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Abstract. There are indications that the reference climatol-
ogy underlying meteorological drought has shown nonsta-
tionarity at seasonal, decadal, and centennial timescales, im-
pacting the calculation of drought indices and potentially
having ecological and economic consequences. Analyzing
these trends in meteorological drought climatology beyond
100 years, a time frame which exceeds the available period
of observation data, contributes to a better understanding of
the nonstationary changes, ultimately determining whether
they are within the range of natural variability or outside this
range. To accomplish this, our study introduces a novel ap-
proach to integrate unevenly scaled tree-ring proxy data from
the North American Seasonal Precipitation Atlas (NASPA)
with instrumental precipitation datasets by first temporally
downscaling the proxy data to produce a regular time se-
ries and then modeling climate nonstationarity while simul-
taneously correcting model-induced bias. This new model-
ing approach was applied to 14 sites across the continental
United States using the 3-month standardized precipitation
index (SPI) as a basis. The findings showed that certain lo-
cations have experienced recent rapid shifts towards drier or
wetter conditions during the instrumental period compared
to the past 1000 years, with drying trends generally found in
the west and wetting trends in the east. This study also found
that seasonal shifts have occurred in some regions recently,
with seasonality changes most notable for southern gauges.
We expect that our new approach provides a foundation for
incorporating various datasets to examine nonstationary vari-
ability in long-term precipitation climatology and to confirm
the spatial patterns noted here in greater detail.

1 Introduction

Understanding meteorological drought trends is important as
the entangled impacts of anthropogenic climate change and
natural climate variability have shown complicated patterns
of precipitation change over the last century (Ault, 2020;
Schubert et al., 2016). Drought severity and duration have
changed over time at seasonal, interannual, or centennial
scales, with subsequent impacts on human and ecological
systems (Trenberth, 2011; Van Loon et al., 2016). Many stud-
ies have investigated trends or shifts in drought related to
climate change (Marvel et al., 2021; Williams et al., 2020;
Mishra et al., 2010; Marvel et al., 2019; Trenberth et al.,
2014). Previous research has relied heavily on observed or re-
motely sensed precipitation records, which often do not cover
periods exceeding 100 years. Although such observations
can capture modern drought trends, 100 years of data are not
sufficient for determining whether recent drought trends are
part of long-term cyclic variability, due to recent unprece-
dented trends, or are a combination of the two (Easterling et
al., 2000; Cook et al., 2015).

In addition, previous studies have indicated that precip-
itation seasonality has changed during the observed pe-
riod. These changes include increases in the amplitude be-
tween the wet and dry seasons or temporal shifts in the dri-
est/wettest period (Marvel et al., 2021; Weiss et al., 2009;
Pal et al., 2013). Even without substantial changes in the
annual mean precipitation, shifts in precipitation seasonal-
ity can have a significant impact on local ecosystems or an-
thropogenic water management schemes, such as reservoirs,
that rely on storing and releasing seasonal flow. As a re-
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sult, understanding seasonal cycles and nonstationary shifts
in seasonality is important for building adaptive and robust
water management schemes (Konapala et al., 2020). For cli-
mate projections over the next 100 years, Marvel et al. (2021)
found projected changes in annual precipitation cycles across
the US Midwest and the upper Great Plains. This region
is projected to undergo a shift in peak precipitation to ear-
lier in the year without substantial changes in precipitation.
This study also projected an increase in precipitation during
the wettest season (winter) in the Northwest and Southeast
US, thereby increasing the seasonal variance in precipitation.
Changes in seasonality or seasonal variance can be better un-
derstood when viewed in a historical context using a much
longer time window to determine whether they are within
the range of natural climate variability or outside this range
(Coats et al., 2015).

Therefore, much longer timescales are needed for a com-
prehensive understanding of nonstationary drought trends,
preferably using a multi-centennial timescale (Torbenson and
Stahle, 2018; Herweijer et al., 2007; Cook et al., 2010a;
Diffenbaugh et al., 2015). Paleoclimate reconstructions use
environmental proxies, such as tree-ring chronologies or
speleothem records that physically record some aspect of cli-
mate, and can cover a much longer period than instrumen-
tal observations (Cook et al., 2016). For example, this study
uses a reconstruction of precipitation across North Amer-
ica based on tree rings, which infer the relative availabil-
ity of regional precipitation or soil moisture from the an-
nual growth. This particular reconstruction is a continental-
scale gridded reconstruction rather than a regional or lo-
cal gridded reconstruction. Large-scale gridded reconstruc-
tions sacrifice some local precision but have the benefit
of generating a single complete dataset based on a com-
mon methodology, which can leverage a larger catalog of
chronologies. Several such gridded hydrometeorological re-
construction datasets using tree-ring proxies are available
across North America. The North American Drought Atlas
(NADA; Cook et al., 1999) reconstructs the Palmer drought
severity index (PDSI; Palmer, 1965) for June–August (JJA)
from 0–2006 CE (hereafter all years are denoted in CE) and
has been used to determine historic drought severities (Cook
et al., 2010b; Cook and Krusic, 2008). The North Ameri-
can Seasonal Precipitation Atlas (NASPA) is another precip-
itation reconstruction recently developed with two distinct
seasons: December–April (DJFMA) and May–July (MJJ)
(Stahle et al., 2020a). The NASPA dataset provides both the
standardized precipitation index (SPI) and averaged precip-
itation for both the cool and warm seasons. The NASPA
is used here since it covers the past 2000 years and con-
tains cool- and warm-season records for each year. Over
2000 years of subannual-scale records enable an investiga-
tion of nonstationary drought trends and seasonal shifts at a
multi-centennial scale if they can be combined with recently
observed instrumental datasets (Trenberth et al., 2014; Mar-
vel et al., 2019; Cook et al., 2016).

Despite the value of long reconstructions, comparing me-
teorological drought trends across observed and proxy-based
reconstruction datasets is challenging as these data types are
often not directly compatible (Baek et al., 2017; St. George
et al., 2010). The first challenge is that each dataset often has
non-negligible biases. Biases in proxy reconstructions can be
caused by indirect measurement of the target variable, e.g.,
precipitation, by means of tree-ring growth. For example,
bias can be introduced during the standardization process,
which is designed to isolate the interannual signal from the
long-term geometric growth of a tree. Trees also have physio-
logical responses to continuous extreme drought or pluvials,
which can limit variance at the extremes (Franke et al., 2013;
Robeson et al., 2020). Even among gridded datasets based
on gauge observations, bias can be introduced by the use of
imperfect transforming algorithms (Sun et al., 2018) due to
orographic-induced bias, underestimation of trace precipita-
tion amounts (Goodison et al., 1998), or wind-related under-
catch (Pollock et al., 2018). Thereby, precipitation measure-
ments for the same period can differ across datasets. These
biases can cause one dataset to systematically under- or over-
estimate precipitation compared to other datasets (Robeson
et al., 2020) or modify the range of estimates. Quantifying
and minimizing these biases is necessary to merge disparate
datasets and analyze a common trend across various datasets.

A second challenge for merging reconstructions with ob-
servations concerns their heterogeneous spatial and temporal
scales (Cook and Krusic, 2008). For example, the NASPA re-
constructions provide only two time series per year with dif-
ferent precipitation periods: May–July and December–April.
Instrumental datasets can have subdaily, daily, or monthly
temporal scales (Howard et al., 2021). Therefore, timescales
must be unified if one is to merge instrumental with recon-
structed datasets to observe common nonstationary seasonal
trends. In addition, the spatial resolution of gridded datasets
varies, and centers of those grid cells do not always match.
Thus, matching co-located grid cells through creating a com-
mon spatial resolution is an important aspect of representing
common characteristics in precipitation (Abatzoglou, 2013).

This study is designed to address the challenge of con-
structing 2000 years of precipitation climatology by merging
multiple datasets with varied biases and temporal scales. The
objectives of this study are therefore to (1) construct down-
scaled NASPA precipitation time series (downscaling from a
biannual to a monthly scale) with a 3-month average resolu-
tion, (2) identify unique biases inherent in different precipi-
tation data and remove these biases, and ultimately (3) con-
struct a 2000-year continuous climatology model that can
capture century-scale shifts in 3-month average precipitation.
This approach mimics the underlying distribution methodol-
ogy of the standard precipitation index. The continuous cli-
matology derived from proxy reconstructions and modern
observations is the true goal, with the first two objectives
functioning as necessary intermediate steps towards this ulti-
mate goal.
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Here, we first temporally downscale NASPA data us-
ing a statistical downscaling technique, k-nearest neighbors
(KNN). Then, we develop a model to simultaneously capture
nonlinear trends while accounting for unique biases across
proxy and instrumental datasets by decomposing informa-
tion from all datasets into their shared long-term trends, sea-
sonality, and data-specific biases. Ultimately, our approach
allows us to simultaneously model long-term trends for dif-
ferent seasons.

2 Methodology

For the first step, the temporal downscaling of NASPA pre-
cipitation, we applied the statistical downscaling technique,
KNN. KNN is a statistical downscaling technique widely
used in hydrologic time series (Raje and Mujumdar, 2011;
Gangopadhyay et al., 2005; Gutmann et al., 2012), such
as when reconstructing annual streamflow from tree-ring
chronology data or producing local-scale precipitation or
temperature time series using neighboring climate stations
(Gangopadhyay et al., 2005, 2009). A hierarchical gener-
alized additive model (GAM) is then developed and ap-
plied to merge the datasets and analyze trends. This ap-
proach is tested at 14 sites across the continental US. Sec-
tion 2.1 presents precipitation datasets used in this study,
while Sect. 2.2 provides background on SPI calculation. Sec-
tion 2.3 introduces the novel KNN approach for temporal
downscaling of the reconstructed precipitation, and Sect. 2.4
describes the GAM for merging disparate datasets and an-
alyzing meteorological drought trends using the SPI frame-
work.

2.1 Data

The Global Precipitation Climatology Centre (GPCC;
Becker et al., 2013) was used to temporally downscale the
NASPA and disaggregate it into monthly values, as this was
the instrumental target for the NASPA reconstructions. The
underlying precipitation datasets used in the analyses pre-
sented here are as follows.

First, we have the North American Seasonal Precipita-
tion Atlas (NASPA), a dataset of gridded reconstructions
of precipitation that is based on a network of 986 tree-
ring chronologies from across the North American continent
(Stahle et al., 2020a). Precipitation totals and the SPI are
reconstructed for December–April (DJFMA) and May–July
(MJJ) across a 0.5°× 0.5° grid, resulting in a total of 6812
grid cells (Stahle et al., 2020a). The length of the reconstruc-
tions varies across space and between seasons but has a max-
imum of over 2000 years at many locations, particularly in
the western US.

The NASPA reconstructions target the GPCC and are ap-
plied at each GPCC grid point using ensembles of tree-ring
chronology-based regressions (Stahle et al., 2020a). An ad-
ditional NASPA reconstruction dataset for MJJ exists for the
period 1400–2016, in which the MJJ precipitation estimates
were reprocessed to remove any persistent signal from the
DJFMA reconstruction (Torbenson et al., 2021). Our model
uses the DJFMA and original unprocessed MJJ reconstruc-
tions to maximize the period of study and because the GAM
accounts for some level of persistence.

Second, we have Climatic Research Unit Time-Series
(CRU TS) version 4.01, a 0.5°× 0.5° gridded dataset of
monthly climate data. It is based on individual station ob-
servations which are directly interpolated to a gridded scale
(New et al., 2000; Harris et al., 2020). This study used CRU
TS version 4.01, which covers the period 1901–2018 (Har-
ris et al., 2020). The Climatic Research Unit (CRU) dataset
was used because it is a well-validated dataset that provides
a long temporal coverage based on ground stations.

Third, we have the Gridded Surface Meteorological (grid-
MET) dataset, a gridded (1/24°× 1/24°) dataset of daily
resolution data from 1950–2020 for the US (Maurer et al.,
2002). The gridMET dataset is constructed by combining di-
rect, daily gauge observations with regional-scale reanalysis
to fill gaps (Abatzoglou, 2013). In this study, we assume the
gridMET dataset as a “ground truth” and use it to correct
biases in CRU and NASPA datasets because the gridMET
dataset incorporates satellite data, making it highly accurate
and spatially well-distributed with a high resolution.

Finally, we have GPCC version 7 (GPCC v7), a gridded
precipitation product built on gauge-based precipitation. The
monthly resolved GPCC v7 covers the period 1901 to 2013
at a 0.5°× 0.5° spatial resolution (Becker et al., 2013). Since
the NASPA reconstructions were originally developed at a
gridded scale via regression using GPCC data (and further
validated and calibrated based on GPCC data), we assumed
that the GPCC and NASPA datasets share regional and tem-
poral characteristics. Thus, this study uses monthly GPCC
data to best mimic the intra-annual characteristics for tem-
porally downscaling NASPA estimates and disaggregating
them into monthly time series. The GPCC is only used for
the temporal disaggregation of NASPA data and is not in-
cluded in the hierarchical GAM.

2.2 Drought measurement

Drought is defined as a lack of water within the hydrologic
cycle relative to the given climatology of a location. Me-
teorological drought refers to a deficit in precipitation rela-
tive to the typical conditions for a location and period. The
severity of meteorological drought is often measured by the
standard precipitation index (SPI). The SPI is calculated by
fitting a time series of n days of accumulated precipitation
to a set of probability distributions for each period’s cli-
matology and then using these distributions to convert ac-
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cumulated precipitation into the standard normal distribu-
tion (Lloyd-Hughes and Saunders, 2002; Stagge et al., 2017,
2015; Guttman, 1999). SPI values therefore represent the
number of standard deviations from the typical conditions
for a site and time of the year. The SPI is widely used for
studying or monitoring meteorological drought, particularly
by the US Drought Monitor and the World Meteorological
Organization (WMO). It has unique strengths as a result of
using precipitation only: a simple data requirement and cal-
culation process as well as a straightforward interpretation
between averaged precipitation and drought severity (Dai,
2011; Ukkola et al., 2020; Svoboda et al., 2002).

In this study, we use a 3-month moving average of precip-
itation (SPI-3) to provide seasonal characteristics of drought
(Patel et al., 2007). We present SPI-3 values of −1.5, 0, and
1.5, which are equivalent to the 6th-percentile, mean, and
94th-percentile thresholds of a fitted two-parameter gamma
distribution. These thresholds are commonly used in drought
and pluvial studies to represent precipitation associated with
dry-anomaly, typical, and wet conditions (Heim, 2002), and
a similar threshold (5th percentile) is used by the US Drought
Monitor (Svoboda et al., 2002).

2.3 Temporal downscaling using k-nearest-neighbor
resampling

KNN is a downscaling technique designed to estimate some
target information by searching a set of historical catalogs
of the target vector and finding the k most similar analogs,
where k can be any number of the user’s choice (Gangopad-
hyay et al., 2005). In this study, monthly GPCC time series
were used as sampling catalogs for selecting target vectors
(annual precipitation sequences) based on NASPA values.
More specifically, the goal is to insert k historical 13-month
precipitation sequences from the GPCC library into a given
year of the NASPA reconstruction based on the similarity to
the recorded SPI values during the prior and current year.
The 13-month sequence is considered a single downscaling
unit containing three known NASPA values across a year
(Fig. 1). To do this, multiple (k = 10) historical annual se-
quences are inserted for each year of the reconstruction to ap-
proximate plausible monthly precipitation patterns that most
closely match the three NASPA-reconstructed periods.

Figure 1 outlines the temporal-downscaling process us-
ing KNN. For each year, NASPA values were constructed
as the target vector using three data points as follows: SPI-3
during the previous year’s MJJ period, SPI-5 in this year’s
DJFMA period, and SPI-3 in this year’s MJJ period. SPI-
3 and SPI-5 values calculated from the GPCC instrumental
period (1901–2013) for the same location were compiled to
form the data library. The GPCC was used because it formed
the basis for the original NASPA reconstruction (Stahle et al.,
2020a). Second, for each year, we calculated the Euclidean
distances between the target vector from NASPA and the
available GPCC library to select 10 sequences (k = 10) from

the GPCC SPI time series which have the closest Euclidean
distance to the target NASPA SPI values. Note that resam-
pled sequences are permitted to be any historical 13-month
SPI series, regardless of whether the months align, increas-
ing the number of available sequences from 113 (years in the
GPCC dataset) to 1356 (years times months). This is possi-
ble because the SPI is agnostic to the season – each month
follows a standard normal distribution. Then, the 10 resam-
pled monthly SPI-3 time series were converted back to the
3-month precipitation using two-parameter gamma distribu-
tions derived from the GPCC dataset. Lastly, the 10 sets of
precipitation time series were averaged and inserted into the
targeted year of the NASPA.

Overall, our downscaling approach provides a few advan-
tages. First, it reflects the compatibility of the climate field
as it searches analogs from the same location. Second, direct
resampling from the GPCC sample field based on similarity
incorporates realistic seasonal progression and the 3-month
structural persistence of the SPI. Third, the k neighbors cre-
ate an ensemble of equally likely time series, identifying an
envelope of feasible time series when there is no information
between the three points from the NASPA reconstruction.

Downscaling skill was measured by means of the normal-
ized mean absolute error (nMAE) using the following equa-
tion:

nMAE=

∑
Month,year|GPCC−NASPA|∑

Month,yearGPCC
, (1)

where GPCC represents the observed precipitation during
the instrumental period and NASPA represents the ensemble
mean of the reconstructed precipitation after applying KNN
downscaling to the NASPA reconstruction.

2.4 Bias correction using the hierarchical GAM

Generalized additive models (GAMs) are statistical models
that enable regression using nonlinear smooth functions in-
stead of, or in addition to, linear covariates. GAMs are a sub-
set of generalized linear models (GLMs), meaning their re-
gression terms can represent parameters for data with distri-
butions other than the normal distribution. However, while
most GLMs apply linear regression principles to model a
distribution’s parameters, GAMs can include nonlinear terms
(Simpson, 2018; Wood, 2008; Pedersen et al., 2019). When
nonlinear terms are applied to time series data, GAMs also
permit spanning irregularly sampled data to model complex
and nonlinear drought trends. This method was applied to
create a single common estimate of the temporally vary-
ing gamma distribution parameters representing precipitation
climatology by incorporating information from multiple bi-
ased data products. We refer to the process of accounting for
seasonal bias in the mean and shape parameters from dif-
ferent datasets as “bias correction” for the remainder of this
paper, as it mirrors the process of bias correction by moment
matching. However, unlike with a separate bias correction
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Figure 1. A framework for the temporal downscaling process. The monthly-scale (3-month average) NASPA precipitation time series is
constructed using this process. This method is applied for every year of reconstruction. Note that “NNs” stands for nearest neighbors.

step, this is performed within the GAM, permitting confi-
dence intervals around each of the bias correction terms.

GAMs have been previously applied to accumulated
precipitation data to estimate the parameters of the two-
parameter-gamma-distribution SPI under nonstationary cli-
mate conditions (Stagge and Sung, 2022; Shiau, 2020; Sung
and Stagge, 2022). This study relies on the nonstationary SPI
approach introduced in Stagge and Sung (2022) and applied
in Sung and Stagge (2022). In this approach, the two pa-
rameters (mean and shape) of the gamma probability distri-
bution are modeled as slowly changing through two covari-
ates of time: year (to capture multi-decadal trends for certain
months) and month (to capture recurring seasonality). Here,
we expand this approach by adding a hierarchical grouping
variable to simultaneously model common seasonal-specific
long-term trends across datasets while incorporating variabil-
ity at the group level, following the approach of Pedersen
et al. (2019). When applied, this model decomposes infor-
mation from all datasets (CRU, gridMET, and NASPA) into
a smoothed long-term trend that is common to all datasets
and into an additional annual seasonality smoother that varies
slightly by dataset to account for bias relative to the gridMET
dataset. In this way, there is a single common trend, with an
adjustment added to shift the mean and shape parameters up
or down seasonally based on the data source.

The detailed model framework is shown below in Eqs. (2)–
(4). The gamma distribution is typically prescribed by shape
and scale parameters (α and θ , respectively), but our ap-
proach follows Wood (2006), instead estimating the mean
and shape parameters (Eqs. 3–4). The scale parameter can

then be estimated from the mean and shape (Eq. 2).

P3 month,m,y = gamma(α,θ)
(
m: month,
y: year

)
,

where θ =
µ

α
, (2)

µ= β0µ

(
CRU
NASPA
gridMET

)
+β1µfs_µ

(
Xmonth,by =

CRU
NASPA
gridMET

)
+β2µfte_µ

(
Xyear,Xmonth

)
, (3)

1
log(α)

= β0α

(
CRU
NASPA
gridMET

)
+β1αfs_α

(
Xmonth,by =

CRU
NASPA
gridMET

)
+β2αfte_α

(
Xyear,Xmonth

)
, (4)

where P3 month,m,y represents the 3-month moving average
of precipitation at year y and month m. The precipitation
is fitted to a gamma probability distribution, which has µ
(mean) and α (shape parameter). The β are different param-
eters of the spline functions, fs and fte, which denote cyclic
and tensor splines, respectively. The underlying principle of
the model is that there is a single best estimate of the precipi-
tation distribution at any given time. This is described by the
mean and shape parameters of the gamma distribution that
change seasonally, β1fs(Xmonth, by= dataset), and can also
change slowly at a multi-decadal scale, fte(XyearXmonth),
with a constant y intercept, β0(dataset). Similar to quantile-
mapping bias correction (Lanzante et al., 2018; Ho et al.,
2012), the β0,model+β1f (Xmonth, by= dataset) terms in both
shape and mean parameters allow for adjustments based on
the month and the model. The model is therefore capable of
modeling trends and correcting data-induced bias simultane-
ously.

The single common tensor product spline smoother
(fte(Xyear,Xmonth)) is shared across all datasets to model the
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interaction of long-term trends (Xyear) relative to the sea-
son (Xmonth) using smoothly changing parameters for the
two dimensions (year and month). A tensor product spline is
an anisotropic multi-dimensional smoother, meaning it can
model the interaction of variables with different units and
can assign different degrees of smoothing for each direction,
which is necessary for dimensions of month and year. Es-
timating β2µ and β2α in terms of years and months allows
for nonlinear annual trends for each month while constrain-
ing these trends to be smooth through time. We constrain the
smoother with control points (knots) every 70 years for mean
and shape parameters to approximate climate variability at
decadal scales while preventing excessive sensitivity/volatil-
ity. As such, the tensor product can simultaneously model
seasonal precipitation regimes, shifts in those periods to ear-
lier or later in the year, and nonstationary changes in the
long term. The tensor spline approach of modeling trends in
two time dimensions follows the methodology of Stagge and
Sung (2022).

The first two terms derive the intercept and seasonal-
ity distinctive to each dataset. The first term, β0 (datasets),
accounts for the dataset-specific intercept, and the sec-
ond term, β1fs (Xmonth,by = dataset), accounts for dataset-
specific seasonality. Cyclic spline functions, fs, were applied
to model the seasonality term, assuming that a cyclic function
for the recurrent monthly term constrains the model, so that
late December and early January have similar values, match-
ing with their second derivative. This term is stationary; i.e.,
it does not change from year to year. The term f (Xmonth
by= dataset) uses group-level smoothers for this seasonal
bias spline, meaning that each dataset applies unique sea-
sonal adjustments to the common tensor product spline. A
dataset-specific intercept, β0(dataset), was also included to
capture consistent biases between datasets. The variations
in smoothing functions and parameter β are modeled using
“mgcv” packages in R (Wood, 2008).

Bias correction was conducted based on three assump-
tions: (1) the gridMET dataset is not systematically biased
(Yang et al., 2017); (2) the magnitude of bias can differ by
season; and (3) biases are stationary in the long term – i.e., bi-
ases during overlapped periods are representative of biases
throughout the rest of the data. Following the first assump-
tion, when plotting results, we adjust CRU and NASPA pa-
rameters to match the gridMET dataset. The second and third
assumptions are addressed by β0,model+β1f (Xmonth, by =
dataset) permitting different bias corrections by month and
model, which are estimated during overlapping periods and
fixed outside these periods.

The significance of the modeled trend is tested using the
instantaneous first derivative method. This method calculates
the first derivative of the modeled trend with 1000 randomly
drawn estimates of the modeled mean and shape parameters
over time (by year). Then, we calculate the 95 % confidence
interval around the first derivatives to indicate periods where
the trend is significantly different from zero, i.e., where the

Figure 2. Gauge site locations. The abbreviations of the locations
are as follows. 1: Aber, WA. 2: Grd, MT. 3: Mor, MN. 4: Nyc, NY.
5: Den, CO. 6: Mrv, OH. 7: Los, CA. 8: Mtv, CO. 9: Okc, OK.
10: Sbw, NC. 11: Phx, AZ. 12: Roe, NM. 13: Wax, TX. 14: Alb,
GA.

trend is increasing or decreasing. The nonlinear trend analy-
sis approach overcomes the limitation of simple linear signif-
icance tests, which only capture monotonic changes. Accord-
ingly, it is not possible to discuss a single “trend”, but one
can discuss whether the distribution mean is significantly in-
creasing or decreasing at a given time, which is represented
by the instantaneous first derivative. As such, this method
has the benefit of preserving all nonlinear and nonstationary
characteristics in modeled trends while providing estimates
of significant changes. The results of this analysis are shown
in Fig. S5 in the Supplement.

The developed model was applied to 14 locations across
the continental United States (Fig. 2; Table 1). These sites
were chosen based on the availability of relatively long in-
strumental records, adequate NASPA reconstruction skill,
and their representation of a wide range of climate regions.
NASPA reconstruction skills are investigated using calibra-
tion and validation statistics by data creators (Stahle et al.,
2020b). One of the calibration statistics, the coefficients of
multiple determination (R2), is presented in Table 1. We
avoid determining whether the datasets are acceptable or not
through these statistics; rather, we aim to clarify which sea-
sons or regions have better skills.

3 Results

3.1 Temporally downscaled monthly NASPA time
series

In order to merge the NASPA data with CRU and gridMET
data, the irregularly spaced NASPA must first undergo tem-
poral downscaling, or disaggregation, to achieve a regular
monthly time step and 3-month duration. The downscaled
NASPA (dsNASPA) time series, averaged over 3 months,
was constructed at a monthly scale and given the “ds-” pre-
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Table 1. List of sites considered in this study. The number assigned
to each site refers to its location in Fig. 1. NASPA reconstruction
skill for the cool (DJFMA) and warm (MJJ) seasons is presented in
terms of R2.

Symbol Location NASPA skill (R2)

DJFMA MJJ

1 Aber, WA Aberdeen, WA 0.457 0.485
2 Grd, MT Gardiner, MT 0.486 0.485
3 Mor, MN Morris, MN 0.347 0.478
4 Nyc, NY New York City, NY 0.27 0.437
5 Den, CO Denver, CO 0.346 0.671
6 Mrv, OH Marysville, OH 0.295 0.323
7 Los, CA Los Angeles, CA 0.782 0.533
8 Mtv, CO Monte Vista, CO 0.446 0.498
9 Okc, OK Oklahoma City, OK 0.441 0.428
10 Sbw, NC South Brunswick, NC 0.245 0.265
11 Phx, AZ Phoenix, AZ 0.58 0.371
12 Roe, NM Rodeo, NM 0.544 0.366
13 Wax, TX Waxahachie, TX 0.365 0.644
14 Alb, GA Albany, GA 0.508 0.22

fix to distinguish it from the original NASPA reconstruction.
Figure 3 shows 3 example years for two sites with very dif-
ferent climatologies, showing the ensemble of 10 selected
nearest neighbors (pink); the resultant dsNASPA estimate
(black); and the true value from the GPCC for the years when
data are available, i.e. 1950 and 2010 (blue). Each figure dis-
plays 13 months, or one unit, of the KNN downscaling pro-
cess – from the previous year’s July to the current July. The
downscaling results for all study sites are shown in Figs. S1
and S3.

The dsNASPA generally agrees with the GPCC, espe-
cially with respect to capturing seasonality (Figs. 3 and S1).
Downscaling skill is generally good in the season between
December–February (DJF) and MJJ, where the NASPA re-
construction covers all 3 months (Figs. 3 and 4). The July
SPI-3 (MJJ) often produces the smallest nMAE, which is log-
ical given that the July SPI-3 period exactly overlaps with the
warm season (MJJ) from the NASPA. Thus, the downscaling
process has good information during this period and is not
required to do as much.

There are a few exceptions showing the best skill during
winter (DJF) and poor skill, with a large nMAE, during early
summer (MJJ, Fig. 4). This occurs only in the southwestern
US (i.e., Los Angeles, CA; Phoenix, AZ; and Rodeo, NM),
where the underlying NASPA shows better initial reconstruc-
tion skill during the region’s relatively mild winters (Table 1)
and less skill in summer. For the dsNASPA, the seemingly
large errors in the nMAE during MJJ are primarily due to ex-
tremely small values in the denominator of the nMAE as a
result of very low precipitation, combined with the fact that
infrequent large rainfall events are not captured. Figure S3 il-
lustrates that a few large precipitation events in these regions

drive a large nMAE (scatterplot); however, the dsNASPA still
matches the GPCC (time series) well. Despite this limita-
tion, downscaling accurately predicts the general precipita-
tion pattern in terms of seasonal and long-term average pre-
cipitation, with nMAE values generally between 0.1–0.5. We
compared the performance of the dsNASPA with a highly
naive alternative (assuming the mean of the GPCC clima-
tology) and found that the dsNASPA provides a clear signal
in the period with NASPA information (blue-shaded area in
Fig. 4). As expected, the dsNASPA provides less information
in the interpolation period where NASPA estimates are not
available. However, during the gap seasons, the dsNASPA
still produces a positive correlation with observations, useful
for measuring climatological shifts, and greatly reduces ex-
treme errors created by the naive estimator in the semiarid
west. For regions other than the semiarid locations described
above, errors during periods of good NASPA coverage occur
primarily due to the errors between the sampled GPCC and
NASPA (Fig. S3). For example, the dry bias shown in July
(MJJ) between the dsNASPA and GPCC in 1950 for Okla-
homa City, OK (Fig. 3e), is caused by uncertainty in the orig-
inal NASPA dataset, which caused the converged point of the
nearest neighbors (black) to underestimate precipitation rel-
ative to the GPCC observation (blue). May and June (MAM,
March–May, and AMJ, April–June, respectively) are repro-
duced nearly as well, given that these periods share coverage
from the cool (DJFMA) and warm (MJJ) reconstructions.

Later periods of the 5-month cool-season reconstruction,
January–March (JFM) and February–April (FMA), show
reasonably good accuracy. Error increases during fall and
winter across a temporal gap between NASPA reconstruc-
tions (Figs. 4 and S3). This is indicated by much broader
resampled estimate ranges (Figs. 3 and S3) during the late
fall and early winter.

3.2 Investigating model bias

Here, we investigate how dataset bias is quantified in the
model. As mentioned, our model accounts for two types of
bias: a consistent bias for a given dataset across the entire
year and seasonal-specific bias. These bias terms were esti-
mated for both the mean and shape parameters.

Typical results for the Monte Vista, CO, gauge show
how these biases are captured in a single model. Figure 5
shows the nonstationary mean estimate for each dataset, rep-
resented by the colored lines, and the SPI ranges of −1.5
to +1.5 (grey-shaded regions). Note that the nonstationary
mean lines all follow the same trend and are simply adjusted
up or down based on bias. At this station, dsNASPA and
CRU datasets tend to underestimate precipitation relative to
the gridMET benchmark across all four seasons. This con-
sistent offset may be due to the significantly coarser reso-
lution of the NASPA and CRU datasets, which may not cap-
ture elevation effects, particularly in this mountainous region.
The magnitude of bias also differed by season in this exam-
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Figure 3. Comparing the downscaled NASPA (black line), 10 nearest neighbors (pink lines), and GPCC (dashed blue line) for Aberdeen,
WA (a–c), and Oklahoma City, OK (d–f). The marked months on the x axis each refer to the last month of the 3-month rolling average.
Prcp.: precipitation.

Figure 4. The nMAE indicating downscaling skill at each location
(shown in grey) and the median nMAE (shown in red).

ple, with the greatest differences visible during the August–
October (ASO) season (Fig. 5). Note that the four periods we
highlight in this study were purposefully chosen to mimic
NASPA availability, anchored by the 3-month MJJ period,
rather than the more commonly used seasons (DJF, MAM,
JJA, SON).

In addition to detecting bias in the mean parameter, it
is possible to detect model bias in the shape parameter,
which controls variance, and thus identify the range be-
tween SPI−1.5 and +1.5. The most notable bias in the
shape parameter for the Monte Vista, CO, example is for
the dsNASPA, particularly during ASO, where the shape pa-
rameter is significantly overestimated, thereby decreasing the
variance for the same mean (Fig. 5). This is logical, as the

ensemble resampling approach likely decreased extremes for
the ASO period, for which there is no direct NASPA informa-
tion. The shape parameter bias is negligible for the FMA and
MJJ periods, which have full NASPA coverage. Shape pa-
rameter bias results for Monte Vista, CO, are typical of those
for other gauges studied here, with the largest bias exhibited
during the interpolated ASO period and little bias observed
in periods with good NASPA information.

We present results for all other regions in Fig. S4. The re-
sults indicate that the shape biases are largely dependent on
the season, whereas the mean biases are more dependent on
the gauge. Notably, the ASO season shows large biases in
the shape parameter. This is primarily because the dsNASPA
for this season cannot represent occasional extreme precipi-
tation values, leading to an underestimation of its variance. In
contrast, the MJJ season shows considerably less bias since
the dsNASPA was developed from complete precipitation es-
timate from the NASPA. A few exceptions exist in Monte
Vista, CO, and Gardiner, MT, where there are large biases in
the mean parameters across all seasons, possibly due to topo-
graphic effects between the gauge locations in these moun-
tainous regions.

3.3 Constructing long-term trends

By accounting for the model-induced bias described in
Sect. 3.2 and adjusting all datasets to match the gridMET
dataset, we were able to generate a 2000-year model of non-
stationary precipitation trends for each gauge. The modeled
long-term trends incorporating bias correction across all in-
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Figure 5. Long-term trends for each dataset for four periods at the Monte Vista, CO, site. The modeled long-term trends for the datasets are
represented as differently colored lines, while the SPI ranges (−1.5 to 1.5) for the datasets are indicated by grey regions.

strumental and proxy datasets for Albany, GA, and Monte
Vista, CO, are presented in Fig. 6 as examples to illustrate
the results of this approach. Figure 6 represents the long-
term mean for each season as a line with a shaded range
between SPI = −1.5 and +1.5, similar to Fig. 5. The solid
black line shows the common long-term trend of the mean,
while the precipitation series are shown as raw data without
bias correction for context. Figure 6 focuses on the period
1400–2020, when the original NASPA dataset has the best
reconstruction skills (Stahle et al., 2020a).

It is noteworthy that all seasons in Albany, GA, have ex-
perienced noticeable trend changes in recent years, but the
direction of change differs by season. Figure 6a shows the
warm season (MJJ) has underwent a long-lasting wetting
trend from the 1800s to 1900s, followed by a drying trend
during the 20th century in both the mean (SPI= 0) and wet
anomalies (SPI= 1.5). November–January (NDJ) shows a
wetting trend beginning in the mid-1800s and continuing to
the present for both wet and dry anomalies. The NDJ mean in
current years (2000–2020) shows the wettest condition of the
last 1000 years (Fig. 6a). This agrees with previous findings
using the NASPA dataset, which have identified the South-
east US (including Albany, GA) as experiencing the greatest
positive precipitation trend during the cool season (Stahle et
al., 2020a).

We note that the Albany, GA, site has also experienced
changes in the magnitude of variability between dry and wet
extremes. The range between SPI= 1.5 and SPI=−1.5 be-

came much larger during the recent period, particularly for
the ASO season, implying that both wet and dry anomalies
have become more extreme than during prior centuries. The
strong drying trend during MJJ coupled with a wetting trend
during the NDJ season indicates a seasonal shift in the dri-
est season. While NDJ has historically been the driest period
among the four seasons, during the modern period, MJJ now
has similar dry conditions to those observed during the NDJ
period.

Monte Vista, CO, had very stable SPI trends until the 19th
century before undergoing a rapid drying trend during the
20th century, particularly during the MJJ and ASO periods
(Fig. 6b). The modeled MJJ precipitation with normal cli-
matology (SPI= 0) is currently at its driest in approximately
500 years, following a long stable period between 1500 and
1900. ASO also shows drying trends over the last 300 years.

We can see that the modeled mean of the dsNASPA in
Monte Vista, CO, is shifted upwards from its original aver-
age value because of bias correction adjustment to match the
slightly drier dsNASPA climatology with the slightly wet-
ter gridMET climatology for this site (Fig. 5). Our modeling
process detected these biases and calibrated them to shift up-
wards while maintaining a common gradual trend.

Figure 7 shows long-term trends for the four previously
discussed seasons across all 14 study sites. The statistical sig-
nificance of these changes is observed in Fig. S4. The plots
show natural seasonality as the difference between the sea-
sonal lines and the long-term climate nonstationarity changes
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Figure 6. Long-term trends in the 3-month nonstationary standardized precipitation index (NSPI) (black line) and illustrations of averaged
precipitation for four periods at the Albany, GA, and Monte Vista, CO, sites. The yellow-shaded area represents the precipitation amount
between SPI=+1.5 (upper boundary) and −1.5 (lower boundary) in the fitted gamma distribution. Trends in the mean and SPI range (−1.5
to +1.5) are shown using gridMET data as a baseline to illustrate bias correction, while the raw data are shown without bias correction for
context.

in each line. This separation allows for an evaluation of
recent precipitation trends by comparing the past 100-year
trend with the longer 2000-year time window. While results
from the entire nonstationary GAM (extending back to the
earliest NASPA reconstructions) are presented in Fig. 7, our
primary focus is on the period after 1400, shown in white.
Prior to 1400, the NASPA reconstruction has greater uncer-
tainty and is thus provided here for full context but shaded in
grey to emphasize this greater uncertainty. Figure 7 shows
that the 14 demonstration sites generally follow a spatial
climate pattern found in previous studies, which illustrates
industrial-era drying trends in the southwestern US and wet-
ting trends in the eastern US (Lehner et al., 2018; Prein et
al., 2016; Ellis and Marston, 2020). The drying trend in the
west is most prevalent during each site’s wet seasons, with
smaller or negligible trends during the driest part of the year.
For example, the wet-season drying trend is visible in Ab-
erdeen, WA, where after several centuries of stable precip-
itation there has been a decrease during the cool wet sea-

sons (NDJ and FMA). The wet season (FMA) in Gardiner,
MT, and Los Angeles, CA, also shows clear drier trends dur-
ing the most recent century or longer. The drier trend in Los
Angeles, CA, during FMA precipitation has declined since
1500, but this trend was exacerbated and became more se-
vere during the 20th century, effectively shortening the wet
winter period prior to the region’s dry summer. The 20th-
century drying trend in Monte Vista, CO, has occurred across
all seasons, not only during the wettest period as in the
other western stations. The most severe drying trend occurred
in MJJ, as mentioned in the previous section (Fig. 6). The
most severe western sites illustrate the value of comparing
20th-century drying trends to longer reconstructed records to
identify rapid and exceptional precipitation changes. Unlike
these western sites, Denver, CO, shows negligible long-term
trends, while the desert southwest (Phoenix, AZ, and Rodeo,
NM) exhibits minor wetting trends which are largely within
the pre-industrial historical range.
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Figure 7. Long-term trends in 3-month average precipitation (mm month−1) for four seasons. In each panel, the period before 1400 is shaded
to represent the period with less prediction skill in the original NASPA.

The eastern part of the US generally has experienced rapid
wetting trends during the most recent century, as observed in
previous research (Bishop et al., 2021). These wetting trends
are especially drastic in New York City, NY; Morris, MN;
and Marysville, OH, each currently experiencing the wettest
conditions of the last 500 years of pre-industrial, presumed
near-natural, cyclic variability. This pattern is particularly
visible for the warm and wet summer season (MJJ). South
Brunswick, NC, also shows a wetting trend during all sea-
sons since 1700, but these trends are not as rapid as those
observed in the more northern sites. Warm-season (MJJ) pre-
cipitation has also increased in the Southern Plains (Okla-
homa City, OK, and Waxahachie, TX). Precipitation during
the summer season has been gradually increasing since 1400
but has undergone far more rapid increases since 1900. Note
that nonstationarity in the eastern US is less stable; this may
be related to greater uncertainty in the NASPA reconstruc-
tions for this region, which generally exhibit poorer recon-
struction skill (Table 1, Stahle et al., 2020a).

Some locations have experienced different directions of
changes based on seasons. These changes mostly occur in

the southern part of the US, as shown in Fig. 7 (11)–(14).
For example, FMA precipitation in Phoenix, AZ, has become
slightly wetter during the last 500 years, while the other three
seasons were slightly drier during the 20th century. Albany,
GA, shows recent drying trends during the spring and early
summer (FMA and MJJ) but wetter trends during fall and
winter (ASO and NDJ). These seasonal-specific changes ul-
timately shift the timing of the wettest or driest season. For
example, while the NDJ season has been the driest season
during the past 500 years, slightly drier than the preceding
ASO season, this changed during the 20th century. In addi-
tion, the difference between the wet seasons (February–June)
and dry seasons (August–January) is decreasing as the wet
seasons become drier and the dry seasons become wetter.
Seasonal shifts also appeared in Waxahachie, TX, stemming
from a constant wetting trend during the MJJ season since the
year 1000, while other seasons have experienced what is pre-
sumed to be natural variability with no abrupt 20th-century
changes, although further analysis is required to quantify the
impact of natural variability. Though not the focus of this
study, our results do capture past drought events, such as the
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prolonged dry period in the 1200–1300s in Oklahoma City,
OK, and Waxahachie, TX, which is consistent with previ-
ous studies regarding the so-called medieval megadrought
(Stahle, 2020; Cook et al., 2016).

4 Discussion

Our novel approach for temporal downscaling, combined
bias correction, and nonlinear-trend modeling enables analy-
ses of meteorological drought changes at a multi-centennial
scale. Our downscaling approach allows irregular historical
reconstruction to be included with instrumental records in a
single long-term-trend model using the same temporal scale,
and ultimately, it allows us to compare nonstationary drought
trends across seasons. The KNN-downscaling approach pre-
serves greater certainty during seasons with NASPA recon-
structions and greater uncertainty during seasons that must
be interpolated. Simultaneous temporal trend fitting and bias
correction, constrained with a GAM spline, appear to provide
a stable framework for merging these disparate datasets.

When developing the KNN approach, we chose to con-
sider 13-month time segments regardless of seasonality,
which may not capture some higher-order characteristics,
such as seasonal correlation. This design decision was a
trade-off between the benefits of a larger sampling library
of feasible SPI traces and the risk of overlooking some sea-
sonally specific time series behavior. We chose the former,
with an additional assumption that anchoring the time series
behavior at three seasonal points would likely lead to over-
sampling of segments with similar seasonal behavior. Also,
our process of selecting SPI sequences and converting back
to precipitation based on the seasonal probability distribution
reflects the region’s seasonal characteristics. This is demon-
strated in Fig. S1, showing that our dsNASPA captures the
general seasonality well. Nevertheless, future research might
explore the magnitude of seasonality effects and the persis-
tence of SPI sequences in the downscaling process.

We also acknowledge the uncertainties concerning the
whole modeling process. The uncertainties in the dsNASPA
stemming from the downscaling process in addition to the
original reconstruction process vary by region and season. As
shown in our results, the downscaling skills are much higher
in the period where the original NASPA provides informa-
tion (Figs. S1 and S4). Reconstruction skills in the origi-
nal NASPA vary depending on the region. This has been
investigated in previous studies and data sources (Stahle et
al., 2020a). In addition, stationarity in bias is an assump-
tion of this method; however, it is a necessity that under-
lies most proxy reconstructions. Based on prior NASPA val-
idation, we are most confident that bias remains consistent
during the period with consistent tree-ring coverage (1400–
present; white area in Fig. 7) but may begin to change as
chronology-based coverage and reconstruction skill decrease
(before 1400; grey-shaded area in Fig. 7).

Nonetheless, our primary objective is to realize the best
possible estimate of the changes in precipitation distribu-
tions (climatology) of the past rather than to replicate spe-
cific events in the time series. If one is interested in predict-
ing precipitation in a given year, we recommend using the
original NASPA dataset rather than our dsNASPA interpola-
tion. Overall, our derived gamma distribution can be used to
understand the most likely climatology of the past, and po-
tentially the future, based on available data.

In this context, our KNN approach creates a plausible esti-
mate for periods lacking NASPA estimates (e.g., ASO) and is
apt for estimating smooth changes in the distribution of his-
torical climatology. Additionally, we found that taking the
mean of neighbor ensembles did not artificially and dramat-
ically decrease the variance (Fig. S1), further supporting our
approach.

In particular, this approach appears successful at gener-
ating a continuous sequence of bias-corrected precipitation
distributions while addressing some of the nuances of the
NASPA reconstruction. The NASPA contains internal bias
with respect to reconstructing precipitation for the cool and
warm seasons, with skill varying across the continent. Fur-
ther, within the cool or warm period, the reconstruction can
be dominated by 1 or 2 months. For example, the DJFMA
reconstruction in Los Angeles, CA, displays significantly
higher correlations with precipitation totals for December,
January, or February than with those for March or April.
However, DJFMA was used as a compromise to ensure a
common cool period across the US. It appears that hierar-
chical GAM bias correction combined with KNN downscal-
ing mitigates some of this effect by creating a local model
for each site. Further, by using a seasonally varying bias cor-
rection, the model adjusts to the months, such as those in
DJFMA, that are best captured.

We found a general drying trend for the wettest seasons in
the western US and wetting trends for most seasons in the
eastern US. For some of these sites, 20th-century trends ap-
pear to be rapid and outside the range of the long-term recon-
structed record, whereas for other sites, these patterns could
be considered within the pre-industrial range and perhaps
part of natural climate variability. Our results also pointed
out some study sites where precipitation trends differ by sea-
son, leading to slightly altered seasonality.

Results for the case study at Los Angeles, CA, agree with
general findings that showed extraordinary drying trends
in the western US during the last century, following a
prolonged period of stable precipitation patterns since the
1500s (Stahle, 2020). The previously documented medieval
megadroughts in the Great Plains region (Cook et al., 2016)
also appear in our results. This consistency of results indi-
cates that incorporating NASPA reconstructions data using
our new method is feasible and can be useful for identifying
low-frequency drought trends and variability over the past
2000 years.
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By contrasting the severity of precipitation changes during
the past century with 2000 years of data, this model provides
the potential to analyze the magnitude of recent trends dur-
ing the modern increase in greenhouse gases along with pre-
industrial natural variability. For example, Figs. 5, 6b, and 7
each present panels showing the same results from the me-
teorological drought trend model for Monte Vista, CO. Each
successive figure takes a wider temporal viewpoint – from
the last 120 years (Fig. 5) to the last 600 years, including
the pre-industrial period (Fig. 6b), and the widest possible
viewpoint, beginning in 0 CE (Fig. 7). As can be seen, the
drying trends in Fig. 5 rather steadily decrease but do not
capture the extraordinary changes shown in Fig. 6b. Taking
a longer perspective implies that the modern 120-year data
period is outside of the “pre-industrial levels” defined by UN
Paris Agreement (IPCC, 2014), with the modern MJJ mean at
its driest in 600 years. Our results agree with other findings
that have identified recent or projected future shifts in sea-
sonal precipitation (Marvel et al., 2021) or enhanced precipi-
tation variability (Williams et al., 2020) due to anthropogenic
climate change. For example, for several western sites, this
study observed rapid drying trends during the wettest seasons
(Aberdeen, WA; Monte Vista, MO; Gardiner, MT; Los An-
geles, CA). These wet seasons are particularly critical in the
western US, where seasonal precipitation is relied upon to fill
reservoirs for later use during dry seasons. We therefore be-
lieve that modeling these smooth seasonal shifts over multi-
ple centuries can inform water management plans to adapt to
a changing climate. In addition, we believe that understand-
ing the seasonal-specific changes in meteorological drought
can help to analyze seasonal shifts in other types of droughts,
such as anticipated soil moisture drought in the summer in
the southwestern US due to declining spring precipitation
(Williams et al., 2020).

We expect that our approach, described here as a model
validation for several case study sites, could be applied across
a denser network of sites to determine how meteorological
drought has changed during the modern instrumental period
and to put these trends into a much wider, pre-industrial con-
text. A unique benefit of this approach is that it models non-
linear changes in typical precipitation (SPI= 0), dry anoma-
lies (SPI< 0), and wet anomalies (SPI> 0) simultaneously
across all seasons.

5 Conclusion

This study introduced a novel method designed to apply the
recently introduced nonstationary SPI approach (Stagge and
Sung, 2022) to a multi-centennial temporal scale by merging
disparate datasets with a common tensor product spline term.
To accomplish this objective, first, we downscaled the irreg-
ularly spaced, biannual NASPA reconstruction into 3-month
average precipitation with a monthly resolution using a KNN
approach. This permits analyses at a seasonal scale and en-

ables the NASPA reconstruction to be integrated with instru-
mental data. In accordance with findable, accessible, inter-
operable, and reusable (FAIR) data principles, we make our
data publicly available to allow researchers to access them
and develop future drought trend studies (Wilkinson et al.,
2016).

Second, we identified unique biases arising from different
precipitation data sources and accounted for these biases in
a hierarchical GAM with model-based bias correction. This
model corrected both persistent biases and seasonal-specific
biases in both mean and shape parameters of fitted distribu-
tions. Accounting for unique seasonal biases is important as
previous studies have found that bias magnitude can vary
by season (Piani et al., 2010; Li et al., 2010). This is espe-
cially relevant when merging the NASPA with observation
datasets because the temporal downscaling procedure de-
pends strongly on the season; e.g., MJJ is made directly from
the original reconstruction, while ASO is based on KNN in-
terpolation between the prior MJJ and the future DJFMA.

Third, after confirming that the temporal downscaling and
nonstationary SPI model with bias correction were able to
capture long-term trends, this study applied the model to a
wide range of case study sites. Analyzing long-term trends in
each season allows for the observation of shifts in seasonality
and its variability. These changes are also captured by season,
meaning that our study could point out a specific season that
is experiencing rapid changes, although other seasons are not
experiencing drastic changes.

Code availability. All code for modeling and data analysis is pre-
served at https://doi.org/10.5281/zenodo.11090301 (Sung, 2024).
The nonstationary SPI modeling used “mgcv” packages (Wood,
2008) in R.

Data availability. The NASPA tree-ring reconstruction data used
in this study are publicly available at https://www.ncei.noaa.gov/
pub/data/paleo/treering/reconstructions/northamerica/NASPA/
(Stahle et al., 2020b). Both CRU and GridMET obser-
vation data are publicly available and can be accessed at
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