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Abstract. Accurate assessment of the probable maximum
precipitation (PMP) is crucial in assessing the resilience of
high-risk water infrastructures, water resource management,
and hydrological hazard mitigation. Conventionally, PMP is
estimated based on a static climate assumption and is con-
strained by the insufficient spatial resolution of ground ob-
servations, thus neglecting the spatial heterogeneity and tem-
poral variability of climate systems. Such assumptions are
critical, especially for China, which is highly vulnerable to
global warming in ∼ 100 000 existing reservoirs. Here, we
use the finest-spatiotemporal-resolution (1 d and 1 km) pre-
cipitation dataset from an ensemble of machine learning al-
gorithms to present the spatial distribution of 1 d PMP based
on the improved Hershfield method. Current reservoir design
values, a quasi-global satellite-based PMP database, and in
situ precipitation are used to benchmark against our results.
The 35-year running trend from 1961–1995 to 1980–2014
is quantified and partitioned, followed by future projections
using the Coupled Model Inter-comparison Project Phase 6
simulations under two scenarios. We find that the national
PMP generally decreases from southeast to northwest and is
typically dominated by the high variability of precipitation
extremes in northern China and high intensity in southern
China. Though consistent with previous project design val-
ues, our PMP calculations present underestimations by com-
paring them with satellite and in situ results due to differ-
ences in spatial scales and computation methods. Interan-
nual variability, instead of the intensification of precipitation
extremes, dominates the PMP running trends on a national
scale. Climate change, mainly attributed to land–atmosphere

coupling effects, leads to a widespread increase (> 20 %) in
PMP across the country under the SSP126 scenario, which is
projected to be higher along with the intensification of CO2
emissions. Our observation- and modeling-based results can
provide valuable implications for water managers under a
changing climate.

1 Introduction

Over the past 6 decades, an increase in the frequency and in-
tensity of extreme precipitation events has been documented
in both observation- (Guerreiro et al., 2018; Martinez-
Villalobos and Neelin, 2018; Visser et al., 2022; Zhao et
al., 2023) and modeling-based studies globally (Donat et al.,
2016; Kendon et al., 2017; Kunkel et al., 2013; Zhao et al.,
2022). This increase will be relatively more pronounced in
the majority of the regions worldwide in a warming climate
(Hirabayashi et al., 2013; Kim et al., 2022), leading to en-
hanced risk of consequent floods and the associated multi-
sectoral damage. Global damages due to floods amounted to
an estimated USD 651 billion between 2000 and 2019 alone,
which could increase by a factor of 20 by the year 2100 (De-
vitt et al., 2023; Winsemius et al., 2016). Traditional esti-
mates of such precipitation extremes and subsequent appli-
cations reliant on precipitation-sensitive information (e.g.,
flooding designs) have primarily relied upon the stationary
climate assumption, which is inadequate for a large duration
and in the warming climate (Visser et al., 2022). Another cru-
cial application is probable maximum precipitation (PMP),
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which is key to assessing the resilience of high-risk water in-
frastructures such as large dams and nuclear power plants,
efficient water resource management, and impact assessment
and strategic management of hydrological hazard adaptation
and mitigation.

PMP, defined as the theoretical maximum precipitation for
a given duration under modern meteorological conditions by
the World Meteorological Organization (WMO), represents
the upper limit of precipitation that is meteorologically pos-
sible over a watershed or a storm area of a given size at a
certain time of a year (WMO, 2009). As an indicator of re-
gional storm risks, PMP is physically dependent on various
meteorological factors such as available atmospheric mois-
ture content, moisture transportation efficiency, and persis-
tent upward strength (Trenberth et al., 2003). In addition to
the traditional flood frequency analysis method, PMP also
serves as the most severe condition to estimate the associated
theoretical maximum flood for a certain project in the area
(Hansen, 1987). Therefore, it plays a significant role in both
the design of hydraulic structures (e.g., dams, reservoirs) and
routing infrastructures as well as the assessment of regional
weather hazards (e.g., storms) (Luo et al., 2018).

An underlying prevalent assumption of PMP estimation is
the stationary climate leading to a static PMP value from ob-
served meteorological data, such as wind speed, precipita-
tion, and dew point, and maximized using empirical tech-
niques, meaning there is only a fixed PMP on a specific spa-
tiotemporal scale (Visser et al., 2022; WMO, 2009). How-
ever, it has been significantly challenged when both observa-
tions and models show that the above key factors, i.e., wind
and moisture, in forming PMP can change due to climate
change and internal variability (Herbst and Lalk, 2014; Mudd
et al., 2014; de Winter et al., 2013; Gimeno et al., 2019;
Richter and Xie, 2010; van Dilke et al., 2022). For example,
the warming climate-induced increase in atmospheric mois-
ture availability may favor the formation of extreme storm
events (Liu et al., 2020). In addition, the natural climate
variability from annual to decadal scales (e.g., ENSO) may
impact the accurate maximization of regional precipitation
extremes, particularly with limited record lengths (Kenyon
and Hegerl, 2010). A few previous studies have discussed
the impacts of a changing climate on PMP estimations over
different regions of the world using global and/or regional
climate models (Beauchamp et al., 2011; Rousseau et al.,
2014; Rouhani and Leconte, 2016; Afrooz et al., 2015; Park
et al., 2013; Lee and Kim, 2016; Visser et al., 2022). Specif-
ically, Jakob et al. (2009) performed an early investigation
in Australia and reported increases in moisture availability
in coastal regions that had tendencies to experience further
projected increases under climate change. A global assess-
ment by Kunkel et al. (2013) projected that future PMP val-
ues might intensify in the United States, contributed mainly
by the higher levels of atmospheric moisture content. These
projected PMP values showed a 20 %–30 % increase in the
United States by the end of the 21st century under a high

gas emission scenario. Similar growth caused by a chang-
ing climate has been documented in India, Spain, and other
parts globally (Sarkar and Maity, 2020; Monjo et al., 2023).
However, opposite patterns were also reported in a few re-
gions, possibly due to the reduced actual moisture avail-
ability and wind speed by atmospheric dynamic constraints
(Afzali-Gorouh et al., 2022; Yin et al., 2023). These incon-
sistent and contradictory findings imply complicated mech-
anisms and uncertainties in PMP estimations across regions
and underscore the need for a holistic qualification of PMP
considering nonstationary climates and at finer spatiotempo-
ral scales.

Despite the changeable PMP under a changing climate at-
tracting much attention from hydrologists, most of the previ-
ous studies primarily focus on the static scenario compar-
isons between history and the future (Jakob et al., 2009;
Kunkel et al., 2013; Sarkar and Maity, 2020; Monjo et al.,
2023; Afzali-Gorouh et al., 2022). Since the return periods
corresponding to the PMP values outpace the longest re-
turn periods traditionally used in applied climatology prod-
ucts, major water retention and routing structures will likely
experience the acute impact of climate change. This thus
highlights the elusive sense of security inferred from as-
sessments ignoring the climate-change-induced probabili-
ties of extreme events (Kunkel et al., 2013). Furthermore,
the gradual transformation of the past climate and the par-
titioned contributions from various climate change sources
also remain largely unexplored in the literature. Accounting
for such realistic and crucial attributes and mechanisms is
thereby necessary and topical, particularly for China, which
has experienced persistent precipitation disasters over the
past few decades (Gu et al., 2022). Covering a wide range
of geophysical elevations and climate zones (Fig. 1a and b),
the country has faced increasingly significant spatial hetero-
geneities in extreme precipitation (Sun et al., 2017). This
implies potentially intensified hydrological risk in differ-
ent regions, which is more evident given the approximately
100 000 dams and reservoirs constructed until 2015, mainly
for flood control (Fig. 1c and d; Song et al., 2022). However,
the systematic investigation of PMP in China was previously
limited by the inadequate spatiotemporal resolution and du-
ration of precipitation measurements over the country and
related climate modeling experiments.

Here, for the first time, we use the precipitation dataset
with potentially the finest spatiotemporal resolution (1 d and
1 km) covering 1961–2014 to calculate the long-term aver-
age PMP distribution in China using the modified statistical
method. The national estimations of PMP are benchmarked
with a quasi-global PMP dataset based on satellite products
and in situ data from 2417 weather stations across the coun-
try (Fig. 1c). The historical tendency in changing PMP is
detected based on a 35-year running window method (con-
sistent with the period of historical runs of global climate
models during 1980–2014). Moreover, the respective con-
tribution from climate change and internal variability to the
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Figure 1. (a) The national map, major rivers, major river basin boundaries, and 1 km elevation of China. The digital elevation map is provided
by A Big Earth Data Platform for Three Poles (Tang, 2019). The divisions of nine major river basins excluding a few coastal islands are
provided by the Resource and Environment Science and Data Centre of China (https://www.resdc.cn/, last access: 17 April 2024); these
include the Haihe River basin (HRB), Yellow River basin (YRB), Huaihe River basin (HHB), Yangtze River basin (YTB), Southeast basin
(including Taiwan Province, SEB), Pearl River basin (including Hainan Province, PRB), Northwest basin (NWB), Southwest basin (SWB),
and Songhua and Liaohe River basin (SLB). The divisions of the 80 major secondary river basins outlined in green color are based on
the regulations for the compilation of water resource protection planning of the Ministry of Water Resources (GIWRHPD et al., 2013).
(b) The climate zones of China are produced by the China Meteorological Administration. The map is accessible at the Resource and
Environment Science and Data Centre of China (https://www.resdc.cn/, last access: 17 April 2024), which is calculated using the national
daily temperature and water measurements. The inserted abbreviations in the map represent the secondary climate zones, and more details
can be found in previous references (WCNR, 1959). (c) The provincial administrative regions and locations of 2417 weather stations of
China. The national map and provinces are made under the guidance of the standard map service of the Ministry of Natural Resources of
the People’s Republic of China (https://www.zrzyst.cn, last access: 17 April 2024). (d) The spatial distribution of 933 dams and reservoirs
included in the Global Reservoir and Dam Database (GRanD) in China (Lehner et al., 2011a).

PMP variability is partitioned. The role of land–atmosphere
coupling, which is an important contributor to climatic ex-
tremes, is further evaluated via an ensemble of global climate
models. Finally, we project future changes in PMP in both
the near- and far-future periods under both low-emission and
high-emission scenarios relative to the baseline period (i.e.,
1980–2014). All the results are separately discussed on dif-

ferent scales from river basins to country for efficient and ef-
fective policy-making inferences for the regional to national
water managers.
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2 Materials and methods

2.1 High-resolution precipitation data

Daily gridded precipitation data at a fine 1 km spatial resolu-
tion covering the period 1951–2014 (i.e., the HRLT dataset)
are used to estimate PMP over China (Qin et al., 2022). The
HRLT precipitation data were interpolated using the best
ensemble among various machine learning methods (i.e.,
boosted regression trees, random forests, neural networks,
multivariate adaptive regression splines, support vector ma-
chines, and generalized additional models; see Qin et al.,
2022, for details) from the 0.5°× 0.5° observation-derived
gridded precipitation from the China Meteorological Admin-
istration. Multiple external variables related to elevation, lo-
cation, topography, and climate conditions have also been
combined for HRLT data preparation (Zhao and Zhu, 2015).
The superior spatial resolution of the HRLT dataset (i.e.,
1 km) can prevent the effects of spatial heterogeneity in re-
gional climate conditions on grid-scale PMP estimations.
Apart from the major advantages of a longer period (1951–
2019) and higher resolution, it has shown better accuracy
than other widely used meteorological datasets in China like
the China Meteorological Administration Land Data Assim-
ilation System (CLDAS, from 2017 to 2019 with ∼ 7.5 km
resolution) version 2 and the China Meteorological Forcing
Dataset (CMFD, from 1979 to 2018 with ∼ 12 km resolu-
tion) (Shi et al., 2014; He et al., 2020). However, we selected
the period 1951–2014 in this study to avoid the several un-
realistic high precipitation values starting in the year 2015
in the HRLT due to errors in the raw precipitation records,
which could consequently lead to significant PMP overesti-
mations (see Table S1 in the Supplement for details). More-
over, the locations and basic attributes (e.g., year of con-
struction, year of decommissioning, and storage capacity)
of dams and reservoirs from China are collected from the
Global Reservoir and Dam Database (GRanD) (Lehner et al.,
2011a) to analyze the temporal variations of the total stor-
age capacity of China. It is calculated as the ratio between
the total storage capacity of dams within a certain region
(e.g., a river basin and the whole country) to the area, with
the same unit as our PMP estimations (i.e., mm). Years of
construction and decommissioning are also considered in the
computation. The GRanD dataset contains a total of 7320
dams worldwide based on the existing global lakes and wet-
lands database as well as national and continental statistics
from different sources, of which 933 are located in China
(Fig. 1d). All the records of the GRanD dataset are georef-
erenced and have undergone manual inspection and valida-
tion to avoid spatial inconsistency (between locations and at-
tributes of dams) and redundancy. Since it only considers the
dams with large sizes (> 0.1 km3), the number of included
dams in China is much less than other similar collections
(e.g., 97 435 dams in CRD; see Song et al., 2022). However,
the total storage capacity of dams in GRanD (670 km3) ac-

counts for ∼ 70 % of the CRD (980 km3), the latter of which
does not contain the necessary attributes for temporal anal-
ysis (e.g., year of construction). By comparing the changes
in PMP and the available storage capacity of dams with time,
we can qualitatively measure the total capability of anthropo-
genetic efforts to store water from extreme precipitation. A
higher difference between PMP and total dam storage capac-
ity means more water cannot be stored in the basin reservoirs
(this needs to be consumed via evaporation and/or stream-
flow), and therefore, greater potential to translate to regional
floods.

2.2 Validation of PMP estimations

Two independent data sources are collected to validate our
1 d and 1 km PMP estimations using the HRLT dataset, in-
cluding a quasi-global PMP dataset based on remote sens-
ing products and a suite of national PMP results using in
situ precipitation records. The quasi-global PMP dataset is
calculated based on the Integrated Multi-satellite Retrievals
for GPM (Global Precipitation Measurement, GPMM here-
after) during 2000–2022 using the conventional Hershfield
method (Ekpetere et al., 2023). GPMM applies two exist-
ing corrections for the removal of the inversion problem
caused by the relatively short period of the IMERG prod-
uct (i.e., 23 years) and for the correction of missing maxi-
mum precipitation samples. It has shown reasonable accu-
racy compared with NOAA ground gauges in Kansas, USA,
from various timescales of 30 min to 24 h (Ekpetere, 2021).
Though sharing the same 1 d timescale with the PMP esti-
mations using HRLT, several key differences between the
GPMM and our methods are worth mentioning. First, the
GPMM is calculated using the classic Hershfield algorithm
combined with two statistical corrections above, which is
different from our modified Hershfield algorithm (see de-
tails in Sect. 2.3). Second, the spatial scale of the GPMM
is 0.1° (∼ 11 km at the Equator), which is much coarser than
the HRLT dataset (1 km). Third, the period used for calcu-
lation in the GPMM is 2000–2022, which is much shorter
than our estimations that are based on HRLT data from 1961
to 2014. We additionally calculate the 1 d PMP purely based
on in situ daily precipitation during 1961–2014 from 2417
weather stations of the country using the same modified Her-
shfield method (Fig. 1c). The raw precipitation observations
are provided by the China Meteorological Administration
(https://www.cma.gov.cn/en/, last access: 17 April 2024) and
the Resources and Environmental Science Data Centre, Chi-
nese Academy of Sciences (http://www.resdc.cn/, last ac-
cess: 29 October 2023), upon research request. Despite the
strict quality control (e.g., inspection of unphysical records)
performed by the data providers, the spatial distribution of in
situ stations is uneven. The number of available data decrease
from the southeastern to northwestern parts of China, espe-
cially on the Qinghai–Tibetan Plateau due to extreme natural
environments, to install and maintain the measuring stations.
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We use the bilinear interpolation method to extrapolate the
PMP results based on the HRLT dataset to the locations of
each grid cell of the GPMM and each field station of the pre-
cipitation network to facilitate intercomparisons. The same
procedure is repeated between the GPMM and the in situ pre-
cipitation results for better justification of our HRLT-based
PMP estimations. However, we note that such spatial inter-
polation may introduce significant bias for the comparison
of PMP estimations at different resolutions (Rajulapati et al.,
2021), in addition to the systematic differences implicit in the
methods and data sources (e.g., gauge vs. satellite data).

2.3 Statistical estimation of PMP

The methods of estimating PMP are generally classified as
meteorological methods and statistical methods. The essence
of the meteorological methods is the maximization of the
moisture factor and/or dynamic factor for a typical storm or
an ideal storm model. However, it requires abundant hydrom-
eteorological data like dew point temperature and wind speed
(Wang, 1999). The statistical approach is therefore recom-
mended by the WMO owing to its simplicity since it only
needs precipitation data (WMO, 2009; Casas et al., 2008;
Yang et al., 2018). The traditional statistical method was
originally developed by Hershfield (1961) based on Chow’s
frequency equation where a quantile of a probability distri-
bution is expressed as a function of the mean, the standard
deviation, and a frequency factor Km (Chow, 1951). The fre-
quency factor Km was estimated based on records of 24 h
rainfall for 2700 stations in the United States (90 % of the
total stations) and subsequently modified to account for the
effects of the sample size, outliers, and difference between
a daily maximum and a 24 h recorded dataset (Hershfield,
1965). Salas et al. (2020) pointed out that the Hershfield
method needs proper modification for applications in differ-
ent climatic zones. Here, we employ an adjusted approach
that has been widely applied for PMP design in China with
the sampling bias and calendar day errors corrected (Lin,
1981; Hershfield, 1961):

PMP= (1+Km ·Cv) ·X
′
n, (1)

X′n =

(
1+

3 ·Cv
√
n

)
·Xn, (2)

Cv =
σn

Xn
, (3)

Km =
Xm−Xn−1

σn−1
, (4)

Tm =
Xm−Xn

σn
, (5)

Nm = T
2

m+ 2, (6)

where Eqs. (1)–(4) represent the generalized formula of Her-
shfield’s algorithm (Hershfield, 1961), which is based on the
product of mean annual maximum precipitation and the max-

imization factor Km. Xm is the annual maximum precipita-
tion series, and σn(Xn) is its standard deviation (mean) value,
with σn−1(Xn−1) meaning the same as the series but exclud-
ing the maximum value. Lin (1981) revised the expression
of Xn to correct the sampling error in averaging the annual
maximum precipitation (X′n). Cv is the coefficient of varia-
tion of the annual maximum precipitation series. An addi-
tional constraint is given to the ultimate PMP estimations
in Eqs. (5) and (6) to determine whether the length of the
precipitation series has satisfied the requirement to capture
the interannual variability of precipitation extremes, serving
as quality checks of PMP results. We perform all the PMP
calculations for each 1 km grid of China, which can reason-
ably be considered a hydrometeorological homogeneous re-
gion to capture consistent characteristics of precipitation ex-
tremes. The ultimate PMP estimates are additionally multi-
plied by 1.13 to reflect the influences of a single fixed pre-
cipitation record frequency on yielding true maxima (WMO,
2009). The above computations are performed for each 1 km
grid cell over the country (∼ 1 400 000) during each running
period, generating comprehensive high-resolution and time-
varying detection of national PMP (see the details in the
next section). Apart from the traditional statistical methods
to calculate PMP, many other methods have been proposed
to describe the probabilistic nature of extreme precipitation
events, though the assumptions are shown to be unrealistic
(Salas and Obeysekera, 2014).

2.4 Detection and partitioning of PMP trends

Given the fact that the changing climate may influence the
PMP estimates of a specific region over a specific period,
we compute the PMP of each grid separately during different
35-year running windows (i.e., 1961–1995, 1962–1996, . . .,
1980–2014). It is selected to be consistent with the period of
the historical run of global climate models during 1980–2014
(refer to Sect. 2.5 for details). We consequently obtain a to-
tal of 20 subsets of PMP estimations for each 35-year period
during 1961–2014, which are subsequently used to calculate
trend slopes using the linear regression method, with the sig-
nificance level identified based on Mann–Kendall Z statistics
(5 % in our study) (Xiong et al., 2020; Mann, 1945; Yin et
al., 2021). Furthermore, looking back at Eq. (1), we refor-
mulate the formation of PMP as the two key factors intensity
and interannual variability of extreme precipitation and write
it as

PMP=K ·X′n, (7)

where K is the integrated maximization factor equivalent
to the item (1+Km ·Cv) in Eq. (1). We consider X′n to re-
flect the intensity of extreme precipitation events since they
are closely related to the available atmospheric moisture and
persistent upward motion that are sensitive to atmospheric
warming (Loriaux et al., 2016). The K factor is an indica-
tor of interannual variability of precipitation extremes during
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a certain period as it is derived from the standard deviation
and maximum value of annual maximum precipitation (stan-
dardized by the long-term mean). Equation (7) can further be
transformed into a logarithmic form:

lgPMP = lgK + lgX′n . (8)

In such a case, a multiple regression model between these
logarithmic items can be constructed to quantify the respec-
tive contributions from the intensity (X′n) and variability (K)
factor, where the trend of lgPMP can be sourced from the con-
stituent lgX′n and lgK . Their relative contribution rates (%) of

trends can thereby be estimated as
slgK
slgPMP

and
slg
X′n

slgPMP
, respec-

tively (S is the trend slope). Note that all the actual trend
slopes are calculated using the original variables, while the
logarithmic transformation is only applied to calculate the
relative contribution rates of both X′n and the K factor.

Furthermore, as a major contributor to precipitation ex-
tremes, land–atmosphere coupling effects have received spe-
cial attention by comparing ensemble global climate model
(GCM) simulations from the historical simulations of the
Coupled Model Inter-comparison Project Phase 6 (CMIP6)
and the Land Surface, Snow and Soil Moisture Model Inter-
comparison Project (LS3MIP) during 1980–2014 (a time
slice of the observational 35-year running results 1961–1995,
1962–1996, . . ., 1980–2014) (van den Hurk et al., 2016).
Their only difference lies in the prescription of dynamic land
states of the LS3MIP (i.e., LFMIP-pdLC experiment), in-
cluding snow and soil moisture based on the long-term clima-
tology during 1980–2014. This experiment does not consider
the seasonal variability of soil moisture, thus diminishing the
influences of land feedback on the atmosphere and provid-
ing a good way of removing the land–atmosphere coupling.
The GCMs we selected include the CMCC-ESM2, CNRM-
CM6-1, EC-Earth3, IPSL-CM6A-LR, MIROC6, and MPI-
ESM1-2-LR models, which are the only models that provide
the daily precipitation in both CMIP and LFMIP-pdLC ex-
periments currently. However, we note that a few models do
not provide specific flux variables (e.g., latent heat flux) that
can be used to further explain the potential mechanisms of
land–atmosphere coupling to influence PMP, which are also
included in our analysis to extend the data availability and
reduce the uncertainty of a single model (Table S2).

2.5 Projection of PMP under climate change

Using the daily precipitation data of the same GCMs from
the Scenario Model Inter-comparison Project (SMIP) and
LFMIP-pdLC as those in the historical CMIP experiments,
we project the temporal variations of PMP during 1980–2099
under the Shared Socioeconomic Pathways 1-2.6 (SSP126)
and 5-8.5 (SSP585) scenarios. These correspondingly repre-
sent the least and most extreme pathways with high green-
house gas emissions (2.6 and 8.5 Wm−2 of forcing in the
year 2100), together with the slow and rapid socioeconomic

growth (O’Neill et al., 2016; Eyring et al., 2016). Compar-
isons between the future and historical periods for the two
most extreme scenarios allow understanding of the bound-
ing influences of climate change on future PMP conditions.
Specifically, we quantify the percentage changes in PMP be-
tween the middle and end of the 21st century (2030–2064 and
2065–2099, respectively) and the reference historical base-
line (1980–2014) using the same models from the CMIP and
SMIP projects, which represent the predicted PMP changes
in the near and far future. Moreover, we conduct the inter-
comparison between the SMIP and LFMIP experiments to
examine the potential influences of land–atmosphere cou-
pling effects on PMP shifts under climate change. Although
the raw CMIP6 models can contain a large bias for precip-
itation extremes, we could not perform the bias correction
or the postprocessing adjustments due to unavailable in situ
observations under the LFMIP scenarios. Alternatively, the
multimodel mean method is applied to constrain the individ-
ual model uncertainties in simulating precipitation extremes
(e.g., Zhou et al., 2022; Qiao et al., 2023). The deviations
across the models are additionally illustrated in the Supple-
ment to reflect the model variance. Our findings provide a
large-scale assessment of the future PMP changes over the
country for policy-making, and the local-scale investigations
may further be supplemented by future field observations and
climate models for informed decision-making.

3 Results

3.1 Spatial distribution of PMP

The long-term average 1 d PMP and its constituting factors
(X′n and K) during 1961–2014 are estimated over China to
reveal their spatial patterns (Fig. 2). We observe a general
three-step spatial distribution with X′n generally decreasing
from southeast to northwest, which is especially high for the
coastal regions of the islands of Hainan and Taiwan (refer to
Fig. 1c for their locations) (> 120 mmd−1 locally). High val-
ues are also discovered in mountainous areas like the south-
ern Himalayan region and the middle and lower reaches of
the Yangtze River basin (Figs. 1a and 2a). However, the re-
gionalX′n stays below 15 mmd−1 over the majority of north-
western China due to the arid climate (Figs. 1b and 2a).
In contrast to the variable X′n representing the intensifica-
tion of precipitation extremes, the K factor captures a grad-
ually decreasing tendency from northwestern to southeastern
China, ranging from 17.2 to 1.2. It indicates that the inter-
annual variability of precipitation is stronger in arid north-
western China than in the humid regions in the southeastern
parts. A few regions with significant variability are discov-
ered in northern China, the southern part of the Qinghai–
Tibetan Plateau, and scattered regions of southern China
(Fig. 2b), which are possibly related to the local geophysi-
cal and climatic conditions (e.g., elevated terrain and coastal
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storm). Consequently, the contributions of divergent spatial
patterns in X′n and K lead to the complex distribution of
PMP over China. It is characterized by the overall “high in
the southeast and low in the northwest” distribution similar
to X′n, with a few regions highlighted by an overwhelming
PMP strengthened by a local K factor (e.g., the Huaihe and
Haihe River basins of northern China) (Fig. 2c). The central
Yangtze River basin, where both factors forming PMP (X′n
and K) present relatively high values, is highlighted by the
large amplitude of PMP. Specifically, the area-averaged val-
ues for the Yangtze, Southeast, and Pearl River basins are
131, 225, and 196 mmd−1, respectively (109 mmd−1 for the
whole of China). Overall, it coincides with the national dam
and reservoir distribution to imply the regional flood poten-
tial and consequential human interventions to alleviate such
impacts (Figs. 2c and 1d). The negative linear regression be-
tween the upstream drainage area and PMP of 52 major wa-
ter conservancy projects of China (R2

= 0.53, p < 0.05) is
reasonably reconstructed from our PMP results from over
80 major secondary river basins (R2

= 0.39, p < 0.05) (Ta-
ble S3 and Fig. 2d). Differences in the slopes are mainly in-
duced by varying spatiotemporal scales for calculations and
equip us with improved insights into the scale dependencies
of the estimated PMP.

Comparisons in the spatial distribution of PMP with previ-
ous estimates demonstrate the robustness of our HRLT-based
results. Our estimations of X′n reproduce well the national
distribution of historical records of daily precipitation max-
ima, except for Inner Mongolia Province, where a historical
precipitation extreme of ∼ 1400 mmd−1 occurred in 1977
(Figs. 1c, 2a, and 3b). However, scale differences between
ground stations and grid cells lead to neglect of such events
in PMP calculations, which should deserve more attention
for future regional investigations. Furthermore, the spatial
distribution of our PMP results corresponds well to a pre-
vious preliminary estimation of the national PMP map based
on in situ data, which has been transformed from the original
contour line to a gridded rendering map for better visualiza-
tion (Fig. 3a). The coherent high PMP is located not only in
eastern China along the coastline, but also in a few arid re-
gions in northwestern China as well as the southernmost part
of Xizang Province (Fig. 1c). Independent comparisons with
two suites of PMP estimations over China additionally sug-
gest that our HRLT-based PMP can illustrate a similar spatial
distribution to that of in situ results, where abundant ground
precipitation is available (e.g., eastern and southern China)
(Fig. 3c). More importantly, it depicts the PMP distribution
for data-scarce regions like Xinjiang and Tibet provinces in
western China, where very limited information can be ex-
tracted from in situ results (Fig. 1c), which is supported by
the GPMM results that are derived from remote sensing pre-
cipitation products (e.g., relatively high PMP in southern Ti-
bet) (Fig. 3d). However, the GPMM data present obvious
overestimations of PMP for nearly the whole of the coun-
try, reaching ∼ 4300 mmd−1 by comparing them with pre-

vious investigations and the in situ results (Fig. 3a–c). They
result from the systematic overestimation of GPM IMERG
products in China, especially in the northern parts (Tang et
al., 2020). Such overestimation can propagate into the cal-
culation of the K factor and, therefore, further unrealisti-
cally amplify the PMP. The differences in the computation
methods with GPMM and the relatively short period (i.e.,
2000–2022) may also contribute to the overestimated PMP.
Moreover, more specific regional distributions of PMP, e.g.,
the high PMP values in the southern and northern Taihang
Mountains in northern China, are highlighted by the HRLT-
based PMP. This is not seen in the GPMM because HRLT-
based PMP was calculated at a much finer spatial resolution
(1 km) than GPMM (0.1°, ∼ 11 km).

Quantitative validation is performed on various scales
among PMP estimations from HRLT, GPMM, and in situ
results (Fig. 4). Relatively good correlations between PMP
estimations from HRLT and the other two subsets are found
on the grid scale, with Pearson correlation coefficients (CCs)
of 0.65 and 0.66 in GPMM and in situ results, respec-
tively (Fig. 4a and b). However, the significant overestima-
tion of GPMM is reported by comparing it with HRLT re-
sults, where a line with a slope of 2.51 is fitted, consistent
with the overall estimation of spatial distributions (Figs. 2c
and 3d). This slope is apparently higher than that between in
situ results and HRLT data (1.54), indicating the effective-
ness of our HRLT results. We also report similar overesti-
mations of GPMM in the in situ results and decreased cor-
relations (CC= 0.52) (Fig. 4c). Examination results on the
region scale also reveal a similar situation, with better agree-
ment between HRLT and in situ results (CC= 0.96) than that
with GPMM due to its significant overestimations at a regres-
sion slope of 3.67 (Fig. 4d and e). The regional estimate of
PMP from GPMM is nearly double the in situ results over
different river basins, fitting a line of 0.55 between both sub-
sets (Fig. 4f). Therefore, the HRLT-based PMP shows rela-
tively better accuracy than the GPMM dataset in China by
comparing it with the in situ results, though it also presents
more moderate overestimations than in situ data.

3.2 Variations and attributions of PMP

Firstly, based on the assumption of a static climate, the spa-
tial distribution of PMP over China is evaluated using the
high-resolution HRLT dataset and validated with in situ re-
sults and GPMM data. However, since the changing climate
is a fact widely acknowledged by the community, it signif-
icantly challenges the accurate estimation of PMP (Piao et
al., 2010). Secondly, we estimate the changes in PMP and
its constituting factors (i.e., X′n and K) over different time
slices of 35 years from 1961–1995 to 1980–2014 to detect
such influences (Fig. 5). On a national scale, we observe a
reduction in K from the periods 1961–1995 (2.3) to 1971–
2005 (2.23), followed by an increase until the period 1977–
2011 and near stability at around 2.28 in the following years
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Figure 2. Spatial distribution of the (a) X′n, (b) K factor, and (c) PMP based on the HRLT dataset during 1961–2014. The grid cells and
stations where the minimum lengths of years to calculate PMP are not satisfied are masked out for clarification. (d) Scatter plots between PMP
estimations and catchment areas of 52 major Chinese water conservancy projects (blue) (GIWCHPD, 1982, 1990, Table S3) and 80 secondary
river basins (orange). Both PMP estimations and catchment areas have undergone logarithmic transformations for better visualization.

Figure 3. (a) Spatial distribution of field-based PMP over 80 secondary river basins (Wang, 2002). (b) Spatial distribution of recorded
historical maximum daily precipitation (Wang, 2002, Table S4). (c) Spatial distribution of PMP based on in situ daily precipitation during
1961–2014. (d) Spatial distribution of PMP results from the GPMM database.

(Fig. 5a). In contrast to K , X′n presents a stably increasing
tendency over all the periods, meaning a relative increase of
3 % when compared to the first period, i.e., from 43.5 (1961–
1995) to 44.6 mmd−1 (1980–2014) (Fig. 5b). Consequently,
the national PMP shows a pattern that is dominated by the
K factor, including a minor decline before the period 1971–
2005 and a continuous increase afterward. The accelerated
rise in PMP from 1977 to 2011 should be highlighted, which
results from the joint contribution of the increase in the X′n
and K factor (Fig. 5c). This can be the result of the inten-
sification of both climate variability (e.g., El Niño–Southern
Oscillation events) (Huang and Stevenson, 2023) and anthro-
pogenic forcing (e.g., irrigation and urbanization) (Wu et al.,
2021; Han et al., 2022). Overall, the national average PMP
increased from 106.5 to 109.5 mmd−1 between the periods
1961–1995 and 1980–2014, equivalent to a 3 % increase with
the baseline from the first period. This growth also coincides
with the steady rise in the total storage capacity of the dams
and reservoirs, implying artificial efforts to alleviate the im-
pacts of increasing and more intense precipitation extremes.

On the other hand, it also provides advance warning to water
resource managers that more constructions will be needed
in the future in case of the overwhelming increase rate of
PMP in reservoir and dam constructions, even though the
total reservoir capacity of the country increased by ∼ 80 %
from 1961 (35.9 mm) to 2014 (64 mm) (Fig. 5d).

The interannual trend of 1 d PMP during the 35-year
running window from 1961–1995 to 1980–2014 is firstly
estimated for each grid cell (Fig. 6a). The spatial dis-
tribution of the national PMP trend is characterized by
the widespread increase in PMP across northern China
with regional hotspots in Inner Mongolia and Heilongjiang
provinces (> 5 mmd−1 a−1) (refer to Fig. 1 for their lo-
cations). The region-averaged result for the Yellow and
Songliao River basins where they are distributed is 0.41 and
0.14 mmd−1 a−1, respectively. Another region with a sig-
nificant PMP increase is in the southern part of the coun-
try, comprising mainly the central Yangtze and Pearl River
basins (0.7 and 0.27 mmd−1 a−1, respectively), where slopes
are higher than 7.5 mmd−1 a−1 locally. In addition, both sig-
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Figure 4. Scatter plots between PMP estimations from (a, d) HRLT and GPMM, (b, e) HRLT and in situ precipitation, and (c, f) GPMM and
the in situ precipitation dataset on (a–c) the grid or station scale and (d–f) the basin scale. The dashed grey and solid black lines represent the
1 : 1 line and fitted linear regression line, respectively. Subfigures (a–c) are heatmaps where high (low) point density is translated into yellow
(blue) colors. CC means the Pearson correlation coefficient. The black dots and red triangle in subfigures (d–f) represent the different river
basins and the whole country, respectively.

nificant (p < 0.05) increasing and decreasing trends are de-
tected in the scattered regions of northwestern and eastern
China. Such a distribution provides a piece of evidence on
the necessity of incorporating the nonstationarity of a climate
system in the calculation of PMP as well as the pressing need
to consider its long-term change behaviors.

The drivers of the PMP trend are attributed to its two con-
tributors (i.e., X′n and K) according to Eq. (8). It is found
that the national distribution of PMP is mainly controlled
by the latter in the spatial domain (Fig. 6b–e). The rela-
tive contribution of the trend in the K factor accounts for
more than 100 % of both increasing and decreasing trends
of regional PMP over most of the country and rises up
to 400 % for certain areas in northern and western China
(Fig. 6e). Another variable, X′n, presents a divergent pat-
tern in the remaining parts of the country, with contribution
rates lower than 50 % (Fig. 6d). However, apart from the
consistent growth of X′n in southeastern China (trend rates
0.25 to 0.75 mmd−1 a−1), there are significant increases over
the northwestern part, though the change slopes are gener-
ally lower than 0.25 mmd−1 a−1 (Fig. 2b). Differently, the
K factor mainly illustrates growth in northern China and the

neighboring Qinghai–Tibetan Plateau, even though a few re-
gional hotspots with rapid decline are found in the Yangtze
and Pearl River basins (Fig. 6c). We observe the opposite
trends in X′n and K nationwide, resulting in patterns of ex-
tremely high (low) relative contributions of K (X′n) over
regions where PMP changes are controlled by the former
(Fig. 6d and e). These findings underpin our hypothesis that
a static climate assumption to calculate PMP is not appropri-
ate for most areas of China due to significant increasing or
decreasing trends, which are overall caused by the changes
in the interannual variability of precipitation extremes in-
stead of its intensity, though the latter has demonstrated a
widespread increase over most of the country. On the na-
tional scale, the PMP increases at a rate of 0.08 mmd−1 a−1,
of which 71 % (29 %) is caused by the increasing K factor
(X′n). It is also the governing factor in most river basins of
the country, where the highest contribution of 98 % is in the
Pearl River basin (Fig. 6f), with the opposite pattern observed
in the Haihe River basin, where the X′n contributes most, up
to 38 %.
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Figure 5. Temporal changes in 35-year estimates of (a) K factor, (b) X′n, (c) PMP, and (d) total reservoir capacity from 1961–1995 to
1980–2014 in China. The x axis label 1995, 1996, . . ., 2014 means the periods 1961–1995, 1962–1996, . . ., 1980–2014, respectively.

3.3 Response of PMP to the changing climate

A static period from 1980 to 2014 is chosen to evaluate the
prediction capability of ensemble GCMs. By comparing the
historical PMP results from the CMIP experiment with the
HRLT PMP results during the same period, we observe co-
herent distributions among them in terms of X′n, K factor,
and PMP (Fig. 7). However, differences in the amplitudes
of these variables exist due to divergent spatial scales (1 km
vs. 1°) upon PMP calculation, causing the larger cells (1°) to
generally possess lower values, with more local details found
in the former (1 km). No significant differences are observed
between the CMIP and LFMIP-pdLC experiments, meaning
the subtle effects of land–atmosphere coupling in the past.

Individual simulations from single models are presented to
analyze the inter-member uncertainty (Fig. S1 in the Sup-
plement). We find that the ensemble mean PMP is a bal-
anced result of overestimated values from CMCC-ESM2 and
MIROC6 and underestimated values from MPI-ESM1-2-LR
and is caused by the requisite interpolation from the native
coarse model resolution (∼ 2°). Historical evaluations have
also shown the relatively better performance of EC-Earth and
MPI-ESM1-2-LR than the remaining models with wet or dry
biases over China (Dong and Dong, 2021; Jia et al., 2023).
Despite the bias in raw CMIP6 outputs of different models,
the multimodel ensemble has been shown as a useful method
to reduce the uncertainties in individual models, which have
the potential to further improve with future model evolution
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Figure 6. Trend slopes of (a) PMP, (b) X′n, and (c) K on the daily scale of the moving 35-year periods from 1961–1995, 1962–1996, . . ., to
1980–2014 over China. Contribution of the (d) X′n and (e) K factor to the changing 1 d PMP. The grid cells whose trend values do not reach
a 0.05 significance level are masked out. (f) Scaled contribution of different variables to the changing PMP in different river basins. Please
refer to Fig. 1 for details of the regional abbreviations.

(Qiao et al., 2023; Zhu et al., 2020). Overall, the consistent
PMP distributions in the ensemble mean of models and ob-
servational results indicate the effectiveness of GCM predic-
tions, which are, therefore, further applied to project future
changes under climate warming.

We quantify the relative changes in 1 d PMP between fu-
ture periods and the baseline (1980–2014) under two climate
change scenarios (Fig. 8). A widespread increase during the
near future (2030–2064) is projected across nearly the whole
country from the SMIP experiment under the SSP126 sce-
nario. In particular, the regions witnessing such an increase
include the southern coastal region, northeastern China, the
central part of the Yangtze River basin, the west of Inner
Mongolia, and the Yarlung Zangbo River basin located in
southwestern China (Fig. 8a). The percentage change gen-
erally exceeds 20 % and reaches up to 60 % for certain re-
gions, which results from the intensification of both X′n and

the K factor (Figs. S2a and S4a). Specifically, the overall in-
creasing PMP is mainly caused by the growth of X′n in the
national domain with the intensification of the K factor over
specific regions. However, such an increase is significantly
dampened (and even reversed) in the LFMIP-pdLC exper-
iment due to the widespread reduction of X′n except for a
few regions around the western and northern boundaries of
China (Figs. 8c, S2c, and S4c), with the K factor almost
unchanged during the same period (Fig. S4). The overes-
timated PMP results between SMIP and LFMIP-pdLC are
mainly located in the southern tropics and arid and semi-
arid zones of northwestern and northeastern China and are
caused by the underestimated X′n in the LFMIP-pdLC with
the K factor slightly reduced (Fig. 8a and c). However, the
increase in PMP of the scattered regions in northwestern
China persistently exists in both experiments. No significant
differences between near-future (2030–2064) and far-future
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Figure 7. Estimates of the 1 d (a, d) X′n, (b, e) K factor, and (c, f) PMP from the (a–c) HRLT and (d–f) ensemble mean of the CMIP
experiment during 1980–2014 over China.

(2065–2099) projections are discovered in both the SMIP
and LFMIP-pdLC experiments (Fig. 8a–d). To conclude, the
projected PMP increase reaches 20 % and 17 % for the whole
country during the near- and far-future periods, respectively,
according to the SMIP experiment, of which the southwest-
ern (31 %) and southeastern (21 %) basins are, correspond-
ingly, the highest. The percentage changes are reduced to
only 2 % (near future) and 0 % (far future) for the LFMIP-
pdLC experiment. Furthermore, we observe the continuous
intensifications of PMP in the SSP585 scenario compared to
the SSP126 scenario in the SMIP experiment, with the over-
all decrease in PMP in the LFMIP-pdLC experiment (Figs. 9,
S3, and S5). These changes are caused by the increase or
decrease in the X′n from the SSP126 to SSP585 scenario
during the SMIP and LFMIP-pdLC experiments, with the
K factor almost unchanged among the scenarios. The PMP
increases to 51 % and 43 % for the SSP585 scenario from
the SMIP experiment during the near and far future com-
pared to the baseline period, much higher than the LFMIP-

pdLC results (−1 % and −5 % for the near and far future)
(Fig. 9e). These findings suggest that the land–atmosphere
coupling controls the increase in PMP for the majority of
China, mainly by influencing the intensity of precipitation
extremes (i.e., X′n). However, the climatic change unrelated
to the land–atmosphere coupling governs the strengthened
PMP in northwestern China, where significant increases in
PMP are detected due to the growing variability of precipita-
tion extremes (i.e., the K factor). They imply the compound
risk of increasing intensity and variability of precipitation ex-
tremes under climate change. These findings are consistent
with previous global assessments using the GLACE-CMIP5
framework, which found a decrease in the annual sum of
daily precipitation (> 95th percentile) after removing soil
moisture variability (i.e., representative of land–atmosphere
coupling) in southern China (Lorenz et al., 2016). However,
it also indicated enhanced variability of heavy precipitation
in water-limited regions due to increased latent heat flux that
tends to increase evaporation and precipitation (Berg et al.,
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2014). It is different from our examinations over the semi-
arid and arid zones across the country (Fig. 1b), possibly due
to the divergent spatial response of latent or sensible heat flux
to atmospheric states (Wu et al., 2023).

4 Discussions

4.1 Comparisons with previous studies

Quantitative assessment with design values of large hy-
dropower projects and in situ estimations of PMP has pre-
sented a contradictory conclusion, i.e., overestimation of the
water projects (Fig. 2f) and underestimation of in situ results
and the GPMM database (Fig. 4). This fact suggests more
justification should be made by comparing it with previous
research. A few regional studies have calculated 1 d PMP
over different parts of China (Svensson and Rakhecha, 1998;
Yang et al., 2018; Zhou et al., 2020). For example, Svensson
and Rakhecha (1998) used the moisture maximization factor
to estimate PMP over the Hongru River basin of the Huaihe
River basin in eastern China, with a result of 460 mmd−1

that is generally within the range of our 1 km PMP map
of the corresponding area (200–600 mmd−1, Fig. 2c). Zhou
et al. (2020) applied the storm transposition method to es-
timate PMP for a small ungauged catchment in northern
China from 118°20′–118°26′ E and 40°26′–40°30′ N. The re-
sults change from 397 to 570 mmd−1 at most of the sta-
tions, with an extreme value of 1026 mmd−1 in Zhangmu,
Hebei Province (see Fig. 1c). They are overall higher than
our gridded estimations using HRLT, with PMP approxi-
mately fluctuating between 80 and 200 mmd−1. Such a dif-
ference may arise from the distinctive calculation methods
(i.e., hydrometeorological method vs. statistical method) and
data length of our study, as most historical maximum precip-
itation occurred prior to the first year of the HRLT dataset
(1961). This suggests the sensitivity of PMP estimations to
different computation methods and data representativeness
for valid precipitation extremes. Another example in west-
ern China is the calculation of PMP for the Nujiang River
basin (part of the southwestern basin, Fig. 1a) (Liu et al.,
2018). The study uses a gridded precipitation dataset to esti-
mate PMP based on the model storm amplification approach.
It discovered the PMP increases from upstream to down-
stream within the basin, and the value changes from 15.4 to
99.7 mmd−1. The spatial distribution (Fig. 2c) and amplitude
(28.7–87.8 mmd−1) are quite similar to our findings. Using
three remote sensing precipitation products and the statistical
method, Yang et al. (2018) discussed the potential of gridded
precipitation extremes to estimate PMP in poorly gauged re-
gions by taking the Dadu River basin in western China (lo-
cated in the upstream Yangtze River basin, Fig. 1a) as an
example. They pointed out the huge disparity among PMP
values based on various satellite products (ranging between
51.88–519.11, 90.16–417.61, 122.41–391.79, and 128.37–

740.45 mm for CGDPA, CMORPH, PERSIANN-CDR, and
TRMM 3B42V7, respectively) and recommended a PMP of
52–519 mmd−1 over the region, nearly 2-fold higher than
our result of about 29–279 mmd−1. The large differences
between the global precipitation products highlight the lack
of consistent PMP representations in different areas, which
may partly be solved by merging multiple data sources based
on their regional performance and uncertainty quantification
(Rajulapati et al., 2020). However, consistent spatial vari-
ability and distribution are reported where PMP generally
increases from upper to lower reaches. We also find lower
PMP values of HRLT PMP (∼ 350 mmd−1) on Hong Kong
Island in southern China than results based on site data (e.g.,
1753 mmd−1 in Lan et al., 2017, and Liao et al., 2020). Such
underestimations, on the one hand, are a consequence of dif-
ferent calculation algorithms, data sources, and uncertain-
ties. On the other hand, they reflect the differences in spatial
scales between field and grid cell PMP estimations. Previ-
ous studies generally take the highest estimation among var-
ious weather stations in a region as the final PMP, while the
HRLT highlights the average PMP for each high-resolution
1 km grid cell. Indeed, our approach tends to follow the def-
inition of PMP more strictly, i.e., the theoretical maximum
precipitation for a given duration under modern meteorolog-
ical conditions, which should happen on an area scale in-
stead of in a point domain (WMO, 2009). This scale differ-
ence is further highlighted in a global study that quantified
the change in the 1 d PMP and mean annual maximum daily
precipitation (AMDP) using a 0.5° resolution global precip-
itation dataset (Sarkar and Maity, 2021). The mean AMDP
of grid cells over tropical zones with high precipitation and
low seasonality (e.g., Southeast Asia near the islands of Hong
Kong and Taiwan) generally ranges from 50 to 150 mmd−1

(see Fig. 5 of Sarkar and Maity, 2021). It is much lower than
our HRLT estimates (Fig. 2a) and previous station-based esti-
mates (e.g., Table 5 of Lan et al., 2017) due to larger grid cells
for computation (∼ 50 km). Moreover, it indicated a signifi-
cant increase in PMP in the southern and northeastern parts
of China by comparing the PMP results of two periods (i.e.,
1948–1977 and 1979–2012), which coincide with our spatial
distribution of PMP trends (Fig. 6a), even if over different
calculation periods.

Despite some differences between previous regional in-
vestigations that are derived from divergent datasets, meth-
ods, and spatial scales, our first high-resolution (1 km) PMP
map generated over China captures the spatial distribution
at a local scale very well. Moreover, all the previously men-
tioned studies estimate PMP under the assumption of a static
climate and neglect the variability of climate systems. This
point is addressed in this study by separately calculating the
PMP for each moving 35-year time period, along with an at-
tribution framework proposed to track the sources of PMP
changes. Anthropogenetic climate change, which is not ad-
equately discussed in previous studies, is also investigated
using an ensemble of global climate models under different
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Figure 8. Multimodel mean percentage changes in 1 d PMP from the (a, c) 2030–2064 and (b, d) 2065–2099 periods to 1980–2014 under
the SSP126 scenario over China from the (a, b) SMIP and (c, d) LFMIP-pdLC ensembles. (e) Regional summary of the percentage PMP
changes. Please refer to Fig. 1 for more details on the regional abbreviations.
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Figure 9. Same as Fig. 8 but for the SSP585 scenario.
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scenarios and periods. In a nutshell, this study constructs the
first national high-resolution PMP map and quantitatively de-
tects the changing climate influences on PMP estimations in
the past and future.

4.2 Potential pathways of land–atmosphere coupling to
PMP

Linkages between land–atmosphere coupling and climate ex-
tremes have received much attention from the community
over the years by means of observations and models (e.g.,
Koster et al., 2004; Zhou et al., 2019). However, most pre-
vious analyses focus on the mechanisms of land–atmosphere
coupling to induce the hot extremes in the near-surface in-
terface, leaving the rationales behind the extreme precipi-
tation events (and PMP) still poorly understood (Lorenz et
al., 2016). Nevertheless, a basic consensus is that land sur-
face states (typically soil moisture) alter the atmospheric pro-
cesses by modulating the allocation of sensible and latent
heat flux of the energy budget in a positive and/or nega-
tive way (Seneviratne et al., 2010). On the one hand, the in-
creasing wetness of soil can provide more available moisture
to be evaporated into the near-surface atmosphere, leading
to higher evaporation (or upward latent heat flux); on the
other hand, the increased evaporation can inversely reduce
the available soil moisture. This reduction in available soil
moisture should be lower than the increased soil moisture to
maintain the interactions between soil and precipitation; oth-
erwise, the soil would become drier. In this case, the elevated
net evaporation can further influence the precipitation by en-
hancing the moisture supply for the planetary boundary layer
(PBL) to affect the atmospheric heating rates and cloud for-
mation (Zheng et al., 2015). However, such “second-hand”
influences are complex due to the multiple dynamic and ther-
mal processes involved. Both positive and negative correla-
tions have been reported from the previous modeling outputs
and observed results depending on the different regions and
seasons (Diro et al., 2014; Wu et al., 2023).

Based on prior knowledge of the mechanisms of land–
atmosphere coupling, we detect the percentage changes in
the annual daily maximum of heat fluxes of future scenar-
ios compared to the baseline (Figs. 10 and 11). We discover
the national increase in the annual daily maxima of latent
heat flux that is most obvious in the western parts of China
according to the SMIP experiment, which is spatially con-
sistent with the increase in X′n (Figs. 10 and S2). Such an
increase disappears in the LFMIP-pdLC experiment and has
a similar spatial pattern to the X′n, i.e., the decrease in the
majority of the country with the regional increase in the west
and south. Furthermore, these reported changes in the latent
heat flux show no apparent deviation between the near and
far future; however, they show significant positive sensitivity
along with the enhancement of the gas emission scenarios.
In addition, we also find the corresponding variations in the
sensible heat flux that are opposite to the latent heat flux, ex-

cept for northeastern China, where both fluxes increase in the
LFMIP-pdLC experiment (Figs. 10 and 11). Moreover, the
strengthened changes in the sensible heat flux are observed
in both ensembles. Based on the above analysis, it can be
inferred that the land–atmosphere coupling can enhance the
intensity of precipitation extremes by increasing the supply
of latent heat flux (i.e., evapotranspiration) at the expense of
reduced sensible heat flux, and such impacts can be relatively
stronger under a higher gas emission scenario.

4.3 Limitations and future outlooks

Although this study has provided the first national high-
resolution PMP map and the quantitative evaluation of the
effects of the changing climate on PMP estimations, it suf-
fers from a few inevitable limitations associated with the in-
consistent spatial scales between precipitation data and mod-
els and the lack of adequate ground information for physical
attributions. As shown before in the comparisons with pre-
vious studies, the discrepancies between statistical methods
and hydrometeorological methods are evident (see Sect. 4.1
for details). They are mainly derived from the different ra-
tionale behind the maximization framework, e.g., maximiza-
tion of wind or moisture, and the uncertainty in the mete-
orological data (e.g., dew point temperature, wind speed).
Basically, these different methods of computing PMP have
different storylines. For example, the hydrometeorological
methods are characterized by the maximization of a sin-
gle or several atmospheric factors and emphasize the phys-
ical mechanisms behind the storms (Gu et al., 2022), while
the statistical methods estimate an unprecedented extreme
value from a probabilistic perspective (Papalexiou and Kout-
soyiannis, 2006; Papalexiou et al., 2016). The hydrometeo-
rological methods may be somewhat more physically real-
istic than the statistical methods, but they neglect the inter-
action of different factors and heavily rely on the meteoro-
logical data. These shortcomings hinder the large-scale as-
sessment of PMP and accurate future projections using hy-
drometeorological methods. Overall, the sensitivity of PMP
estimation to different calculation methods is worthy of de-
tection. However, we are unable to evaluate it at this stage
due to the lack of sufficiently long-term storm event records
and related meteorological data for the maximization, espe-
cially on a national scale. Although we have validated our es-
timates with the auxiliary quasi-global PMP dataset and the
in situ observations, additional measures for quantitative val-
idation, such as various methods, may further be employed
in the future. Another limitation lies in the mathematical par-
titioning and subsequent attribution of the statistical PMP es-
timation to two main components following Eq. (8). Though
the framework can conveniently be implemented for the at-
tribution of PMP trends to different factors, no more insights
into the dynamic and thermal atmospheric processes can be
provided. Recent studies have shown the applications of nu-
merical weather models (e.g., Weather Research and Fore-
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Figure 10. Spatial distribution of the multimodel mean percentage changes in latent heat flux from the (a, c, e, f) 2030–2064 and (b, d, f, h)
2065–2099 period to 1980–2014 under the (a, b, e, f) SSP126 and (c, d, g, h) SSP585 scenarios over China from the (a–d) SMIP and (e–h)
LFMIP-pdLC ensembles.

Figure 11. Same as Fig. 10 but for the sensible heat flux.
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casting Model – WRF) in modeling the regional PMP (Hi-
raga et al., 2021). Such attempts can assess the sensitivity
of PMP to different atmospheric (e.g., moisture) and geo-
physical factors (e.g., topography) and climate change from
a physical perspective (Rastogi et al., 2017). Moreover, the
scale difference of resolutions between the HRLT dataset
(1 km) and GCM simulations (∼ 1°, 100 km) may introduce
regional disagreement between our historical assessment and
future projections (Fig. 7). This difference is caused by the
relatively coarse spatial resolution in the parameterization of
GCMs, highlighting the fact that precautions should be taken
when explaining the linked spatial distribution between the
past and the future.

Corresponding to the abovementioned limitations, several
strategies can be adopted to alleviate their impacts in fu-
ture studies. A feasible solution is the use of multisource
meteorological data, e.g., a remote sensing product (e.g.,
MODIS-based vapor pressure data) and reanalysis predic-
tions (e.g., ERA5 and JRA55), in the estimation of a large-
scale PMP using the meteorological method, which can serve
as a useful tool to verify the independent statistical estima-
tions. Moreover, fully coupled regional-scale simulations can
be performed using the numerical weather simulation and
data assimilation techniques, of which WRF from NOAA
has achieved much in the simulation and prediction of PMP
(e.g., Rastogi et al., 2017). In addition to this, high-resolution
global climate models such as the High-Resolution Model
Intercomparison Project (HighResMIP v1.0) for CMIP6 pro-
vide another way for the PMP analysis on continental and
global scales (Haarsma et al., 2016). However, inter-member
uncertainties implicit in the models are inevitable and pos-
sibly considerable and deserve relatively more efforts to
constrain and alleviate them. This point is highlighted by
the comparison between historical CMIP PMP estimations
and HRLT results (Fig. 7) as well as the cross-comparison
between CMIP and LFMIP-pdLC simulations in the past
(Fig. S6). The overestimated PMP and its components of the
LFMIP-pdLC in the CMIP experiment during the baseline
period can be a result of model sensitivity and uncertainty
for the past climate. All of the issues discussed, including the
unclear physical mechanisms of changing PMP and diver-
gent spatial scales among the datasets and the uncertainties
therein, deserve to be studied in the future with the advance-
ment of observation systems and Earth system models.

5 Conclusions

Given the lack of knowledge on the spatial distribution of
PMP in China and the potential influences of the chang-
ing climate on PMP formation, this study uses the existing
highest-resolution (1 km) precipitation dataset to compute
the 1 d PMP during 1961–2014 for the whole of China us-
ing the improved Hershfield method. The spatial distribution
of PMP is generated on a national scale and has been vali-

dated with a satellite-based quasi-global PMP dataset and in
situ PMP results. Changes in PMP and its constituting fac-
tors (X′n and K) are presented in each 35-year time window
from 1961–1995 to 1980–2014. Interannual trends are sub-
sequently estimated during these periods and are attributed to
the changes in these two contributors. An ensemble of GCMs
is used to project the response of PMP to climate change
under two scenarios (i.e., SSP126 and SSP585) in the near
(2030–2064) and far (2065–2099) futures of the 21st century
relative to the baseline (1980–2014). The main findings are
as follows.

1. We find the approximately opposite spatial distribution
of two constituting factors to form PMP (X′n and K)
over the country, of which the variableX′n (K) generally
decreases (increases) from the southeastern to north-
western sections. They jointly result in a unique spatial
distribution of PMP, which is characterized by both the
typical “three-step” distribution from southeast to north-
west and regional hotspots in coastal regions, mountain-
ous areas, and northern arid zones. Our PMP estima-
tions are generally consistent with previous precipita-
tion compilations and project design results. However,
overestimations are discovered when comparing them
with the in situ PMP results and GPMM dataset, with
correlation coefficients ranging from 0.65 to 0.96. The
differences might be caused by the different calculation
methodologies and varying spatial resolutions.

2. Different temporal variations of X′n and K are observed
during moving time windows from 1961 to 2014. K
shifts from decrease to increase after the turning period
of 1971–2005, while X′n keeps growing and achieved
a 3 % increase for the country. Consequently, PMP also
increases from 106.5 to 109.5 mmd−1 in the 1961–1996
to 1980–2014 period, with an accelerated speed after
1977–2011. The pattern suggests increased flood con-
trol pressure in the context of simultaneously increas-
ing reservoir capacity. The running trend of the 35-year
PMP mainly lies in northern China, including Inner
Mongolia and Heilongjiang provinces, which are pre-
dominately caused by changes in the interannual vari-
ability (represented by the K factor) together with the
intensity of extreme precipitation (represented by X′n).
The PMP increases at a rate of 0.08 mmd−1 a−1 for the
whole country, of which 71 % (29 %) is caused by the
increasing K factor (X′n).

3. The historical simulations of the CMIP ensemble spa-
tially agree with the HRLT results. Land–atmosphere
coupling dominates the widespread increase in PMP
over China under both the SSP126 and SSP585 climate
change scenarios by modulating the intensity of daily
precipitation extremes (X′n), except for scattered regions
in northwestern China, where a significant increase in
precipitation variability (K) is observed. No obvious

Hydrol. Earth Syst. Sci., 28, 1873–1895, 2024 https://doi.org/10.5194/hess-28-1873-2024



J. Xiong et al.: PMP changes in China 1891

differences in the future projections during the middle
and end of the 21st century are discovered by comparing
them with the baseline. Nationally, the projected PMP
changes are 17 %–20 % and 0 %–2 %, according to the
SMIP and LFMIP-pdLC experiments, respectively, un-
der the SSP126 scenario. The percentages change to
43 %–51 % (SMIP) and −1 %–−5 % (LFMIP-pdLC)
for the SSP585 climate change scenario, indicating the
strengthened modulations of land–atmosphere coupling
to PMP with anthropogenic forcing.

Our study provides the first high-resolution map of PMP
(1 d and 1 km) for China and quantitatively challenges the
reliability of the static climate assumption in conventional
PMP estimation. Climate change and land–atmosphere cou-
pling impacts are further projected using state-of-the-art en-
semble models from CMIP6. Our results can provide scien-
tific inferences to regional and national water managers and
decision-makers for effective and efficient water resource
management in the area.
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