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This supplementary material provides figures that are used to further illustrate the analyses
and add additional detail.
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Figure S1. Supplementary Figure S01 shows the Kolmogorov—Smirnov statistic value between the
original model dataset and the bias-corrected model dataset. The statistic value calculated for
simulating a) CDD5D, b) CWD, ¢) CWD5D, d) R10mm, e¢) Rx5day and f) R5day50mm.
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Figure S2. Annually a number of consecutive dry day periods with more than 5 days (CDD5D)
change in percentage in the near future (2021-2050) compared to the historical period (1981-2010)
(left), and the trend of CDD5D on the period 1971-2050 (right). The dashes in the trend map
indicate model agreement in the trend significant at 60% level agreement.
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Figure S3. Annually a maximum number of consecutive wet day periods (CWD) change in
percentage in the near future (2021-2050) compared to the historical period (1981-2010) (left),
and the trend of CWD on the period 1971-2050 (right). The dashes in the trend map indicate
model agreement in the trend significant at 60% level agreement.
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Figure S4. Annually a number of consecutive wet day periods with more than 5 days (CWD5D)
change in percentage in the near future (2021-2050) compared to the historical period (1981-2010)
(left), and the trend of CWD5D on the period 1971-2050 (right). The dashes in the trend map
indicate model agreement in the trend significant at 60% level agreement.
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Figure S5. Annually a number of days with heavy rainfall (> 10mm) (R10mm) change in percentage
in the near future (2021-2050) compared to the historical period (1981-2010) (left), and the trend of
CWD5D on the period 1971-2050 (right). The dashes in the trend map indicate model agreement
in the trend significant at 60% level agreement.
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Figure S6. Annually a maximum 5-day rainfall (Rx5day) change in percentage in the near future
(2021-2050) compared to the historical period (1981-2010) (left), and the trend of Rx5day on the
period 1971-2050 (right). The dashes in the trend map indicate model agreement in the trend
significant at 60% level agreement.
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Figure S7. Annually a number of the 5-day period with cumulative rainfall >50mm (R5day50mm)
change in a number of events in the near future (2021-2050) compared to the historical period
(1981-2010) (left), and the trend of R5day50mm on the period 1971-2050 (right). The dashes in
the trend map indicate model agreement in the trend significant at 60% level agreement.
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Figure S8. Seasonal maximum length of a dry spell (CDD) change in percentage in the near future
(2021-2050) compared to the historical period (1981-2010).



59

a. DJF b. MAM

R20mm change in percentage for DJF R20mm change in percentage for MAM

lat

lat

Figure S9. Seasonal number of very heavy rainfall (R20mm) changes in percentage in the near
future (2021-2050) compared to the historical period (1981-2010).
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Flgure S10. Seasonal maximum daily rainfall (Rxlday) changes in percentage in the near future
(2021-2050) compared to the historical period (1981-2010).
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Figure S11. Seasonal precipitation percent due to R95p days (R95pTOT) changes in percentage
in the near future (2021-2050) compared to the historical period (1981-2010).
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Recession analysis is one of the methods for analysing the daily time series discharge to produce
information about the low flow regime of a river.

Rivers with a slow recession rate are typically groundwater or lake-dominated, whereas a fast
rate is characteristic of flashy rivers draining impermeable catchments with limited storage. The
recession curve is modelled by fitting an analytical expression to the outflow function @); where
Q is the rate of flow and t time. The time interval At is normally in the order of days. If Q
is modelled as the outflow from a first-order linear storage with no inflow, the recession rate will
follow the simple exponential equation:

Q: = Qoexp (—t/C)

where @, is the flow at time t; Qg is the flow at the start of the modelled recession period (t =
0); and C is the recession constant (dimension time).

We used recession analysis to calculate the recession constant (C). The C value is the overall
recession rate in days. The calculation is used Ifstat (https://rdrr.io/cran/lfstat/man/recession.html)
r package which is based on the World Meteorological Organization (WMO) manual on low-flow
estimation and prediction (Gustard and Demuth, |2009)).

The individual recession segments (IRS) method with threshold level Q90 was used in the
recession analysis. In the IRS method, the variability in individual recession segments is explicitly
accounted for by fitting a recession model to each segment. Sample statistics of the model
parameters, for example, the mean and variance of the recession constant, can subsequently be
determined to characterize the overall recession behaviour of the catchment.

Figures a,b,c and d are the C values for rivers in the Mekong, the Sumatera-Peninsular Malaysia,
Java and Borneo regions. The black boxes over Sumatera (Fig S13b ) show the location of the
Kampar (top) and Batang Hari (bottom) Rivers. In comparison, the black box over Java (Fig
S13c) shows the location of part of the Bengawan Solo River.
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Figure S13a. Discharge distribution of Bengawan Solo River (relatively high C value)
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Discharg distrbuion CHCC-CMZVHRS_rit 1 (Kampar)

Discharg ditrbution CHRM-CHS-1HR.ip112 (Kampar)
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Dischargo distribuion MPLESN'1-2.XR it (Kampar)

Figure 13b. Discharge distribution of Kampar River (relatively high C value)
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Figure 13c. Discharge distribution
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of Batang Hari River (relatively low C value)
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