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Abstract. Reanalysis soil moisture products are valuable for
diverse applications, but their quality assessment is limited
due to scale discrepancies when compared to traditional in
situ point-scale measurements. The emergence of cosmic ray
neutron sensors (CRNSs) with field-scale soil moisture esti-
mates (∼ 250 m radius, up to 0.7 m deep) is more suitable
for the product evaluation owing to their larger footprint.
In this study, we perform a comprehensive evaluation of
eight widely used reanalysis soil moisture products (ERA5-
Land, CFSv2, MERRA2, JRA55, GLDAS-Noah, CRA40,
GLEAM and SMAP L4 datasets) against 135 CRNS sites
from the COSMOS-UK, COSMOS-Europe, COSMOS USA
and CosmOz Australia networks. We evaluate the products
using six metrics capturing different aspects of soil moisture
dynamics. Results show that all reanalysis products generally
exhibit good temporal correlation with the measurements,
with the median temporal correlation coefficient (R) values
spanning 0.69 to 0.79, though large deviations are found at
sites with seasonally varying vegetation cover. Poor perfor-
mance is observed across products for soil moisture anoma-
lies time series, with R values varying from 0.46 to 0.66. The
performance of reanalysis products differs greatly across re-
gions, climate, land covers and topographic conditions. In
general, all products tend to overestimate data in arid cli-
mates and underestimate data in humid regions as well as
grassland. Most reanalysis products perform poorly in steep
terrain. Relatively low temporal correlation and high bias
are detected in some sites from the west of the UK, which

might be associated with relatively low bulk density and high
soil organic carbon. Overall, ERA5-Land, CRA40, CFSv2,
SMAP L4 and GLEAM exhibit superior performance com-
pared to MERRA2, GLDAS-Noah and JRA55. We recom-
mend that ERA5-Land and CFSv2 could be used in humid
climates, whereas SMAP L4 and CRA40 perform better in
arid regions. SMAP L4 has good performance for cropland,
while GLEAM is more effective in shrubland regions. Our
findings also provide insights into directions for improve-
ment of soil moisture products for product developers.

1 Introduction

Soil moisture plays a key role in water and energy interac-
tions between the atmosphere and land surface (Zeng et al.,
2015; Kim et al., 2018; Ling et al., 2021), and it controls
many physical processes in hydrology, meteorology and agri-
culture, such as evapotranspiration, infiltration, runoff gener-
ation, drought development and crop growth. Accurate and
timely soil moisture information is critical for a wide range
of environmental analyses such as hydrological and climate
modelling (Yee et al., 2017; Al-Yaari et al., 2014; Brocca
et al., 2012; Zheng et al., 2021), flood and drought predic-
tions (Martínez-Fernández et al., 2016; Massari et al., 2018;
Ford and Quiring, 2019; Massari et al., 2014), and water re-
sources and agriculture management (Chawla et al., 2020;
Karthikeyan et al., 2020).
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To date, soil moisture data are available from a variety
of sources. Reanalysis products provide soil moisture data
over long time periods (Li et al., 2005; Baatz et al., 2021)
and typically merge soil moisture observations and land sur-
face model output by adopting data assimilation techniques,
which often results in better soil moisture estimation than
satellite products (Naz et al., 2020; Beck et al., 2021; Mahto
and Mishra, 2019). At present, reanalysis products are em-
ployed in a wide range of fields such as hydrological model
initialisation (Zheng et al., 2020), flood modelling (McClean
et al., 2023; El Khalki et al., 2020; Zheng et al., 2023),
drought monitoring (Chen et al., 2019; El Khalki et al.,
2020) and climatology research (Miralles et al., 2014). Cur-
rently, many reanalysis products exist including ERA5-Land
(Muñoz Sabater 2019; Muñoz-Sabater et al., 2021), CFSv2
(Saha et al., 2011, 2014), MERRA2 (GMAO, 2015; Gelaro
et al., 2017), JRA55 (JMA, 2013; Kobayashi et al., 2015),
GLDAS-Noah (Rodell et al., 2004; Beaudoing and Rodell,
2020), CRA40 (Liu et al., 2017; Li et al., 2021), GLEAM
(Miralles et al., 2011; Martens et al., 2017) datasets and
SMAP Level 4 datasets (Reichle et al., 2019, 2017a, b) (one
should note that technically speaking, GLDAS-Noah and
GLEAM datasets are global land model-based products; we
termed them “reanalysis products” in this paper for consis-
tency). The quality of these reanalysis products is of signif-
icant interest to researchers, and their performance against
point soil moisture observations has provided valuable guid-
ance on potential applications and further improvement (Li
et al., 2020; Xu et al., 2021; Zheng et al., 2022; Beck et al.,
2021; Chen and Yuan, 2020; Ling et al., 2021). However,
due to the heterogeneity in soil properties, topography and
climate condition, low-density point measurements are not
entirely representative of larger-scale soil moisture informa-
tion (Gruber et al., 2013). Previous works have extensively
reported the limited evaluation reliability between point mea-
surements and soil moisture products because the observed
discrepancies can be attributed to the spatial sampling er-
ror rather than the intrinsic error of soil moisture products
(Dorigo et al., 2015; Crow et al., 2012; Gruber et al., 2013;
Stillman et al., 2016; Miralles et al., 2010).

Cosmic-ray neutron sensors (CRNSs) are a more recent
soil moisture measurement technique, compared to other tra-
ditional methods, that can measure area-average soil mois-
ture at the field scale by capturing the variations in water
content in the soil profile by fast neutron detection (Zreda
et al., 2008). The neutron counting rates data from the CRNS
can be converted into soil moisture via conversion equations
from Desilets et al. (2010), Dong et al. (2014) and Hawdon
et al. (2014). Additional influences on the neutron count-
ing rate, besides soil moisture, need to be accounted for, in-
cluding atmospheric pressure (Zreda et al., 2012; Hawdon
et al., 2014), incoming high energy neutron intensity (De-
silets et al., 2006), atmospheric water vapour (Rosolem et al.,
2013) and above-ground biomass (Rivera Villarreyes et al.,
2011; Baatz et al., 2015). CRNS calibration is also a crucial

step, which requires multiple soil samples to be taken from
within the sensor footprint, oven-dried, and then weighted
and averaged to give field-scale accurate soil moisture esti-
mates (Köhli et al., 2015; Schrön et al., 2017; Power et al.,
2021a). The horizontal footprint of the CRNS varies approx-
imately between 400 and 600 m in diameter (Zreda et al.,
2008, 2012; Evans et al., 2016; Desilets and Zreda, 2013;
Schrön et al., 2017), while the vertical measurement depths
depend strongly on soil moisture content ranging from 0.1 m
(under wet conditions) to 0.7 m (under dry conditions) (Franz
et al., 2012; Rosolem et al., 2014). Given that the spatial vari-
ations in soil moisture and other factors such as microtopog-
raphy and land cover can be considered within the footprint
area, the CRNS measurements are better suited for the eval-
uation of satellite and reanalysis products compared to point
measurements, whose signal tends to be more strongly as-
sociated with soil properties (Montzka et al., 2017; Dong
et al., 2014; Peng et al., 2021; Kim et al., 2015; Desilets
et al., 2010). Soil moisture estimated by CRNS presents a
more compatible spatial scale, with recent efforts to promote
hyper-resolution large-scale hydrological and land surface
models (Iwema et al., 2017; Wood et al., 2011; Bierkens et
al., 2015).

The establishment of CRNS networks across the globe
is ongoing. Following the development of a first national-
scale CRNS network in the USA, called the Cosmic-Ray Soil
Moisture Observing System (COSMOS) (Zreda et al., 2012),
other countries, such as Australia (Hawdon et al., 2014), Ger-
many (Zacharias et al., 2011; Bogena, 2016), UK (Evans et
al., 2016; Cooper et al., 2021) and India (Upadhyaya et al.,
2021), have also started to establish their national networks.
Several studies have evaluated a variety of soil moisture data
products against CRNS measurements over different regions
such as the USA (Kim et al., 2015), the UK (Peng et al.,
2021), Australia (Renzullo et al., 2014), Germany (Schmidt
et al., 2022) and India (Upadhyaya et al., 2021). Yet, most
studies only use a few individual CRNS sites (Renzullo et al.,
2014; Kêdzior and Zawadzki, 2016; Montzka et al., 2017;
Mwangi et al., 2020), which hampers a comprehensive as-
sessment at large scale. While some studies have evaluated
soil moisture products against numerous CRNS sites (Kim et
al., 2015; Montzka et al., 2017; Duygu and Akyürek, 2019),
these studies did not consider the deviations across multi-
ple CRNS networks caused by different calibration and neu-
tron correction methods. That is because despite having now
more than 200 CRNS sites in global operation providing soil
moisture data (Andreasen et al., 2017), there has not been
a community-wide consensus on best practices for sensor
calibration and signal correction methods shared across the
different networks. This has resulted in a non-harmonised
dataset among networks to support large- or global-scale soil
hydrology analysis (Rosolem et al., 2013; Hawdon et al.,
2014; Power et al., 2021a).

This work provides, for the first time, a systematic eval-
uation of frequently used reanalysis soil moisture products
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against a global dataset of harmonised CRNS measurements.
We analyse the reanalysis products with contrasting climate,
soil properties, land cover and topography to provide insights
into explaining the differences in performance. Finally, we
provide recommendations to researchers for selecting suit-
able reanalysis soil moisture products.

2 Data description

2.1 CRNS measurements

In this paper, we collected CRNS data from numerous net-
works globally and ensured the data were processed in a har-
monised way to serve as the reference for evaluating reanal-
ysis products. The geographical locations of CRNS sites col-
lected in this study are shown in Fig. 1. A total of 180 CRNS
data were collected from COSMOS-UK (51 sites) (Stanley et
al., 2021), COSMOS-Europe (66 sites) (Bogena et al., 2022),
COSMOS USA (45 sites) (Zreda et al., 2012) and the Aus-
tralian CosmOz network (18 sites) (Hawdon et al., 2014).
Details of each CRNS network are summarised in Table 1.

2.1.1 CRNS calibration

The inverse relationship between fast neutrons and hydrogen
atoms means that as neutron counts rise (fall), we know that
the moisture content of the soil is decreasing (increasing).
However, in order to convert this signal into volumetric soil
moisture values, calibration of each sensor is required. This
involves obtaining multiple samples of soil moisture profiles
within the sensor footprint that are combined together to pro-
vide an average moisture content (Zreda et al., 2012). Each
sample is subjected to oven drying, providing us with gravi-
metric soil moisture values which can be converted to vol-
umetric soil moisture when multiplied by the dry-soil bulk
density of the soil sample. As our understanding of the sensor
signal has grown, improvements to this calibration step have
been developed which have been shown to provide more ac-
curate results. In particular, revised weighting schemes have
been derived that consider the increased sensitivity of the
signal to soil moisture nearer the sensor (Köhli et al., 2015;
Schrön et al., 2017), as well as research showing the benefit
in conducting multiple calibration campaigns across different
seasons (Iwema et al., 2015). Ultimately this calibration step
will provide us with the so-called N0 number (i.e. the theoret-
ical neutron count found in absolutely dry conditions), which
is calculated by comparing the averaged field-scale soil mois-
ture value derived through the sampling campaign with the
count rate at the time of sampling. This N0 number is used
to derive the ratio between the actual counting rate (N ) and
the theorised maximum counting rate (N0) in the Desilets et
al. (2010) equation for converting neutrons to soil moisture
values. It is important to note, therefore, that changes in this
number, or differences in how this number is derived, can
lead to biases in soil moisture values.

The COSMOS-UK and COSMOS-EUROPE datasets each
use the aforementioned revised weighting schemes to cal-
ibrate the sensors (Bogena et al., 2022; Cooper et al.,
2021). To ensure comparability, the COSMOS-USA and
CosmOz sites were updated to utilise the revised scheme us-
ing the Cosmic-Ray Sensor PYthon tool (crspy) (Power et
al., 2021a), which was possible thanks to the openly avail-
able calibration data provided by each of the networks (Zreda
et al., 2012; Hawdon et al., 2014). When multiple calibration
days were available, calibration would be done on more than
one day, with the N0 number being the value that reduced
the error across all calibration days. It should be noted that,
recently, the CosmOz network updated their data to utilise
the revised weighting scheme; however there is still a differ-
ence in incoming neutron intensity correction, necessitating
harmonisation through crspy (https://cosmoz.csiro.au/about,
last access: 12 January 2024). More detailed of CRNS data
reprocessing can be found in Sect. 2.1.2. The calibrated N0
values, along with information on how many calibration days
were used, are given in the Supplement (see “CRNSsite-
DataNEWR1.xlsx” file).

2.1.2 Reprocessing of CRNS data

To remove the possible influence of different CRNS pro-
cessing methodologies, CRNS data were processed using the
Cosmic-Ray Sensor PYthon tool (crspy) to ensure a har-
monised methodology (Power et al., 2021a). The correc-
tion of the aforementioned influences on the neutron counts
(i.e. atmosphere pressure, incoming neutron intensity, atmo-
spheric water vapour and above-ground biomass) are all in-
cluded in the crspy tool. Given that COSMOS-Europe and
COSMOS-UK each follow the same steps for correcting neu-
tron counts (Cooper et al., 2021; Bogena et al., 2022), repro-
cessing was undertaken for the COSMOS (USA) sites and
the CosmOz (Australia) sites for consistency. More details
about reprocessing COSMOS (USA) and CosmOz (Aus-
tralia) data using crspy are provided in Sect. S2 of the Sup-
plement. In addition, it should be noted that there are eight
UK sites in COSMOS-Europe datasets, including four sites
which are the same sites listed in the COSMOS-UK network.
The differences in hourly and daily soil moisture data from
these two networks for the four sites are shown in Figs. S1
and S2 and Table S1 of the Supplement. This difference is
most likely due to COSMOS-Europe applying a 24 h rolling
average to hourly values to reduce the inherent noise of neu-
tron counts (Bogena et al., 2022), whereas COSMOS-UK
does not apply any rolling average. The notable deviation
in two networks indeed highlights the importance of har-
monised processing of CRNS datasets. Thus, for the selec-
tion of the UK sites, only the soil moisture data provided by
the COSMOS-UK network are used in this study to main-
tain consistency with the remaining UK sites. In particular,
these four UK sites use the data from COSMOS-UK instead
of COSMOS-Europe.
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Figure 1. Locations of CRNS sites collected in this study. The aridity index (Im) global map derived from Knoben et al. (2018) is used as a
reference. The shape of the dots represents the CRNS sites from different networks, while the colour of the dots denotes the land cover type
of each site.

Table 1. Details of four CRNS network used in this study.

Network name Number of sites Period of data Key references
collected collection

COSMOS-UK 51 sites 2013–2019 Cooper et al. (2021); Evans et al. (2016); Stanley et al. (2021)
COSMOS-Europe 66 sites 2010–present Bogena and Ney (2021); Bogena et al. (2022)
COSMOS USA 45 sites 2009–present Zreda et al. (2012)
CosmOz Australia 18 sites 2010–present Hawdon et al. (2014); McJannet et al. (2021)

2.2 Reanalysis soil moisture products

Eight widely used reanalysis products that provide soil mois-
ture data are evaluated in this study. The reanalysis products
include ERA5-Land (Muñoz Sabater, 2019; Muñoz-Sabater
et al., 2021), CFSv2 (Saha et al., 2011, 2014), MERRA2
(GMAO, 2015; Gelaro et al., 2017), JRA55 (JMA, 2013;
Kobayashi et al., 2015), GLDAS-Noah (Rodell et al., 2004;
Beaudoing and Rodell, 2020), CRA40 (Liu et al., 2017; Li
et al., 2021), GLEAM (Miralles et al., 2011; Martens et al.,
2017) and SMAP Level 4 (Reichle et al., 2019). These prod-
ucts cover a large range of temporal resolution (spanning
from hourly to daily), temporal coverage, spatial resolution
and different vertical soil layers. The temporal coverage of
these products is 40 years on average, ranging from 9 years
(SMAP L4) to 74 years (ERA5-Land). Among them, ERA5-
Land (0.1°× 0.1°) and SMAP L4 (9 km) have a finer spatial
resolution, whereas MERRA2 (0.5°× 0.625°) and JRA55
(0.563°× 0.562°) have a relatively coarser resolution. Ta-
ble 2 presents the main characteristics of all these products.

More descriptions of each reanalysis product can be found in
Sect. S3.

2.3 Ancillary data preparation

To provide insights into the possible reasons for differences
in reanalysis products’ performance, we collated data on 11
possible factors representing climate (i.e. aridity, seasonality,
snow, mean annual temperature and mean annual precipita-
tion), soil properties (i.e. bulk density, soil organic carbon
and lattice water), vegetation (land cover) and topography
conditions (i.e. altitude and slope).

Three climate indices (i.e. aridity, aridity seasonality and
fraction of precipitation as snow) derived by Knoben et
al. (2018) were adopted, which have been proved to be
more effective than Köppen–Geiger classification for reveal-
ing the climatic influence especially on streamflow signa-
tures. In their methods, aridity Im is calculated based on
Thornthwaite’s moisture index, MI (Willmott and Feddema,
1992), using Eqs. (1)–(2), in which P(t) and EP (t) are mean
monthly precipitation and potential evapotranspiration val-
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ues from the CRU TS v3.23 dataset (Harris et al., 2014). The
range of aridity index is [−1, 1], where−1 indicates the most
arid conditions and 1 denotes the most humid conditions.
More details and equations for other two climate indices can
be found in Knoben et al. (2018). Additionally, mean annual
temperature (MAT) and mean annual precipitation (MAP)
for each CRNS site are retrieved from the ERA5-Land prod-
uct as it has the highest spatial resolution.

MI(t)=


1− EP (t)

P (t)
, P (t) > EP (t)

0, P (t)= EP (t)
P(t)
EP (t)

− 1, P (t) < EP (t)

(1)

Im =
1
12

∑t=12
t=1

MI(t) (2)

Soil properties’ data, i.e. bulk density, soil organic car-
bon content and lattice water, are provided in metadata from
Power et al. (2021a) and Bogena et al. (2022). Soil organic
carbon represents the total organic carbon in the soil at the
site, while lattice water represents the hydrogen contained
in the mineral structures of the soil. In studies by Power et
al. (2021a) and Bogena et al. (2022), local measurements of
soil properties’ data are collected for the majority of CRNS
sites (bulk density – 98 % sites, soil organic carbon content –
94 % sites, lattice water – 98 % sites), while the global-raster-
based SoilGrids soil dataset (Hengl et al., 2017) was used to
provide data for the sites with missing measurements.

For the land cover attributes at each CRNS site, we reclas-
sify the different land cover classes from Power et al. (2021a)
and Bogena et al. (2022) into a harmonised land cover clas-
sification including four land cover types: forest, cropland,
shrubland and grassland (see Table A1 in Appendix A). The
land cover data collected in crspy are obtained from the
ESA CCI Land Cover dataset (ESA Land Cover CCI Project
Team and Defourny, 2019). A small proportion of COSMOS-
Europe sites with unclear land cover classes (e.g. plantation,
reforestation, orchard and heathland) that are hard to reclas-
sify were checked in the high-resolution Sentinel-2 10 m land
use and land cover map (Karra et al., 2021).

Finally, metadata from Power et al. (2021a) and Bogena
et al. (2022) offer altitude information for each CRNS site.
We used the 90 m MERIT DEM data (Yamazaki et al., 2017)
to provide the topographic slope. To reduce the spatial-scale
mismatch of the topographic slope between the CRNS site
point location and its horizontal footprints, we calculated the
average slope of the area with a radius of 250 m centred on
the CRNS site.
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3 Methods

3.1 Data processing

3.1.1 Temporal resolution and coverage

Due to the nature of the CRNS technology, the hourly mea-
surements might contain higher uncertainty compared to
daily measurements (Zreda et al., 2008; Desilets et al., 2010;
Iwema et al., 2021), in general, high measurement uncer-
tainty can be compensated for by applying simple daily av-
eraging (Davies et al., 2022). Additionally, some reanaly-
sis products only provide daily data; thus we aggregate sub-
daily reanalysis products data over the beginning of the day
(00:00 UTC) and the proceeding 24 h period and then per-
form the evaluation with the CRNS measurements at daily
scale. Since CRA40 and GLEAM data provide data until the
end of 2020, all available soil moisture data for each prod-
uct from the start date of CRNS measurements to 2020 are
used for the evaluation. To ensure the reliability of evalu-
ation with enough soil moisture data, only the CRNS sites
available with at least 2 years (730 d) of observations are se-
lected for the analysis to avoid deviations under short-term
extreme weather conditions. Therefore, a total of 135 (i.e.
UK: 45 sites; mainland Europe: 41 sites; USA: 38 sites; Aus-
tralia: 11 sites) out of 180 CRNS sites are used in the study.
Note that since the evaluation against the COSMOS-UK net-
work has been specifically compared, the analysis for Europe
only compares the COSMOS-Europe sites from mainland
European regions, omitting the UK. The basic information
of these selected 135 CRNS sites is listed in Table S2.

3.1.2 Spatial-scale matching

The selected reanalysis products in this study exhibit a great
variety of spatial resolutions (Table 2). The measurements
from each CRNS site are compared with the reanalysis prod-
uct grid cells in which the CRNS site is situated. In some
cases, more than one CRNS site is located within one reanal-
ysis product grid cell. Many studies take the average of mul-
tiple CRNS sites data first before the comparison with the
grid cell data (Kim et al., 2015; Miralles et al., 2014). Yet,
when many CRNS sites are located densely within the same
grid cell (e.g. 13 CRNS German sites are located within one
grid cell of CRA40 reanalysis product), different overlapping
time periods across sites make it difficult to take an average.
In this study, to maximise the use of CRNS data, we individu-
ally compare and calculate the statistical metric for the multi-
ple CRNS sites data that are located in the same grid cell with
the corresponding grid cell multiple times. Then, the Brunke
ranking method (details introduced below in Sect. 3.3) is
used to comprehensively compare the product performance
based on these statistic metrics.

3.1.3 Vertical footprint matching

For CRNS measurements, the vertical sensing depth has a
strong dependency on actual soil moisture. The wetter the
soil, the shallower the signal. The neutron signal exhibits
the highest sensitivity to the uppermost layers and decays
nearly exponentially from the surface downwards (Köhli et
al., 2015; Zreda et al., 2008). The effective vertical sensing
depth D86, defined as the depth within which 86 % of neu-
trons probed the soil (Köhli et al., 2015), ranging from 10 to
70 cm deep, varies at each time step. By contrast, reanalysis
products normally provide data for multiple soil layers.

To solve the inconsistency of vertical footprint between
CRNS measurements and reanalysis products, the revised
vertical weighting function, which is initially proposed to
calculate vertical weighted averages of point measurements
for sensor calibration (Schrön et al., 2017), is used to deter-
mine the weights for each soil layer of the reanalysis product.
This revised vertical weighting function, assigning weights
to soil layers, outperformed other vertical processing meth-
ods in terms of better temporal correlation with CRNS mea-
surements (Fig. S3). Following the same procedure, we as-
sign weights for each soil layer of the reanalysis product at
different depths d and calculate the weighted average to com-
pare with CRNS measurements. The formula for the revised
vertical weighting function wi is given in Eqs. (3)–(4). The
function to calculate the vertical average of soil layers i with
values θi and weights wi is shown in Eq. (5).

wi = e
−2d/D (3)

D ≡D86(r
∗,θ,ρbulk) (4)

wt (θ,w)=

∑n
i=1wiθi∑n
i=1wi

, (5)

whereD represents the effective penetration depthD86. The
variation of D86 is related to the adjusted distance r∗ from
the sensor centre (which is influenced by atmospheric pres-
sure; Schrön et al., 2017), soil moisture wetness θ and soil
bulk density ρbulk. Since D86 is provided along with CRNS
measurements at each time step, the weights wi at different
depths d can be obtained with the exponential function. n de-
notes the total number of reanalysis product soil layers up to
D86. The units of all the soil moisture values θi from reanal-
ysis products and measurements are transferred into m3 m−3

for comparison in this paper.

3.1.4 Data post-processing

Neutron signals can be substantially affected by snow cover,
resulting in unreliable soil moisture measurements. Yet, at
most of the CRNS sites, there is a lack of measured snow
data. Consequently, we follow the same procedure adopted
in COSMOS-Europe (Bogena et al., 2022) to discard the
soil moisture data affected by the presence of snow for other
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CRNS networks. Snow water equivalent data from ERA5-
Land product are used to detect the snow events. CRNS data
are excluded from the analysis when the 24 h moving average
of the snow water equivalent data exceeds 1 mm.

3.2 Statistical metrics

The statistical metrics we used in this study include the Pear-
son correlation coefficient (R), Pearson correlation coeffi-
cient for seasonal (Rsea) and anomaly (Rano) soil moisture
time series, the mean square error (MSE), the unbiased root
mean square error (ubRMSE), and the bias. These statistical
metrics are widely used in soil moisture data evaluation and
capture different aspects of soil moisture dynamics (Peng et
al., 2021; Cui et al., 2018; González-Zamora et al., 2019;
Peng et al., 2015; Albergel et al., 2012; Yee et al., 2017;
Zheng et al., 2022; Xu et al., 2021; Al-Yaari et al., 2014).

R =
cov(SMproduct,SMCRNS)

σproductσCRNS
(6)

MSE= (SMproduct−SMCRNS)2 (7)

ubRMSE=

√((
SMproduct−SMproduct

)
−
(
SMCRNS−SMCRNS

))2 (8)

bias= SMproduct−SMCRNS, (9)

where cov denotes the covariance of both variables.
SMproduct is the reanalysis soil moisture product and SMCRNS
is the soil moisture derived from CRNS measurements. σ is
the standard deviation of soil moisture values. The overbar
represents the mean operator.

The R metric measures how well the soil moisture de-
rived from CRNS measurements and reanalysis products cor-
respond in terms of temporal correlation. Since the spatial-
scale mismatch differences between site measurements and
soil moisture reanalysis data are inevitable (Beck et al., 2021;
Miralles et al., 2010; Gruber et al., 2020), the comparisons
in R metrics are considered to be the most reliable (Kim et
al., 2015). To quantify the temporal dynamic performance
of the soil moisture time series at different timescales, the
original soil moisture time series data are decomposed into
the seasonal signals and anomalies (Zheng et al., 2022; Beck
et al., 2021; Kim et al., 2015; Peng et al., 2015; Al-Yaari
et al., 2014; Li et al., 2020). The seasonal cycle data are
derived by taking a moving average with a window size of
31 d over the soil moisture data time period coverage. Then,
the anomaly time series are calculated by removing the sea-
sonal signals from the original soil moisture data. The mov-
ing mean is only extracted if a period of more than 16 d with
available soil moisture values is present in the 31 d window.
The Pearson correlation coefficients calculated for seasonal
and anomaly soil moisture time series data are denoted as
Rsea and Rano, respectively.

3.3 Brunke ranking method

This study aims to provide recommendations for researchers
in choosing suitable reanalysis soil moisture products. To
comprehensively quantify the performances for eight reanal-
ysis products in terms of all six statistical metrics, the Brunke
ranking scheme (Brunke et al., 2003) is adopted, which is a
frequently used soil moisture product ranking method (Deng
et al., 2021; Yang et al., 2020; Wang and Zeng, 2012; Deng
et al., 2020; Decker et al., 2012).

For each statistical metric at each site, the eight reanalysis
products are ranked and assigned a score from 1 to 8, with 1
given to the products with the best performance (e.g. the low-
est value of MSE, ubRMSE and bias or highest correlation)
and 8 given to the lowest performance (e.g. the largest value
of MSE, ubRMSE and bias or lowest correlation). It should
be noted that if the metric values are missing for some re-
analysis products at one site due to insufficient time series
or missing values in a specific grid cell, the ranking score
is given from 1 to the number of available products’ metric
values (Wang and Zeng, 2012). To obtain the overall ranking
score of each product, the ranking scores are further averaged
across all six metrics for all sites.

4 Results

4.1 Rank of reanalysis products for different regions

Figure 2 displays the Brunke ranking results for eight re-
analysis products against CRNS measurements in terms of
six statistical metrics (Table S3). More details for each met-
ric can be found in the Supplement (Figs. S4, S5). Overall,
the performance of reanalysis products varies across differ-
ent regions. In the UK, CFSv2 exhibits good performance
in terms of R, Rsea and ubRMSE. GLEAM also ranks rela-
tively highly in multiple metrics, especially Rsea, MSE and
bias. As for mainland Europe, ERA5-Land performs well in
terms ofR,Rsea,Rano and ubRMSE. JRA55 shows minimum
bias and better MSE relative to other datasets in Europe. In
the USA, CRA40 shows superior performance in terms of
bias and MSE, while GLEAM provides better R, Rsea and
ubRMSE. CFSv2 performs relatively poorly in the USA. As
for Australia, SMAP L4 exhibits good temporal correlation
with both original and seasonal measured soil moisture time
series and also performs well in MSE and ubRMSE. JRA55
presents the lowest rank in terms of R, Rsea and ubRMSE.

Figure 3 summarises the spatial distribution of the average
performance for all eight soil moisture reanalysis products in
terms ofR and bias. The spatial map of the rest of the metrics
can be found in Fig. S6 and S7. Around 70 % of the sites ex-
hibit good temporal correlation with CRNS measurements,
with R average values of eight soil moisture products larger
than 0.7, and the median of R value across all sites reaches
0.74. Few sites in the west of the UK and the southwest and
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Figure 2. Brunke ranking results for a total of eight products’ performance in terms of six statistical metrics across different regions, i.e.
(a) the UK, (b) mainland Europe, (c) the USA and (d) Australia (AUS). Each coloured line represents a reanalysis product. For all metrics,
the farther away the line in this plot from the centre (i.e. closer towards black arrow), the better the performance (i.e. the lowest value of
MSE, ubRMSE and bias or highest correlation).

north central USA show a worse performance, with R< 0.5.
In terms of bias, all reanalysis soil moisture products tend
to underestimate data in the west of the UK, central Europe,
northeastern USA and southeastern Australia, while overes-
timation is observed in northern Europe, northern Australia
and most sites in the western USA. The spatial distribution
of Rsea is similar to that of R (Fig. S6a, b and c). The per-
formance of Rano is generally lower than the correlation of
original and seasonal soil moisture time series. No clear spa-
tial pattern is observed in the USA and Australia in terms of
MSE and ubRMSE, while several sites with high MSE and
ubRMSE values are notable in the UK (Fig. S7).

Soil moisture time series comparison between reanalysis
soil moisture products and CRNS measurements for four
representative sites is presented in Fig. 4. Site WADDN in
the UK is a grassland site from the COSMOS-UK network.
The soil moisture values from reanalysis products for this
site closely follow the temporal trend of the CRNS mea-
surements, exhibiting high temporal correlation with theR =
0.85 (Fig. 4a). In contrast, the UK site RDMER is selected to
demonstrate the variations in time series data for sites with
low bulk density and high organic soils (Fig. 4b). All reanal-
ysis soil moisture products show less variability of tempo-
ral dynamics and exhibit low performance in describing soil
moisture anomalies.

Moreover, the large deviation in bias between reanaly-
sis soil moisture products and CRNS measurements is no-
table except for ERA5-Land and SMAP L4. Even though the
reanalysis soil moisture products and CRNS measurements
both provide accurate soil moisture information in an ideal

situation, the mismatch in spatial resolution is still inevitable,
which might also result in large bias (Montzka et al., 2017;
Kim et al., 2015; Peng et al., 2021). Higher spatial resolution
might reduce the bias; thus the smaller bias of ERA5-Land
and SMAP L4 is likely attributed to the finer spatial resolu-
tion. In addition, a great variability of soil moisture data at
an hourly time step is observed in RDMER site (grey scat-
ters in Fig. 4b), while the hourly data in WADDN exhibit
reasonable temporal dynamics. This also indicates that it is
challenging to capture the temporal soil moisture variations
at hourly scale for sites with low bulk density and high or-
ganic soils. This might be related to the fact that organic soils
contain hydrogen and also that the variations of organic soil
content could lead to uncertainties in soil moisture calibra-
tion (Dimitrova-Petrova et al., 2021; Peng et al., 2021; Bo-
gena et al., 2013).

Figure 4c and d show the time series comparison of two
US sites with low average R values. The time series from re-
analysis soil moisture products for site Hauser Farm South
generally capture the temporal variations against CRNS ob-
servations. Yet, the reanalysis soil moisture products do not
dry out as much as CRNS measurements during the dry pe-
riods. Accordingly, the reanalysis soil moisture products fail
to represent the accurate soil moisture condition in the sites
located in the dry regions.

Site Rosemount from the USA is affected by snow cover in
winter; thus the CRNS measurements during the snow events
are discarded. Since the metrics are only calculated when
CRNS observations and reanalysis soil moisture products are
both available, the low average R value indicates poor tem-
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Figure 3. Spatial distribution of all eight products’ average performance in terms of statistical metrics R and bias. The green letter G denotes
the statistical metric values with good performance. The size of the dots in the map indicates the length of the measurements (i.e. number of
days).

poral correlation during the growing season rather than the
effect of snow. It is clear that the sites in USA with low tem-
poral dynamics are normally from the cropland or shrubland
land cover type (with the comparison of Figs. 3b and 1b). The
seasonal variations of the biomass signals in cropland and
shrubland might be the reasons that affect the deviations and
low temporal correlation between CRNS measurements and
reanalysis soil moisture products, as currently the harmoni-
sation of all sites does not explicitly account for changes in
biomass.

4.2 Possible reasons for the differences in performance

All selected CRNS sites are adopted to investigate the differ-
ent performances of reanalysis products under various con-
ditions. The box plots in Fig. 5 show the distribution of site
performance for each reanalysis product with the influential
factors filled in colour. In particular, bulk density, soil organic
carbon, aridity and mean annual precipitation are four infor-
mative variables in explaining the reanalysis performance.
The distribution of some other possible factors (i.e. season-
ality, snow), which shows insignificant influence, is not pre-
sented in this paper. Yet, data of all 11 possible factors for
each site are provided in the Supplement for those seeking
further investigation. From Fig. 5, the sites in the dry regions
exhibit better performance in terms of Rano than that of hu-
mid regions. These box plots also demonstrate the perfor-
mance for each reanalysis soil moisture product by adopting
all CRNS sites data. For direct comparison, the median value

of a given statistical metric across all available sites is often
used to reflect the product performance (Beck et al., 2021;
Deng et al., 2020). It is notable that GLDAS performs worse
in terms of Rano (Fig. 5c).

4.2.1 Soil properties

With the comparison of the statistical metrics’ average per-
formance map (Fig. 3) and the spatial map of bulk den-
sity and soil organic carbon for all sites used in this study
(Fig. S8), it is clear that all reanalysis products exhibit low
temporal correlation and high bias in the sites with low bulk
density and high soil organic carbon. Almost all statistical
metrics have lower performance on these sites (Figs. 5b, d,
e and S9). These sites with low bulk density and high soil
organic carbon exhibiting negative bias are mainly from the
humid region, especially the UK (Fig. 5f).

4.2.2 Land cover

All reanalysis products tend to have lower performance in
terms of R, Rsea and ubRMSE metrics in shrubland and sev-
eral sites in cropland, indicating that the reanalysis prod-
ucts exhibit poor performance in regions characterised by
high mean annual temperature, low mean annual precipita-
tion and high altitude (Fig. 6). The average Brunke ranking
scores show that GLEAM performs best in shrubland (Ta-
ble S3). The performance for each reanalysis product under
four land cover types is presented in Fig. 7. As for the for-
est land cover type, reanalysis products show small errors
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Figure 4. Time series comparison between CRNS measurements and reanalysis products over four sites (i.e. (a) site WADDN from the UK,
(b) site RDMER from the UK, (c) site Hauser Farm South from the USA and (d) site Rosemount from the USA). The locations of these four
sites are listed in Fig. 3.
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Figure 5. Influential factors in explaining the reanalysis product performance. The shape of the dots denotes the CRNS sites from different
networks (UK – circle, mainland Europe – square, USA – triangle and Australia – diamond), while the colour of the dots represents the
values of possible factors for each site. The green letter G denotes the good performance of the statistical metric values.

in terms of ubRMSE but perform worse in MSE (Fig. 7e, d).
The bias in grassland from a total of six reanalysis products is
primarily negative, which means that the reanalysis products
tend to underestimate the soil moisture observations in grass-
land (Fig. 7f). CFSv2 performs best in grassland in terms of
R and ubRMSE. For cropland land cover type, ERA5-Land
captures the temporal dynamics of soil moisture time series
(i.e. R, Rsea and Rano) and ubRMSE relatively well, whereas
SMAP L4 also shows good performance in terms of Rano.

4.2.3 Climate

Figure 8 displays the performance of each reanalysis product
under three climate conditions (humid, temperate and arid).
In general, compared to the humid and temperate climate,
all reanalysis products perform noticeably better in terms of
Rano in arid climates but overestimate the CRNS measure-
ments in terms of bias (Fig. 5c and f). In contrast, the bias
of reanalysis products for humid regions is primarily nega-
tive, indicating underestimation in humid regions. Moreover,
large errors are observed in terms of Rano and ubRMSE from
all reanalysis products in humid climates, highlighting that
the soil moisture anomaly information is difficult to cap-
ture accurately by reanalysis products. In temperate regions,
reanalysis products exhibit good performance in terms of
ubRMSE and bias. Specifically, MERRA2 performs worse
in humid and temperate climates particular in terms of R,
Rsea and ubRMSE. CRA40 and SMAP L4 show better per-
formance in arid regions, especially for the metrics Rano and

MSE, whereas JRA55 exhibits large errors in terms of R,
Rsea and ubRMSE in arid regions.

4.2.4 Slope

Most reanalysis soil moisture products perform worse in ar-
eas of steep terrain, especially the metrics including R, Rano,
MSE, ubRMSE and bias (Fig. 9). The values in Rsea under
different topographic slopes from several reanalysis products
(i.e. ERA5-Land, CFSv2, GLDAS, JRA55 and SMAP L4)
are close to each other, which indicates that the performance
in describing the temporal dynamics of seasonal soil mois-
ture pattern does not depend on the terrain slope (Fig. 9b).

5 Discussion

5.1 Reanalysis products’ performance

This study has selected 135 CRNS sites across numerous net-
works globally and ensured the data were processed in a har-
monised way to perform the assessment. We found that the
performance of reanalysis soil moisture products varies in
different regions, and this can be explained by climate, soil
properties, land cover and topography conditions. Our find-
ings provide recommendations in choosing reanalysis soil
moisture products for use and insights into how to improve
the accuracy of the evaluated datasets.

We find that while all reanalysis soil moisture products
generally exhibit good agreement in the temporal correlation
of soil moisture original time series (Fig. 5a), large devia-
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Figure 6. Average statistical metrics R, Rsea and ubRMSE performance of all eight products under different land cover types, altitude,
mean annual precipitation and mean annual temperature. The shape of the dots denotes the CRNS sites from different networks (UK –
circle, mainland Europe – square, USA – triangle and Australia – diamond). The colour of dots in (a) denotes different land cover types,
while the colour in other panels represents the statistical metric values. MAT stands for mean annual temperature, and MAP is mean annual
precipitation.

Figure 7. Statistical metric performance for all products under four land cover types (forest – 33 sites, cropland – 41 sites, shrubland – 20
sites and grassland – 41 sites). The values of the dots represent the median metric values of the sites in a given land cover type; the error bar
of each dot denotes the variability of the metric values. The green letter G stands for the good performance of the statistical metric values.
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Figure 8. Statistical metric performance for all products under three climate conditions (humid – 53 sites, temperate – 42 sites and arid – 40
sites). The values of the dots represent the median metric values of the sites in a given climate zone, while the error bar of each dot denotes
the variability of the metric values. The green letter G stands for the good performance of the statistical metric values. Im denotes the aridity
index, which is described and shown in Fig. 1.

Figure 9. Statistical metric performance for all products under different topographic slopes (steep terrain – 55 sites and flat terrain – 80 sites).
The values of the dots represent the median metric values of the sites in a given terrain slope; the error bar of each dot denotes the variability
of the metric values. The green letter G indicates the good performance of the statistical metric values.

tions in temporal correlation during the growing season are
observed in cropland and shrubland (Figs. 4d and 6). Low
performance in cropland and shrubland might be attributed
to strong biomass signal seasonal variations, which affects
the accuracy of CRNS measurements. Seasonally varying
vegetation cover or high amounts of vegetation biomass are

found to be key sources of uncertainty in CRNS measure-
ments (Andreasen et al., 2017; Zreda et al., 2012; Franz et
al., 2013b; Bogena et al., 2013; Iwema et al., 2021). Montzka
et al. (2017) also identified challenges in evaluating satellite
soil moisture products against CRNS data at sites with sea-
sonally changing vegetation cover. In addition, the lower cor-
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relation of reanalysis or satellite soil moisture products over
densely vegetation regions is reported in studies by Hagan et
al. (2019), Beck et al. (2021) and Kim et al. (2015, 2020),
indicating the need for improving the vegetation parameters
in land surface models or soil-moisture-retrieving algorithms
(Baatz et al., 2015).

Furthermore, the low skill in capturing the temporal cor-
relation of soil moisture anomalies time series is detected
(Fig. 5c), which means that reanalysis soil moisture products
generally show a poor response to precipitation events. Simi-
lar findings are reported in previous work (Hagan et al., 2019;
Ling et al., 2021; Naz et al., 2020). Hagan et al. (2019) eval-
uated seven reanalysis products (i.e. ERA5, ERA-Interim,
MERRA1, MERRA2, MERRA-Land, Noah 1.0, Noah 2.5)
against ground measurements and showed the Rano of all soil
moisture products is below 0.6. It is found that GLDAS has a
weak ability in capturing the soil moisture anomalies (Deng
et al., 2020; Naz et al., 2020), which is consistent with the
notable Rano performance of GLDAS in our results. More-
over, Beck et al. (2017) evaluated 22 reanalysis and satellite
precipitation datasets. Their study revealed that these pre-
cipitation products also tend to capture the monthly varia-
tion well but have lower performance in shorter timescales
(i.e. Pearson correlation coefficient calculated for 3 d means,
R3 d). This aligns with our findings that the reanalysis prod-
ucts tend to reproduce the seasonal pattern of the variables
well but that it is hard to capture the anomalies.

Similar to previous studies, our results identify that cli-
mate, topographic slope, soil properties and land cover types
are all influential factors in explaining the performance of the
reanalysis products (Deng et al., 2020; Beck et al., 2021; Li et
al., 2020; Hagan et al., 2019; Decker et al., 2012). In particu-
lar, our results show that all reanalysis soil moisture products
tend to underestimate the soil moisture values in the sites lo-
cated in humid regions, while overestimation is observed in
arid climate (observed in comparison of Figs. 1 and 3d, e, f).
Direct time series comparison over representative sites also
confirms that reanalysis products generally exhibit negative
bias and less variation in humid climates (Fig. 4b), whereas
all products rarely dry out below 0.1 m3 m−3 during the dry
periods in arid climate (Fig. 4c). This might be related to the
fact that the soil moisture values from reanalysis products
behave as an indicator of the soil wetness with a minimum
threshold for soil moisture, for example, acting as a residual
or limiting soil wetness fraction (Koster et al., 2009). Cur-
rently, most of the reanalysis soil moisture product evalu-
ation studies are mainly regional-scale analysis, especially
for China (Wu et al., 2021; Zheng et al., 2022; Xing et al.,
2021; Qin et al., 2017; Yang et al., 2020; Cheng et al., 2019).
Several studies have found that reanalysis products tend to
overestimate soil moisture conditions in the Qinghai–Tibetan
Plateau, northern China and Mongolia (regions that are dom-
inated by an arid/semi-arid climate) (Ling et al., 2021; Wen
et al., 2014; Zheng et al., 2022; Xing et al., 2021; Yang et
al., 2020), or reanalysis products show worse performance in

arid areas (Ling et al., 2021; Yang et al., 2021). Moreover, we
also observed that most reanalysis products perform poorly
in steep terrain, which is supported by previous studies (Beck
et al., 2021; Kim et al., 2015; Ma et al., 2019; Yang et al.,
2021; Nicolai-Shaw et al., 2015; Li et al., 2020).

Our results reveal that all reanalysis products show lower
performance in terms of all statistical metrics at the sites
with low bulk density and high soil organic carbon (Fig. S9),
which are particularly from the humid regions in the UK.
Similar findings are reported in the evaluation of soil
moisture products against COSMOS-UK data by Peng et
al. (2021). This suggests that the inaccurate soil properties’
parameters in land surface models might be the cause of the
large errors, as the soil organic carbon could exert a great im-
pact on soil thermal as well as hydraulic properties, leading
to deviations in soil moisture (Zhu et al., 2019; Chen et al.,
2012; Lawrence and Slater, 2008; Hagan et al., 2019; Ling
et al., 2021). The influence of soil organic carbon on the
performance of satellite and reanalysis soil moisture prod-
ucts is frequently reported (Yang et al., 2020; Jonard et al.,
2018; Qin et al., 2017; Xing et al., 2021). Moreover, rela-
tively high uncertainties of CRNS hourly measurements over
organic soils or in humid regions (observed in Fig. 4b) might
also be the reason for explaining the lower performance for
these UK sites. Although the impact of soil organic carbon
on CRNS observations has been taken into account accord-
ing to the crspy tool (Power et al., 2021a) used in this study,
as mentioned in previous studies, it is more difficult to obtain
the accurate soil moisture estimation and quantify the uncer-
tainties of CRNS observations at sites with high soil organic
carbon or in humid climates (Iwema et al., 2021; Bogena et
al., 2013; Peng et al., 2021; Sigouin et al., 2016; Zhu et al.,
2014; Franz et al., 2013a; Dimitrova-Petrova et al., 2021).

5.2 Recommendations for selecting suitable reanalysis
products

To provide recommendations for the users, we classified the
reanalysis products into three categories according to the
Brunke ranking scores (Table S3, Fig. 10), which are cal-
culated based on all six statistic metrics. We provide recom-
mendations based on these scores regarding which product
demonstrates better overall performance under various re-
gions, climate, land cover and topographic slopes. A lower
Brunke ranking score indicates the superior overall product
performance, suggesting users to prioritise its selection for
their analysis. The soil moisture products with the top two
lowest Brunke ranking scores for each category are labelled
with “ok”, indicating relatively good performance, whereas
the soil moisture reanalysis products ranked last are labelled
with “lower performance”. In particular, the soil moisture
products with Brunke ranking scores less than 3.2 (i.e. the
product with this threshold score indicates its average rank-
ing is within or around the top three in terms of all six met-
rics across most of the sites in this category) are labelled with
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“higher performance”. The recommendations only highlight
the notable performance of products (i.e. higher performance
or lower performance) across regions, climate, land covers
and topographic conditions. Yet, it should be noted that the
differences in the median value of statistical metrics across
all reanalysis products are relatively small, especially for the
metric MSE and ubRMSE (Fig. 5). Figure 10 presents the in-
tercomparison across different reanalysis soil moisture prod-
ucts, which does not mean that the product labelled with
lower performance is not acceptable.

Overall, ERA5-Land, CRA40, CFSv2, SMAP L4 and
GLEAM could be good choices for global analysis, which
generally exhibit better performance in most circumstances
than MERRA2, GLDAS-Noah and JRA55 (Fig. 10). Per-
formances of reanalysis products vary across different re-
gions. ERA5-Land ranks best in terms of R, Rsea,Rano and
ubRMSE in mainland Europe (Fig. 2). CFSv2 and GLEAM
are good alternatives for the UK, while SMAP L4 and ERA5-
Land perform better in Australia, especially in describing the
temporal correlation against the observations. CRA40 and
SMAP L4 are the top two datasets that are suitable for the
USA compared to other products.

Some products show excellent performance under specific
climate, land cover or topographic conditions. For instance,
CFSv2 can be an alternative for use in humid climate, tem-
perate climate or regions in grassland, while SMAP L4 is
suitable for arid climate. SMAP L4 also shows the good
performance in cropland, which is consistent with the find-
ing from Tavakol et al. (2019). Similar performance is ob-
served in CRA40 and GLEAM, which both exhibit supe-
rior performance in shrubland. Although all reanalysis prod-
ucts show large bias in humid regions, ERA5-Land and
CFSv2 are the optimal choice for humid climates. ERA5-
Land also performs well in forest, cropland, grassland and
steep or flat terrain. High spatial resolution might be the
reason for explaining the superior performance of ERA5-
Land. In contrast, products with coarser spatial resolution
(> 0.5°), i.e. MERRA2 and JRA55, exhibit relatively poor
performance, which is also observed by Li et al. (2020),
Mahto and Mishra (2019). GLDAS-Noah ranks last for rep-
resenting soil moisture conditions under forest, shrubland or
steep terrain. Deng et al. (2020) also observed worse perfor-
mance of GLDAS in many land cover types, especially the
underestimation of soil moisture in forest. Reasons for low
performance between reanalysis products and observations
are diverse and complex. The performance of GLDAS-Noah
and MERRA2 in predicting soil moisture could be related to
the quality of meteorological forcing data and the soil prop-
erty database (Zheng et al., 2022; Beck et al., 2021). Many
other factors that are not included in this study might also
contribute to the influence, for example, land surface model
structures and parameterisation schemes (Deng et al., 2020;
Yang et al., 2020; Xu et al., 2021). Future studies are encour-
aged to investigate the impact of these factors.

5.3 Limitations

The proposed method for resolving spatial-scale and vertical
footprint matching currently represents the most reasonable
solution after comparing several available approaches. Fur-
ther studies are encouraged to find the ideal solution, espe-
cially for grids of multiple CRNS sites with different over-
lapping time periods, and how to process reanalysis prod-
ucts data at various depths while considering the CRNS sites
effective depth. In addition, the sites used in this study are
from COSMOS-UK, COSMOS-Europe, COSMOS USA and
CosmOz Australia networks. Accordingly, the evaluation re-
sults are more applicable in these regions and regions with
similar climates, soil properties, land cover and topographic
conditions. It should be noted that the number of reanaly-
sis product grid cells for evaluating the performance in Eu-
rope is limited (Table 3) as the majority of CRNS sites in the
COSMOS-Europe network are concentrated in a small area
of Germany. For some reanalysis products with large grid
cells (e.g. CRA40), a total of 13 CRNS German sites are lo-
cated within one grid cell, whereas the density of sites is rel-
atively sparse for the rest of Europe; e.g. 19 CRA40 cells are
evaluated against 41 CRNS sites, giving a ratio of 0.46. The
ratio of the corresponding reanalysis product grid cells used
for evaluation in Europe is relatively low, ranging from 0.46
to 0.78, while the lowest ratio of reanalysis product grid cells
used for evaluation for the UK, USA and Australia is 0.73,
0.89 and 0.91, respectively. Additionally, the evaluation over
Australia is also not very reliable due to lack of represen-
tativeness because huge parts of Australia are not sampled
by CRNS. Thus, the evaluation results for mainland Europe
and Australia are less reliable than those of the other regions.
Furthermore, it is observed that the ratio also varies across
different reanalysis products. The finer the spatial resolution,
the lower the possibility that multiple CRNS sites are located
within the same grid cell. Consequently, a large proportion
of grid cells is used in ERA5-Land over different regions,
while that ratio for CRA40, CFSv2, MERRA2 and JRA55 is
normally the smallest.

Regarding temporal coverage, our assessment of SMAP
L4 product is limited by the period of record which begins in
2015. Since 70 % of our CRNS sites were established before
2015, the evaluation period for SMAP L4 is shorter than that
for other reanalysis products, with 10 CRNS sites exhibiting
temporal overlaps of less than 2 years. SMAP L4 is included
in this analysis because it has been a state-of-the-art data as-
similation soil moisture reanalysis product in recent years,
yet it should be noted that it is evaluated over a shorter time
period compared to the other reanalysis products.

In addition, the statistical metrics describing bias might
not be as reliable as the ones quantifying the temporal corre-
lation. Metrics such as R, Rsea and Rano, which measure how
well the reanalysis product soil moisture time series data are
consistent with the soil moisture time series temporal dynam-
ics, are the most reliable statistical metrics and also of inter-
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Figure 10. Recommendations for choosing eight reanalysis soil moisture products under various regions, climate, land cover and topographic
slope conditions based on the average Brunke ranking scores.

Table 3. The ratio of the reanalysis product grid cells and CRNS sites used for each region.

Regions ERA5-Land CFSv2 MERRA2 JRA55 GLDAS CRA40 GLEAM SMAP L4

UK (45 sites) 1.00 0.78 0.82 0.78 0.98 0.73 0.98 1.00
Europe (41 sites) 0.78 0.49 0.49 0.54 0.63 0.46 0.63 0.76
USA (38 sites) 0.97 0.92 0.89 0.92 0.95 0.89 0.95 0.97
AUS (11 sites) 1.00 0.91 1.00 1.00 1.00 0.91 1.00 1.00

est for the majority of soil moisture products’ applications
(Beck et al., 2021; Kim et al., 2015; Gruber et al., 2020). By
contrast, the reliability of the bias metric might be affected,
as the inherent scale discrepancy in soil depth and footprint
between CRNS and reanalysis product grid cells still remains
a limit (Crow et al., 2012; Miralles et al., 2010; Albergel et
al., 2012; Kim et al., 2015; Montzka et al., 2017; Peng et al.,
2021). The time series comparison in RDMER UK site in-
dicates that the finer spatial resolution might relieve the bias
caused by the scale mismatch (Fig. 4b).

6 Conclusion

To assist researchers in choosing suitable reanalysis soil
moisture products, this study systematically evaluates eight
reanalysis soil moisture products against soil moisture field
measurements from 135 CRNS sites across numerous net-
works globally, which are processed in a harmonised way.
The performance of reanalysis products under diverse soil
properties, climates, land cover and topographic conditions
is also investigated.

All reanalysis products generally exhibit good agreement
in terms of temporal correlation with the median of R val-
ues over 0.7, whereas the lower performance with Rano val-

ues is detected, indicating the weaker ability of capturing the
soil moisture anomalies. In particular, GLDAS has the low-
est Rano values (0.46) across all sites. Low correlations of re-
analysis products are observed in cropland or shrubland with
seasonally varying vegetation cover. As for the bias, reanal-
ysis soil moisture products tend to overestimate data in arid
regions and underestimate data in humid regions as well as
grassland. It is also notable that reanalysis products exhibit
worse performance in steep terrain.

Performances of reanalysis soil moisture products dif-
fer among regions, climate, soil properties, land cover and
topography conditions. CFSv2 exhibits good performance
across the UK and Europe. ERA5-Land performs well in
Europe and Australia. SMAP L4 is suitable to be used in
Australia and USA. GLEAM is a viable choice for the UK,
whereas CRA40 can be an alternative in representing soil
moisture conditions for the USA. Generally, ERA5-Land and
CFSv2 show superior performance in humid climates, while
SMAP L4 and CRA40 are recommended for arid regions.
MERRA2 is less effective in humid and temperate climates,
whereas JRA55 performs poorly in arid climate. In addition,
GLEAM performs best over shrubland, followed by CRA40.
ERA5-Land and CRA40 are suitable for steep terrain. For
users seeking one product for global analysis, ERA5-Land,
CRA40, CFSv2, SMAP L4 and GLEAM are viable options,
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as these products generally show better performance. Yet, it
is important to acknowledge that due to the availability of
CRNS observations, the findings of this study are more ap-
plicable in the UK, Europe, the USA, Australia and regions
with similar conditions.

We also find that all reanalysis products fail to provide
good performance in all statistical metrics at the sites with
low bulk density and high soil organic carbon. These sites
are mainly from the humid regions, i.e. the UK. This might
be attributed to the limitation in representing the process over
low bulk density and high organic soils in the land surface
model. It is also possible that CRNS technology is challeng-
ing to provide accurate soil moisture information over these
soil properties in humid regions.

Appendix A

In this paper, we used the following classification (Table A1)
to reclassify the land cover data from two works to four land
cover types.

Table A1. Land cover classes from Power et al. (2021a) and Bogena et al. (2022) along with the reclassified land cover types used in this
work.

No. Land cover types
used in this study

Land cover classes in metadata from Power et al. (2021a) Land cover classes in
COSMOS-Europe
Bogena et al. (2022)

1 Forest tree_needleleaved_evergreen_closed_to_open Forest
tree_broadleaved_deciduous_open Reforestation
tree_broadleaved_deciduous_closed_to_open Plantation
tree_mixed
tree_cover_flooded_ fresh_ or_ brakish_water
mosaic_tree_and_shrub
tree_broadleaved_ evergreen_ closed_to_open

2 Cropland mosaic_cropland Cropland
cropland_rainfed_herbaceous_cover Orchard
cropland_irrigated

3 Shrubland shrubland Shrubland
mosaic_herbaceous Heathland
shrubland_deciduous

4 Grassland grassland Grassland
Sparse vegetation
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Code and data availability. The code of Cosmic-Ray
Sensor PYthon tool (crspy) is available at https:
//github.com/danpower101/crspy (last access: 5 Jan-
uary 2024; https://doi.org/10.5281/zenodo.5543669,
Power et al., 2021b). COSMOS-UK is freely avail-
able at https://doi.org/10.5285/b5c190e4-e35d-40ea-8fbe-
598da03a1185 (Stanley et al., 2021). COSMOS-Europe
is available at https://doi.org/10.34731/x9s3-kr48 (Bo-
gena and Ney, 2021). COSMOS USA is available via
http://cosmos.hwr.arizona.edu/ (Zreda et al., 2012). CosmOz
Australia is available via https://doi.org/10.25901/5e7ab81af0394
(McJannet et al., 2021). ERA5-Land data are ac-
cessible at https://doi.org/10.24381/cds.e2161bac
(Muñoz Sabater, 2019). CFSv2 data can be down-
loaded from https://doi.org/10.5065/D6N877VB (Saha
et al., 2011). MERRA-2 data can be found at
https://doi.org/10.5067/VJAFPLI1CSIV (GMAO, 2015).
JRA55 data are given at https://doi.org/10.5065/D6HH6H41
(JMA, 2013). GLDAS-Noah v2.1 data are available from
https://doi.org/10.5067/E7TYRXPJKWOQ (Beaudoing and
Rodell, 2020). CRA40 can be obtained from https://data.cma.cn/
data/detail/dataCode/NAFP_CRA40_FTM_DAY_NC.html (Liu et
al., 2017). GLEAM v3.5a is available at https://www.gleam.eu/
(Martens et al., 2017). SMAP L4 can be downloaded from
https://doi.org/10.5067/LWJ6TF5SZRG3 (Reichle et al., 2022).
The detailed information (“CRNSsiteDataNEWR1.xlsx”) and
calculated statistical metrics (“StatisticMetricNEWR1.xlsx”) for
each site can be found in the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-1999-2024-supplement.
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