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Abstract. In recent years, extreme droughts in the United
States have increased in frequency and severity, underlin-
ing a need to improve our understanding of vegetation re-
silience and adaptation. Flash droughts are extreme events
marked by the rapid dry down of soils due to lack of precip-
itation, high temperatures, and dry air. These events are also
associated with reduced preparation, response, and manage-
ment time windows before and during drought, exacerbating
their detrimental impacts on people and food systems. Im-
provements in actionable information for flash drought man-
agement are informed by atmospheric and land surface pro-
cesses, including responses and feedbacks from vegetation.
Phenologic state, or growth stage, is an important metric for
modeling how vegetation modulates land–atmosphere inter-
actions. Reduced stomatal conductance during drought leads
to cascading effects on carbon and water fluxes. We investi-
gate how uncertainty in vegetation phenology and stomatal
regulation propagates through vegetation responses during
drought and non-drought periods by coupling a land surface
hydrology model to a predictive phenology model. We as-
sess the role of vegetation in the partitioning of carbon, wa-
ter, and energy fluxes during flash drought and carry out a
comparison against drought and non-drought periods. We se-
lected study sites in Kansas, USA, that were impacted by the
flash drought of 2012 and that have AmeriFlux eddy covari-
ance towers which provide ground observations to compare
against model estimates. Results show that the compound-
ing effects of reduced precipitation and high vapor pressure

deficit (VPD) on vegetation distinguish flash drought from
other drought and non-drought periods. High VPD during
flash drought shuts down modeled stomatal conductance, re-
sulting in rates of evapotranspiration (ET), gross primary
productivity (GPP), and water use efficiency (WUE) that fall
below those of average drought conditions. Model estimates
of GPP and ET during flash drought decrease to rates similar
to what is observed during the winter, indicating that plant
function during drought periods is similar to that of dormant
months. These results have implications for improving pre-
dictions of drought impacts on vegetation.

1 Introduction

The frequency and severity of extreme droughts are pre-
dicted to increase within the next century (Dai, 2013). Flash
droughts are a particular type of extreme drought charac-
terized by their rapid intensification (Svoboda et al., 2002;
Ford and Labosier, 2017; Otkin et al., 2018, 2022). The flash
drought of 2012 that impacted the central United States (US)
amplified the need to understand and predict flash droughts
because of its estimated USD 30 billion impact on agriculture
(Otkin et al., 2018). Work over the last decade has improved
methods for identifying flash droughts based on the rates of
intensification of dry soils and concurrent elevated temper-
atures and atmospheric aridity (see Christian et al., 2024,
and Lisonbee et al., 2021, for a summary of flash drought
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definitions and indicators). Many studies have examined the
drivers (e.g., lack of precipitation, greater atmospheric de-
mand for water, and above-average temperatures) and im-
pacts (e.g., soil moisture deficits and damage to agriculture)
of flash drought (e.g., Lowman et al., 2023; Christian et al.,
2023, 2022; Jin et al., 2019; Otkin et al., 2018), while oth-
ers have examined vegetation–atmosphere interactions (Hos-
seini et al., 2022; Chen et al., 2021; Zhang and Yuan, 2020;
Gerken et al., 2018; Otkin et al., 2016) and stomatal func-
tioning (Novick et al., 2016; Roman et al., 2015). This study
addresses the need to bring together the physical mechanisms
driving flash drought and the resulting vegetation responses
that inform land–atmosphere interactions.

Further assessment of vegetation–atmosphere feedback
mechanisms may help improve the identification of flash
drought onset (Qing et al., 2022). Gross primary produc-
tivity (GPP), or carbon assimilation by plants during pho-
tosynthesis, is one such vegetation–atmosphere interaction
impacted by drought (Zeng et al., 2023). Large reductions
in GPP due to soil moisture and temperature anomalies can
be used to mark the beginning and duration of flash drought
events (Poonia et al., 2022; Zhang and Yuan, 2020), as seen
in the 2012 flash drought (Jin et al., 2019). Flash droughts can
intensify through land–atmosphere feedbacks (Basara et al.,
2019); for example, vegetation expediting water stress by
pulling water from deeper soil layers and further drying soils
(Qing et al., 2022). Otkin et al. (2016) studied the evolution
of soil moisture and vegetation conditions during the 2012
event, finding that changes in soil moisture and evaporative
stress indicators preceded rapid drought intensification in the
U.S. Drought Monitor (USDM; Svoboda et al., 2002). Chen
et al. (2019) found declines in evapotranspiration (ET), an-
other interaction between the vegetation and the atmosphere,
to be a major sign of flash drought intensification.

Interactions between vegetation and the atmosphere are
altered during flash drought events; thus, it is necessary to
consider the vegetation state when studying the effects of
flash drought (Chen et al., 2021). Additionally, capturing dif-
ferences across plant types is essential for modeling vege-
tation response to drought. Failure to account for differen-
tial responses across plant functional types (PFTs) could re-
sult in underestimating a plant’s ability to maintain its func-
tion under water stress (Zhou et al., 2013). Roman et al.
(2015) showed that tree species in a forested region be-
haved differently during drought, with some species exhibit-
ing isohydric tendencies, whereas others were more anisohy-
dric. Isohydric plants are more conservative with their water
use strategies when under stress and tend to regulate their
stomatal conductance, making them less susceptible to hy-
draulic failure (Konings and Gentine, 2017). These tenden-
cies dictate how much photosynthesis occurs and, thus, how
much carbon is exchanged (Roman et al., 2015). However,
Garcia-Forner et al. (2017) cautions against making links
between carbon assimilation and water potential regulation
by showing similar rates of carbon assimilation under con-

trolled drought experiments between two species of Mediter-
ranean trees with opposing drought responses (one isohy-
dric and one anisohydric). For some species, stomatal reg-
ulation exists on a spectrum and can shift between isohydric
and anisohydric in response to atmospheric and water condi-
tions (Wu et al., 2021; Guo et al., 2020), leading to variation
and uncertainties in water use strategies (Kannenberg et al.,
2022). Ecosystem-scale modeling may be able to incorporate
the plant-level spatial and temporal variability in water use
strategies (Giardina et al., 2023; Konings and Gentine, 2017),
taking into account concurrent meteorological and environ-
mental conditions that influence plant water use tendencies
beyond the species’ physiological characteristics (Hochberg
et al., 2018).

Vegetation type and growth stage can play an important
role in determining whether and how an area experiences
changes in carbon uptake during flash drought. There is ev-
idence connecting vegetation changes in response to flash
drought to lower plant production (Zhang et al., 2020; Jin
et al., 2019; He et al., 2018; Otkin et al., 2016; Hunt et al.,
2014). Jin et al. (2019) and He et al. (2018) found that crop-
lands, grasslands, and shrublands experienced the majority
of loss to carbon uptake rates during the droughts of 2011
and 2012 across the central US, and similar rates of ET were
found in croplands in the US Northern Plains flash drought
of 2017 (He et al., 2019; Kimball et al., 2019). Chen et al.
(2021) showed that increases in the leaf area index (LAI)
led to increased ET and that, in a low-moisture regime, the
amount of latent heat released due to ET was sensitive to
changes in LAI. Hunt et al. (2014) showed that maize ex-
perienced decreases in stomatal conductance, which led to
declines in GPP and ET, during a flash drought. Roman et al.
(2015) show that species-specific stomatal control can lead to
different drought responses, implying that some plants which
exhibit more drought-tolerant behavior might be accessing
deeper stores of water (Giardina et al., 2023).

Previous studies have used remotely sensed or ground
measurements as indicators to study vegetation responses to
flash drought (e.g., Christian et al., 2022; Zhang et al., 2020;
Basara et al., 2019). In contrast, Chen et al. (2021) used
an Earth system model to gauge plant behavior during flash
drought, while Hosseini et al. (2022) used models with differ-
ent phenological forcing to investigate impacts on the water
and carbon cycles during drought. Remotely sensed and eddy
covariance data provide snapshots of the state of the sys-
tem at point-scale or gridded spatial resolutions and at fixed
temporal resolutions, while models can scale in space and
time. Inherently simplified due to the complexity of systems,
numerical models incorporate physical and biological pro-
cesses and statistical techniques to make predictions based
on current states and their uncertainties (Dietze, 2017). Data
assimilation procedures and Bayesian inference allow mod-
elers to incorporate observations while identifying sources of
uncertainty in both processes and scale (Dietze, 2017; Dietze
et al., 2013).
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Accurately capturing plant phenology has implications
for estimating photosynthetic activity (Lowman and Bar-
ros, 2018, 2016; Stöckli et al., 2008; Jolly et al., 2005),
which will influence the water, carbon, and energy fluxes
coupled between the land and atmosphere. We use two ver-
sions of the Duke Coupled surface–subsurface Hydrology
Model (DCHM) that incorporate routines for photosynthesis
(Garcia-Quijano and Barros, 2005; Gebremichael and Bar-
ros, 2006) and predictive phenology, or the plant life stage
(Lowman and Barros, 2018, 2016), to more closely inves-
tigate if and how vegetation water use strategies acceler-
ate or decelerate dry down before and during flash drought.
Data assimilation techniques allow us to capture model un-
certainty around processes controlling vegetation activity; in
particular, assimilating vegetation phenology can improve
the detection of drought (Mocko et al., 2021). We investigate
whether plants exhibit anisohydric tendencies, thereby exac-
erbating the dry down, or whether they regulate their water
intake to preserve soil moisture and mitigate the effects of
flash drought. In turn, we explore if plant behavior can be
altered during periods of water stress by predicting phenol-
ogy model parameters from hydrologic model outputs in dry
and wet periods. We hypothesize that simulated transpiration
and carbon uptake rates will taper during flash drought due
to limited soil water availability and increased atmospheric
demand and that the phenological changes are directly re-
lated to changes in transpiration rates and GPP (Fig. 1). Our
specific hypotheses are as follows:

H1 During flash drought, there is an increase in days be-
tween precipitation events, leading to larger reductions
in total precipitation and infiltration compared with non-
flash-drought events.

H2 Lower total infiltration and higher atmospheric demand
for water observed during flash drought reduces the soil
water available for root water uptake. This decreases
stomatal conductance, subsequently leading to reduced
rates of transpiration, carbon uptake, and water use ef-
ficiency compared with non-flash-drought within a sub-
seasonal time frame.

H3 In response to decreased water availability during flash
drought, vegetation phenological states will be dimin-
ished compared with non-flash-drought years, exacer-
bating the reduction in transpiration and carbon uptake.

Here, we use phenological responses of the fraction of
photosynthetically active radiation (FPAR) and LAI to ex-
amine how flash droughts affect vegetation state and ulti-
mately impact the surface fluxes governing the movement of
water and carbon between the land and atmosphere. We use
the well-studied flash drought of 2012 to compare vegetation
growth state and water use strategies during flash drought and
non-drought periods to better understand how plants mod-
ulate water and interact with the atmosphere when under

stress. Specifically, the model is used to explore how phe-
nological state and stomatal regulation are altered by flash
drought and subsequently affect vegetation productivity. We
compare our model results with eddy covariance and re-
motely sensed values of vegetation state and atmospheric
interactions. Discrepancies between observations and mod-
els with predictive vs. forced phenology illuminate physical
processes dictating plant water use strategies (e.g., suppress-
ing transpiration by closing stomata and limiting carbon in-
take). This study extends previous research on water and car-
bon movement between plants and the atmosphere during
flash drought by simulating the propagation of uncertainty
after implementing a predictive phenology routine to under-
stand how variability in the representation of vegetation state
within a modeling framework impacts land–atmosphere ex-
changes during extreme drought events.

2 Methods and data

2.1 Overview of modeling approach

Remotely sensed or ground observations of land and atmo-
spheric responses to flash drought are useful for identifying
changes in plant phenology, soil moisture, and evaporation
rates, among others, but observations alone are unable to
fully explain the mechanisms driving ecological responses
and water use strategies. Physically based models can help
fill the gaps in understanding what drives these changes by
identifying key processes in the land–atmosphere interac-
tions. For example, decreases in ground-based or satellite-
derived GPP do not illuminate what processes caused the
change, whereas a process-based model might be able to sig-
nal that changes in root water uptake lead to decreased tran-
spiration rates, which ultimately lead to decreased photosyn-
thesis and carbon assimilation.

Within physical models, changes in land surface variables
(e.g., soil moisture, root uptake, and evaporation rates) are
dependent upon meteorological conditions, either forced or
dynamic (Sellers et al., 1997). Water use strategies are dic-
tated by vegetation phenological states (Hu et al., 2008) and
stomatal regulation (Novick et al., 2016), and they strongly
influence GPP and ET (Beer et al., 2009). Therefore, physi-
cal, process-based models are able to adapt to changing me-
teorological conditions and capture mechanistic changes in
vegetation–atmosphere interactions. Our goal is to identify
vegetation responses that occur as a result of flash drought
and associate those changes with the physical processes rep-
resented in a land surface hydrology model.

To identify the physical mechanisms driving plant re-
sponses to flash drought intensification, we use two con-
figurations of the physically based Duke Coupled surface–
subsurface Hydrology Model (DCHM) with dynamic Veg-
etation (DCHM-V) and Predictive Vegetation (DCHM-PV).
The DCHM-V provides baseline estimates of soil moisture
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Figure 1. Schematic of water, carbon, and energy fluxes with hypotheses about the ecohydrological response to flash drought indicated
with dark orange arrows. A decreased frequency of precipitation events leads to decreased infiltration and less water being available for
plant use during flash drought periods compared with non-flash-drought periods. During flash drought, the cascading effects of decreased
water availability, exacerbated by the reduced phenological states and stomatal conductance, include rapid reductions in transpiration and
atmospheric carbon uptake to levels below other drought periods.

(SM), root uptake (RU), ET, and GPP using forced phe-
nology from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) FPAR and LAI products. Instead of using
forced phenology, the DCHM-PV uses a prognostic vegeta-
tion (i.e., phenological) model to predict the vegetation states
of FPAR and LAI using parameters that correspond to sea-
sonality (e.g., temperature and photoperiod), water availabil-
ity (e.g., soil and vapor pressure deficit), and local vegetation
characteristics (Lowman and Barros, 2018; Kim et al., 2015;
Caldararu et al., 2014; Stöckli et al., 2008; Moradkhani et al.,
2005). An ensemble Kalman filter (EnKF) data assimilation
procedure following Lowman and Barros (2018) is used to
estimate ensembles of parameters for use in the predictive
phenology model. Monte Carlo simulations of the DCHM-
PV with the ensembles of predictive phenology parameters
from the data assimilation step are used to explore the prop-
agation of error and uncertainty. We validate model simula-
tions against ground observations, remotely sensed data, and
other modeled products. A summary of the data sets used to
force or validate both configurations of the DCHM is pro-
vided in Table 1.

2.2 Forcing data sets for DCHM

2.2.1 Meteorological

The 1-D DCHM-V and -PV spatial and temporal resolution
is set to the same scale as the highest-quality precipitation
forcing data available. For this study, the model uses the na-
tive resolution of the Stage-IV precipitation forcing from the
National Oceanic and Atmospheric Administration (NOAA)
National Centers for Environmental Prediction (NCEP) (Du,
2011). The Stage-IV data set has a 4 km spatial resolution,
a 1 h temporal resolution, and a record beginning in 2002.
All forcing data sets were interpolated to the Stage-IV reso-
lution for the entire continental US (CONUS) before study-
site-specific data were extracted. Atmospheric forcing data

(downward shortwave and longwave radiation, air tempera-
ture, specific humidity, surface pressure, and wind velocity)
used in the DCHM are from Phase 2 of the North America
Land Data Assimilation System (NLDAS-2) Forcing File A
(Mitchell et al., 2004). NLDAS-2 is a combination of ob-
servational and reanalysis data sets intended for use in land
surface models like the DCHM. The data are available at a
0.125° spatial resolution and 1 h temporal resolution. They
are spatially interpolated to the 4 km Stage-IV grid. No tem-
poral interpolation was necessary.

2.2.2 Land cover

The land surface albedo and fraction of vegetation cover used
in the DCHM-V and -PV come from the NLDAS-2 Mosaic
Land Surface Model L4 data set at a 0.125° spatial resolution
and 1 h temporal resolution (Xia et al., 2012; Mitchell et al.,
2004). NASA’s MODIS Land Cover (MCD12Q1) remotely
sensed satellite land cover classification product is used to
determine land cover type within DCHM. In particular, we
use the University of Maryland classification scheme (Sulla-
Menashe and Friedl, 2018). Within the model, land cover
type is updated yearly. The native spatial resolution of this
data set is 500 m, and it is interpolated to the 4 km resolution
using a nearest-neighbor approach.

2.2.3 Soil texture and porosity

Soil texture and porosity data were acquired from the Soil In-
formation for Environmental Modeling and Ecosystem Man-
agement CONUS-SOIL data set (Miller and White, 1998).
The CONUS-SOIL spatial resolution is 1 km with 11 lay-
ers. We upscaled the raw soil texture and porosity data to the
4 km Stage-IV grid using two different methods. By averag-
ing over the top 100 cm, we avoid averaging layers interpo-
lated as bedrock (and thus near zero porosity). We approxi-
mate soil porosity by averaging the top eight layers (100 cm),
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Table 1. Summary of data products and uses.

Data set Variable(s) Spatial res-
olution

Temporal
resolution

Use Reference

Stage IV precipitation 4 km 1 h forcing Du (2011)

NLDAS-2 Forcing File A wind speed, air pressure,
temperature, specific hu-
midity, incoming short-
wave and longwave radi-
ation

0.125° 1 h forcing/data assimilation Mitchell et al. (2004)

NLDAS-2 Mosaic vegetation
fraction/albedo

0.125° 1 h forcing/data assimilation Xia et al. (2012)

MODIS MOD15A2H LAI/FPAR 500 m 8 d forcing/data assimilation Myneni et al. (2015)

MODIS MOD12Q1 land cover 500 m yearly forcing Friedl and Sulla-
Menashe (2015)

STATSGO (CONUS-SOIL) soil texture/porosity 30 arcsec fixed forcing Miller and White (1998)

AmeriFlux GPP, latent heat, SM point 30 min validation Baldocchi et al. (2001)

MODIS MOD17A2H GPP 500 m 8 d validation Running et al. (2015)

NLDAS-2 SM 0.125° 1 h validation Xia et al. (2012)

SMERGE SM 0.125° 1 h validation Tobin et al. (2019)

and we represent texture using the texture mode across each
grid cell and layer.

2.2.4 Vegetation

MODIS LAI and FPAR data were obtained for all of CONUS
at the native 500 m spatial and 8 d temporal resolution. Be-
fore linearly interpolating the data to the Stage-IV grid and
time step, the data for each pixel were smoothed using a
Savitzky–Golay filter (Savitzky and Golay, 1964), following
the algorithm presented in Chen et al. (2004), in order to pre-
serve seasonality and reduce noise in the data from cloud
contamination and other atmospheric disturbances that may
alter surface reflectance observations (Cihlar et al., 1997;
Tanré et al., 1997). We use an m= 6 scaling window and
d = 4° for the interpolating polynomial (Chen et al., 2004;
Lowman and Barros, 2016).

2.3 Data sets used for model comparison

We assess vegetation responses to the Kansas flash drought
of 2012 by comparing model results of land surface, sub-
surface, and atmospheric carbon and water fluxes (e.g., SM,
GPP, and ET) to multiple ground and remotely sensed ob-
servations. Modeled SM fluxes from the DCHM-V and -PV
are compared to SoilMERGE (SMERGE), NLDAS-2 Noah
model output, and AmeriFlux eddy covariance. SMERGE
is a 0.125° root-zone (0–40 cm) SM product obtained from
“merging” NLDAS-2 outputs with European Space Agency
Climate Change Initiative surface satellite data that can pre-
dict vegetation health anomalies (Tobin et al., 2019). Because

SMERGE only provides root-zone SM, we only compare it
to the DCHM middle-layer SM output. We also validate SM
estimates against NLDAS-2 estimates from the Noah land
surface model (LSM) for all three soil layers used in DCHM
Xia et al., 2012). When AmeriFlux SM data are available, we
compare them with modeled soil moisture from the top layer,
as most AmeriFlux SM sensors are in the top few centimeters
of soil. The DCHM-V and -PV estimates of GPP are com-
pared to the MODIS (MOD17A2H) GPP product and Amer-
iFlux eddy covariance outputs of GPP. We also compare
DCHM estimates of ET to AmeriFlux eddy covariance flux
tower estimates by dividing the observed latent heat flux by
the latent heat of vaporization of water (λw = 2.5 MJ kg−1;
Dingman, 2015).

2.4 Description of study sites

This study focuses on three AmeriFlux sites in Kansas (US-
KFS, US-KLS, and US-Kon; Fig. 2, Table 2), chosen be-
cause of the availability of GPP and latent heat (converted
to ET) data during the flash drought year of 2012 and at least
1 wet year after 2012. When available, we used gap-filled
FLUXNET FULLSET data for US-KFS and US-Kon (Pas-
torello et al., 2020). All three sites are classified as grasslands
according to the International Geosphere–Biosphere Pro-
gramme (IGBP) land cover, and all three sites have Cfa (hu-
mid, subtropical) Köppen climate classifications (Brunsell,
2020a, 2021, 2020b). US-KFS is located within a grassland–
deciduous forest boundary area and receives 1014 mm of pre-
cipitation annually (Brunsell, 2020a). US-KLS is a peren-
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Figure 2. Evolution of the 2012 flash drought from May to August
in the U.S. Drought Monitor with the three AmeriFlux tower study
sites (US-KFS, US-KLS, and US-Kon). Note that 1 mi is equivalent
to approximately 1.61 km.

nial agricultural study site receiving 812 mm of rainfall each
year (Brunsell, 2021). US-Kon is part of the Konza Prairie
Long-term Ecological Research (LTER) program, receives
867 mm of precipitation, and is burned annually. Static char-
acteristics of PFT, soil texture and porosity, and geographic
information for the study sites are shown in Table 2. Accord-
ing to the MODIS Land Cover Type classification product
(MCD12Q1), each site had a unique vegetation cover type
(savanna, grassland, and cropland; Table 2). The PFT is a re-
sult of interpolating MODIS MCD12Q1 Land Cover Type 2
to the 4 km grid and does not align with the land cover from
AmeriFlux in all cases. The soil texture and porosity are in-
terpolated CONUS-SOIL (Miller and White, 1998) values.

2.5 Description of modeling work

2.5.1 Land surface hydrology model

We employ two 1-D versions of the DCHM coupled land
surface hydrology model that accounts for water and energy
exchanges between three soil layers, the surface, and the at-
mosphere (Lowman and Barros, 2018, 2016; Tao and Bar-
ros, 2014, 2013; Yildiz and Barros, 2009, 2007, 2005; Ge-
bremichael and Barros, 2006; Garcia-Quijano and Barros,
2005; Devonec and Barros, 2002; Barros, 1995). A 4 km grid
resolution and 1 h time step were chosen to run the model
to match the native spatial resolution of the Stage-IV pre-
cipitation data, as precipitation is the main source of un-
certainty when modeling drought (Trenberth et al., 2014).
We use 80 mm for the top-layer soil depth to ensure model
stability, but the middle and deep layers were selected to
best match the USDA Kansas soil profile (Soil Survey Staff,
2022). This yields three soil layers: top (0–80 mm), middle
(80–890 mm), and bottom (890–1830 mm). Rooting depth
and density, which are used to determine the total root water
uptake in the DCHM, are calculated using empirical expo-
nential root distribution functions that vary by PFT (Lowman

and Barros, 2016; Zeng, 2001; Lai and Katul, 2000; Jackson
et al., 1996; Clausnitzer and Hopmans, 1994). Soil layer and
rooting depths align with the different combinations of soil
textures and PFTs found in Thornthwaite and Mather (1957).

The DCHM water balance includes subroutines for evapo-
ration from the different components of the land surface (i.e.,
bare soil and vegetation), ponding and groundwater runoff,
snow accumulation and melt, and root water uptake, while
energy balance routines solve for net radiation as well as
sensible, latent heat, and ground heat fluxes (Lowman and
Barros, 2018, 2016; Tao and Barros, 2014, 2013; Yildiz and
Barros, 2007, 2005; Garcia-Quijano and Barros, 2005; De-
vonec and Barros, 2002; Barros, 1995). The water and en-
ergy balances both influence photosynthesis, which is simu-
lated using the Farquhar model (Lowman and Barros, 2016;
Garcia-Quijano and Barros, 2005; Farquhar and Caemmerer,
1982; Farquhar et al., 1980).

2.5.2 Predictive phenology

The key difference between the two versions of the DCHM
used for this study is that vegetative phenology is forced us-
ing the MODIS MOD15A2H FPAR and LAI products within
the DCHM-V, whereas the DCHM-PV predicts phenology
for the next day based on the current-day conditions. Estab-
lishing differences in the outputs from the DCHM-V and -
PV illuminates changes in plant growth strategies. MODIS
is a passive sensor and uses only the red (648 nm) and near-
infrared (NIR, 858 nm) spectral bands to estimate LAI values
(Myneni et al., 2015). Within the DCHM-PV, the Dynamic
Canopy Biophysical Properties (DCBP) model predicts plant
life stage based on climatological properties of water avail-
ability, air temperature, and evaporative demand (Lowman
and Barros, 2018). FPAR and LAI are dynamically estimated
instead of forced using MODIS observations to evaluate im-
pacts on estimates of ET and GPP (Lowman and Barros,
2018; Kim et al., 2015; Caldararu et al., 2014).

The DCBP is the predictive phenology model that deter-
mines future plant growth based on differences between cur-
rent and potential phenological states. The growing season
index (GSI) determines potential phenological state based on
current climate conditions (Jolly et al., 2005; Stöckli et al.,
2008). Specifically, it is a function of temperature, photope-
riod, soil water potential, and vapor pressure deficit (VPD;
Lowman et al., 2023; Lowman and Barros, 2018). Low-
man and Barros (2018) adapted the framework to incorporate
soil water parameters that affect predictions of plant growth
stage. The DCBP is implemented within the DCHM-PV to
estimate phenologic state with the land surface hydrology
model. However, to do this, we must first estimate param-
eters that determine plant growth rates and sensitivity to me-
teorological and soil conditions.

A Bayesian hierarchical approach is used to estimate
the parameters for the DCBP. Specifically, a dual state–
parameter ensemble Kalman filter (EnKF) is used to jointly
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Table 2. AmeriFlux study sites contained within Stage-IV pixels.

Site Latitude Longitude PFT Soil texture Soil porosity Mean precipitation Reference
(mm yr−1)

US-KFS 39.0561 −95.1907 SAV silty clay loam 0.4225 1012 Brunsell (2020a)
US-KLS 38.7754 −97.5684 CRO silt loam 0.4812 812 Brunsell (2021)
US-Kon 39.0824 −96.5603 GRA silty clay loam 0.4588 867 Brunsell (2020b)

Plant functional type (PFT), soil texture, and soil porosity were determined after interpolation to the Stage-IV grid. The abbreviations used in the table are as
follows: SAV – savanna; CRO – cropland; GRA – grassland. Precipitation totals are listed as the AmeriFlux annual mean.

estimate the phenologic states of FPAR and LAI as well as
the 11 other parameters within the DCBP (Table 3; Lowman
et al., 2023; Lowman and Barros, 2018). This method was
described by Moradkhani et al. (2005) as a way of simultane-
ously predicting states and parameters in hydrologic models;
it was then later implemented by Stöckli et al. (2008) to as-
similate remotely sensed observations of LAI and FPAR into
a predictive phenology model.

The parameter estimation procedure first consists of creat-
ing a prior distribution by sampling each state and parameter
from a Gaussian distribution. This generates N = 2000 en-
semble members. Phenological states and input parameters
are updated at every time step for the duration of the data
assimilation period using the EnKF. We assimilate MODIS
LAI and FPAR every 8 d (the native MODIS temporal res-
olution) to reduce error and ensure that phenological state
predictions do not stray too far from observations (Lowman
et al., 2023; Lowman and Barros, 2018).

2.6 Model simulations

We run both the DCHM-V and -PV from 2002 to 2019 at a
1 h time step and 4 km spatial resolution, spinning up 2002
three times to allow for model stabilization (Lowman and
Barros, 2016, 2018). The DCHM-V simulations provide a
baseline for changes in water, energy, and carbon exchange
using forced phenology from MODIS, whereas the DCHM-
PV simulations implement a predictive phenology scheme,
allowing us to investigate how dynamic changes in the plant
growth strategy impact the aforementioned fluxes.

In order to run the DCHM-PV, we first generate phenol-
ogy model parameters for the predictive phenology routine.
Specifically, we use 2003 (DRY), 2005 (WET), and 2003–
2005 (3YR) as the data assimilation periods in the DCBP
model to generate parameters that correspond to dry, wet, or
average precipitation regimes, respectively (Table 4). We use
three different assimilation periods in order to capture the
sensitivity of phenology model parameters to the meteoro-
logical conditions. It has been shown, under varied climato-
logical conditions, that plants can be highly adaptable, transi-
tioning from isohydric to anisohydric in a single season (Guo
et al., 2020). Lowman and Barros (2018) showed that the as-
similation period can determine the water stress adaptations
for the modeled vegetation state. Broadly speaking, vegeta-

tion model parameters predicted using data from years with
minimal rainfall represent plants accustomed to drier condi-
tions; therefore, plants would exhibit more regulation in their
water use tendencies (Lowman and Barros, 2018; Sade et al.,
2012).

To incorporate uncertainty from the phenology parameter
estimation step into the DCHM-PV simulation, we run the
model as Monte Carlo simulations with N = 2000 members.
Each ensemble member is sampled from a Gaussian distri-
bution using the final mean and standard deviation of the pa-
rameter estimates from each of the assimilation periods. In
our results, we focus on analyzing model output from 2006
to 2019 in order to omit the 2003–2005 period used in the
data assimilation step from our analysis.

2.7 Analysis of model outputs

In this paper, we are interested in exploring whether land
surface, subsurface, and atmospheric interactions are dis-
tinct during flash drought periods compared with drought
and non-drought periods. We focus on results from the three
AmeriFlux sites for 2012 (flash drought), 2018 (drought),
and 2019 (non-drought) to draw conclusions about plant re-
sponse during flash drought and how they differ from drought
and non-drought years. We evaluate model outputs from
2006 to 2019 to assess the differences between the DCHM-
V and DCHM-PV model configurations during drought and
non-drought years compared with a flash drought year. Dur-
ing this time period, we identified drought years as 2006,
2011, 2013, 2014, and 2018 and non-drought years as 2007–
2010, 2015–2017, and 2019 using the USDM for the cen-
tral and east-central Kansas climate regions (Svoboda et al.,
2002). Drought years were determined by whether parts of
the region reached the D2 “Severe Drought” classification
or higher. When computing drought and non-drought av-
erages, we use the years listed here. In many time series
results, we display the water year (April–October) rather
than the entire year, as plants are largely dormant outside
of the water year in a temperate region (Dai et al., 2016;
Wang et al., 2003; Towne and Owensby, 1984). Transpi-
ration is calculated from total root water uptake through
the three soil layers, and total evaporation is computed by
summing evaporation from ground and canopy surfaces, al-
lowing us to partition ET into evaporation and transpira-
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Table 3. Ensemble mean and 1 standard deviation (SD) of predictive phenology model parameters from the 3YR assimilation period.

Mean parameter estimates ± 1 SD

Parameter Description Units US-KFS US-KLS US-Kon

Tminmin minimum value of daily minimum temperature °C −5.5± 3.1 0.1± 2.4 −2.3± 3.2
Tminmax maximum value of daily minimum temperature ◦C 14.0± 1.8 16.5± 1.8 15.8± 2.0
Phtmin minimum daily exposure to sunlight h 10.0± 0.4 9.8± 0.6 10.7± 0.6
Phtmax maximum daily exposure to sunlight h 14.3± 0.3 14.2± 0.4 14.3± 0.4
VPDavgmin minimum daily average vapor pressure deficit hPa 17.1± 1.3 16.6± 1.4 16.9± 1.4
VPDavgmax maximum daily average vapor pressure deficit hPa 58.7± 2.3 55.8± 2.2 55.6± 2.3
ψsoil,avgmin

minimum daily average soil water potential J kg−1
−42.1± 5.6 −37.2± 5.8 16.9± 5.5

ψsoil,avgmax
maximum daily average soil water potential J kg−1

−7.4± 1.3 −7.0± 1.4 −6.9± 1.4
FPARmin minimum fraction of photosynthetically active radiation – 0.31± 0.01 0.35± 0.01 0.31± 0.01
LAImax maximum leaf area index m2 m−2 6.36± 0.15 6.51± 0.17 6.65± 0.18
γ growth rate d−1 0.22± 0.04 0.31± 0.06 0.38± 0.08

For an in-depth description of the predictive phenology routine within dynamic the Canopy Biophysical Properties (DCBP) model, the reader is referred to Lowman et al.
(2023) and Lowman and Barros (2018).

Table 4. Summary of precipitation conditions during data assimila-
tion periods.

Stage-IV annual precipitation
(mm yr−1)

Year(s) Assimilation US-KFS US-KLS US-Kon
period∗

2003–2005 3YR 1066 770 847
2003 DRY 804 756 670
2005 WET 1242 806 956

∗ The data assimilation periods are as follows: 3YR represents a period with average
annual precipitation; WET and DRY are periods with above- and below-average
annual precipitation, respectively.

tion (Lowman and Barros, 2018; Lai and Katul, 2000). Wa-
ter use efficiency is represented as the ratio of GPP and ET
(WUE=GPP / ET; Beer et al., 2009). We highlight differ-
ences between the DCHM-V and DCHM-PV model simu-
lations and compare outputs to remotely sensed and in situ
observations where available.

3 Results

3.1 Phenology

3.1.1 Growth rate parameter

The growth rate parameter, γ , dictates how much the phe-
nological state (i.e., FPAR and LAI) can change in a given
time step (Lowman and Barros, 2018; Stöckli et al., 2008).
The uncertainty in γ shows the variability in vegetation re-
sponses to changing phenological states. Lower uncertainty
in γ establishes the 3YR assimilation period, with a mixture

of wet and dry years, as the preferred choice for running the
DCHM-PV (Fig. 4). This finding is in agreement with Low-
man and Barros (2018), who found that using assimilation
periods with both wet and dry conditions has the effect of
capturing adaptive plant water use strategies. This lower un-
certainty propagates through the DCBP in DCHM-PV, lead-
ing to lower uncertainty in the predictions of FPAR and LAI
(Figs. 5, 6). The values of γ vary by site due to a combina-
tion of local climate and vegetation type. US-KFS, modeled
as a savanna, has the lowest mean and standard deviation of
γ (Table 3). The smaller magnitudes of the growth param-
eters indicate that vegetation is less likely to make abrupt
changes and exhibit more resilience when faced with extreme
dry down. Other parameter estimation outputs used to gener-
ate ensembles from the 3YR assimilation period can be found
in Table 3.

3.1.2 Fraction of photosynthetically active radiation

Overall, the DCHM-PV-simulated FPAR tends to follow the
same patterns as MODIS throughout the growing season,
irrespective of the choice of parameters. Results indicate
slower senescence and reduced variance using the 3YR as-
similation parameters compared with the WET and DRY pa-
rameters during late June and early July 2012 across all three
sites (Fig. 5a, d, g). This aligns with the known period of flash
drought that occurred across Kansas (Lisonbee et al., 2021).
The predicted values of FPAR at US-KFS and US-KLS are
slightly higher than the MODIS values during the 2012 grow-
ing season. The predicted values of FPAR match well against
MODIS for the US-Kon site, especially during the decline in
late-June through July. During the flash drought period, there
is a notable decrease in variance, or uncertainty, across the
Monte Carlo simulations.
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Figure 3. Schematic of the modeling workflow. Spatial and tem-
poral resolutions of all forcing data are interpolated to match the
resolution of the Stage-IV precipitation (4 km and 1 h), which is the
resolution used for DCHM in this study. Land cover, soil proper-
ties, and atmospheric forcing inputs come from MODIS, STATSGO
(CONUS-SOIL), and NLDAS-2, respectively. Simulations were run
from 2002 to 2019. We generated ensembles of parameters for
three different precipitation regimes: 2003 (DRY), 2005 (WET),
and 2003–2005 (3YR) for the predictive phenology routine in
the DCHM-PV. The data assimilation procedure used an ensem-
ble Kalman filter (EnKF) with simulated soil water potential and
vapor pressure deficit from the DCHM-V, MODIS MOD15A2H
FPAR/LAI, and concurrent meteorological conditions. The DCHM-
V outputs of interest included evapotranspiration (ET), root wa-
ter uptake (RU), and gross primary productivity (GPP). Additional
DCHM-PV outputs included the predicted fraction of photosynthet-
ically active radiation (FPAR) and leaf area index (LAI).

Figure 4. Ensemble means and 1 standard deviation of the growth
rate parameter, γ (–), for each site and all three data assimilation
periods: 3YR (2003–2005), WET (2005), and DRY (2003).

For US-KFS, across the three simulations, the simulation
using the WET parameters achieves a higher FPAR during
the flash drought and holds its peak throughout the month
of May, with declines beginning in June and bottoming in
early July before rising again in the latter part of the grow-
ing season. FPAR decreases from 0.77 to 0.41 for the WET
parameters, while reductions from the time of peak FPAR
to early July in the simulations using DRY and 3YR parame-
ters are from 0.73 to 0.47 and from 0.76 to 0.53, respectively.

The decreases in FPAR observed from mid-May to mid-July
in 2012 are more pronounced than during the growing sea-
son of the drought year 2018 (when fluctuations in FPAR
were smaller). Results from an above-average precipitation
year (2019) show a steady increase, a longer peak growing
season, and a decrease in line with fall senescence across all
simulations. However, using WET and DRY parameters at
US-KLS led to a ∼ 0.2 reduction in FPAR in July 2019, op-
posed to a ∼ 0.1 reduction from the 3YR parameters. The
larger decrease is likely due to the below-average July pre-
cipitation and the larger WET and DRY values of γ lead-
ing to faster phenological changes. Similarly to the 2012 re-
sults, 2019 simulations using phenology parameters from the
3YR assimilation period showed slower late-season declines
in FPAR than simulations using parameters from the WET
or DRY assimilation periods. This can be seen from the 3YR
parameter simulations for US-KLS and US-Kon, which show
higher FPAR through July.

3.1.3 Leaf area index

Predicted values of LAI are similar to MODIS LAI with
small relative differences (Fig. 6). During the flash drought
year of 2012, a steep decline in modeled LAI can be seen
in late June and early July across the three sites. LAI de-
clines almost 1 m2 m−2 in a few weeks during summer 2012
compared with steadier values during the drought of 2018.
Growing season LAI was ∼ 0.5 m2 m−2 lower in 2012 com-
pared with 2018. The DCHM-PV model outputs of LAI dur-
ing 2019 match MODIS but are 1–2 m2 m−2 higher during
June, July, and early August at US-KFS and US-KLS, and
slightly lower than MODIS at US-Kon.

Simulated LAI values vary slightly across the three sites.
For US-KFS, simulations using the WET year parameters
achieve higher LAI values than the other two simulations
(Fig. 6a, b, c). For US-KLS and US-Kon, the growing sea-
son LAI has the highest peaks in the simulations using the
3YR parameters (Fig. 6d, e, f, g, h, i). With more rainfall in
May and June 2019, the simulations using the WET parame-
ters result in a lower LAI than the simulations using the DRY
parameters.

The most consistent similarities across the phenology re-
sults is that the simulations using the 3YR parameters gen-
erally show a slower decline in LAI in flash drought and
non-flash-drought years for all sites. Additionally, the sim-
ulations using WET and DRY parameters are more similar
to each other than to the simulations using 3YR parameters.
This result is commensurate with the values of the means
and variances of γ resulting from the different assimilation
periods. Simulations using the 3YR assimilation period re-
sult in the LAI remaining high for a longer period of time
with a decrease in response to flash drought developing more
slowly than for the other two simulations. This is also appar-
ent for US-KLS and US-Kon in the 2019 3YR simulations in
which leaf growth continues through June and peaks in the
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Figure 5. Fraction of photosynthetically active radiation, FPAR (–), predicted from the DCHM-PV for a flash drought year (2012), drought
year (2018), and non-drought year (2019) for US-KFS (a–c), US-KLS (d–f), and US-Kon (g–i). Colors indicate the different data assimilation
periods: 3YR (yellow), WET (blue), and DRY (red). Corresponding shaded regions represent 1 standard deviation of model outputs from the
2000 ensemble members. The 8 d MODIS MOD15A2H FPAR is shown as black dots. The gray shaded regions in panels (a), (d), and (g)
highlight the 2012 flash drought period.

Figure 6. Leaf area index, LAI (m2 m−2), predicted from the DCHM-PV for a flash drought year (2012), drought year (2018), and non-
drought year (2019) for US-KFS (a–c), US-KLS (d–f), and US-Kon (g–i). Colors indicate the different data assimilation periods: 3YR
(yellow), WET (blue), and DRY (red). Corresponding shaded regions represent 1 standard deviation of model outputs from the 2000 ensemble
members. The 8 d MODIS MOD15A2H LAI is shown as black dots. The gray shaded regions in panels (a), (d), and (g) highlight the 2012
flash drought period.

middle of July, whereas new growth tends to slow from the
beginning of June through mid-July in the WET and DRY
simulations.

Generally, the predictive phenology model compares fa-
vorably with the seasonal changes observed in MODIS FPAR

and LAI (Figs. 5, 6) in both flash drought and non-flash-
drought periods. In the summer, at US-KFS and US-KLS
during 2019, the model tends to predict FPAR and LAI val-
ues higher than MODIS. In 2019, at US-KFS, MODIS ob-
served a steady decline in FPAR from 0.8 to 0.6 throughout
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July followed by an increase to 0.8 over an 8 d period at the
beginning of August (Fig. 5c). The DCHM-PV results do not
show the same decline. Similarly, MODIS observes a drop
in LAI before an abrupt increase, while model estimates re-
main higher than MODIS (Fig. 6c). However, in June 2019,
the DCHM-PV estimates at US-Kon are lower than MODIS
LAI.

The bulk of the following results and analysis com-
pares vegetation responses during flash drought and non-
flash-drought periods, rather than an inter-model comparison
across the different assimilation strategies. Estimates from
the WET and DRY simulations tend to be in agreement with
results from the 3YR simulations. From this point forward,
we only show results from the 3YR simulations.

3.2 Subsurface water

3.2.1 Infiltration

During non-drought years, monthly infiltration accumulation
amounts are above or near 100 mm per month, on average,
from April to July, with the highest amounts in May (Fig. 7).
During drought years, infiltration between April and July is
less than non-drought years. Furthermore, monthly accumu-
lated infiltration is lower during the flash drought year com-
pared with both drought and non-drought years, suggesting
that there is less water available for plant use during the
growing season. At US-KFS from April to October of 2012,
monthly infiltration is slightly below what is observed during
drought years. A large decline in May infiltration at US-KLS
and US-Kon led to infiltration accumulation amounts that
were 1–2 standard deviations below average drought condi-
tions. All sites had infiltration rates below 100 mm for all
months during 2012 with the exception of US-KLS in Au-
gust 2012.

Low monthly infiltration amounts during the flash drought
year are likely due to lower precipitation accumulation, cou-
pled with an increase in the number of days between pre-
cipitation events, and an increase in atmospheric demand for
water (Fig. 8 and Figs. S4 and S5 in the Supplement). Dur-
ing drought and non-drought years, the average number of
days between rainfall events within a month ranges from
1 to 7 d, while the lower end for the flash drought year is
higher (2.5 d). Here, we consider a rainfall event to be any
day with recorded precipitation. Additionally, during drought
and non-drought years, monthly infiltration exceeds 150 mm;
however, it remains at or below 75 mm for all sites in 2012
aside from August 2012 at US-KLS, where monthly infiltra-
tion is ∼ 110 mm. In 2012, all three sites averaged over 4 d
between rainfall events during May, June, and July, with US-
KFS averaging over 6 d between rainfall events during both
May and June and more than 5 d in July (Fig. 8a). Across all
three sites from April to October 2012, there was more than
4 d between precipitation events 80 % of the time compared
with just 20 % of the time in non-flash-drought years.

Figure 7. The DCHM-PV 3YR ensemble means of monthly in-
filtration accumulation amounts (mm) for drought (red) and non-
drought (blue) years compared to 2012 (black) for US-KFS (a),
US-KLS (b), and US-Kon (c). Monthly sums are computed from
the ensemble means of the 2000 Monte Carlo simulations and then
averaged across drought or non-drought years. Error bars represent
1 standard deviation across drought and non-drought years.

3.2.2 Soil moisture

Soil moisture analysis and comparison to other soil mois-
ture products are similar for all three study sites. Figures for
soil moisture at US-KFS for all three soil layers are available
in the Supplement. Top-layer soil moisture reaches the wilt-
ing point several times throughout the flash drought period
of 2012 (Fig. S1a). During peak flash drought, at the end of
June and beginning of July, the moisture content remains at
wilting point for many days. Daily soil moisture agrees with
AmeriFlux soil moisture observations in the top layer during
2012 at US-KFS. Discrepancies exist in 2018, when Ameri-
Flux observations fall to levels just above 0 m3 m−3.

Fluctuations in soil moisture match favorably with
NLDAS-2 estimates across the top two layers in 2012, 2018,
and 2019. However, middle-layer soil moisture from the
DCHM estimates is about 0.05 m3 m−3 higher than NLDAS-
2 and SMERGE by the late growing season of the flash
drought year (Fig. S2). The DCHM estimates remain fairly
steady in the deep layer during 2012, while NLDAS-2 soil
moisture estimates continue to fall throughout the rest of the
growing season (Fig. S3). The steady DCHM soil moisture
levels during flash drought may be indicative of the model-
ing stunting root water uptake during the same time, thereby
preserving soil water content.
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Figure 8. Monthly infiltration accumulation (mm) vs. average days between precipitation events within a single month for (a) US-KFS,
(b) US-KLS, and (c) US-Kon. Each shape indicates whether the month occurs in the early growing season (circles: April–July) or late
growing season (squares: August–October). Colors distinguish flash drought years (black) from drought years (red) and non-drought years
(blue).

3.2.3 Root water uptake

Root water uptake is above non-flash-drought levels in 2012
before the onset of flash drought in June. It then remains
lower than non-flash-drought levels for the remainder of the
growing season (Fig. S6). The middle soil layer is responsi-
ble for up to 4 times more root water uptake than the other
layers. Thus, a major decline in root water uptake through the
middle layer is informative of how plant water use is altered
during drought. While root water uptake starts out at levels
above average non-drought years in 2012, it falls to more
than 1 standard deviation below drought averages by July.
This drastic shift is likely due to lower infiltration (Fig. 7),
and it drives down rates of transpiration within the DCHM-
V and -PV over the same period.

3.3 Plant–atmosphere interactions

3.3.1 Sub-daily stomatal conductance

Sub-daily estimates of stomatal conductance highlight how
VPD can drive stomatal activity within DCHM. In 2012,
stomatal conductance in the first week of May was as high or
higher than in 2019, a non-drought year at US-KFS (Fig. 9).
However, by July, major differences in 2012 and 2019 stom-
atal conductance coincide with changes in VPD. In July
2012, high VPD shuts down midday stomatal conductance,
whereas lower VPD values allow for higher rates of stom-
atal conductance during the same time in 2019. The large
decrease in stomatal conductance from the first week of May
to the first week of July during the flash drought year of 2012
is unlike that seen in a drought year like 2018, when stomatal
conductance rates are similar in May and July.

3.3.2 Gross primary productivity

Monthly averages of GPP accumulation from the DCHM-
PV ensemble means throughout the water year (April–
October) indicate that carbon uptake falls below drought

averages from May to June during the flash drought year
of 2012 (Fig. 10a, c, e). Flash drought carbon assimilation
amounts remain below drought levels before converging to
average drought/non-drought levels by the end of October.
GPP amounts are up to 50 % lower in drought years com-
pared with non-drought years. During the flash drought, GPP
monthly totals in June through August 2012 are at least
1 standard deviation lower than drought years averaged over
the 2006–2019 simulation period. June 2012 GPP accumu-
lation values are half of those for drought years and less
than 30 % of those for non-drought years. An even greater
discrepancy is apparent in July, with carbon assimilation
amounts less than 30 % of drought levels and 15 % of non-
drought levels. Despite increased GPP from July to August
in 2012, values are still 1 standard deviation below drought
levels.

Seasonal variations in GPP at US-KFS for simulations
from the DCHM-V and -PV (3YR) with observations from
MODIS and AmeriFlux for a flash drought year (2012),
drought year (2018), and non-drought year (2019) can also
be explored at the daily scale (Fig. 11). Daily GPP is lower
in drought vs. non-drought years between April and Octo-
ber. During the flash drought year, there is a decline in GPP
from 10 gC m2 d−1 in early May, above what was observed
in 2018 and 2019, to near zero by July in 2012 (Figs. 11, S15
and S16). During the drought year (2018), daily GPP remains
low throughout the growing season, but it never decreases to
below 1.2 gC m2 d−1 at US-KFS. From June to July in 2012,
carbon uptake decreased from more than 5 gC m−2 d−1 to
less than 1 gC m−2 d−1. This type of decline is not observed
in a drought year (e.g., 2018). The rapid decline in GPP from
May to July is what distinguishes the 2012 flash drought
as a period of time during which land–atmosphere interac-
tions switch from resembling conditions that are wetter than
an average wet year to drier than an average dry year. The
DCHM-PV GPP results are similar to MODIS GPP in most
cases, with the exception that they tend to underestimate GPP
compared with MODIS in a drought year, aligning with the
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Figure 9. Stomatal conductance (mm s−1) and VPD (kPa) for 1 week in May (a, c, e) and July (b, d, f) of 2012, 2018, and 2019 for US-KFS.

Figure 10. The DCHM-PV 3YR monthly totals of GPP (gC m−2) (a, c, e) and ET (mm) (b, d, f) for drought (red) and non-drought (blue)
years compared to flash drought (black) for US-KFS (a–b), US-KLS (c–d), and US-Kon (e–f). Monthly totals are computed from the
ensemble means of the 2000 Monte Carlo simulations then averaged across drought or non-drought years. Error bars represent 1 standard
deviation across drought and non-drought years, respectively.

higher MODIS estimates of FPAR and LAI during the same
periods (Fig. 6). Simulated GPP tends to underestimate flux
tower GPP during June and July in 2012 and 2018 but over-
estimates it in 2019.

3.3.3 Stomatal and non-stomatal regulation of gross
primary productivity

We examine how GPP covaries during flash drought,
drought, and non-drought years with sub-seasonal changes
in LAI and stomatal conductance at US-KFS (Fig. 12). Dur-
ing a non-drought year (2019), a wider range of values of

stomatal conductance, LAI, and GPP exists throughout the
growing season (Fig. 12c). There is a clear seasonal cycle in
the clockwise movement through the stomatal conductance–
LAI parameter space. Stomatal conductance increases faster
than LAI in the early season before reaching maximum val-
ues around June. After LAI peaks, there is first a reduction
in stomatal conductance and GPP at higher LAI before LAI
decreases through August and September.

In contrast, during flash drought (2012) and drought
(2018), peak stomatal conductance, LAI, and GPP values at
US-KFS are approximately half of 2019 values. Both stom-
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Figure 11. Daily gross primary productivity, GPP (gC m−2), at US-
KFS for a (a) flash drought year (2012), (b) drought year (2018),
and (c) non-drought year (2019). The shaded region for the DCHM-
PV simulations denotes 1 standard deviation. MODIS GPP is shown
as red crosses and AmeriFlux GPP as blue dots.

atal conductance and LAI remain low throughout the grow-
ing season and GPP is below 10 gC m−2 at all sites in 2012
(Fig. S7). Stomatal conductance and LAI are highest in May
2012, as opposed to June and July 2019. While both 2012
and 2018 have low values of stomatal conductance, LAI, and
GPP, an important difference is the near-zero stomatal con-
ductance during June and July 2012 for a range of LAI values
(1–2 m2 m−2; Fig. 12) that is not observed in 2018 and other
drought years (Fig. S11).

The relationship between stomatal conductance, LAI, and
GPP is similar across all three sites when considering flash
drought (Fig. S7), drought (Fig. S11), or non-drought peri-
ods (Figs. S8, S9, and S10). The observable clockwise move-
ment through parameter space is not as clear in flash drought
and drought periods compared with non-drought periods. In
drought years, stomatal conductance from April to October
averages 1.4 mm s−1 across all sites (Fig. S11), compared
with 2.3 mm s−1 in non-drought years (Figs. S8, S9, and S10)
and 1.1 mm s−1 in flash drought years (Fig. S7). Peak LAI is
approximately 1–2 m2 m−2 higher in non-drought years rel-
ative to flash drought years and other drought years. Simi-
larly, non-drought GPP levels are approximately 6–8 gC m−2

higher than flash drought and non-drought periods.

3.3.4 Evapotranspiration

We consider monthly accumulation values of ET for the flash
drought year and averaged across non-flash-drought years
for the three study sites (Fig. 10b, d, f). ET accumulation is
lower in the flash drought year starting in May, particularly
at US-KLS and US-Kon. Monthly ET during drought peri-
ods is slightly lower than, although generally similar to, non-
drought periods at US-KFS and US-KLS, indicating that ET
may not be a strong indicator of drought. However, parsing
ET into its components of evaporation and transpiration of-
fers a different perspective. Simulated monthly transpiration
accumulation values follow trajectories similar to GPP dur-
ing flash drought (Fig. 13a, c, e). Transpiration amounts dur-
ing flash drought exceed non-drought years in April, match
what is observed during drought years in May, and decline
to levels below drought years through the rest of the grow-
ing season. Transpiration in July 2012 falls below 1 stan-
dard deviation of the drought years. At all sites, evapora-
tion rates for drought and non-drought years are similar. At
US-KFS, monthly evaporation is comparable to both drought
and non-drought years throughout the entire growing season
(Fig. 13b). At US-KLS, May and June evaporation totals are
lower during the flash drought years than drought and non-
drought years. At US-Kon, May and July evaporation falls
below drought and non-drought years.

During the flash drought, transpiration gradually declined
from May to July (Figs. 13 and S19a). The fluctuations in
total ET starting in June 2012 are the result of evaporation in
response to small precipitation events. This suggests that, fol-
lowing precipitation events during flash drought onset, ET is
dominated by evaporation. Reduced infiltration limits the wa-
ter available for root water uptake (Figs. 7 and S6). As tran-
spiration is computed from root water uptake across the three
soil layers, the observation that transpiration decreases but
maintains a small consistent rate through the flash drought
indicates that vegetation is extracting water from deeper soil
layers. ET never completely shuts down in 2012 because
of the low rate of transpiration. However, evaporation com-
pletely halts during early July 2012, which is the peak of the
flash drought period. Similar to flash drought, during drought
in 2018, ET is dominated by evaporation (Fig. S19b). How-
ever, in the non-drought year 2019, transpiration makes up
more than 50 % of ET throughout the entire growing season
except for short periods in July and August (Fig. S19c).

Daily ET estimated by the DCHM-PV matches well
against AmeriFlux estimates at US-KFS during the flash
drought and non-flash-drought years (Fig. 14). In 2012, the
DCHM-PV ET agrees with AmeriFlux through mid-May.
From late-May through July, the model results tend to fall
below AmeriFlux until August when they once again agree.
In the drought (2018) and non-drought (2019) years, the
DCHM-PV ET appears to align with AmeriFlux throughout
most of the season (Fig. 14b, c). While model estimates of
ET are higher than flux tower measurements in 2019 at US-
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Figure 12. Stomatal conductance (mm s−1) vs. LAI (m2 m−2) at US-KFS for a (a) flash drought year (2012), (b) drought year (2018), and
(c) non-drought year (2019). Marker shapes indicate individual days between 1 April and 31 October. Each month is given a unique shape,
the color of which reflects daily GPP values (gC m−2).

Figure 13. The DCHM-PV 3YR monthly totals of transpiration (mm) (a, c, e) and evaporation (mm) (b, d, f) for drought (red) and non-
drought (blue) years compared to flash drought (black) for US-KFS (a–b), US-KLS (c–d), and US-Kon (e–f). Monthly totals are computed
from the ensemble means of the 2000 Monte Carlo simulations and then averaged across drought or non-drought years. Error bars represent
1 standard deviation across drought and non-drought years, respectively.

KLS, they compare favorably in 2012 and 2018 (Fig. S17).
In contrast to model and flux tower comparisons at US-
KFS and US-KLS, modeled ET agrees with AmeriFlux in
2019 (non-drought) but underestimates it during the summer
months in 2012 (flash drought) and 2018 (drought) at US-
Kon (Fig. S18). One explanation for the differences between
model and tower ET data could be that water use by vegeta-
tion during flash drought is highly variable across sites; thus,
the model is not able to represent all possible responses. Ad-
ditionally, it is difficult for DCHM and other Earth system
models to account for plant access to deep water stores (Gia-
rdina et al., 2023).

4 Discussion

4.1 Mechanisms controlling plant responses to drought

An objective of this work is to evaluate whether changes
in phenology vs. changes in stomatal conductance have a
stronger control on carbon uptake during flash drought (H2
and H3). Prior work has linked phenological responses to
drought to changes in vegetation–atmosphere interactions
(Lowman and Barros, 2018; Cui et al., 2017). Dynamically
estimated FPAR and LAI tend to exert strong controls on the
resulting GPP (Lowman and Barros, 2018). By updating phe-
nological states using the phenology model, rather than forc-
ing phenology with remotely sensed values, we were able to
capture the plant growth response to water availability. When
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Figure 14. Daily evapotranspiration, ET, at US-KFS for a (a) flash
drought year (2012), (b) drought year (2018), and (c) non-drought
year (2019). The shaded area for the DCHM-PV simulations de-
notes 2 standard deviations. AmeriFlux ET is derived from latent
heat measurements and shown as blue dots.

more water is available, the DCHM-PV simulation predicts
higher values of FPAR and LAI and, thus, higher values of
GPP. At the onset of flash drought, the DCHM-V and -PV
respond faster than MODIS to changes in LAI and FPAR
(Figs. 5, 6), leading to differences in modeled and remotely
sensed GPP (Fig. 11). Moreover, regardless of the simula-
tion, the rapidness of the change in LAI and FPAR is indica-
tive of flash drought, which is in agreement with Zhang et al.
(2020). Decreases in the phenological state due to the lack of
soil water available to plants affected carbon and water ex-
changes, suggesting support for the third hypothesis (H3);
however, decreases in stomatal conductance driven by in-
creased VPD may compound the detrimental phenological
effects.

While phenology is an important component to consider
when simulating changes in transpiration and carbon up-
take (Lowman and Barros, 2018; Flack-Prain et al., 2019),
our results indicate that stomatal conductance is also criti-
cal for accurately representing these fluxes. Plants adaptively
regulate their stomata during periods of water stress (Guo
et al., 2020), and some have been demonstrated to maintain
open stomata or even increase stomatal conductance under
high-VPD conditions (Urban et al., 2017). Stomatal conduc-
tance shuts down under high VPD in the DCHM (Fig. 9),
which does not account for the possibility of an adaptive
stomatal regulation strategy. As GPP is directly dependent
on stomatal conductance (Farquhar and Sharkey, 1982), the

DCHM estimates of sub-daily GPP decrease in response
to elevated VPD (Fig. S22). Moreover, changes in pheno-
logical growth state (i.e., LAI) occur across longer (e.g.,
seasonal) timescales than stomatal regulation (Katul et al.,
2001), which controls carbon and water exchange at sub-
daily timescales (Guo et al., 2020).

The differences between modeled and observed GPP and
ET (Figs. 11, 14) suggest that there are mechanisms control-
ling plant responses to drought stress that are not accounted
for within the DCHM. For example, the DCHM could be too
strict with respect to representing the sensitivity of stomatal
closure to elevated VPD for the Kansas study sites. There
could also be plant- or climate-specific VPD dependence
(Grossiord et al., 2020), plants could have access to stores
of water not accounted for (Giardina et al., 2023), or both.
Guo et al. (2020) showed that isohydricity (i.e., stomatal reg-
ulation) exists on a spectrum and that some plants are able to
move along that spectrum at sub-daily timescales with vary-
ing environmental conditions, such as higher VPD. Given the
high VPD in 2012 at our study sites (Figs. S5, S28, S29, and
S30), DCHM estimated low stomatal conductance, and thus
low GPP relative to AmeriFlux observations when under at-
mospheric water stress. This was evident in the slow reduc-
tion in GPP during May and June 2012 before reaching a
minimum near the beginning of July, marking stomatal clo-
sure and a shift toward more isohydric behavior (Figs. 10, 11;
Meinzer, 2002). Additionally, VPD estimated by DCHM us-
ing the NLDAS-2 Forcing File A atmospheric variables is
higher during 2012 and 2018 and lower in 2019 than the
AmeriFlux observations (Fig. S28), explaining some of the
discrepancy between modeled and AmeriFlux GPP. As stom-
atal response to increasing VPD and resulting impacts on
land–atmosphere water fluxes is more complex than how it
is represented in LSMs (Vargas Zeppetello et al., 2023), fu-
ture modeling studies should focus on how rising VPD drives
stomatal closure across different vegetation types (Grossiord
et al., 2020).

4.2 Surface and subsurface water movement

At the onset of flash drought, there is an increase in evap-
orative demand for water that leads to a temporary increase
in surface evaporation (Lowman et al., 2023; Otkin et al.,
2018). Once the soil and canopy reservoirs no longer contain
enough water, evaporation shuts down. Despite evaporation
tapering to zero during June and July of 2012 (Fig. S19),
pulses of rainfall led to temporary rapid increases in rates of
evaporation. Increased surface evaporation may reduce the
amount of water infiltrating the soils. Across all three study
sites, infiltration exceeded evaporation in the growing sea-
son in drought and non-drought years (Figs. 7, 10). During
flash drought, infiltration totals were of a similar magnitude
to evaporation totals. Thus, a decrease in total infiltration
concurrent with increased evaporation may be an indicator
of flash drought.
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We found that it is important to consider the partition-
ing of ET when studying plant responses to flash drought.
Accumulated monthly averages of transpiration as a frac-
tion of evapotranspiration (T /ET) showed a transition from
at or above non-drought levels to at or below drought lev-
els (Fig. 15). Excluding 2012, growing season transpiration
rates averaged more than 50 % of total ET at US-KFS. This
finding aligns with prior results from Hosseini et al. (2022),
who used the Noah-MP LSM that also computes transpira-
tion from root water uptake (Li et al., 2021). However, dur-
ing the flash drought year, transpiration rates fell below 35%
of overall ET at US-KFS (Fig. 15a). Transpiration decreased
by approximately 20%–40% from May to June at US-KLS
and US-Kon (Fig. 15b, c). The rapid decline in transpiration
rates can be attributed to the slowing of root water uptake due
to the lack of available water and decreased stomatal con-
ductance (Figs. S6 and S7). It is possible that the fluctuating
T /ET at US-Kon, modeled as a grassland, is indicative of
an adaptation to the water stresses.

4.3 Linking carbon and water fluxes

Vegetation responses to water stress are apparent through
fluctuations in GPP (Zhang and Yuan, 2020; Jin et al., 2019)
and ET (Chen et al., 2019). Decreases in GPP occur when
plants close their stomata, limiting gas exchange and affect-
ing both rates of photosynthesis and transpiration. Transpira-
tion is only one part of ET, so we must be careful not to di-
rectly link fluctuations in GPP with fluctuations in ET. Evap-
oration can still be high when there is little to no transpira-
tion, but we find that GPP tends to follow the same trajec-
tories as transpiration (Figs. 10 and 13 and Fig. S19a; Beer
et al., 2009).

Despite major reductions in infiltration and fluctuations
in top-layer soil moisture during flash drought onset, mod-
eled root water uptake indicated that plants were still pulling
small amounts of water through their roots (Fig. S6), allow-
ing transpiration to occur and preventing complete shutdown.
With the ability to tap into water stores from deeper layers
(Giardina et al., 2023) and small rates of transpiration still
occurring, modeled carbon uptake is maintained (Fig. 11a,
S15a and S16a). For example, ET decreased at US-KFS dur-
ing July 2019 while experiencing a brief period of low rain-
fall (Fig. S19b), yet plants were able to maintain rates of GPP
during this period due to the amount of available water in
soils from the excessive precipitation during May and June
(Figs. S1c, S2c, and S3c). Although GPP drastically slowed,
it did not stop. The decreases in simulated GPP due to flash
drought during June and July 2012 were consistent in terms
of magnitude with decreases found in recent studies (Yao
et al., 2022; Poonia et al., 2022; Zhang et al., 2020).

Changes in the ratios of T /ET when compared with si-
multaneous changes in WUE indicated that plants that have
higher rates of transpiration are more efficient in their water
use (Fig. 15). We found that plants are more efficient dur-

ing non-drought periods and are less efficient during flash
drought onset. WUE at all sites started off in 2012 at above
the average non-drought levels and increased from April to
May. However, from May to July, WUE at all sites fell from
values above non-drought years to more than 1 standard de-
viation below drought years. With GPP differences being
more substantial than ET between flash drought and non-
flash-drought periods (Fig. 10), sub-seasonal reductions in
WUE were attributed to the losses in GPP. Reductions in
WUE from above non-drought conditions to below drought
conditions, e.g., the 60 %–70 % reduction from May to July
in 2012, appeared to be a feature of flash drought onset
(Fig. 15d, e, f).

4.4 Uncertainty in vegetation responses

Three different assimilation strategies were used to evaluate
how uncertainty propagates from the predictive phenology
routine through to the DCHM-PV model outputs (Fig. 3).
The 2003–2005 period represented “average” conditions, as
it spanned periods of below- and above-average precipita-
tion. Compared with the single-year assimilation periods
(WET and DRY), the uncertainty ranges in model parame-
ters were smaller in the 3YR assimilation period. These re-
sults are consistent with Lowman and Barros (2018) in that
uncertainty in phenology shrank during dry periods. Future
studies should use an assimilation period encompassing mul-
tiple precipitation regimes (i.e., multiyear inference period)
to best represent the variability in climatological conditions,
as it leads to reduced uncertainty in model outputs. How-
ever, if the intent of a future study is to investigate vegeta-
tion responses to extreme events in a changing climate (e.g.,
Kirono et al., 2020; Pearson et al., 2013), it may be appro-
priate to use inference periods encompassing extreme wet or
dry conditions. For example, one could fit parameters to a
dry regime to investigate how plants accustomed to today’s
average conditions will function in a future climate in which
drier conditions are expected.

The γ parameter values, which drive plant growth in the
DCHM-PV, were lower in the 3YR assimilation period for
all three test sites compared with simulations from drought
and wet years. Daily standard deviations in LAI across sim-
ulations were approximately 0.5 m2 m−2 during the growing
season of a wet year, but they shrank to values of 0.2 m2 m−2

at the onset of flash drought and to less than 0.1 m2 m−2 dur-
ing peak flash drought. The lower ensemble spread during
the flash drought period corresponded with winter phenolog-
ical variability when plants are dormant. Similarly, decreases
in uncertainty in estimates of GPP and ET during the flash
drought period fell to winter levels, implying that variabil-
ity in plant life stage and functionality are similar in drought
periods and dormant months.
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Figure 15. Ratio of transpiration to evapotranspiration, T /ET (–), and water use efficiency, WUE (gC kg−1 H2O), for drought (red) and
non-drought (blue) years compared to flash drought (black) for US-KFS (a, d), US-KLS (b, e), and US-Kon (c, f).

4.5 Model performance and limitations

Our modeling approach permits direct comparisons of re-
motely sensed and ground observations to physically derived
estimates. However, it should be noted that, when analyz-
ing the DCHM outputs against remotely sensed and eddy
covariance measurements, we are comparing data across
temporal and spatial scales. The flux towers exist within a
4 km× 4 km region defined by the Stage-IV spatial grid cell
used in DCHM. Flux tower spatial extents range from a cou-
ple of hundred meters to a few kilometers (Baldocchi, 2003;
Schmid, 1994), making the 4 km grid cell near the maxi-
mum range. Sub-grid-scale heterogeneity can lead to consid-
erable discrepancies between parameterized and actual fluxes
(Schmid, 1994). One explanation for why flux tower data
differ from model output is that the flux tower estimates in-
corporate a variety of vegetation types within the fetch con-
tributing to the vertical fluxes, rather than the single vegeta-
tion type used within the model. Additionally, the size and
orientation of the contributing fetch varies in time depend-
ing on measurement height and turbulent fluxes (Chu et al.,
2021). Differences between model outputs and remote sens-
ing observations could be due to discrepancies in the land
cover classification, a result of interpolating MODIS land
cover at 500 m to the 4 km grid cell used in the DCHM.
Regardless of the classification differences, the spectral re-
flectance method used by MODIS is inherently different
from the predictive phenology routine used in the DCHM-
PV, specifically in that it cannot account for how soil water

availability influences vegetation growth (Lowman and Bar-
ros, 2018).

Regardless of vegetation type, the physically based
DCHM-PV model compares favorably against MODIS LAI
during flash drought and non-drought at US-KFS and US-
KLS, whereas it underestimates those sites during drought
(Fig. 6). The higher DCHM-PV model estimates of FPAR
and LAI during summer 2019 could be due to the model
accounting for excess water availability and other meteo-
rological conditions favorable for growth (e.g., temperature
and VPD). In contrast, MODIS estimates of FPAR and LAI
are based on radiative transfer models using bidirectional re-
flectance of incoming radiation from the red and NIR bands
(Myneni et al., 2015; Yan et al., 2016). Our model perfor-
mance against MODIS is similar to that found in Hosseini
et al. (2022), who also used a predictive phenology model
coupled with Noah-MP.

Daily GPP from DCHM tends to match the magnitude of
MODIS and AmeriFlux GPP at US-KFS throughout much
of the growing season, but it underestimates June and July
observations in 2012 (flash drought) and 2018 (drought).
MODIS GPP is directly dependent on observations of FPAR
(Running et al., 2015), and, generally, MODIS overestimates
GPP compared with eddy covariance flux tower data (Hein-
sch et al., 2006; Running et al., 2004). However, Ameri-
Flux estimates of GPP during June and early July of 2012
and 2018 are above estimates from MODIS. This suggests
that plants are able to maintain higher levels of GPP dur-
ing drought and flash drought than what can be recreated
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using land surface models and satellite remote sensing. In
some cases, vegetation can reallocate already processed car-
bon to their roots when under drought stress, thereby mit-
igating GPP losses (Ingrisch et al., 2020). However, differ-
ences in the DCHM-PV and AmeriFlux GPP cannot be fully
attributed to carbon reallocation, as the Noah-MP model ac-
counts for carbon reallocation and similarly underestimated
GPP compared with flux tower data (Hosseini et al., 2022).
The DCHM-PV, which does not account for carbon real-
location, responds to drought and flash drought differently
than what is observed at flux tower sites. It matches better
with AmeriFlux data during 2012, the flash drought year, at
US-KFS and US-KLS compared with 2018, a drought year
(Figs. 11 and S15).

Another explanation for the discrepancies between mod-
eled and flux tower data could be that models may not be able
to fully represent how vegetation can maintain transpiration
by accessing groundwater or deep soil moisture, ultimately
biasing models towards more severe effects of drought on
vegetation (Giardina et al., 2023). The DCHM has similar
soil moisture profiles to NLDAS-2, derived from Noah-LSM,
and Hosseini et al. (2022), who used Noah-MP configura-
tions, for both the 2012 flash drought and the 2018 drought.
The DCHM estimates of GPP are often less than 50 % of
AmeriFlux GPP in 2012 and 2018. The model results from
the Noah-MP similarly underestimate GPP and overestimate
soil moisture during these drought periods (Hosseini et al.,
2022), suggesting that access to deep water reserves could
be responsible for these differences (Giardina et al., 2023).

4.6 Implications for land surface models

Capturing phenological responses and subsequent changes in
carbon and water fluxes within a physically based model is
not without its limitations. Assimilating plant phenology into
land surface models (e.g., the DCHM-V or Noah-MP) can
improve estimates of GPP and ET (Hosseini et al., 2022; Xu
et al., 2021; Mocko et al., 2021; Kumar et al., 2019). How-
ever, our findings indicate that improved phenology cannot
alone account for vegetation adaptations to water stress, in-
cluding the ability to access water in ways that current LSMs
cannot (Giardina et al., 2023). Future studies would benefit
from improved estimates of root water uptake, as it is directly
linked to the amount of available water for transpiration. An
emphasis should be placed on understanding how plants are
able to tap into different stores of water to continue exchang-
ing water and carbon despite lower precipitation or increased
VPD. Additionally, stomata control the movement of water
and carbon, affecting GPP and water use efficiency (Lawson
and Vialet-Chabrand, 2019). Sub-daily-scale stomatal con-
ductance reduces to zero in response to increased VPD, lead-
ing to similar reductions in modeled GPP (Figs. 9 and S22).
This limitation of DCHM could explain why AmeriFlux GPP
tends to be higher than the modeled GPP. Accounting for
growing season adaptations to regulate stomatal sensitivity

to drought stress, as observed by Guo et al. (2022), may im-
prove model accuracy.

Improvements made to the phenological states of the en-
tire plant, rather than just the leaf phenology, could enhance
the representation of water movement through plants under
water stress conditions. Different vegetation types have their
own root characteristics, leading to distinct hydraulic ten-
dencies under variable water regimes and atmospheric con-
ditions, which distinguish whether vegetation is more likely
to survive or recover from drought (McDowell et al., 2008;
Martínez-Vilalta et al., 2002). Hydraulic strategies may vary
by species within a single location (Liu et al., 2020), so
the generalization of water use strategy by PFT in hydro-
logic models represents the average tendency of vegetation
to regulate water. The changing phenological state of root
systems likely plays an important role in root water uptake
(McCormack et al., 2014). Moreover, models that can ac-
count for different vegetation strategies, such as the reallo-
cation of carbon storage and belowground respiration during
drought, may provide a better understanding of mechanisms
driving drought resiliency and changes in carbon uptake dur-
ing drought (Ingrisch et al., 2020; Sanaullah et al., 2012).
These types of mechanisms could explain how a warm and
wet spring mitigated the effects of the 2012 flash drought on
GPP losses (Wolf et al., 2016).

5 Conclusions

To address how water stresses affect carbon and water
cycling, we implemented a 1-D version of the DCHM-
V coupled to a predictive phenology model and analyzed
vegetation–atmosphere water and carbon exchanges during
flash drought, drought, and non-drought periods. The model-
ing procedure first required running the DCHM-V with phe-
nology updates from remotely sensed observations of FPAR
and LAI. After coupling the predictive phenology model to
the DCHM-V, we generated ensembles of model parameters
and ran Monte Carlo simulations of the DCHM-PV with con-
current meteorological conditions. We ran three simulations
using three distinct assimilation periods for three different
sites in Kansas. Uncertainty in model parameters and outputs
is reduced when a 3-year assimilation period, considering av-
erage conditions, is used.

The effects of water stress on phenology, infiltration, stom-
atal conductances, and WUE were similar across all three
study sites and helped to distinguish flash drought condi-
tions from non-flash-drought conditions. Our findings indi-
cated that both phenology and stomatal conductance play an
important role in controlling vegetation responses to extreme
drought (H2 and H3). Decreased infiltration due to increased
days between precipitation during flash drought resulted in
less soil water available for plant use (H1 and H2). High va-
por pressure deficit led to stomatal closure within the model.
With stomata closed, root uptake, transpiration, and carbon
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assimilation reduced to dormant levels. This led to reductions
in WUE during the flash drought that were more than 1 stan-
dard deviation below other drought periods (H2). FPAR and
LAI also decreased during the flash drought but did not exert
as strong of a control on reductions in GPP as observed with
changes in stomatal conductance that resulted from increased
VPD.

The seasonal timing of the flash drought was particularly
detrimental because the rapid dry down occurred during the
peak growing season. The amount of water available during
the growing season has a major influence on vegetation ac-
tivity. In this region of the US, droughts can reduce monthly
carbon assimilation by half compared with non-drought pe-
riods, while flash droughts are even more detrimental to the
overall carbon budget. This has major implications for an-
nual crop yields as well as for the carbon uptake capacity of
grasslands and savannas that cover much of the Midwestern
US. Future modeling studies should investigate how different
vegetation types alter their water use strategies in response
to different water stresses by including (1) adaptive stomatal
regulation under elevated VPD, (2) access to deep stores of
water in soils, and (3) wider ranges of plant functional types
and climatological regimes.

Data availability. Results from model simulations are
available for download via CUAHSI HydroShare at
https://doi.org/10.4211/hs.331a4e26a36a48928817881a8f3e5db4
(Corak et al., 2023). The forcing and validation data used
in this study are available from a variety of sources. The
NCEP/EMC Stage-IV data were acquired from the UCAR/N-
CAR Earth Observing Laboratory and are available at
https://doi.org/10.5065/D6PG1QDD (Du, 2011). The NL-
DAS Phase-2 (https://doi.org/10.5067/T4OW83T8EXDO,
NLDAS, 2021; Xia et al., 2012), Noah-MP, and SMERGE
(https://doi.org/10.5067/PAVQY1KHTMUT, Crow and Tobin,
2018) data used in this study were acquired as part of the NASA
Earth Science Division mission and are archived and distributed
by the Goddard Earth Sciences (GES) Data and Information
Services Center (DISC). The MODIS MCD12Q1 and MOD15A2H
(https://doi.org/10.5067/MODIS/MOD15A2H.006, Myneni et al.,
2015) data were retrieved online from AppEEARs and are dis-
tributed by the NASA Land Processes Distributed Active Archive
Center (LP DAAC): http://appeears.earthdatacloud.nasa.gov/
(Friedl and Sulla-Menashe, 2015). AmeriFlux data for
US-KFS, US-KLS, and US-Kon were obtained from
https://doi.org/10.17190/AMF/1246132 (Brunsell, 2020a),
https://doi.org/10.17190/AMF/1246068 (Brunsell, 2020b), and
https://doi.org/10.17190/AMF/1498745 (Brunsell, 2021). Maps
were generated using shapefiles from the US Drought Monitor
(https://droughtmonitor.unl.edu/, Svoboda et al., 2002), which is
jointly produced by the National Drought Mitigation Center at
the University of Nebraska–Lincoln, the United States Depart-
ment of Agriculture, and the National Oceanic and Atmospheric
Administration.
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