used observations of Q and
glacier volume change, identified 23 rather different behav-
ioral parameter sets that all led to very high NSE values for
daily streamflow of at least 0.92 (Jost et al., 2012).

6 Conclusions

Our pilot study for the MRB has generated new method-
ological knowledge on how the uncertainty of GHM output
can be reduced and quantified by benefiting, with the help
of multi-variable parameter estimation, from the information
contained in observations of multiple model output variables.
Our conclusion on the suitable methods for achieving this
and some caveats are summarized in Fig. 7. Model output
uncertainty can be reduced by determining, for specific spa-
tial model units (CDA units), one optimal model parameter
set. The uncertainty of model output arising from the equi-
finality of model parameter sets given the observation un-
certainties can be quantified by determining all behavioral
parameter sets.

We conclude that a multi-variable POC approach that uti-
lizes observations of both Q and TWSA, combined with the
described sensitivity analysis, is best suited for estimating
CDA-unit-specific Pareto-optimal parameter sets of GHMs
(Fig. 7). The derived compromise parameter sets can then be
used to simulate the best estimate of past and future water
flows and storages – in particular, if various future scenarios,
e.g., driven by the output of multiple climate models, or hy-
drological seasonal ensemble forecasts are computed by the
GHMs. While the computational burden for a global-scale
model calibration of, for example, 1000 basins is high, the
run times are not prohibitive. However, in our study, multi-
variable model calibration against both Q and TWSA con-
strained only three model parameters, while a large range of
values of all other calibration parameters can lead to equally
good fits to the observations, even if the uncertainty of ob-
servations is neglected. Therefore, any identified POC com-
promise parameter set should be applied with caution when
estimating water flows, such as groundwater recharge, for
which no observations were considered in the parameter es-
timation. We suggest that the parameter interdependence of
Pareto-optimal parameter sets be analyzed.
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Figure 7. The proposed approach for reducing and quantifying model output uncertainty of GHMs by multi-variable parameter estimation
and the main recommendations and caveats for applying the approach in global hydrological modeling. Green letters indicate to which
purpose POC and GLUE are best suited, while blue letters indicate an acceptable capability. A CDA unit is composed of all GHM grid cells
to which the same calibration parameter value is assigned.

This study has shown that, currently, among the three ap-
proaches used, only GLUE can be applied to quantify model
output uncertainty caused by the observation uncertainties
(Fig. 7). All behavioral parameter sets can be identified by
applying the method for defining performance thresholds for
behavioral parameter sets that we developed in this study,
which uses both the GLUE ensemble and an ensemble of
perturbed observations. As model performance with the op-
timal (compromise) parameter set as identified with GLUE is
only slightly less than the performance with the optimal POC
parameter set, GLUE can be used efficiently to compute both
the best estimates and the uncertainty bounds of GHM model
output. The computational efforts for calculating best esti-
mates by POC and best estimates with uncertainty bounds by
GLUE are similar. We found that the GLUE-derived model
output uncertainty bands substantially underestimate the to-
tal model output uncertainty as they do not include the effects
of model input and structure uncertainties.

We also conclude that the multi-variable EnCDA approach
that we implemented in our pilot study is not yet competi-
tive for GHM parameter estimation using Q and TWSA as
(1) its performance (in terms of NSE) is lower during the
calibration period than that of POC and GLUE or, for the
large CDA unit of the MRB, even lower than that of the un-

calibrated WaterGAP, and (2) its application during the vali-
dation period (without observational data) led to spurious re-
sults (Figs. 4 and S4). The intrinsic nonlinearity in simulating
Q makes a multi-variable EnCDA that includes Q observa-
tions more difficult than an EnCDA that only includes TWSA
or TWSA and other storage observations. In addition, the fact
that the EnKF has to estimate many more state variables than
model parameters means that the ensemble size will always
be much more limited, and this hampers parameter calibra-
tion. We suggest that further research should investigate im-
proved ensemble generation techniques for the case where
the state vector is augmented by model parameters. Lastly,
for model calibration purposes, one should investigate EnKF
versions that optimize (weighted) MSE metrics in place of
RMSE.

As we found that Q can be simulated reasonably well
only at locations where Q observations have been used in
the calibration but not upstream, the selection of rather small
CDA units is advised. However, the CDA unit size cannot be
smaller than approx. 100 000–200 000 km2 due to the large
footprint of GRACE TWSA, and observations from more
than one streamflow gauging station within the CDA unit
might be utilized in parameter set optimization (Fig. 7). Ad-
ditional observation variables such as snow cover and water
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storage variations in lakes and artificial reservoirs may be
taken into account to further constrain parameter sets. Un-
fortunately, no information on groundwater level dynamics
is available at the global scale, which is likely required to
constrain the parameters related to surface water and ground-
water abstraction (Hosseini-Moghari et al., 2020). Figure 7
lists further caveats for global-scale reduction and quantifi-
cation of model output uncertainty by parameter estimation
that were discussed in Sect. 5.

We recommend that, in the first step, GHMs are calibrated
against observations of multiple variables, including Q and
TWSA, by determining optimal calibration parameter sets
for major basins with available Q observations as this is ex-
pected to improve the realism of the GHM output. To achieve
this, an optimization algorithm similar to the one used for
POC in this study should be applied. In the next step, a GLUE
approach could be used to additionally estimate the model
output uncertainty.

Climate change impact studies for individual river basins
have shown that parameter sets with a similar performance
during the calibration period may provide very different pro-
jections of climate change hazards and that the impact of pa-
rameter uncertainty can be similar to the impact of the se-
lected climate or hydrological model selection (Mendoza et
al., 2016; Her et al., 2019). Therefore, consideration of pa-
rameter uncertainty by running the hydrological model with
several behavioral parameter sets helps to reduce the under-
estimation of the uncertainty of potential climate change im-
pacts. However, producing a global-scale ensemble of po-
tential future changes in hydrological variables by combin-
ing not only multiple greenhouse gas emissions scenarios,
global climate models and global hydrological models (as is
currently done in ISIMIP) but also model-specific behavioral
parameter sets is currently infeasible. The main reason is that
behavioral (or even optimal) parameter sets have not yet been
determined for any global hydrological model in a spatially
explicit manner at the global scale. In addition, the compu-
tational effort for such a multi-model and/or multi-parameter
ensemble is likely to be prohibitive.

Appendix A: Comparison of the three ensemble-based
approaches

The POC, GLUE and EnCDA approaches share some char-
acteristics and differ with regard to others (Table A1). All
three start with a (large, in the case of POC and GLUE,
and small, in the case of EnCDA) number of parameter sets
that are derived from a priori assumptions about the proba-
bility distribution of calibration parameters and generate an
ensemble of optimized parameter sets. EnCDA differs from
POC and GLUE by simultaneously modifying model param-
eters and model states. EnCDA and GLUE are regarded to be
Bayesian approaches as they aim to derive probability distri-
butions of parameter sets and thus model output. In POC, the

ensemble of Pareto-optimal parameter sets represents the un-
certainty that is caused by the fact that, due to model struc-
ture and input uncertainty, different parameter sets lead to
optimal performance for different calibration objectives. In-
formation from observations is used in all three approaches
to update an a priori belief about the probability distribution
of parameters. However, parameter set selection is done in
very different ways and is based on different assumptions.
Both POC and GLUE compare the model output over the
complete calibration period with all observations to deter-
mine performance metrics. While the evolutionary search al-
gorithm of POC starts with a small number of parameter
sets, runs the model and then generates new parameter sets
with ever-improved performance metrics, in GLUE, the large
initial ensemble generated from a priori parameter distribu-
tions is evaluated regarding performance metrics, and the be-
havioral members among the initial ensemble are identified.
In POC and GLUE, parameters are temporally constant. In
EnCDA, an ensemble of model runs is performed in a step-
wise fashion from the time of one observation to the time
of the next. EnCDA updates the parameters sequentially (in
our study, each month) such that time series of recursive pa-
rameter estimates are computed. It is assumed that updates
are informed by an ever-increasing amount of information
from observations so that the parameter sets after the last up-
date, i.e., at the end of the calibration period, are the best esti-
mate. However, this can be disputed. A study on EnCDA us-
ing GRACE TWSA for the Australian Murray–Darling Basin
showed that parameter values vary in time with changes in
climatic conditions within the river basin, probably due to
an inappropriate model structure that does not allow the cor-
rect translation of precipitation variability into model output
variability (Schumacher et al., 2018). The capability to reveal
such dynamics may be advantageous for improving our un-
derstanding of model deficiencies. It needs to be investigated
whether and how EnCDA can be used to determine optimal
parameter sets that are suitable for model runs without ad-
justment of states.

In EnCDA, quantified errors of both the model and the ob-
servations are required to update water storages and param-
eters in each of the ensemble members (Table A1). The en-
semble serves to estimate the model error, which includes pa-
rameter and climate forcing uncertainty and is calculated as
the variance of the differences between each ensemble mem-
ber and the ensemble mean. The EnKF applied in EnCDA
represents an optimal and unbiased estimator only under
the assumption that errors are Gaussian, unbiased and well
known, none of which is the case (Wang et al., 2020; Morad-
khani et al., 2005; Beven and Binley, 1992). In GLUE, the
model error due to parameter uncertainty (but not due to cli-
mate forcing uncertainty) is indirectly taken into account as
the a priori ensemble depends on assumptions about param-
eter distribution, similarly to POC. Observation errors may
be considered quantitatively, but, in most applications, they
are not (Beven and Binley, 2014). In Sect. 3.4.2, we describe
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Table A1. Comparison of the main characteristics of POC, GLUE and EnCDA as applied in this study.

POC
Pareto-optimal calibration

GLUE
Generalized likelihood
uncertainty estimation

EnCDA
Ensemble Kalman filter
calibration and data
assimilation

Use of a priori parameter ensembles Yes Yes Yes

Direct modification of water storages No No Yes

Bayesian approach No Yes Yes

Estimation of model output uncertainty Uncertainty only due to
multiple objectives

Yes Yes

Selection of parameter sets Once, based on all observations Once, based on all observations
at once

Recursive; parameter
sets updated at each
observation time step

Quantitative information on parameter
uncertainties considered

Indirectly via an a priori
range of parameter values

Indirectly via an a priori
ensemble of parameter sets

Directly as a factor of
model uncertainty

Quantitative information on climate
forcing uncertainties considered

No No Yes, as a factor of
model uncertainty

Quantitative information on
observation uncertainties considered

Possible in post-processing by
limiting Pareto-optimal param-
eter sets to thresholds selected
using GLUE ensemble

Possible by selecting thresholds
for behavioral solutions accord-
ing to observation uncertainties

Yes

Rigorous consideration of uncertainty No No Partly

Various objective functions including
signatures can be selected

Yes Yes No

Weighting between different objective
functions

Subjective weighting to identify
a parameter set that is optimal
in a specific context

Subjective weighting to identify
parameter set(s) that is (are) op-
timal in a specific context

Implicit weighting
based on model and ob-
servation uncertainties

Determination of Pareto-optimal
parameter sets under the assumption
that there is only parameter uncertainty

Yes, determined by search
algorithm

Yes, selected from a priori
ensemble

No (due to the small
ensemble size)

Complexity Medium Low–medium High

Computational effort for a specific
objective function

Medium Medium Very high

Computational effort for analyzing
alternative objective functions

High Medium Not applicable

Risk of spurious model behavior Low Low High due to modifying
water volume in
multiple storage
compartments

a way to take into account the observation uncertainties in
GLUE. Werth and Güntner (2010) suggested a way to in-
clude observation errors in POC. First, they determined an er-
ror ellipse around the compromise solution (defined in Eq. 1)
by first generating an ensemble of observations from perturb-
ing the observation time series with the observation errors
and then determining the range of performance values of the
compromise solution for this ensemble of perturbed observa-
tions. By considering all the non-dominated and dominated

parameter sets inside the error ellipse, they identified an en-
semble of likely parameter sets that were informed by both
observations and observation uncertainty. In this case, POC
can, like EnCDA and GLUE, be used to estimate uncertain-
ties of parameter sets and model outputs. Nevertheless, it
should be noted that this approach does not incorporate ob-
servational uncertainty directly into multi-objective parame-
ter calibration in a rigorous way. Therefore, we did not take
this approach in our study.
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Differently from EnCDA, with its rigorous handling of un-
certainties, GLUE is an informal Bayesian approach that is
much simpler than EnCDA (Table A1). Here, likelihood is
understood in a very general sense as a fuzzy measure of
the belief regarding how well the model conforms to the ob-
served behavior of the system and not in the sense of maxi-
mum likelihood theory, which is the basis of EnCDA (Beven
and Binley, 1992). In EnCDA, the likelihood of a parameter
set is a product of model errors, observation errors, and the
differences between observed and simulated variables (and
other factors) (Sect. 3.2 in Schumacher, 2016). The infor-
mal and subjective treatment of uncertainty in the GLUE
approach has caused controversy because the different er-
ror sources are not distinguished (Vrugt et al., 2009). This
can mean that non-maximum likelihood solutions might be
accepted as parameter estimates. However, the GLUE ap-
proach can be defended against formal Bayesian methods as
these require a priori knowledge about errors that is lack-
ing in most hydrological modeling applications (Beven and
Binley, 2014). In addition, formal Bayesian methods (e.g.,
DREAM) are difficult to implement and much less compu-
tationally efficient but may lead to similar outcomes (Vrugt
et al., 2009). In GLUE, the likelihood measure can be freely
chosen by the modeler. One could choose a formal likelihood
measure like the one applied for EnCDA, a measure that re-
lates the deviation of model output from observations to the
observation error or just any model performance metric for
comparing observations to simulations (Beven and Binley,
2014, their Table 3). Given the large epistemic uncertainty
about hydrological systems, GLUE relies on the subjective
expertise of the modeler to define a suitable likelihood mea-
sure given the often only qualitative knowledge about uncer-
tainties of model structure, model input, model parameters
and observations. There is a multitude of likelihood measures
that can be used to identify parameter sets that fit better to
observations than the a priori ensemble (or the standard de-
terministic parameter set) and that are therefore more likely
than others. A likelihood of zero is assigned to all parameter
sets that are not behavioral, i.e., if the likelihood measure is
below a threshold that is set subjectively by the modeler. For
the example of the popular likelihood measure of the Nash–
Sutcliffe efficiency (NSE), behavioral parameter sets may be
defined as those that result in an NSE larger than 0.7 if the
behavior of the hydrological system can be easily simulated;
if not, the threshold will have to be lowered to obtain any be-
havioral parameter sets. To obtain the a posteriori probability
distribution of parameter sets, only the behavioral parameter
sets are considered, and their probability is derived from the
NSE obtained with them.

Objective functions (i.e., likelihood measures and perfor-
mance metrics) can be freely chosen in the case of POC and
GLUE. This allows the selection of diverse hydrological sig-
natures of the observables, e.g., those that focus on high or
low flows in the case of streamflow. EnCDA minimizes the
root mean squared error, and it is very difficult to apply an-

other objective function (Table A1). In addition, the likeli-
hood function in EnCDA considers only the deviations be-
tween the model output and observations at one point in time
as the ensemble Kalman filter was applied in this study in-
stead of the ensemble Kalman smoother. In contrast, perfor-
mance measures used in POC and GLUE evaluate model per-
formance (and calibrate model parameters) over the whole
calibration period. EnCDA differs from POC and GLUE in
that weighting between the performance metrics for the mul-
tiple objectives and/or variables is implicitly done given the
model and observation errors (Table A1). In POC and GLUE,
subjective weighting needs to be done for selecting one opti-
mal parameter set. POC and GLUE also have in common the
fact that they can serve to identify Pareto-optimal parameter
sets or one compromise parameter set that can then be used
in a computationally efficient way in model runs for climate
change studies or seasonal forecasting, where hydrological
models are driven by an ensemble of climate data sets.

The complexity of the three calibration approaches dif-
fers (Table A1). The computational burden is much higher
for EnCDA than for POC and GLUE. Therefore, only a very
small number of ensemble members can be used in the anal-
ysis; ensemble sizes are typically between 30 and 100. These
low-rank ensembles may fail to correctly convey the covari-
ance information between model states and parameters or
between different parameters. Localization techniques can
be applied to mitigate this effect but with the trade-off that
long-distance covariance information is neglected or down-
weighted. For the same number of evaluated parameter sets,
the computational effort of POC and GLUE is approximately
the same for evaluating a specific objective function. How-
ever, as the parameter ensemble generated by the search algo-
rithm in POC depends on the objective function (unlike in the
case of GLUE), the computational burden of POC becomes,
for example, twice as high as that of GLUE if one alternative
objective function is taken into account. Finally, EnCDA is
prone to spurious results as the modification of water stor-
ages to improve the fit to TWSA observations might lead
to little-constrained changes in individual storages, with im-
pacts on simulated water flows. In the EnCDA study of Schu-
macher et al. (2018), river storage was adjusted in WaterGAP
based on TWSA observations, leading to spurious increases
in Q not seen in WaterGAP runs without water storage up-
dates or in the observations.
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Appendix B: Surface waterbodies and human water
abstractions in the CDA units of the Mississippi River
basin

Figure B1. Artificial reservoirs (a), lakes (b), local wetlands (c), global wetlands (d), and potential net abstractions from groundwater (e)
and from surface water (f) in the CDA units of the MRB, as taken into account in WaterGAP. Maximum areal extents of the surface bodies
in percentages of the 0.5° cell area are shown, while potential net abstractions (in mm yr−1) are provided for the period 2003–2012.

To understand the sensitivity of model output to parame-
ters, the spatial distribution of the storages and flows that they
affect is required. Water balances of reservoirs (Fig. B1a) are
not directly impacted by the calibration parameters in Ta-
ble 1, while lake dynamics (Fig. B1b) are directly impacted
by active lake depth (SW-LD), and wetlands (Fig. B1c, d) are
directly impacted by active wetland depth (SW-WD). Please
note that knowledge about the wetlands in the northern parts
of the CDA units of the Missouri River basin and the upper
MRB, as well as in the southern part of the lower MRB, is
restricted to the information that, generally, in these areas,

25 %–50 % of the land area is covered by wetlands in the wet
season. In WaterGAP, this information was translated into a
maximum extent of local wetlands of 35 %. The surface wa-
ter discharge coefficient (SW-DC) affects both lakes and wet-
lands. Potential net abstractions from groundwater (Fig. B1e)
and surface water (Fig. B1f) are simulated with a monthly
time step for each grid cell, and multipliers for each of them
(NA-GM and NA-SM) affect model output differently in the
various CDA units due to different net abstraction patterns.
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Appendix C: Performance of different calibration
methods during the calibration period 2003–2012:
components of the KGE performance metric for both Q

and TWSA

Table C1. KGE components of model runs of Table 2 regarding Q for the calibration period 2003–2012.

CC/RBias/RVar

Arkansas Missouri Upper MRB Ohio Lower MRB MRB

POC: highest NSEQ 0.90/1.18/0.59 0.92/1.08/0.80 0.91/1.03/0.82 0.95/1.07/0.89 0.95/1.04/0.88 0.95/1.01/0.88
POC: highest NSETWSA 0.91/1.42/0.52 0.87/1.73/0.61 0.84/1.47/0.53 0.95/1.27/0.71 0.94/1.07/0.84 0.92/1.34/0.62
POC: compromise 0.90/1.18/0.59 0.86/1.06/0.80 0.89/1.20/0.66 0.95/1.11/0.83 0.95/1.06/0.82 0.94/1.09/0.78
GLUE: highest NSEQ 0.90/1.21/0.52 0.91/1.14/0.71 0.89/1.01/0.82 0.94/1.07/0.88 0.93/1.02/0.86 0.94/1.02/0.82
GLUE: highest NSETWSA 0.91/1.74/0.38 0.88/1.70/0.60 0.84/1.51/0.43 0.95/1.30/0.63 0.94/1.12/0.75 0.94/1.33/0.64
GLUE: compromise 0.90/1.31/0.55 0.86/1.18/0.68 0.88/1.23/0.57 0.94/1.11/0.79 0.93/1.07/0.79 0.93/1.05/0.84
EnCDA: highest NSEQ 0.81/1.18/0.76 0.86/1.14/0.76 0.86/1.11/0.77 0.92/1.13/0.69 0.92/1.04/0.78 0.75/1.06/0.60
EnCDA: highest NSETWSA 0.77/1.04/0.66 0.82/1.29/0.77 0.73/1.34/0.86 0.89/1.23/0.55 0.92/1.13/0.66 0.71/1.10/0.58
EnCDA: compromise 0.77/1.04/0.66 0.84/1.15/0.65 0.83/1.07/0.76 0.92/1.13/0.69 0.92/1.04/0.78 0.73/1.05/0.60
EnCDA: ensemble mean 0.79/0.97/0.67 0.82/1.21/0.68/ 0.86/1.12/0.76 0.91/1.17/0.61 0.94/1.13/0.68 0.75/1.11/0.58
Standard calibration 0.83/0.98/0.53 0.74/1.05/0.73 0.73/0.64/0.76 0.93/1.05/0.82 0.89/0.97/0.95 0.89/0.97/0.95
Uncalibrated 0.87/1.76/0.55 0.84/1.72/0.77 0.76/1.07/0.73 0.93/1.07/0.87 0.91/1.15/0.92 0.91/1.15/0.92

Table C2. KGE components of model runs of Table 2 regarding TWSA for the calibration period 2003–2012.

CC/RVar

Arkansas Missouri Upper MRB Ohio Lower MRB MRB

POC: highest NSEQ 0.93/1.06 0.77/1.09 0.80/1.42 0.95/1.22 0.95/1.42 0.85/1.30
POC: highest NSETWSA 0.95/1.04 0.91/1.03 0.84/1.07 0.95/1.05 0.97/1.05 0.93/1.10
POC: compromise 0.93/1.06 0.87/1.10 0.82/1.26 0.94/1.14 0.96/1.01 0.91/1.22
GLUE: highest NSEQ 0.89/1.01 0.57/0.91 0.80/1.47 0.92/1.14 0.92/1.67 0.75/1.37
GLUE: highest NSETWSA 0.94/0.97 0.89/1.05 0.82/1.05 0.96/1.08 0.95/1.07 0.91/1.07
GLUE: compromise 0.94/1.16 0.87/1.07 0.81/1.26 0.94/1.13 0.94/0.93 0.87/1.20
EnCDA: highest NSEQ 0.83/1.27 0.78/0.65 0.77/1.11 0.95/0.98 0.94/1.04 0.44/0.71
EnCDA: highest NSETWSA 0.94/1.14 0.83/0.65 0.83/0.98 0.97/0.90 0.96/1.00 0.52/0.72
EnCDA: compromise 0.94/1.14 0.82/0.67 0.80/1.03 0.95/0.98 0.94/1.04 0.49/0.72
EnCDA: ensemble mean 0.92/1.16 0.76/0.62 0.80/1.00 0.94/1.02 0.95/0.98 0.45/0.69
Standard calibration 0.83/1.19 0.63/0.76 0.63/1.09 0.91/1.13 0.80/1.63 0.71/1.11
Uncalibrated 0.85/1.09 0.63/0.76 0.62/1.10 0.90/1.21 0.82/1.60 0.73/1.11

Code availability. The WaterGAP 2.2d code is accessible at
https://doi.org/10.5281/zenodo.6902110 (Müller Schmied et al.,
2023).

Data availability. Level-2 GRACE data (spherical harmonic co-
efficients) used to compute observed TWSA are available
from https://doi.org/10.5880/ICGEM.2018.003 (Mayer-Gürr et al.,
2018). All optimal and behavioral parameter sets obtained by the
three calibration approaches for the six CDA units, together with
the resulting performance metrics, are listed in an Excel file that is
part of the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-2259-2024-supplement.

Author contributions. PD designed the study, with contributions
from HMMH, KS, SMHM, SS, AG and JK. HMMH, KS and HG
performed the calibration and data analyses. HMMH and SMHM
produced the figures. SA and HMS improved the WaterGAP code.
LB and HG processed and analyzed GRACE TWSA data. PD wrote
the original draft of the paper. All the authors contributed to the final
draft.

https://doi.org/10.5194/hess-28-2259-2024 Hydrol. Earth Syst. Sci., 28, 2259–2295, 2024

https://doi.org/10.5281/zenodo.6902110
https://doi.org/10.5880/ICGEM.2018.003
https://doi.org/10.5194/hess-28-2259-2024-supplement


2292 P. Döll et al.: Leveraging multi-variable observations

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors thank Olga Sydak (née Engels)
for the first analyses and discussions, Christoph Niemann for con-
tributing to the generation of figures, and three reviewers and the
editor for the valuable comments and suggestions that helped to im-
prove the paper.

Financial support. This research has been supported by the
Deutsche Forschungsgemeinschaft (DFG research unit “Under-
standing the global freshwater system by combining geodetic and
remote sensing information with modelling using a calibration/data
assimilation approach (GlobalCDA)”.).

This open-access publication was funded
by Goethe University Frankfurt.

Review statement. This paper was edited by Adriaan J. (Ryan)
Teuling and reviewed by three anonymous referees.

References

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch,
T., and Siebert, S.: Development and testing of the WaterGAP 2
global model of water use and availability, Hydrolog. Sci. J., 48,
317–338, https://doi.org/10.1623/hysj.48.3.317.45290, 2003.

Beven, K.: Prophecy, reality and uncertainty in distributed
hydrological modeling, Adv. Water Resour., 16, 41–51,
https://doi.org/10.1016/0309-1708(93)90028-E, 1993.

Beven, K.: Towards an alternative blueprint for a physically based
digitally simulated hydrologic response modelling system, Hy-
drol. Process., 16, 189–206, https://doi.org/10.1002/hyp.343,
2002.

Beven, K. and Binley, A.: The future of distributed models: model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–
298, https://doi.org/10.1002/hyp.3360060305, 1992.

Beven, K. and Binley, A.: GLUE. 20 years on, Hydrol. Process., 28,
5897–5918, https://doi.org/10.1002/hyp.10082, 2014.

Beven, K. and Smith, P.: Concepts of information con-
tent and likelihood in parameter calibration for hydrolog-
ical simulation models, J. Hydrol. Eng., 20, A4014010,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000991, 2015.

Bierkens, M. F. P.: Global hydrology 2015. State, trends,
and directions, Water Resour. Res., 51, 4923–4947,
https://doi.org/10.1002/2015WR017173, 2015.

Blasone, R.-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robin-
son, B. A., and Zyvoloski, G. A.: Generalized likelihood
uncertainty estimation (GLUE) using adaptive Markov chain
Monte Carlo sampling, Adv. Water Resour., 31, 630–648,
https://doi.org/10.1016/j.advwatres.2007.12.003, 2008

Blazkova, S. and Beven, K.: A limits of acceptability approach
to model evaluation and uncertainty estimation in flood fre-
quency estimation by continuous simulation: Skalka catch-
ment, Czech Republic, Water Resour. Res., 45, W00B16,
https://doi.org/10.1029/2007WR006726, 2009.

Campolongo, F., Saltelli, A., and Cariboni, J.: From
screening to quantitative sensitivity analysis. A uni-
fied approach, Comput. Phys. Commun., 182, 978–988,
https://doi.org/10.1016/j.cpc.2010.12.039, 2011.

Clark, M., Rupp, D., Woods, R., Zheng, X., Ibbitt, R., and Slater,
A.: Hydrological data assimilation with the ensemble Kalman
filter. Use of streamflow observations to update states in a dis-
tributed hydrological model, Adv. Water Resour., 31, 1309–
1324, https://doi.org/10.1016/j.advwatres.2008.06.005, 2008.

Dembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz, G.,
and Schaefli, B.: Improving the predictive skill of a distributed
hydrological model by calibration on spatial patterns with multi-
ple satellite data sets, Water Resour. Res., 56, e2019WR026085,
https://doi.org/10.1029/2019WR026085, 2020.

Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge
observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13,
913–921, https://doi.org/10.5194/hess-13-913-2009, 2009.

Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model
for deriving water availability indicators: model tuning and vali-
dation, J. Hydrol., 270, 105–134, https://doi.org/10.1016/S0022-
1694(02)00283-4, 2003.

Döll, P., Fritsche, M., Eicker, A., and Müller Schmied, H.: Sea-
sonal Water Storage Variations as Impacted by Water Abstrac-
tions: Comparing the Output of a Global Hydrological Model
with GRACE and GPS Observations, Surv. Geophys., 35, 1311–
1331, https://doi.org/10.1007/s10712-014-9282-2, 2014.

Döll, P., Douville, H., Güntner, A., Müller Schmied, H., and
Wada, Y.: Modelling freshwater resources at the global scale:
Challenges and prospects, Surv. Geophys., 37, 195–221,
https://doi.org/10.1007/s10712-015-9343-1, 2016.

Döll, P., Trautmann, T., Göllner, M., and Müller Schmied, H.:
A global-scale analysis of water storage dynamics of inland
wetlands: Quantifying the impacts of human water use and
man-made reservoirs as well as the unavoidable and avoid-
able impacts of climate change, Ecohydrology, 13, e2175,
https://doi.org/10.1002/eco.2175, 2020.

Efstratiadis, A. and Koutsoyiannis, D.: One decade of
multi-objective calibration approaches in hydrologi-
cal modelling: a review, Hydrolog. Sci. J., 55, 58–78,
https://doi.org/10.1080/02626660903526292, 2010.

Eicker, A., Schumacher, M., Kusche, J., Döll, P., and Müller
Schmied, H.: Calibration/Data Assimilation Approach for
Integrating GRACE Data into the WaterGAP Global Hy-
drology Model (WGHM) Using an Ensemble Kalman
Filter: First Results, Surv. Geophys., 35, 1285–1309,
https://doi.org/10.1007/s10712-014-9309-8, 2014.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res.-Oceans, 99, 10143–10162, 1994.

Hydrol. Earth Syst. Sci., 28, 2259–2295, 2024 https://doi.org/10.5194/hess-28-2259-2024

https://doi.org/10.1623/hysj.48.3.317.45290
https://doi.org/10.1016/0309-1708(93)90028-E
https://doi.org/10.1002/hyp.343
https://doi.org/10.1002/hyp.3360060305
https://doi.org/10.1002/hyp.10082
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000991
https://doi.org/10.1002/2015WR017173
https://doi.org/10.1016/j.advwatres.2007.12.003
https://doi.org/10.1029/2007WR006726
https://doi.org/10.1016/j.cpc.2010.12.039
https://doi.org/10.1016/j.advwatres.2008.06.005
https://doi.org/10.1029/2019WR026085
https://doi.org/10.5194/hess-13-913-2009
https://doi.org/10.1016/S0022-1694(02)00283-4
https://doi.org/10.1016/S0022-1694(02)00283-4
https://doi.org/10.1007/s10712-014-9282-2
https://doi.org/10.1007/s10712-015-9343-1
https://doi.org/10.1002/eco.2175
https://doi.org/10.1080/02626660903526292
https://doi.org/10.1007/s10712-014-9309-8


P. Döll et al.: Leveraging multi-variable observations 2293

Evensen, G.: The ensemble Kalman filter: Theoretical formula-
tion and practical implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.

Gerdener, H., Engels, O., and Kusche, J.: A framework for deriv-
ing drought indicators from the Gravity Recovery and Climate
Experiment (GRACE), Hydrol. Earth Syst. Sci., 24, 227–248,
https://doi.org/10.5194/hess-24-227-2020, 2020.

Gerdener, H., Kusche, J., Schulze, K., Döll, P., and Klos,
A.: The global land water storage data set release 2
(GLWS2.0) derived via assimilating GRACE and GRACE-FO
data into a global hydrological model, J. Geodesy, 97, 73,
https://doi.org/10.1007/s00190-023-01763-9, 2023.

Girotto, M., de Lannoy, G. J. M., Reichle, R. H., and Rodell, M.: As-
similation of gridded terrestrial water storage observations from
GRACE into a land surface model, Water Resour. Res., 52, 4164–
4183, https://doi.org/10.1002/2015WR018417, 2016.

Gupta, H. V., Sorooshian, S., and Ogou Yapo, P.: Toward improved
calibration of hydrologic models: Multiple and noncommensu-
rable measures of information, Water Resour. Res., 34, 751–763,
https://doi.org/10.1029/97WR03495, 1998.

Hadka, D. and Reed, P.: Borg: An Auto-Adaptive Many-Objective
Evolutionary Computing Framework, Evol. Comput., 21, 231–
259, https://doi.org/10.1162/EVCO_a_00075, 2013.

Harlin, J. and Kung, C.-S.: Parameter uncertainty and simula-
tion of design floods in Sweden, J. Hydrol., 137, 209–230,
https://doi.org/10.1016/0022-1694(92)90057-3, 1992.

Her, Y., Yoo, S.-H., Cho, J., Hwang, S., Jeong, J., and Seong, C.:
Uncertainty in hydrological analysis of climate change: multi-
parameter vs. multi-GCM ensemble predictions, Sci. Rep., 9,
4974, https://doi.org/10.1038/s41598-019-41334-7, 2019.

Hosseini-Moghari, S.-M., Araghinejad, S., Tourian, M. J.,
Ebrahimi, K., and Döll, P.: Quantifying the impacts of human
water use and climate variations on recent drying of Lake Urmia
basin: the value of different sets of spaceborne and in situ data
for calibrating a global hydrological model, Hydrol. Earth Syst.
Sci., 24, 1939–1956, https://doi.org/10.5194/hess-24-1939-2020,
2020.

Hunger, M. and Döll, P.: Value of river discharge data for global-
scale hydrological modeling, Hydrol. Earth Syst. Sci., 12, 841–
861, https://doi.org/10.5194/hess-12-841-2008, 2008.

Jasechko, S., Seybold, H., Perrone, D., Fan, Y., and Kirch-
ner, J. W.: Widespread potential loss of streamflow into un-
derlying aquifers across the USA, Nature, 591, 391–397,
https://doi.org/10.1038/s41586-021-03311-x, 2021.

Jin, X., Xu, C.-Y., Zhang, Q., and Singh, V. P.: Parameter and mod-
eling uncertainty simulated by GLUE and a formal Bayesian
method for a conceptual hydrological model, J. Hydrol., 383,
147–155, https://doi.org/10.1016/j.jhydrol.2009.12.028, 2010.

Jost, G., Moore, R. D., Menounos, B., and Wheate, R.: Quantify-
ing the contribution of glacier runoff to streamflow in the up-
per Columbia River Basin, Canada, Hydrol. Earth Syst. Sci., 16,
849–860, https://doi.org/10.5194/hess-16-849-2012, 2012.

Khu, S. T. and Madsen, H.: Multiobjective calibration with
Pareto preference ordering: An application to rainfall-
runoff model calibration, Water Resour. Res., 41, W03004,
https://doi.org/10.1029/2004WR003041, 2005.

Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions
in the upper Danube basin under an ensemble of cli-

mate change scenarios, J. Hydrol., 424–425, 264–277,
https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.

Kumar, S. V., Zaitchik, B. F., Peters-Lidard, C. D., Rodell, M., Re-
ichle, R., Li, B., Jasinski, M., Mocko, D., Getirana, D., De Lan-
noy, G., Cosh, M. H., Hain, C. R., Anderson, M., Arsenault,
K. R., Xia, Y., and Ek, M.: Assimilation of gridded GRACE
terrestrial water storage estimates in the North American Land
Data Assimilation System, J. Hydrometeorol., 17, 1951–1972,
https://doi.org/10.1175/JHM-D-15-0157.1, 2016.

Kupzig, J., Reinecke, R., Pianosi, F., Flörke, M., and Wagener, T.:
Towards parameter estimation in global hydrological models,
Environ. Res. Lett., 18, 074023, https://doi.org/10.1088/1748-
9326/acdae8, 2023.

Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R.: Decorre-
lated GRACE time-variable gravity solutions by GFZ, and their
validation using a hydrological model, J. Geodesy, 83, 903–913,
https://doi.org/10.1007/s00190-009-0308-3, 2009.

Lehner, B. and Döll, P.: Development and validation of a global
database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.

Longuevergne, L., Scanlon, B. R., and Wilson, C. R.: GRACE hy-
drological estimates for small basins: Evaluating processing ap-
proaches on the High Plains Aquifer, USA, Water Resour. Res.,
46, W11517, https://doi.org/10.1029/2009wr008564, 2010.

Mayer-Gürr, T., Behzadpur, S., Ellmer, M., Kvas, A.,
Klinger, B., Strasser, S., and Zehentner, N.: ITSG-
Grace2018 – Monthly, Daily and Static Gravity Field
Solutions from GRACE, GFZ Data Services [data set],
https://doi.org/10.5880/ICGEM.2018.003, 2018.

McMillan, H., Krueger, T., and Freer, J.: Benchmarking ob-
servational uncertainties for hydrology. Rainfall, river dis-
charge and water quality, Hydrol. Process., 26, 4078–4111,
https://doi.org/10.1002/hyp.9384, 2012.

Mendoza, P. A., Clark, M. P, Mizukami, N., Gutmann, E. D.,
Arnold, J. R., Brekke, L. D., and Rajagopalan, B.: How
do hydrologic modeling decisions affect the portrayal of
climate change impacts?, Hydrol. Process., 30, 1071–1095,
https://doi.org/10.1002/hyp.10684, 2016.

Minke, A. G., Westbrook, C. J., and van der Kamp, G.: Sim-
plified volume-area-depth method for estimating water stor-
age of Prairie potholes, Wetlands, 30, 541–551, http;//doi.org/
10.1007/s13157-010-0044-8, 2010.

Mizukami, N., Clark, M. P., Newman, A. J., Wood, A. W., Gutmann,
E. D., and Nijssen, B.: Towards seamless large-domain parameter
estimation for hydrologic models, Water Resour. Res., 53, 8020–
8040, https://doi.org/10.1002/2017WR020401, 2017.

Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncer-
tainty assessment of hydrologic model states and parameters: Se-
quential data assimilation using the particle filter, Water Resour.
Res., 41, W05012, https://doi.org/10.1029/2004WR003604,
2005.

Morris, M. D.: Factorial sampling plans for preliminary
computational experiments, Technometrics, 33, 161–174,
https://doi.org/10.1080/00401706.1991.10484804, 1991.

Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M.,
Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity of
simulated global-scale freshwater fluxes and storages to in-
put data, hydrological model structure, human water use

https://doi.org/10.5194/hess-28-2259-2024 Hydrol. Earth Syst. Sci., 28, 2259–2295, 2024

https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.5194/hess-24-227-2020
https://doi.org/10.1007/s00190-023-01763-9
https://doi.org/10.1002/2015WR018417
https://doi.org/10.1029/97WR03495
https://doi.org/10.1162/EVCO_a_00075
https://doi.org/10.1016/0022-1694(92)90057-3
https://doi.org/10.1038/s41598-019-41334-7
https://doi.org/10.5194/hess-24-1939-2020
https://doi.org/10.5194/hess-12-841-2008
https://doi.org/10.1038/s41586-021-03311-x
https://doi.org/10.1016/j.jhydrol.2009.12.028
https://doi.org/10.5194/hess-16-849-2012
https://doi.org/10.1029/2004WR003041
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1175/JHM-D-15-0157.1
https://doi.org/10.1088/1748-9326/acdae8
https://doi.org/10.1088/1748-9326/acdae8
https://doi.org/10.1007/s00190-009-0308-3
https://doi.org/10.1016/j.jhydrol.2004.03.028
https://doi.org/10.1029/2009wr008564
https://doi.org/10.5880/ICGEM.2018.003
https://doi.org/10.1002/hyp.9384
https://doi.org/10.1002/hyp.10684
https://doi.org/10.1002/2017WR020401
https://doi.org/10.1029/2004WR003604
https://doi.org/10.1080/00401706.1991.10484804


2294 P. Döll et al.: Leveraging multi-variable observations

and calibration, Hydrol. Earth Syst. Sci., 18, 3511–3538,
https://doi.org/10.5194/hess-18-3511-2014, 2014.

Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert,
C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Rei-
necke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Traut-
mann, T., and Döll, P.: The global water resources and use model
WaterGAP v2.2d: model description and evaluation, Geosci.
Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-
1037-2021, 2021.

Müller Schmied, H., Trautmann, T., Ackermann, S., Cáceres, D.,
Flörke, M., Gerdener, H., Kynast, E., Peiris, T. A., Schiebener,
L., Schumacher, M., and Döll, P.: WaterGAP v2.2e, Zenodo
[code], https://doi.org/10.5281/zenodo.6902110, 2023.

Nerger, L. and Hiller, W.: Software for ensemble-based
data assimilation systems – Implementation strate-
gies and scalability, Comput. Geosci., 55, 110–118,
https://doi.org/10.1016/j.cageo.2012.03.026, 2013.

Paiva, R. C. D., Collischonn, W., Bonnet, M.-P., de Gonçalves,
L. G. G., Calmant, S., Getirana, A., and Santos da Silva,
J.: Assimilating in situ and radar altimetry data into a large-
scale hydrologic-hydrodynamic model for streamflow forecast
in the Amazon, Hydrol. Earth Syst. Sci., 17, 2929–2946,
https://doi.org/10.5194/hess-17-2929-2013, 2013.

Pianosi, F. Beven, K., Freer, J., Hall, J. W., Rougier, J.
Stephenson, D. B., and Wagener, T.: Sensitivity analy-
sis of environmental models: A systematic review with
practical workflow, Environ. Modell. Softw., 79, 214–232,
https://doi.org/10.1016/j.envsoft.2016.02.008, 2016.

Rakovec, O., Kumar, R., Attinger, S., and Samaniego, L.: Improving
the realism of hydrologic model functioning through multivari-
ate parameter estimation, Water Resour. Res., 52, 7779–7792,
https://doi.org/10.1002/2016WR019430, 2016.

Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied,
H., and van Beek, L. P. H.: Global models underestimate large
decadal declining and rising water storage trends relative to
GRACE satellite data, P. Natl. Acad. Sci. USA, 115, E1080–
E1089, https://doi.org/10.1073/pnas.1704665115, 2018.

Scanlon, B. R., Zhang, Z., Rateb, A., Sun, A., Wiese, D., and Save,
H.: Tracking Seasonal Fluctuations in Land Water Storage Using
Global Models and GRACE Satellites, Geophys. Res. Lett., 46,
5254–5264, https://doi.org/10.1029/2018GL081836, 2019.

Schumacher, M.: Methods for Assimilating Remotely-Sensed Wa-
ter Storage Changes into Hydrological Models, PhD thesis, Uni-
versity of Bonn, Bonn, https://hdl.handle.net/20.500.11811/6630
(last access: 22 May 2024), 2016.

Schumacher, M., Kusche, J., and Döll, P.: A systematic im-
pact assessment of GRACE error correlation on data as-
similation in hydrological models, J. Geodesy, 90, 537–559,
https://doi.org/10.1007/s00190-016-0892-y, 2016a.

Schumacher, M., Eicker, A., Kusche, J., Müller Schmied, H.,
and Döll, P.: Covariance Analysis and Sensitivity Studies for
GRACE Assimilation into WGHM, in: IAG 150 Years, edited
by: Rizos, C. and Willis, P., Proceedings of the IAG Sci-
entific Assembly in Postdam, Germany, 2013, Vol. 143, 1st
edn., Cham, s.l.: Springer International Publishing Interna-
tional Association of Geodesy Symposia, Vol. 143, 241–247,
https://doi.org/10.1007/1345_2015_119, 2016b.

Schumacher, M., Forootan, E., van Dijk, A.I.J.M., Müller Schmied,
H., Crosbie, R. S., Kusche, J., and Döll, P.: Improving drought

simulations within the Murray-Darling basin by combined
calibration/assimilation of GRACE data into the WaterGAP
Global Hydrology Model, Remote Sens. Environ., 204, 212–228,
https://doi.org/10.1016/j.rse.2017.10.029, 2018.

Stisen, S., Koch, J., Sonnenborg, T. O., Refsgaard, J. C., Bircher,
S., Ringgaard, R., and Jensen, K. H.: Moving beyond run-
off calibration – Multivariable optimization of a surface-
subsurface-atmosphere model, Hydrol. Process., 32, 2654–2668,
https://doi.org/10.1002/hyp.13177, 2018.

Troy, T. J., Wood, E. F., and Sheffield, J.: An effi-
cient calibration method for continental-scale land
surface modeling, Water Resour. Res., 44, W09411,
https://doi.org/10.1029/2007WR006513, 2008.

Vishwakarma, B. D., Zhang, J., and Sneeuw, N.: Downscaling
GRACE total water storage change using partial least squares
regression, Sci. Data, 8, 95, https://doi.org/10.1038/s41597-021-
00862-6, 2021.

Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson,
B. A.: Equifinality of formal (DREAM) and informal (GLUE)
Bayesian approaches in hydrologic modeling?, Stoch Env. Res.
Risk A., 23, 1011–1026, https://doi.org/10.1007/s00477-008-
0274-y, 2009.

Wanders, N., Bierkens, M. F. P., de Jong, S. M., Roo,
A., and Karssenberg, D.: The benefits of using remotely
sensed soil moisture in parameter identification of large-scale
hydrological models, Water Resour. Res., 50, 6874–6891,
https://doi.org/10.1002/2013WR014639, 2014.

Wang, Q. J., Bennett, J. C., Robertson, D. E., and Li, M.: A
data censoring approach for predictive error modelling of flow
in ephemeral rivers, Water Resour. Res., 56, e2019WR026128,
https://doi.org/10.1029/2019WR026128, 2020.

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best,
M. J., and Viterbo, P.: The WFDEI meteorological forcing
data set: WATCH Forcing Data methodology applied to ERA-
Interim reanalysis data, Water Resour. Res., 50, 7505–7514,
https://doi.org/10.1002/2014WR015638, 2014.

Werth, S. and Güntner, A.: Calibration analysis for water storage
variability of the global hydrological model WGHM, Hydrol.
Earth Syst. Sci., 14, 59–78, https://doi.org/10.5194/hess-14-59-
2010, 2010.

Westerberg, I. K., Wagener, T., Coxon, G., McMillan, H.
K., Castellarin, A., Montanari, A., and Freer, J.: Un-
certainty in hydrological signatures for gauged and un-
gauged catchments, Water Resour. Res., 52, 1847–1865,
https://doi.org/10.1002/2015WR017635, 2016.

Xie, H., Longuevergne, L., Ringler, C., and Scanlon, B. R.: Cal-
ibration and evaluation of a semi-distributed watershed model
of Sub-Saharan Africa using GRACE data, Hydrol. Earth Syst.
Sci., 16, 3083–3099, https://doi.org/10.5194/hess-16-3083-2012,
2012.

Xie, X. and Zhang, D.: A partitioned update scheme for state-
parameter estimation of distributed hydrologic models based on
the ensemble Kalman filter, Water Resour. Res., 49, 7350–7365,
https://doi.org/10.1002/2012WR012853, 2013.

Yassin, F., Rzavi, S., Wheater, H., Sapriza-Azuri, G., Davison,
B., and Pietroniro, A.: Enhanced identification of a hydrologic
model using streamflow and satellite water storage data: A mul-
ticriteria sensitivity analysis and optimization approach, Hydrol.

Hydrol. Earth Syst. Sci., 28, 2259–2295, 2024 https://doi.org/10.5194/hess-28-2259-2024

https://doi.org/10.5194/hess-18-3511-2014
https://doi.org/10.5194/gmd-14-1037-2021
https://doi.org/10.5194/gmd-14-1037-2021
https://doi.org/10.5281/zenodo.6902110
https://doi.org/10.1016/j.cageo.2012.03.026
https://doi.org/10.5194/hess-17-2929-2013
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.1002/2016WR019430
https://doi.org/10.1073/pnas.1704665115
https://doi.org/10.1029/2018GL081836
https://hdl.handle.net/20.500.11811/6630
https://doi.org/10.1007/s00190-016-0892-y
https://doi.org/10.1007/1345_2015_119
https://doi.org/10.1016/j.rse.2017.10.029
https://doi.org/10.1002/hyp.13177
https://doi.org/10.1029/2007WR006513
https://doi.org/10.1038/s41597-021-00862-6
https://doi.org/10.1038/s41597-021-00862-6
https://doi.org/10.1007/s00477-008-0274-y
https://doi.org/10.1007/s00477-008-0274-y
https://doi.org/10.1002/2013WR014639
https://doi.org/10.1029/2019WR026128
https://doi.org/10.1002/2014WR015638
https://doi.org/10.5194/hess-14-59-2010
https://doi.org/10.5194/hess-14-59-2010
https://doi.org/10.1002/2015WR017635
https://doi.org/10.5194/hess-16-3083-2012
https://doi.org/10.1002/2012WR012853


P. Döll et al.: Leveraging multi-variable observations 2295

Process., 31, 3320–3333, https://doi.org/10.1002/hyp.11267,
2017.

Yu, P. L.: A class of solutions for group decision problems, Manage.
Sci., 19, 936–946, https://doi.org/10.1287/mnsc.19.8.936, 1973.

Zaitchik, B. F., Rodell, M., and Reichle, R. H.: Assimilation of
GRACE Terrestrial Water Storage Data into a Land Surface
Model: Results for the Mississippi River Basin, J. Hydrometeor.,
9, 535–548, https://doi.org/10.1175/2007JHM951.1, 2008.

https://doi.org/10.5194/hess-28-2259-2024 Hydrol. Earth Syst. Sci., 28, 2259–2295, 2024

https://doi.org/10.1002/hyp.11267
https://doi.org/10.1287/mnsc.19.8.936
https://doi.org/10.1175/2007JHM951.1

	Abstract
	Introduction
	Approaches for parameter and uncertainty estimation in global hydrological modeling based on observations of multiple model output variables
	POC
	GLUE
	EnCDA

	Methods and data
	The global water resources and use of model WaterGAP
	Calibration setup for the Mississippi River basin
	Study period and CDA units
	Observational data
	Climate forcing
	Calibration parameters

	Performance and uncertainty metrics
	Implementation of calibration approaches in this study
	POC
	GLUE
	EnCDA


	Results
	Model performance during the calibration period 2003–2012
	Optimal parameter sets
	Behavioral parameter sets

	Model performance during the validation period 2013–2016
	Characterization of estimated parameter sets
	CDA unit MRB
	The five sub-basin CDA units

	Added value of spatially more resolved CDA units

	Discussion
	Advantages and disadvantages of the three ensemble-based multi-variable calibration approaches
	Added value of multi-variable calibration as compared to the standard WaterGAP calibration for identifying one optimal parameter set
	Estimation of output uncertainty
	Trade-offs between optimal simulation of Q and TWSA
	Added value of sub-basin CDAs instead of one basin CDA
	Characteristics of identified (Pareto-) optimal and behavioral parameter sets

	Conclusions
	Appendix A: Comparison of the three ensemble-based approaches
	Appendix B: Surface waterbodies and human water abstractions in the CDA units of the Mississippi River basin
	Appendix C: Performance of different calibration methods during the calibration period 2003–2012: components of the KGE performance metric for both Q and TWSA
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

